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ABSTRACT 21 

Hydraulic models can provide efficient and cost-effective ways for water utilities to evaluate 22 

changes in operating conditions (e.g., population dynamics, disasters), thereby increasing system resiliency 23 

during crises. Unfortunately, model development remains out of reach for many utilities due to high 24 

software costs, data needs, or personnel requirements. This study seeks to classify hydraulic modeling data 25 

needs, identify success factors and challenges associated with model development, and determine whether 26 

modeling a sub-zone of a larger water distribution network can provide useful insight during a crisis, 27 

specifically, the coronavirus disease 2019 (COVID-19) pandemic. At the pandemic onset, we began 28 

developing a hydraulic model of the water distribution systems of The University of Texas at Austin 29 

campus—a subsystem of the water distribution network of Austin, Texas—to understand how 30 



spatiotemporal changes in water demands impacted system performance. We found that the completed 31 

model can offer useful insight into the impacts of demand changes within the modeled subsystem (e.g., 32 

potential locations of water stagnation). However, the data collection and processing challenges 33 

encountered (e.g., siloed collection efforts, lack of standardization, lengthy processing) reflect barriers to 34 

model development and use. The amount of time required to gather and process the necessary data shows 35 

that model development cannot occur during a time-sensitive crisis, likely rendering any insight too late for 36 

use. Here, we make recommendations to address data-related challenges and support utilities in 37 

incorporating hydraulic modeling into emergency planning.   38 

INTRODUCTION 39 

When communities experience changes, whether acute (e.g., hurricanes) or protracted (e.g., public 40 

health emergencies, population shifts), water infrastructure systems might no longer operate under the 41 

conditions for which they were designed. Hydraulic models—mathematical descriptions of real-world 42 

water distribution systems (Walski et al. 2003)—can provide utilities with critical information to understand 43 

how such changes impact their water systems (e.g., increasing stagnation, altering pressures), enabling rapid 44 

and effective responses and thereby building resiliency. However, fully developed and calibrated hydraulic 45 

models are typically accessible only to relatively wealthier or urban utilities. Smaller, rural, or resource-46 

constrained water utilities often do not possess hydraulic models—some might not even have digitized 47 

maps or records of their infrastructure. Other utilities often have only limited access to models prepared by 48 

outside consultants for design purposes, which may be based on unclear assumptions or represent only a 49 

portion of their distribution system (Atkinson 2014), thereby making the model of limited use for long-50 

range planning or crisis response purposes. For managers to take advantage of the potential benefits that 51 

models can offer in planning (e.g., forecasting population dynamics, development) and crisis management 52 

(e.g., identifying stagnation, low pressure), utilities must build, calibrate, and maintain their own hydraulic 53 

models. A complicating factor in model development—one that is frequently overlooked in hydraulic 54 

modeling literature and technical resources—is the data requirements and sheer amount of data processing 55 

needed to build models. Often, instructional modeling literature (e.g., textbooks, industry guides, software 56 



documentation) relies on the assumption that the modeler is in possession of all necessary data in the 57 

appropriate format; in practice, this is rarely the case. The result of these extensive data and processing 58 

needs is that model development is a lengthy, time-consuming process that cannot be completed in the 59 

midst of a crisis. At the onset of the recent coronavirus disease 2019 (COVID-19) pandemic, our research 60 

team began development of a hydraulic model of a real-world distribution system with the goal of better 61 

understanding the impact of pandemic-related policies on system performance. As this study shows, if a 62 

hydraulic model does not already exist when a crisis occurs and model development begins at the onset of 63 

the event, the crisis will likely be nearly over by the time the model is ready for use.  64 

While researchers have reviewed the many recent advances in the development and application of 65 

hydraulic models (Bach et al. 2014; Campisano & Creaco 2020), actual adoption by water utilities can be 66 

hindered by underlying data problems. Data issues impacting hydraulic modeling include the lack of 67 

standardization in water data (e.g., format, timescales, type of data collected), siloed institutional expertise 68 

and data collection efforts (e.g., multiple disjointed collection efforts occurring across departments), and 69 

the underuse of collected data. Notably, the water sector lags behind other industries (e.g., transportation, 70 

energy, telecommunications) in the application of data science and analytics (Kadiyala & Macintosh 2018; 71 

Neemann et al. 2013). For instance, a 2018 Water Research Foundation study found that only 10% of data 72 

collected by water utilities was analyzed and used (Kadiyala & Macintosh 2018). Others have identified 73 

the lack of uniformity in collecting, analyzing, and applying water data as a longstanding challenge in the 74 

industry (Deloitte 2016; Kiefer & Krentz 2018). However, progress is underway as the industry gradually 75 

begins to capitalize on existing data and embrace data analytics (Deloitte 2016). Previous work has 76 

summarized the trends towards data driven urban water management (Eggimann et al. 2017; Neemann et 77 

al. 2013) and hydroinformatics (Makropoulos & Savić 2019), though all acknowledge challenges remain 78 

to transform digital data and institutional knowledge into actionable information. Researchers have worked 79 

towards addressing data issues by outlining steps to embrace data analytics for broader utility management 80 

(Keck & Lee 2021) and demonstrating new data management systems and technologies (Carriço et al. 2020; 81 

Flint et al. 2017; Kawasaki et al. 2018). For instance, Keck & Lee (2021) offered recommendations for 82 



wider implementation of data analytics in the water industry, such as developing a culture around analytics 83 

by educating all levels of an organization’s workforce on the value of data and data integrity, building an 84 

organizational “toolbox” of core tools and technology, and providing professional development and 85 

collaborative research opportunities. Others demonstrated the application of new water data integration 86 

technologies for asset management (Carriço et al. 2020) and flood control modeling (Kawasaki et al. 2018). 87 

In the hydrology space, researchers developed a data management and classification system for integrating 88 

social science data (e.g., census data, social vulnerability index) and biophysical water data (e.g., storm 89 

event data, land use changes) to advance interdisciplinary social water science (Flint et al. 2017).  90 

Despite these advances, a gap remains in defining and developing a data classification system for 91 

hydraulic modeling as well as providing an in-depth discussion of the specific modeling-related data 92 

challenges facing utilities. Previous work has emphasized the importance of data management for overall 93 

utility management and for specific applications (e.g., asset management, flood control, hydrology). 94 

However, the pathway for efficient data collection, curation, and management needed for hydraulic 95 

modeling has not been mapped. Further, technical documentation rarely mentions data needs or processing 96 

requirements, instead jumping directly into the model building process. To address this gap, in this study 97 

we developed a hydraulic model of a subsystem of a large municipal water utility. In doing so, we seek to 98 

(1) classify hydraulic modeling data needs and document the data collection and processing stages, (2) 99 

identify success factors and challenges associated with model development, and (3) determine whether 100 

focusing on a smaller subsystem can provide useful insights to management during a protracted crisis while 101 

alleviating some data-related challenges. Such developments can promote and facilitate the adoption of 102 

hydraulic modeling tools to support decision making and improve resiliency, measures that are urgently 103 

needed as highlighted during the COVID-19 pandemic.  104 

While the state of data management in hydraulic modeling and the broader water sector lags, the 105 

emphasis on infrastructure resiliency is greater than ever (Brears 2018; Florin & Linkov 2016). 106 

Resiliency—defined by the National Academy of Sciences as “the ability to prepare and plan for, absorb, 107 

recover from, or more successfully adapt to actual or potential adverse events” (NAS 2012)—is widely 108 



discussed in policy and literature (Brears 2018; Florin & Linkov 2016; Horn 2020; Shin et al. 2018; US 109 

EPA 2019b). The America's Water Infrastructure Act (AWIA) of 2018 “requires community water systems 110 

serving more than 3,300 persons to develop or update risk and resilience assessments and emergency 111 

response plans” (US EPA 2019b). The AWIA mandates utilities “conduct an assessment and reduce risk, 112 

plan for and practice responding to emergencies, and monitor systems for contaminants” (US EPA 2020a) 113 

as well as develop an Emergency Response Plan (ERP) (US EPA 2019a). However, ERPs lack 114 

standardization, and the ERP mandate does not specifically require utilities to develop or maintain hydraulic 115 

models. This study seeks to show how, despite challenges in development, hydraulic models can be an 116 

important tool for improving resiliency and emergency planning—and therefore belong in a utility’s ERP.  117 

Researchers have demonstrated the effectiveness of hydraulic modeling in studying protracted 118 

changes in operating conditions (e.g., shrinking urban populations, Faust & Abraham 2014; gentrification 119 

of urban neighborhoods, Faure & Faust 2020; water conservation measures, Abokifa et al. 2020; Zhuang 120 

& Sela 2020) as well as acute or sudden disasters (Mentes et al. 2020). Models developed in these studies 121 

assessed the impacts of the examined changes on pressures and fire flow capacities (Faure & Faust 2020; 122 

Faust & Abraham 2014), water quality (Abokifa et al. 2020), network performance (Zhuang & Sela 2020), 123 

and the ability to meet demands with rapidly reduced supply (Mentes et al. 2020). Recently, with the 124 

proliferation of Advanced Metering Infrastructure (AMI) systems, researchers have advanced the 125 

application of digital twins in the water sector (Conejos Fuertes et al. 2020), enabling real-time dynamic 126 

demand assignment in hydraulic simulations (Shafiee et al. 2020). These modeling studies demonstrate 127 

how hydraulic models can be used to study uncertain operating contexts. One such context is the COVID-128 

19 pandemic. Beginning in March 2020, the COVID-19 pandemic developed into a significant protracted 129 

crises facing the water sector, with utilities worldwide experiencing widespread operational and financial 130 

challenges (Spearing et al. 2020; Berglund et al. 2021). Increased digitalization of the water sector, data 131 

management improvements, and hydraulic modeling played a key role in responding to the COVID-19 132 

pandemic and are expected to continue to be critical in future crises (Neal 2020; Poch et al. 2020). For 133 

example, a challenge that could be addressed with modeling is understanding potential impacts of changing 134 



demands resulting from the implementation of social distancing policies (SDPs) and shifts in occupancy 135 

from commercial, industrial, and academic spaces to residential spaces. Such population shifts can alter 136 

water usage patterns (Spearing et al. 2021), thereby increasing water age in areas with reduced occupancy 137 

and potentially promoting the growth of harmful microorganisms such as Legionella (Wang et al. 2012). 138 

These water quality concerns require operational and management adjustments such as increased system 139 

monitoring and flushing (Deem 2020; Faust et al. 2021). Hydraulic modeling can be used to better 140 

understand the impact of changes in demand due to SDPs and identify areas vulnerable to water quality 141 

degradation within a water distribution system (Pesantez et al. 2022). Having this knowledge during an 142 

ongoing crisis can help utilities make targeted operational changes, contributing to a more efficient and 143 

cost-effective management response. 144 

To address the gaps outlined in hydraulic modeling data classification and management and 145 

demonstrate how a model can improve management response and resiliency, we developed a hydraulic 146 

model of the real-world water distribution network serving The University of Texas at Austin (UT Austin), 147 

a subsystem of the water distribution system of the City of Austin, Texas. With the goal of supporting 148 

utilities who seek to develop their own hydraulic models, this paper classifies modeling data needs and 149 

provides documentation of the collection and processing stages before discussing the success factors and 150 

challenges associated with model development. Finally, we perform a hydraulic analysis with the completed 151 

model simulating changes in water demands on campus due to SDPs to determine if we can learn 152 

information that can support decision-making in a crisis by isolating a portion of a larger water distribution 153 

network. 154 

METHODS 155 

Developing a hydraulic model of a water distribution system involves (1) obtaining and processing 156 

the required data, (2) building the model with modeling software, (3) calibrating and testing the model, and 157 

finally, (4) conducting analyses. As noted, there are many existing technical resources for model building, 158 

calibration, and hydraulic analysis (e.g., textbooks, Boulos et al. 2006, Houghtalen et al. 2016, Walski et 159 

al. 2003; industry guides, American Water Works Association [AWWA] 2013, Edwards 2008, Walski 160 



2000, 2017; Bentley 2021a; Klise et al. 2017; US EPA 2020). These resources typically omit the first steps 161 

of modeling—obtaining and processing the required data—and proceed directly to building the model in a 162 

software program. As such, to address our first research objective, we emphasize the initial stages of model 163 

development, with the goal of improving modeling processes by providing a classification system for 164 

hydraulic modeling data needs. Figure 1 shows the resulting footprint of data collection and hydraulic 165 

model development processes and summarizes the data sources and types, processing stages, and timeline 166 

associated with each stage. 167 

Study Area 168 

UT Austin is a large, urban, public university in the United States serving approximately 70,000 169 

people (UT Austin, 2021). The water distribution system serving the 400-acre campus is independently 170 

maintained and operated by university utilities but is supplied by the surrounding municipal distribution 171 

system via more than two dozen metered connections. The water distribution system serving the campus 172 

forms a closed system, in which water entering and leaving the system is metered (Morrison 2004; Sela 173 

Perelman et al. 2015). The water entering the system is metered via city metered connections and water 174 

only exits the system via consumption by on-campus users. As a controlled system with independently 175 

managed water infrastructure, based on the number of customers served, the campus provides a comparable 176 

proxy for a small municipal utility or a sub-zone of a larger utility (e.g., a pressure zone or a district metered 177 

area). By isolating and modeling only the campus distribution system, we seek to understand if university 178 

utility managers could gain useful information about potential vulnerabilities in their subsystem. 179 

The main campus system supplies drinking water to approximately 80% of the campus; buildings 180 

not supplied by this closed system have individual direct connections to the city supply and were not 181 

included in the model. The campus includes diverse water users, including buildings (e.g., classrooms, labs, 182 

offices, athletic facilities, and dormitories), a power plant, and chilling stations. There is no water storage 183 

or pumping within the campus network; however, the university distribution system is subject to the 184 

pumping and water quality conditions of the surrounding city pressure zone. Notably, other campus 185 



infrastructure exists to supply irrigation and reclaimed water to parts of campus. Because these additional 186 

systems do not supply drinking water, they were not modeled in this study. 187 

Data Sources and Types 188 

Developing a hydraulic model that can be useful to a utility during a time of crisis requires: (1) the 189 

physical system characteristics (e.g., pipe material, age, size, elevation), (2) network layout (e.g., pipe 190 

locations and connections), (3) user characteristics (e.g., locations, elevations, diurnal demands), (4) 191 

information about the sources feeding the system (e.g., location, volume supplied), and (5) measured system 192 

parameters that can be used to calibrate the model (e.g., pressure measurements). To meet these data needs, 193 

thirteen datasets were obtained from ten unique sources (Figure 1). Online publicly available resources 194 

(Google Earth and USGS) provided geospatial data for the user locations and elevation data. The remaining 195 

datasets were provided by university-affiliated departments and technical personnel with knowledge of the 196 

system and access to proprietary digital information. The mechanical distribution group, which oversees 197 

the operation and maintenance of the water distribution system, provided data directly to the research team 198 

and coordinated on the team’s behalf to obtain geospatial data from the university GIS office and billing 199 

data maintained by the municipal utility that supplies the university system. This group provided the 200 

physical infrastructure and network layout information needed to build the actual hydraulic model. The 201 

energy management group maintains internal billing data for both water and energy and provided water 202 

billing data for the system users, which was needed to estimate users’ water demands. The power plant and 203 

six chilling stations are managed by the power plant operations group, who provided additional data for 204 

these specific users so that their demands could be estimated and incorporated into the model. The energy 205 

management group, together with the control systems group, manages an online portal for water and energy 206 

data collected from digital meters throughout the university campus. Finally, a university researcher who 207 

maintains pressure monitoring sensors throughout the distribution system provided pressure data that could 208 

be used to calibrate the model. These 13 data components are grouped into three broad categories based on 209 

the data format and type of information included—geospatial data, sensor data, and institutional 210 

knowledge—each of which is described in further detail as follows. 211 



Geospatial Data 212 

The geospatial information required for hydraulic model development includes the layout of pipes 213 

in the network, water source locations (e.g., meter connections to the city infrastructure in this case), user 214 

locations, hydrant locations, and elevation. Pipes, sources, users, and hydrant locations are all required to 215 

build the actual network model. Elevation data are required for each point in the network (e.g., pipe junction, 216 

user, source) to perform a hydraulic analysis. In this instance, the geospatial data were obtained from three 217 

sources in different formats. The pipe network, hydrant locations, supply meter locations, and elevations 218 

(10-ft contour lines) were received as shapefiles. The pipe network shapefile contained diameter, material, 219 

and status (e.g., abandoned or in service) for most pipes. Had the physical network data not been available 220 

in shapefile format, digitizing and georeferencing of existing physical infrastructure maps would have first 221 

been required. User locations were obtained manually via Google Earth as latitude and longitude 222 

coordinates as this information was unavailable as a shapefile.  223 

Sensor Data 224 

Sensor data refers to information gathered from water meters or other types of sensors installed 225 

throughout the system. In this study, sensor data were obtained from six sources. To characterize users’ 226 

water demands and diurnal distribution, water consumption data are needed. Hourly-resolution 227 

consumption data were obtained from digital meters installed in approximately 60% of buildings throughout 228 

campus. The digital meter data were validated and supplemented by monthly-resolution data from manually 229 

recorded meters on 85% of buildings. To characterize the water supplied to the campus system from the 230 

city sources, flow information at each source connection (city meter) was needed. Supply volumes were 231 

obtained from monthly billing data maintained by the city and validated using the monthly building meter 232 

data maintained by the energy management group for billing purposes. Supply volume data also were used 233 

in model validation to calibrate flows through each supply meter. For further model validation, pressure 234 

data are needed and were obtained from five sensors located across the campus collecting pressure over a 235 

nine-month period with a sub-minute resolution. Notably, lower resolution (e.g., hourly, sub-hourly) 236 

pressure measurements would likely be sufficient for calibration purposes. While high-resolution data 237 



provided a greater level of accuracy, it also added to the challenges of reconciling many different temporal 238 

resolutions in the data processing stages. 239 

Institutional Knowledge  240 

The model building process requires knowledge that is often not formally documented about water 241 

sources, users, and general system characteristics and functionality, beyond what is conveyed in the 242 

geospatial and sensor data. Several utility managers across three campus utility groups—mechanical 243 

distribution, power plant operations, and energy management—shared such institutional knowledge 244 

throughout the data collection, data processing, and model building stages via email, virtual meetings, and 245 

phone calls. This information included, but was not limited to: descriptions of the system and its interaction 246 

with the surrounding municipal infrastructure; lists and descriptions of the connection points that supply 247 

the system; lists and clarification of which users are served by the water distribution system of interest (e.g., 248 

the domestic potable system vs. reclaimed or irrigation); clarifications regarding missing information in the 249 

pipe network layout, meter locations, and hydrant locations (e.g., newly installed pipes not included in the 250 

GIS files, missing pipe diameters); characteristics of the energy facilities located on the system (e.g., 251 

composition of water supply at each facility); and explanations of the metering systems used throughout 252 

the distribution network. Our partners in utility management were consulted repeatedly throughout the 253 

project to gain a better understanding of system operations, clarify missing or unclear information, or to 254 

request additional data. Without these consultations, the research team would have been forced to rely solely 255 

on the geospatial and sensor data, the result of which would have been incorrect pipe layouts (e.g., a newly 256 

built section of the campus excluded from the model), delineated system boundaries, and calculated user 257 

demands (e.g., data from the wrong meters used to calculate demands). 258 

Data Processing 259 

Given the amount of data obtained and the wide variety of data formats and sources, three stages 260 

of processing were undertaken, as shown in Figure 1: (1) performing a system-level analysis (i.e., a mass 261 

balance analysis of inputs and outputs), (2) preparing the physical infrastructure data, and (3) preparing the 262 

data used in calibration and analysis.  263 



System-Level Analysis 264 

Creating a hydraulic model requires an understanding of the real-world water distribution system 265 

under consideration (e.g., the water sources, system boundaries, and largest water consumers). To better 266 

understand system-wide trends in consumption, identify dominant users, and carry out quality assurance 267 

and control (QA/QC) with the received data, a mass balance analysis was performed to account for all 268 

inputs and outputs to the system. Because the provided demand data included meters for all university-269 

owned buildings—not only those served by the distribution system under consideration—non-system 270 

meters were manually filtered out using lists supplied by the mechanical distribution group. Unlike a typical 271 

municipal system, approximately 60% of water users were outfitted with high-resolution digital water 272 

meters, providing a high level of data coverage across the network. Had the system not been metered to this 273 

extent (i.e., many buildings with only monthly billing meters or no meter at all), we would have made 274 

assumptions about user demand patterns based on the monthly billing usage (if available), building type, 275 

and size. To calculate the demands of the power plant and five chilling stations—which receive a 276 

combination of municipal reclaimed, onsite recovered, irrigation, and domestic drinking water—the 277 

domestic drinking water component of the supply was separated for each facility.  The approximate inputs 278 

to the system (flow volume through meters connecting to city mains) were calculated to determine monthly 279 

system supply.  280 

The mass balance analysis proved to be a fruitful, but time-intensive, exercise. Numerous errors 281 

were discovered in the data involving individual meter readings, meter classification (e.g., building feed vs. 282 

submeter), or data recording. Potential data errors (e.g., readings of 0, abnormally high values, missing 283 

values) were forwarded to the energy management or power plant operations groups for confirmation and 284 

correction. Ultimately, this process resulted in more accurate data and the correction of previously unknown 285 

reporting errors in multiple departments. Had this mass balance exercise not been completed, incorrect 286 

demand data for multiple users, including some of the largest consumers, would have been used for the 287 

hydraulic model, leading to a less accurate understanding of the system and its vulnerabilities.   288 

Physical Network Infrastructure Data Preparation 289 



Processing of the physical infrastructure data was required to ensure all data were in shapefile 290 

format and contained only the physical infrastructure of interest. Geospatial data were compiled and 291 

prepared as shapefiles in ArcMap (Esri 2020) before being exported to the model building software. For 292 

geospatial data received from the university GIS office, required processing involved selecting the features 293 

to be included in the model based on specific attributes (e.g., ownership, operation status), creating new 294 

layers from these selections, and exporting the layers as new shapefiles. Because geospatial data were not 295 

readily available in shapefile format for the buildings on campus (water users), the building names and 296 

coordinates (obtained via Google Earth) were compiled into a table, converted to a layer, and then exported 297 

as a shapefile. 298 

Calibration and Analysis Data Preparation  299 

Simulating system behavior and user demands requires real-world data from the study area to 300 

compare against model results. Preparation of the data that would eventually be used in model calibration 301 

and the hydraulic analysis took place before and congruently with the model building phase. To prepare the 302 

pressure data for use in calibration, files for each of the five sensors were compiled and reformatted to the 303 

appropriate time scale. Daily profiles for each sensor were plotted, against which simulated pressures could 304 

be compared. To confirm relative accuracy of the pressure and elevation data, pressures and elevations at 305 

each sensor were compared and validated (i.e., higher pressures occurred at low elevations, lower pressures 306 

at high elevations). To prepare the demand data for use in analysis, after thorough QA/QC, correction of 307 

discovered meter errors, and resolution of differing temporal scales, base demands were determined for 308 

each user based on meter data for a representative pre-pandemic month that showed average consumption 309 

behavior.  310 

Hydraulic Model and Software Requirements 311 

Model Building  312 

Highlighting a challenge for resource-constrained utilities with limited technical knowledge and 313 

software access, model development and analysis in this study occurred across multiple software platforms, 314 

because no one program contained all the preferred tools. Importantly, several software options are 315 



available for each of the tasks described. As such, in Figure 1 and below we identify the programs applied 316 

in this study, with the acknowledgement that other programs may be utilized based on availability. After 317 

obtaining, processing, synthesizing, and cleaning all data, the resulting final dataset contained GIS 318 

shapefiles (physical system infrastructure) and time series data (supply, demand, and pressure). To build a 319 

hydraulic model, this GIS and times series data needs to be translated in an accepted format for hydraulic 320 

modeling software. There are numerous hydraulic modeling software programs in existence, with EPANET 321 

(US EPA 2020b) being a popular and commonly used publicly available option.  However, EPANET does 322 

not have GIS integration capabilities and requires data in .INP file format with a specific structure 323 

categorizing pipe connectivity and demand and source node coordinates. Further, EPANET offers limited 324 

model building functionality compared to commercial hydraulic modeling software programs (e.g., 325 

automated model-building tools, easy system modifications) and after initial testing proved to be an 326 

inefficient modeling software option for the task of building the model. As such, model development was 327 

completed in Bentley OpenFlows WaterGEMS (Bentley 2021b), a commercial software capable of reading 328 

GIS shapefiles. Using Bentley’s ModelBuilder tool, the physical infrastructure shapefiles previously 329 

cleaned in ArcMap were imported for the pipe network, hydrants, users, and source meters to create a 330 

hydraulic model. To do so, the ModelBuilder tool (and similar tools offered in other GIS-compatible 331 

modeling programs) converts GIS data consisting of lines (e.g., pipes) and points (e.g., users, meters, 332 

hydrants, pumps) into a network of edges and nodes, establishing connectivity between the elements. Once 333 

the network model is created, skeletonization—the process of removing the parts of the hydraulic network 334 

that do not significantly impact the behavior of the system—is required to simplify the model and reduce 335 

unnecessary amounts of data and time-consuming troubleshooting (Walski et al. 2003). In this study, 336 

skeletonization was completed manually and with the automated Skelebrator tool to remove abandoned 337 

pipes, orphan nodes/pipes, dead-end pipes with a diameter less than or equal to 4 inches, and nodes not 338 

located at pipe junctions. Once model construction and skeletonization was completed, previously 339 

calculated base demands were assigned to all water users. Using the TRexWizard tool, elevations were 340 

assigned to all junctions from the imported USGS elevation contours shapefile. A skeletonized network of 341 



municipal piping surrounding the university was added, with connection points between the city and the 342 

university distribution network at each of the supply meter locations. A reservoir, pump and tank were 343 

added to the external city network to simulate pumping conditions in the surrounding city pressure zone. 344 

Calibration and Analysis  345 

While Bentley offers numerous tools for model development, to integrate the model with automated 346 

analysis the completed network model was exported as an .INP file to be used in publicly available software 347 

including EPANET and the Water Network Tool for Resiliency (WNTR) (Klise et al. 2018). WNTR, an 348 

open-source Python package that integrates hydraulic and water quality simulation and offers advanced 349 

resiliency analysis options, was utilized so that the modeling analysis could be available and completed 350 

with a publicly available, free software. As many utilities, including the university utility in this study, do 351 

not have access to commercial modeling software, it was desirable to have the final model in EPANET 352 

.INP file format so that our utility partners could freely use the model in EPANET or WNTR in the future.  353 

Once imported to WNTR, to calibrate the model the following parameters were adjusted manually 354 

until simulated pressures at each of the five sensors matched the measured daily pressure profiles in both 355 

pattern and magnitude: pump curve, pump control rules, tank levels, and tank dimensions. Monthly flow 356 

data was used to validate the magnitude of simulated flows through the connection points (supply meters) 357 

between the university system and city water mains. Water user demands and relative changes in demand 358 

during the COVID-19 pandemic provide the foundation of the hydraulic analysis in this study. Two demand 359 

scenarios—base demand (pre-SDP implementation) and low demand (during SDP implementation)—were 360 

simulated using the EPANETSimulator (Klise et al. 2017) to measure water pressure, flow velocity, and 361 

relative water age across the system. Simulation results for the base and low demand scenarios were then 362 

compared to assess the impact of changes in demand on system performance. 363 

Timeline  364 

The project schedule (Figure 1) shows the time requirements of each process component. Despite 365 

the urgency to employ a completed model for use in response to the pandemic, the estimated total project 366 

length was approximately eight months. While challenges were encountered, particularly around data 367 



processing and cleaning, our utility partners were accessible and cooperative and much of the data needed 368 

already existed, making this timeframe of about eight months the best-case scenario given our 369 

circumstances. Without this level of cooperation, or if critical data had not existed, project completion 370 

would have been significantly delayed or impossible. For instance, had a GIS shapefile of the pipe network 371 

not existed, the research team likely would have needed to digitize and georeference paper maps. Had 372 

pressure sensor data not been available, field tests and measurements from across the system would have 373 

been required. Notably, project length for other researchers or utilities will vary greatly based on access to 374 

resources such as trained available staff, software, data, and—above all else—funding. 375 

Among the project components, there was overlap between the data collection, processing and 376 

modeling phases, reflecting congruent iterative processes over the course of these eight months. Due to the 377 

rapidly evolving nature of the COVID-19 pandemic and data quality issues encountered, supply and 378 

demand datasets were updated frequently as new information became available. Given the amount of new 379 

sensor data and institutional knowledge that was needed throughout the entire project, gathering, 380 

processing, and interpreting these types of data continued in tandem with other project tasks until near-381 

project completion. Once a skeletonized, fully labeled model had been created with the physical 382 

infrastructure data, calibration and analysis could occur.  383 

Limitations 384 

This study is not without limitations, the primary one being that the study area is a university 385 

campus. While the campus distribution system is managed independently and therefore operates in many 386 

ways like its own utility, it is impacted by the larger municipal distribution system. Further, given the 387 

distinction between the university utility and a traditional municipal utility, there may be differences in 388 

organizational structure, data policies, and technology access between university utilities and other public 389 

or private utilities. Additionally, as university researchers, our team had access to resources (e.g., 390 

technology, personnel, scheduling) not typically available to some utilities (the issue of academic resources 391 

is addressed further in the Results and Discussion). Despite these differences, as an independently managed 392 

subsystem of a larger network, hydraulically the campus still serves as a useful study area representative of 393 



a pressure zone or district metered area. Because the data related challenges we experienced reflect many 394 

of the sector-wide problems discussed in the literature, we believe insights gained are transferrable to the 395 

broader water sector. For instance, the underuse of collected water data encountered here is a common 396 

theme in the water sector in general (Kadiyala & Macintosh 2018). While every utility—whether public, 397 

private, or university-owned—will have unique management frameworks and challenges, the data 398 

requirements in hydraulic modeling remain similar.  399 

Further, it should be noted that this study does not detail the stages and data needs for calibrating 400 

water quality models. The development and calibration of a hydraulic model is a critical first step towards 401 

calibrating water quality models, as water quality models rely heavily on the transport of constituents (i.e., 402 

velocities and travel times). Once a hydraulic model has been developed and calibrated, additional 403 

resources, samples, and data are required to characterize the specific local water quality conditions.  404 

RESULTS AND DISCUSSION 405 

Here, we address the second research objective by identifying the success factors and challenges 406 

associated with the hydraulic modeling process, summarized in Table 1. 407 

Success Factors 408 

Several success factors ultimately contributed to the model’s completion. Use of all five software 409 

programs (Figure 1) was aided by extensive open-source online resources offering technical support in the 410 

form of forums, blogs, and videos (e.g., WNTR Read the Docs, EPANET Read the Docs, Bentley 411 

Communities, YouTube, Stack Overflow). Further, our partners in utility management were generous with 412 

their time, knowledge, data, and networking connections. The utility saw a clear need for a functional 413 

hydraulic model and had specific applications in mind for deploying the model during extreme events and 414 

in future planning and management decisions. The success of this cooperation highlights the significant 415 

existing opportunities identified by other researchers in academic-utility partnerships for sharing resources 416 

and expertise to advance the field of hydraulic modeling and water resource management (Keck & Lee 417 

2015). 418 



Working in an academic-utility partnership provided clear technology and personnel advantages. 419 

Importantly, the research team had academic licenses to commercial software—Bentley and ArcGIS—that 420 

allowed us to rely heavily on geospatial data and advanced automated modeling tools (e.g., Bentley’s 421 

Skelebrator and TRexWizard tools) in the model building process. While open source technologies 422 

(EPANET, Python, WNTR) also were used extensively, the core of model building was completed in these 423 

GIS-based commercial software programs. Further, we were able to leverage available personnel, hydraulic 424 

modeling expertise, and professional networks to determine what data were required, synthesize the data, 425 

and apply it to the modeling process. The length of time required to complete a modeling project, while it 426 

will vary at every utility, poses a major challenge for using modeling in a disaster response setting; operating 427 

in a research environment provided the time, funding, and human resources needed to complete the project.  428 

Importantly, the technology and personnel advantages experienced in this study are unique to 429 

research settings and relatively wealthier, urban water utilities. For smaller, rural, or resource-constrained 430 

utilities, technology and personnel are significant barriers to embracing modeling technology. The high cost 431 

of commercial modeling software (most licenses cost thousands of dollars per year) creates further 432 

inequities between resource-constrained utilities and those that can afford modeling programs. Beyond cost-433 

prohibitive software, hydraulic modeling requires trained technical staff. The scheduling needs around 434 

hydraulic modeling would require a traditional utility to employ at least one part-time modeler to not only 435 

build the model but continually update data and recalibrate the model as needed. Attracting and retaining 436 

talent is one of many critical issues facing the water sector; however, for most utilities the urgent challenges 437 

of replacing aging infrastructure and financing improvement projects necessarily take higher priority 438 

(AWWA 2020). Without additional support, many utilities will not have the software, technical expertise, 439 

or personnel resources needed to complete the lengthy data collection, processing, and modeling stages 440 

undertaken in this study.  441 

Challenges 442 

Despite the benefits associated with operating in a research environment, several challenges more 443 

indicative of the broader water sector were encountered (Table 1). Notably, such challenges will likely be 444 



intensified for modelers attempting to represent an entire distribution network. The number of sources 445 

involved in the data acquisition phase (Figure 1) created difficulties in the initial project stages. Collecting 446 

the required data was more time-intensive than anticipated because information needed to be requested 447 

from many individuals and offices. For example, high-resolution digital meter data were obtained from the 448 

university’s “Energy Portal” (which contains both water and energy digital meter data) via the energy 449 

management and control systems groups, while monthly resolution building meter data were provided by 450 

a different source in energy management. A third source—the mechanical distribution group—provided 451 

system supply data. As a result, some supply and demand data were provided in spreadsheets used for 452 

accounting and billing purposes and required sorting and cleaning before analyzing. Determining which 453 

offices had the required information and the authority to share it led to delays.  454 

While every utility is unique, siloed departmental organization—like the structure encountered 455 

here—is the norm in water and wastewater management, with utilities divided into departments such as 456 

engineering, operations, customer service, and finance (Dell 2005). While these departments work well at 457 

managing their specific responsibilities, weaknesses emerge (e.g., duplicate efforts, inefficiencies, 458 

hampered decision making) when tasks cross multiple departments (Dell 2005). Data collection and 459 

management is one such process requiring careful coordination and communication across departments. In 460 

this case, there was not a standardized format for water data among different departments, meaning each 461 

dataset was received in a different format (e.g., timescale, file type), nor was there one centralized location 462 

for all water-related data. The number of sources and lack of cohesion among the various departments 463 

consulted therefore led to increased processing needs.  464 

While the specific division of data management responsibilities between utility management 465 

groups seen here may be unique to UT Austin, lack of standardized or centralized data management is 466 

typical across the water industry (Deloitte 2016; Kiefer & Krentz 2018). As such, modelers at traditional 467 

water utilities that lack coordinated data collection and management processes will face problems similar 468 

to those discussed above. These challenges point to the need for dedicated personnel, departments, or sub-469 

committees within utilities to coordinate data curation, standardization, and maintenance, as well as inter-470 



departmental communication. As noted, water utilities are collecting increasing amounts of data but only 471 

putting a small amount to use (Kadiyala & Macintosh 2018). Having dedicated data management personnel 472 

can improve data accessibly, consistency, and ease of use, thereby increasing overall data utilization and 473 

improving data quality. In this study, errors discovered in the mass-balance analysis had gone previously 474 

undetected because such analysis had not been performed on this part of the system before. The analysis 475 

process itself led to improved data quality outcomes. Without coordinated data management efforts, the 476 

barriers around acquiring, processing, cleaning, and synthesizing the data needed for a hydraulic model 477 

may be insurmountable at some utilities. Modelers will have to consult multiple disparate departments (e.g., 478 

finance, operations, customer service) to gather the required information and devote additional time to data 479 

processing. These tasks, already difficult under normal operating conditions, cannot be completed in 480 

tandem if a utility is also actively responding to a crisis.  481 

Coordinated data collection and management will not only improve efficiency but also better ensure 482 

that the appropriate data are being collected. In this study, datasets that would have been useful in the 483 

analysis (e.g., supply data on a smaller time scale, flow velocity meter data) were unavailable. Without 484 

these data, modeling assumptions about the temporal distribution in demands were made. Conversely, while 485 

pressure data at a sub-minute resolution improved the overall quality of analysis, lower resolution data 486 

would have been acceptable if that were the only available option. Simply put, hydraulic modelers at most 487 

utilities will use the best data available to them and make assumptions when there are gaps. Having 488 

coordinated and standardized data management efforts can help utilities better understand what data exist, 489 

what data are missing, and where data collection efforts should be focused to reduce these gaps and 490 

assumptions.  491 

Despite the potential benefits, industry-wide improvements in data management will occur only if 492 

made a priority. In their 2020 State of the Water Industry Report, the AWWA found that of the top 20 issues 493 

facing the water industry, data management ranked 19th among surveyed utilities (AWWA 2020). Many of 494 

the issues that survey respondents ranked higher than data management—such as emergency preparedness, 495 

compliance with regulations, cybersecurity, asset management (AWWA 2020)—can be enabled and 496 



improved upon by advancing data management and analytics. Unfortunately, many utilities simply do not 497 

have the resources to address anything other than the most pressing needs and without additional support 498 

will be unable to make data management a higher priority.  499 

In addition to difficulties stemming from siloed data collection efforts, certain network 500 

characteristics can cause further complications. Complex or high-demand water users (e.g., manufacturing, 501 

energy facilities) can pose additional data collection challenges because they frequently have irregular 502 

metering systems, and the associated data might be managed by yet another department. Furthermore, these 503 

types of users often have multiple water supplies (e.g., a combination of domestic potable, reclaimed, and/or 504 

onsite reuse), and each supply component will have its own meter(s). For example, UT Austin maintains a 505 

power plant and five chilling stations, each with a unique water supply composition and system of meters 506 

and submeters. Because each water type is supplied by a different system, modeling the demands of such 507 

users required first meeting with the facilities’ manager (the power plant operations group) to understand 508 

the metering system for each individual facility and then separating the various supply streams.  509 

Throughout the modeling process institutional knowledge emerged as a critical source of 510 

information. For instance, the mechanical distribution group verbally described the system boundaries and 511 

clarified pipes alignments when this information was missing or unclear in the data. However, siloed 512 

expertise—meaning each utility group has detailed knowledge of the system component they manage (e.g., 513 

energy facilities, accounting, distribution) but not the rest of the system—made transferring this institutional 514 

knowledge difficult. This points to broader challenges surrounding the sharing of knowledge within 515 

organizations in the engineering industry (Javernick-Will 2012; Sanaei et al. 2013). This pattern manifested 516 

itself in our needing clarification on specific data points and having to consult multiple sources to get an 517 

answer. For example, concerns about usage values for the power plant and chilling stations could not be 518 

answered by the energy management group who provided the data. Rather, the question needed to be 519 

directed to the power plant operations group. Similarly, while the mechanical distribution group was able 520 

to share large quantities of data and knowledge related to the physical infrastructure and water supply and 521 

serve as a liaison between other departments, they did not manage or maintain the campus wide user demand 522 



data. This type of siloed expertise can not only reduce efficiency, but it risks the loss of valuable information 523 

when utility managers leave or age out of the workforce (retirement has been a growing concern for the 524 

water industry, AWWA 2020; Kane & Tomer 2018).  525 

To avoid potential knowledge loss, models (and the associated data) must be documented and 526 

understood by others in the future. Documenting assumptions, key steps taken, and decisions made is 527 

essential throughout the entire process for clarity, quality, and reproducibility (Ayllón et al. 2021; Grimm 528 

et al. 2014). Clear documentation of the modeling process is especially critical when hydraulic models are 529 

prepared by a third party, such as an outside engineering firm. For instance, water utility managers for 530 

Moore Country, NC, discussed the difficulty of using models prepared by outside contractors due to the 531 

number of assumptions, high cost, and fact that outsourced models often only represented part the system 532 

(Atkinson 2014). Further, our research team has worked with utilities throughout the United States with a 533 

wide range of modeling capabilities, from not possessing hydraulic models or even digitized records to 534 

having fully staffed modeling departments. Utilities with limited in-house engineering expertise often turn 535 

to outside firms and outsource the model development process. However, a common result of outsourcing 536 

is that utilities never use—and might not even own—the completed model. Without clear documentation, 537 

access, or ownership, it impossible for utility managers to maintain the model and use modeling tools to 538 

make planning decisions or model changes in operating conditions during a crisis. In this instance, the 539 

utility had previously contracted out model development to a consulting firm several years prior. However, 540 

the resulting model was incomplete, provided no information or documentation about assumptions made, 541 

calibration procedures, or other modeling decisions, and was thereby rendered useless. To our team’s 542 

knowledge, the model had never been used by utility managers. Given the incompleteness of the previously 543 

commissioned model and lack of accompanying documentation, an entirely new model was required so 544 

that all assumptions and procedures could be documented, with the goal of providing both the model and 545 

full documentation to future users.  546 

The completed hydraulic model was developed over the course of eight months. As shown in the 547 

project schedule (Figure 1), the first three months were devoted exclusively to data collection and 548 



processing. While model building began in month four as soon as the physical infrastructure data were 549 

processed, further data collection and processing continued in tandem with modeling, calibration, and 550 

analysis until the penultimate month. These time requirements are the culmination of all previous discussed 551 

challenges and create a resiliency gap in crisis response. A hydraulic model will be of little use in 552 

responding to a crisis if it does not already exist, because development time is simply too long. Though 553 

project timelines will vary depending on a utility’s specific circumstances (e.g., available trained personnel, 554 

data availability, funding), traditional utilities will likely experience similar challenges. Importantly, 555 

focusing on a single sub-zone of the water network reduced data needs and challenges, implying that 556 

modelers attempting to represent an entire system will likely face even greater difficulties than those 557 

encountered here.  558 

While the original intention of this project was to create a model to understand if vulnerabilities in 559 

the network could be predicted in the context of the COVID-19 pandemic, by project completion the 560 

pandemic was assumed to be in its final stages and utility management had developed other systems for 561 

monitoring and responding to water quality issues. In short, by project completion, the key window when 562 

a hydraulic model would have been the most useful in this specific crisis had passed. Had the model existed 563 

in April 2020, utility managers could have simulated the demand changes taking place to understand how 564 

water quality might be impacted throughout the system and directed resources (e.g., targeted water quality 565 

sampling and flushing operations) to specific areas of concern. Without a hydraulic model, mangers relied 566 

on institutional knowledge of the system and widespread manual monitoring and flushing, actions that 567 

required increased financial and human resources in a time of extreme risk and uncertainty. Fortunately, by 568 

making these operational adjustments, utility managers avoided adverse water quality and public health 569 

impacts. However, the use of additional resources during a crisis to avoid negative outcomes when more 570 

efficient alternatives are available constitutes a gap in resiliency and indicates an area where improvements 571 

can be made. Now that the model exists, with regular data updates and maintenance it can be used for 572 

routine planning and management and will be ready for future crisis response.  573 

Modeling During a Crisis 574 



Here we address the third research objective to determine how a hydraulic model can be useful to 575 

identify the potential vulnerabilities (e.g., areas of high stagnation) during a crisis (the COVID-19 576 

pandemic). The final hydraulic model (Figure 2) is comprised of 565 pipes and 503 nodes that deliver water 577 

to 107 users including buildings, the power plant, and chilling stations. The total daily demand supplied is 578 

estimated at 2,436 m3 (643,520 gallons) through a total pipe length of 31,170 meters (102,264 feet).  To 579 

understand the potential impact of SDP-related changes in demand on the campus system, two hypothetical 580 

demand scenarios were tested. The standard base demand pattern was developed to represent conditions 581 

over a typical 24-hr period (beginning at 12:00 am) prior to the onset of COVID-19 and SDP 582 

implementation, with the average daily demand per building estimated at 19.5 m3 (5150 gallons). The low-583 

demand scenario, a 50% reduction from base demand, represents an approximate overall decrease in water 584 

demands on the university campus after SDP implementation, when most faculty and students were working 585 

and learning remotely but certain other essential operations (e.g., power generation, building cooling, 586 

maintenance, research, administrative work) continued. This assumption was based on a review of building 587 

water consumption meter data and the characterization of UT buildings’ demand patterns before and during 588 

the COVID-19 pandemic by Spearing et al. (2021). Figure S1 in the Supplemental Material (SM) illustrates 589 

the base and low demand patterns applied in this case study. While outside the scope of this study, further 590 

analysis of the digital meter data would allow for the development of building-specific demand patterns. 591 

The three performance indicators chosen—pressure, velocity, and water age—represent a sample of 592 

hydraulic and water quality initial indicators that can be used to assess system performance and reveal 593 

deviation from the baseline or from set performance standards (Abokifa et al. 2020; Zhuang & Sela 2020). 594 

Importantly, there are numerous applications and analyses possible using the completed model. As such, 595 

the following analysis provides only a small subset of potential uses in the context of crisis response.   596 

Results 597 

The completed model was manually calibrated using measured pressure data from five sensors 598 

located throughout the study area (Figure 3a). Resulting simulated pressures for the base demand scenario 599 

and low demand scenario (Figure 3b and 3c, respectively), show simulated pressures matched the measured 600 



pressures in magnitude and rank (i.e., the order of sensors from highest to lowest in measured data and all 601 

simulation results is the same). Further, the differences between the measured and modeled pressures are 602 

within the typical accuracy range of pressure sensor elevations (Walski 2021) and the elevation model used 603 

(USGS 2021), indicating sufficient model calibration for this context. Summary statistics, measured across 604 

the entire network over the full 24-hr simulation, are presented in Table 2 for the two scenarios. Results for 605 

all three parameters exclude the reservoir, pump, and tank as well as their immediately adjacent pipes and 606 

nodes, as these elements were added to replicate the pumping conditions of the surrounding municipal 607 

system and do not represent actual existing infrastructure in the campus distribution system. Age results 608 

exclude dead end nodes that do not supply water users (i.e., where node degree = 1 and user demand = 0) 609 

such as fire hydrants or other types of dead ends.  610 

Pressure results for the two simulated scenarios show that a 50% reduction in demand led to an 611 

increase in pressures throughout the system. Figure 4 illustrates the pressure for the two scenarios at a 612 

location in the center of the study area, where lower demands (dotted line) produced higher average 613 

pressures compared to the base demand scenario (solid line). Because of the more gradual increase in 614 

demands, the drop in pressure between the morning (hour 8) and midday (hour 12) was less steep in the 615 

low demand scenario, with the minimum pressure occurring 3 hours later than in the base demand scenario. 616 

Figure S2 in the SM shows the pressure results for additional selected locations in the network 617 

demonstrating similar trends. Figure 5a summarizes the change in pressure (!"#$$%"#!"# − !"#$$%"#$%&') 618 

across all nodes in the system at each hour. The distribution of the change in pressure at all nodes is shown, 619 

with the greatest increases in pressure between the two scenarios occurring between hours 12-16, when 620 

difference in the demands is greatest (see Figure S1 in the SM). Across all nodes over the simulation, the 621 

overall increase in pressure was modest, with a change in mean pressure of +2.1 m (an increase of 4.5% 622 

from the base scenario).  In both scenarios, all pressures were above the state-mandated minimum of 24.6 623 

m (35 PSI) (Texas Commission on Environmental Quality 2019). In terms of maximum pressures, the City 624 

of Austin requires new buildings with pressures above 47.7 m (65 PSI) to install pressure reducing valves 625 

(PRVs) (Austin Water 2021). Therefore, any pressure increases resulting in pressures above 47.7 m (65 626 



PSI) at buildings that do not already have PRVs installed would potentially be of concern. However, in this 627 

analysis, there was almost no change in the maximum pressure, revealing that in terms of pressure, the 628 

system is relatively resilient to a 50% reduction in demand. Such results are in line with research examining 629 

shrinking cities that found reduced demands typically did not drastically alter system pressures (Faust & 630 

Abraham 2014). 631 

As expected and consistent with other studies (Abokifa et al. 2020; Zhuang & Sela 2020), flow 632 

velocity and water age results indicate that lowering demand does reduce flow velocity and increase water 633 

age. Figure 5b summarizes the change in velocity ('#()*+,-!"# − '#()*+,-$%&') across all pipes in the 634 

system at each hour, showing a decrease in velocity across the system from the base case scenario to the 635 

low demand scenario. The distribution of the change in velocities reflect the respective demand patterns, 636 

with the greatest decrease in velocity occurring in the hours when the differences between the demand 637 

patterns were greatest. Overall, the 50% reduction in demand resulted in 0.021 m/s decrease in the mean 638 

velocity (measured across all pipes over the full simulation period), which represents a 50% decrease from 639 

the base scenario. 640 

The change in water age between the two scenarios (./#!"# − ./#$%&') is shown for all nodes 641 

(excluding dead-ends without demands) in Figure 5c, with an overall increase in water age from the base 642 

case to the low demand scenario. Similar to pressure and flow velocity results, the difference in water age 643 

between the two scenarios becomes more pronounced as the difference in demand patterns increases after 644 

hour 12. Importantly, the water age results do not consider the age of water entering the distribution system 645 

at each of the supply points from the surrounding city distribution system. Therefore, the minimum, 646 

maximum, and mean age results shown in Table 2 are relative age measurements and do not represent the 647 

actual age of water in the system. Across all nodes over the full simulation period, mean water age increased 648 

by 2.9 hours, or 39.1%. While a full water quality simulation would typically evaluate performance on a 649 

multiday or weekly basis, 24 hours was found to be sufficient here as the difference in water age begins to 650 

stabilize after approximately hour 18 (Figure 5c). When considering a longer timeframe, such as 72 hours, 651 

results similarly show stabilized water age differences after hour 18 and display a cyclical trend reflecting 652 



the 24-hour demand pattern and pumping rules in place. In terms of macroscopic water quality parameters 653 

such as residual chlorine, this level of change in water age would not have a significant impact on chlorine 654 

residuals due to the slow rate of monochloramine decay within the Austin system (relatively high pH of 9.6 655 

and monochloramine disinfection) (Vikesland et al. 2001). However, in all simulation scenarios, utility 656 

managers may wish to further examine outlier nodes with the highest change in water age, and these 657 

locations may require additional targeted flushing.  658 

Management Implications 659 

By modeling the university subsystem, we can gain insight into the impacts of changes occurring 660 

within the subsystem on performance indicators such as water pressure, flow velocity, and water age. In 661 

this analysis over a simulation period of 24 hours, results showed that the system did respond to changes in 662 

demand, though impacts were likely not significant enough to warrant specific management response 663 

without further analysis (e.g., additional scenarios, longer simulation). Due to the specific network topology 664 

and pipe diameters, changes in demands caused smaller magnitude velocity changes, which in turn 665 

produced only limited increases in water age. Importantly, these results are network specific, and other 666 

systems (e.g., those with less looping or fewer redundancies) could exhibit greater changes. In bounding 667 

the model at the border between city and university infrastructure, we can not only reduce some of the data-668 

related challenges associated with model development, but also ensure that any changes observed in 669 

performance indicators output by the model are the result of changes occurring only within the university 670 

system. However, despite the benefits of modeling the university subsystem in this way, when delineating 671 

one system or subsystem from another, information will always be lost at the boundaries. In this instance, 672 

changes that occur outside the modeled subsystem in the wider distribution network would not be reflected. 673 

For example, the university system is subject to the water quality conditions (e.g., monochloramine levels, 674 

pH) of the city water treatment plants and surrounding distribution system. Changes in water quality at the 675 

city level will not be captured in the model without more information or model adjustments, but as shown 676 

here, the model can capture changes in water quality occurring within the university system.  677 



With this understanding of the limitations of modeling a subsystem, utility managers can use the 678 

model to compare the impacts of specific changes in operating conditions within their subsystem (e.g., 679 

SDP-related changes in demands on campus) and test management responses that are within their control. 680 

For instance, in the context of the COVID-19 pandemic, campus utilities increased flushing and water 681 

sampling after SPDs were implemented due to concerns about stagnation in empty or reduced-occupancy 682 

university buildings. Such management practices have been broadly recommended by water professionals 683 

nationwide throughout the pandemic (Deem 2020; Faust et al. 2021; Spearing et al. 2020), because 684 

stagnation and growth of potential human pathogens are of concern in areas with vacant buildings. The 685 

modeling tool demonstrated here could assist in these efforts by showing what the relative water age is at 686 

each user in the system and where water age is particularly high (i.e., pinpointing areas of concern for 687 

stagnation). Being able to use a model to identify system vulnerabilities is especially important during a 688 

public health emergency like the COVID-19 pandemic, when the water sector workforce itself risk. If an 689 

individual with advanced, but undocumented, knowledge of the system’s vulnerabilities is incapacitated, a 690 

model can help fill in some of this critical information gap. While not shown here, extensions of the 691 

simulation could also test the impacts of increased flushing to help managers efficiently rollout intensified 692 

flushing protocols. 693 

While demand increases were not a concern in this specific context and study area, such a model 694 

can also be useful in areas where SDP implementation results in higher water use (e.g., residential areas 695 

where more people are working from home and avoiding non-essential outings). As increased demand has 696 

potential to cause issues of low pressure, particularly during peak use hours (Faure & Faust 2020), utilities 697 

concerned with system performance could carry out similar analyses with higher demands. Results could 698 

inform whether pressure drops during peak demand hours are reaching concerning lows (e.g., 699 

compromising service to customers or fire flow capabilities), and, if so, where problem areas exist. 700 

Similarly, other systems may experience simultaneous decreases and increases in demand in different parts 701 

of the system. During the COVID-19 pandemic, spatial redistributions of water demands were observed in 702 

residential and nonresidential areas (Bakchan et al. 2021). For instance, a pressure zone containing both a 703 



business district and residential neighborhood could see demand decreases in the business district and 704 

increases in the neighborhood. To model such changes, distinct demand patterns would need to be 705 

established for each user type based on historical data and observed demands during the pandemic (i.e., 706 

different demand patterns for business users and residential users). The analysis could then be repeated with 707 

these distinct demand patterns imposed to identify changes in system performance. Management strategies 708 

to address low pressure in some areas (e.g., pumping changes) and stagnation in others (e.g., flushing), can 709 

then be simulated to assess the effectiveness of operational changes before implementation.  710 

RECOMMENDATIONS 711 

The process described in this work illustrates that while hydraulic models are useful tools in crisis 712 

response, model construction cannot be completed in the midst of an emergency or sudden event, even 713 

when focusing on a sub-zone of a network. As such, we recommend that utilities of all sizes make hydraulic 714 

modeling a part of their planning procedures (e.g., ERPs) so that functional, calibrated models will be ready 715 

for use for immediate assessment of vulnerabilities when operating conditions change. In turn, future 716 

infrastructure legislation should make financial support available to utilities to undertake this task and 717 

support personnel, software, and data management efforts. To ensure that models are actually used in 718 

planning and emergency response, it is highly preferable to provide utilities with the tools to develop and 719 

maintain their own models or actively collaborate with partners, rather than simply outsourcing.  720 

Over the last two decades, GIS integration has rapidly increased in popularity among utilities using 721 

hydraulic models (AWWA 2014). GIS makes both the modeling process and future updates faster and 722 

easier and gives utilities greater control over their models (Atkinson 2014). Therefore, it is imperative that 723 

utilities have access to GIS-based modeling software, which can be cost-prohibitive (notably, EPANET, a 724 

widely used open-source modeling software developed by the US EPA is not GIS-compatible). However, 725 

to take advantage of GIS integration, utilities need high-quality GIS data. While many utilities or 726 

municipalities have designated GIS departments similar to the university studied here, access to high-727 

quality, current GIS data is far from universal. A potential solution to address this lack of GIS data might 728 

lie in state-wide programs like the Kentucky Infrastructure Authority’s Water Resource Info System. The 729 



program, which provides water and wastewater GIS to support modeling and planning efforts, “allows for 730 

cost-effective analysis of engineering alternatives, and facilitates the efficiencies needed to meet the needs 731 

of Kentucky's infrastructure development.” (Kentucky Infrastructure Authority 2017). Such initiatives 732 

could take the burden off resource-constrained utilities while fulfilling a critical data need.  733 

Regarding the current state of information gathering for hydraulic modeling, there is much work to 734 

be done. Centralized, standardized, and coordinated data collection efforts need to be put in place to 735 

improve data collection, processing, and overall quality. Utilities can reduce barriers caused by siloed 736 

departmental structures by establishing designated, inter-departmental data collection initiatives that focus 737 

on clear processes and specific, measurable, achievable, realistic, and time-based (SMART) goals (Dell 738 

2005). Other authors (Chastain-Howley 2014; Keck & Lee 2021; Makropoulos & Savić 2019; Neemann et 739 

al. 2013) have put forth recommendations to create conditions conducive to increased analytics in the water 740 

industry such as increased professional development and research opportunities. Data quality can be 741 

improved by conducting regular water accounting (particularly with high-demand users) and instrument 742 

testing, leading to increased data analysis and improved operations (Simpson & Van Arsdel 2020). To 743 

implement these improvements, water data management must be seen as a key component of infrastructure 744 

and funded as such. The gap in water infrastructure funding has led to underinvestment in both built and 745 

technology systems at utilities. When funding for water infrastructure is implemented, it is imperative that 746 

provisions are made for hydraulic model creation as this can improve water system resiliency and reduce 747 

detrimental outcomes (e.g., areas of low pressure or stagnation).  748 

The amount of institutional knowledge, from many sources, required to complete this study points 749 

to a crucial need to improve the transfer of knowledge in the water industry, especially as experienced 750 

members of the workforce prepare for retirement or leave the sector (almost 3 million vacancies are 751 

expected in the next decade, Kane & Tomer 2018). Practices and techniques for improving the knowledge 752 

sharing between utility managers and across generations (Javernick-Will 2012; Sanaei et al. 2013) could 753 

help the water industry retain this valuable information. Documenting and sharing information about a 754 

water distribution system and incorporating it into a hydraulic model builds resiliency by creating 755 



redundancies in knowledge, which are particularly critical during public health emergencies when the utility 756 

workforce is also at risk. Finally, academic-utility collaboration can help address issues within the water 757 

sector by working to close gaps in the knowledge base between utility and research communities (Keck & 758 

Lee 2015). Partnerships like the one developed in this study can offer many opportunities to advance the 759 

field of water research while supporting utilities in their efforts to improve or develop modeling capacities 760 

and protocols for data management that can be shared among utilities. 761 

CONCLUSION 762 

Following the onset of the COVID-19 pandemic, we began developing a hydraulic model the UT 763 

Austin water distribution system to understand the impacts of changes in demand induced by SDPs on 764 

system performance. Results indicate that such a model can provide useful insights into the impacts of 765 

changes in operating conditions on campus and system performance, in turn contributing to overall system 766 

resiliency. However, the current lack of attention to the data needs and processing requirements in model 767 

development threatens utilities’ ability to build their own hydraulic models. To address this gap, we 768 

documented the data requirements, collection and processing stages involved with hydraulic modeling and 769 

categorized the central challenges and success factors encountered. Notably, the challenges identified 770 

would likely apply even more dramatically to an entire network with more data and complexity. Utilities 771 

are therefore encouraged to prioritize organizing the data needed to construct a hydraulic model and to 772 

begin this effort before the next disaster occurs. Further, it is essential that future infrastructure spending 773 

support water utilities to develop hydraulic models and incorporate them into their planning through efforts 774 

focusing on data collection (including access to high quality GIS data), data management and analytics, and 775 

GIS-based modeling software. Finally, to promote the development and use of hydraulic models and reduce 776 

the risk of valuable institutional knowledge being lost, academic-utility partnerships and the 777 

implementation of organizational knowledge sharing initiatives are recommended. While the potential 778 

utility for hydraulic model use is great, real management support will only occur if hydraulic models are 779 

developed, calibrated, and ready for use well before a crisis occurs.  780 



DATA AVALIABILITY STATEMENT 781 

The following data, models, or code used during the study were provided by a third party: water distribution 782 

system GIS data, water supply data, water demand data. Direct requests for these materials may be made 783 

to the provider as indicated in the “Acknowledgments.” 784 

ACKNOWLEDGMENTS 785 

This work was supported by the National Science Foundation under Grant No. 2032434/2032429 and DGE-786 

1610403 with data and assistance provided by The University of Texas at Austin Utilities & Energy 787 

Management. 788 

AUTHOR STATEMENT 789 

The manuscript was written through contributions of all authors, as follows: Conceptualization 790 

and design: H.R.T., L.A.S., L.S., and K.F.; Analysis: H.R.T.; Analysis validation: H.R.T., L.A.S., 791 

L.S., and K.F; Writing - original draft: H.R.T.; Writing - review and editing: All authors; 792 

Supervision: L.S. and K.F. All authors have given approval to the final version of the manuscript. 793 

REFERENCES 794 

Abokifa, A. A., Xing, L., & Sela, L. 2020. “Investigating the impacts of water conservation on water 795 

quality in distribution networks using an advection-dispersion transport model.” Water 796 

(Switzerland), 12(4). https://doi.org/10.3390/W12041033 797 

American Water Works Association. 2013. “Committee Report: Defining model calibration.” Journal - 798 

American Water Works Association, 105(7), 60–63. 799 

https://doi.org/10.5942/jawwa.2013.105.0101 800 

American Water Works Association. 2014. “Committee Report: Trends in water distribution system 801 

modeling.” Journal - American Water Works Association, 106(10), 51–59. 802 

American Water Works Association. 2020. “State of the Water Industry- Executive Summary.” 803 

https://www.awwa.org/Portals/0/AWWA/ETS/Resources/2020SOTWI_execSummary.pdf?ver=2804 

020-06-03-161721-840 805 



Atkinson, W. 2014. “Integrating GIS and Hydraulic Modeling.” Water Efficiency. 806 

https://www.waterworld.com/home/article/14070121/integrating-gis-and-hydraulic-modeling 807 

Ayllón, D., Railsback, S. F., Gallagher, C., Augusiak, J., Baveco, H., Berger, U., Charles, S., Martin, R., 808 

Focks, A., Galic, N., Liu, C., van Loon, E. E., Nabe-Nielsen, J., Piou, C., Polhill, J. G., Preuss, T. 809 

G., Radchuk, V., Schmolke, A., Stadnicka-Michalak, J., … Grimm, V. 2021. “Keeping modelling 810 

notebooks with TRACE: Good for you and good for environmental research and management 811 

support.” Environmental Modelling and Software, 136. 812 

https://doi.org/10.1016/j.envsoft.2020.104932 813 

Austin Water. 2021. “High or Low Water Pressure.” Accessed June 26, 2021. 814 

https://www.austintexas.gov/page/high-or-low-water-pressure 815 

Bach, P. M., Rauch, W., Mikkelsen, P. S., McCarthy, D. T., & Deletic, A. 2014. “A critical review of 816 

integrated urban water modelling - Urban drainage and beyond.” Environmental Modelling and 817 

Software, 54, 88–107. https://doi.org/10.1016/j.envsoft.2013.12.018 818 

Bakchan, A., Roy, A., Faust, K.M. 2022. “Impacts of COVID-19 social distancing policies on water 819 

demand: A population dynamics perspective.” Journal of Environmental Management, 302A, 820 

113949. https://doi.org/10.1016/j.jenvman.2021.113949 821 

Bentley. 2021a. “Bentley Communities.” Accessed April 19, 2021. https://communities.bentley.com/ 822 

Bentley. 2021b. “Water Distribution Analysis and Design Software - OpenFlows WaterGEMS.” 823 

Accessed April 19, 2021. https://www.bentley.com/en/products/product-line/hydraulics-and-824 

hydrology-software/watergems 825 

Boulos, P. F., Lansey, K. E., & Karney, B. W. 2006. Comprehensive water distribution systems analysis 826 

handbook for engineers and planners (2nd ed.). MWH Soft, Inc. 827 

Brears, R. C. (Ed.). 2018. Climate Resilient Water Resources Management. Springer International 828 

Publishing. https://doi.org/10.1007/978-3-319-78896-8 829 

Campisano, A., & Creaco, E. 2020a. “Advances in Modeling and Management of Urban Water 830 

Networks.” Water, 12(11). https://doi.org/10.3390/w12112956 831 



Carriço, N., Ferreira, B., Barreira, R., Antunes, A., Grueau, C., Mendes, A., Covas, D., Monteiro, L., 832 

Santos, J., & Brito, I. S. 2020. “Data integration for infrastructure asset management in small to 833 

medium-sized water utilities.” Water Science and Technology, 82(12), 2737–2744. 834 

https://doi.org/10.2166/wst.2020.377 835 

Chastain-Howley, A. 2014. “How Big Is Big Data Among Water Utilities?” Accessed April 19, 2021. 836 

https://www.wateronline.com/doc/how-big-is-big-data-among-water-utilities-0001 837 

Conejos Fuertes, P., Martinez Alzamora, F., Hervas Carot, M., & Alonso Campos, J. C. 2020. “Building 838 

and exploiting a Digital Twin for the management of drinking water distribution networks.” Urban 839 

Water Journal, 17(8). https://doi.org/10.1080/1573062X.2020.1771382 840 

Deem, S. 2020. “Preparing for COVID-19’s Effect on Legionella and Building Water Systems.” Journal - 841 

American Water Works Association, 112(9), 60–62. https://doi.org/10.1002/awwa.1578 842 

Dell, R. K. 2005. “Breaking Organizational Silos: Removing Barriers to Exceptional Performance.” 843 

Journal - American Water Works Association, 97(6), 34–36. https://doi.org/10.1002/j.1551-844 

8833.2005.tb10902.x 845 

Deloitte. 2016. Water Tight 2.0 The top trends in the global water sector. 846 

https://www2.deloitte.com/content/dam/Deloitte/pl/Documents/Reports/pl_Water-Tight-2-0-The-847 

top-trends-in-the-global-water-sector.pdf 848 

Edwards, J., Koval, E., Lendt, B., & Ginther, P. 2009. “GIS and hydraulic model integration implementing 849 

cost-effective sustainable modeling solutions.” Journal - American Water Works Association, 850 

101(11). https://doi.org/10.1002/j.1551-8833.2009.tb09988.x 851 

Eggimann, S., Mutzner, L., Wani, O., Schneider, M. Y., Spuhler, D., Moy De Vitry, M., Beutler, P., & 852 

Maurer, M. 2017. “The Potential of Knowing More: A Review of Data-Driven Urban Water 853 

Management.” Environmental Science and Technology, 51(5), 2538–2553. 854 

https://doi.org/10.1021/acs.est.6b04267 855 



Esri. (2020). “ArcGIS Desktop | Desktop GIS Software Suite - Esri.” Accessed April 19, 2021. 856 

https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview 857 

Faure, J. C., & Faust, K. M. 2020. “Socioeconomic characteristics versus density changes: the operational 858 

effects of population dynamics on water systems.” Sustainable and Resilient Infrastructure, 1–14. 859 

https://doi.org/10.1080/23789689.2020.1757882 860 

Faust, K. M., & Abraham, D. M. 2014. “Evaluating the Feasibility of Decommissioning Residential 861 

Water Infrastructure in Cities Facing Urban Decline.” Construction Research Congress 2014, 862 

1229–1238. https://doi.org/10.1061/9780784413517.126 863 

Faust, K. M., & Kaminsky, J. A. 2017. “Building Water and Wastewater System Resilience to Disaster 864 

Migration: Utility Perspectives.” Journal of Construction Engineering and Management, 143(8). 865 

https://doi.org/10.1061/(asce)co.1943-7862.0001352 866 

Faust, K. M., & Kaminsky, J. A. 2019. “Population dynamics and the resiliency of water and wastewater 867 

infrastructure.” Routledge Handbook of Sustainable and Resilient Infrastructure, 341–358. 868 

https://doi.org/10.4324/9781315142074-18 869 

Faust, K. M., Katz, L. E., Kirisits, M. J., Kinney, K. A., Sela, L., Kopytkovskiy, M., Russell, C., & 870 

Kaminsky, J. 2021. “Consider How Social Distancing Policies Can Affect Drinking Water 871 

Infrastructure Performance.” Journal - American Water Works Association, 113(2), 76–77. 872 

https://doi.org/10.1002/awwa.1673 873 

Fekete, A. 2019. “Critical infrastructure and flood resilience: Cascading effects beyond water.” WIREs 874 

Water. https://doi.org/10.1002/wat2.1370 875 

Flint, C. G., Jones, A. S., & Horsburgh, J. S. 2017. “Data Management Dimensions of Social Water 876 

Science: The iUTAH Experience.” Journal of the American Water Resources Association, 53(5), 877 

988–996. https://doi.org/10.1111/1752-1688.12568 878 

Florin, M. V., & Linkov, I. (Eds.). 2016. Resilience Resource Guide. EPFL International Risk 879 

Governance Center (IRGC). https://doi.org/10.5075/epfl-irgc-228206 880 



Grimm, V., Augusiak, J., Focks, A., Frank, B. M., Gabsi, F., Johnston, A. S. A., Liu, C., Martin, B. T., 881 

Meli, M., Radchuk, V., Thorbek, P., & Railsback, S. F. 2014. “Towards better modelling and 882 

decision support: Documenting model development, testing, and analysis using TRACE.” 883 

Ecological Modelling, 280, 129–139. https://doi.org/10.1016/j.ecolmodel.2014.01.018 884 

Horn, D. P. 2020. “FEMA Pre-Disaster Mitigation: The Building Resilient Infrastructure and 885 

Communities (BRIC) Program.” FEMA Pre-Disaster Mitigation: The Building Resilient 886 

Infrastructure and Communities (BRIC) Program (Vol. 1). 887 

https://heinonline.org/HOL/Page?handle=hein.crs/govebgt0001&id=1&div=&collection=congrec 888 

Houghtalen, R. J., Akan, A. O., & Hwang, N. H. C. 2016. Fundamentals of hydraulic engineering systems 889 

(Fifth edit). Pearson. 890 

Javernick-Will, A. 2012. “Motivating Knowledge Sharing in Engineering and Construction 891 

Organizations: Power of Social Motivations.” Journal of Management in Engineering, 28(2), 892 

193–202. https://doi.org/10.1061/(asce)me.1943-5479.0000076 893 

Jordan, E., Javernick-Will, A., & Tierney, K. 2016. “Post-tsunami recovery in Tamil Nadu, India: 894 

combined social and infrastructural outcomes.” Natural Hazards, 84(2), 1327–1347. 895 

https://doi.org/10.1007/s11069-016-2489-4 896 

Kadiyala, R., & Macintosh, C. 2018. Leveraging Other Industries - Big Data Management (Phase I). 897 

Water Research Foundation. 898 

Kane, J., & Tomer, A. 2018. Renewing the Water Workforce. Brookings Metropolitan Policy Program.  899 

Kawasaki, A., Koudelova, P., Tamakawa, K., Kitamoto, A., Ikoma, E., Ikeuchi, K., Shibasaki, R., 900 

Kitsuregawa, M., & Koike, T. 2018. “Data integration and analysis system (DIAS) as a platform 901 

for data and model integration: Cases in the field of water resources management and disaster risk 902 

reduction.” Data Science Journal, 17, 1–14. https://doi.org/10.5334/dsj-2018-029 903 

Keck, J., & Lee, J. 2015. “A New Model for Industry–University Partnerships.” Journal AWWA, 107(11), 904 

84–90. https://doi.org/https://doi.org/10.5942/jawwa.2015.107.0161 905 



Keck, J., & Lee, J. 2021. “Embracing Analytics in the Water Industry.” Journal of Water Resources 906 

Planning and Management, 147(5), 1–6. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001375 907 

Kentucky Infrastructure Authority. 2017. “Water Resource Info System - Kentucky Infrastructure 908 

Authority.” Accessed April 19, 2021. https://kia.ky.gov/WRIS/Pages/default.aspx 909 

Kiefer, J. C., & Krentz, L. R. 2018. “Information Needs for Water Demand Planning and Management.” 910 

Journal - American Water Works Association, 110(3), 50–57. https://doi.org/10.1002/awwa.1032 911 

Klise, K., Murray, R., & Haxton, T. 2018. “An overview of the water network tool for resilience 912 

(WNTR).” 1st International WDSA / CCWI 2018 Joint Conference. 913 

Klise, K., Hart, D., Moriarty, D., 2017. Water network tool for resilience (WNTR) user manual. Sandia 914 

National Laboratory.  915 

Makropoulos, & Savić. 2019. “Urban Hydroinformatics: Past, Present and Future.” Water, 11(10), 1959. 916 

https://doi.org/10.3390/w11101959 917 

Matthews, J. C. 2016. “Disaster Resilience of Critical Water Infrastructure Systems.” Journal of 918 

Structural Engineering, 142(8), C6015001. https://doi.org/10.1061/(ASCE)ST.1943-919 

541X.0001341 920 

Mentes, A., Galiatsatou, P., Spyrou, D., Samaras, A., & Stournara, P. 2020. Hydraulic simulation and 921 

analysis of an urban center’s aqueducts using emergency scenarios for network operation: The 922 

case of Thessaloniki City in Greece. Water (Switzerland), 12(6). 923 

https://doi.org/10.3390/W12061627 924 

Morrison, J. 2004. “Managing leakage by district metered areas: A practical approach.” Water21, 6, 925 

44−46. 926 

National Academy of Science. 2012. Disaster Resilience: A National Imperative. The National 927 

Academies Press. https://doi.org/10.17226/13457 928 

Neal, M. J. 2020. “COVID-19 and water resources management: reframing our priorities as a water 929 

sector.” Water International, 45(5), 435–440. https://doi.org/10.1080/02508060.2020.1773648 930 



Neemann, J., Roberts, D., Kenel, P., Chastain-Howley, A., & Stallard, S. 2013. “Will Data Analytics 931 

Change the Way We Deliver Water?” Journal AWWA, 105(11) 25–27. 932 

https://doi.org/https://doi.org/10.5942/jawwa.2013.105.0163 933 

Opdyke, A., Javernick-Will, A., & Koschmann, M. 2017. “Infrastructure hazard resilience trends: an 934 

analysis of 25 years of research.” Natural Hazards, 87(2), 773–789. 935 

https://doi.org/10.1007/s11069-017-2792-8 936 

Poch, M., Garrido-Baserba, M., Corominas, L., Perelló-Moragues, A., Monclús, H., Cermerón-Romero, 937 

M., Melitas, N., Jiang, S. C., & Rosso, D. 2020. “When the fourth water and digital revolution 938 

encountered COVID-19.” Science of the Total Environment, 744. 939 

https://doi.org/10.1016/j.scitotenv.2020.140980 940 

Pesantez, J. E., Alghamdi, F., Sabu, S., Mahinthakumar, G., Zechman Berglund, E. 2022. “Using a digital 941 

twin to explore water infrastructure impacts during the COVID-19 pandemic.” Sustainable Cities 942 

and Society, 77. https://doi.org/10.1016/j.scs.2021.103520 943 

Sanaei, M., Javernick-Will, A. N., & Chinowsky, P. 2013. “The influence of generation on knowledge 944 

sharing connections and methods in construction and engineering organizations headquartered in 945 

the US.” Construction Management and Economics, 31(9), 991–1004. 946 

https://doi.org/10.1080/01446193.2013.835490 947 

Sela Perelman, L., Allen, M., Preis, A., Iqbal, M., Whittle, A.J. 2015. “Flexible Reconfiguration of Existing 948 

Urban Water Infrastructure Systems.” Environmental Science & Technology, 49(22), 13378-949 

13384. https://doi.org/10.1021/acs.est.5b03331 950 

Shafiee, M. E., Rasekh, A., Sela, L., & Preis, A. 2020. “Streaming smart meter data integration to enable 951 

dynamic demand assignment for real-time hydraulic simulation.” Journal of Water Resources 952 

Planning and Management, 146(6). https://ascelibrary.org/doi/10.1061/%28ASCE%29WR.1943-953 

5452.0001221 954 



Shin, S., Lee, S., Judi, D. R., Parvania, M., Goharian, E., McPherson, T., & Burian, S. J. 2018. A 955 

Systematic Review of Quantitative Resilience Measures for Water Infrastructure Systems. Water, 956 

10(164). https://doi.org/10.3390/w10020164 957 

Simpson, M., & Van Arsdel, J. 2020. “Lessons Learned During a Pandemic Year.” Opflow, 46(12), 6–7. 958 

https://doi.org/10.1002/opfl.1467 959 

Spearing, L. A., & Faust, K. M. 2020. “Cascading system impacts of the 2018 Camp Fire in California: 960 

The interdependent provision of infrastructure services to displaced populations.” International 961 

Journal of Disaster Risk Reduction, 50, 101822. https://doi.org/10.1016/j.ijdrr.2020.101822 962 

Spearing, L. A., Thelemaque, N., Kaminsky, J. A., Katz, L. E., Kinney, K. A., Kirisits, M. J., Sela, L., & 963 

Faust, K. M. 2020. “Implications of Social Distancing Policies on Drinking Water Infrastructure: 964 

An Overview of the Challenges to and Responses of U.S. Utilities during the COVID-19 965 

Pandemic.” Environmental Science and Technology Water. 966 

https://doi.org/10.1021/acsestwater.0c00229 967 

Spearing, L. A., Tiedmann, H. R., Sela, L., Nagy, Z., Kaminsky, J. A., Katz, L. E., Kinney, K. A., Kirisits, 968 

M. J., & Faust, K. M. 2021. “Human-Infrastructure Interactions during the COVID-19 Pandemic: 969 

Understanding Water and Electricity Demand Profiles at the Building-Level.” Environmental 970 

Science and Technology Water. https://doi.org/10.1021/acsestwater.1c00176 971 

Stack Overflow. 2021. “Stack Overflow - Where Developers Learn, Share, & Build Careers.” Accessed 972 

April 19, 2021. https://stackoverflow.com/ 973 

Texas Commission on Environmental Quality. 2019. “Minimum Pressure Requirements.” Accessed June 974 

26, 2021. 975 

https://www.tceq.texas.gov/assets/public/permitting/watersupply/pdw/EG_Minimum_Pressure_R976 

equirements_20191015.pdf 977 

The University of Texas at Austin. 2021. “Facts and Figures.” Accessed May 17, 2021. 978 

https://www.utexas.edu/about/facts-and-figures  979 



US EPA. 2019a. “Develop or Update a Drinking Water Utility Emergency Response Plan.” Accessed 980 

April 19, 2021. https://www.epa.gov/waterutilityresponse/develop-or-update-drinking-water-981 

utility-emergency-response-plan 982 

US EPA. 2019b. “New Risk Assessment and Emergency Response Plan Requirements for Community 983 

Water Systems.” Accessed April 19, 2021.  https://twua.org/latest-news/295-epa-984 

riskassesmentemergencyresponse 985 

US EPA. 2020a. “Basics of Water Resilience.” Accessed April 19, 2021.  986 

https://www.epa.gov/waterresilience/basics-water-resilience 987 

US EPA. 2020b. EPANET. https://www.epa.gov/water-research/epanet 988 

US EPA. 2020c. “EPANET 2.2 documentation.” Accessed April 19, 2021.  989 

https://epanet22.readthedocs.io/en/latest/index.html# 990 

USGS. (2021). “USGS NED 1/3 arc-second Contours for Austin W, Texas 20190418 1 X 1 degree 991 

Shapefile.” Accessed November 1, 2021. 992 

https://www.sciencebase.gov/catalog/item/5cb16ce8e4b0c3b006574c80  993 

Vikesland, P.J., Ozekin, K., Valentine, R.L. 2001. “Monochloramine Decay in Model and Distribution 994 

System Waters.” Water Research, 35(7), 1766-1776. https://doi.org/10.1016/S0043-995 

1354(00)00406-1. 996 

Walski, T. 2000. “Model calibration data: the good, the bad, and the useless.” Journal - American Water 997 

Works Association, 92(1), 94–99. https://doi.org/10.1002/j.1551-8833.2000.tb08791.x 998 

Walski, T. 2017. “Procedure for hydraulic model calibration.” Journal - American Water Works 999 

Association, 109(6), 55–61. https://doi.org/10.5942/jawwa.2017.109.0075 1000 

Walski, T. (2021). “Discussion of ‘Regularization of an Inverse Problem for Parameter Estimation in 1001 

Water Distribution Systems’ by Alexander Waldron, Filippo Pecci, and Ivan Stoianov.’ Journal 1002 

of Water Resources Planning and Management, 147(12), 07021020. 1003 

https://doi.org/10.1061/(ASCE)WR.1943-5452.0001489 1004 



Walski, T., V. Chase, D., A. Savic, D., Grayman, W., Beckwith, S., & Koelle, E. 2003. Advanced Water 1005 

Distribution Modeling and Management. Haestad Press. https://doi.org/0971414122 1006 

Wang, H., Masters, S., Hong, Y., Stallings, J., Falkinham, J. O., Edwards, M. A., & Pruden, A. 2012. 1007 

“Effect of Disinfectant, Water Age, and Pipe Material on Occurrence and Persistence of 1008 

Legionella, mycobacteria, Pseudomonas aeruginosa, and Two Amoebas.” Environmental Science 1009 

& Technology, 46(21), 11566–11574. https://doi.org/10.1021/es303212a 1010 

YouTube. 2012. “Part1: WaterGEMS V8i ModelBuilder Basics.” Accessed April 19 2021, 1011 

https://www.youtube.com/watch?v=Zvb0TfAyGBI 1012 

Zechman Berglund, E., Thelemaque, N., Spearing, L., Faust, K. M., Kaminsky, J., Sela, L., Goharian, E., 1013 

Abokifa, A., Lee, J., Jonathan, K., Marcio, G., E., van Z. J., Brendon, H., Ethan, Y. Y. C., Maria, 1014 

C., Avi, O., & Leonid, K. 2021. “Water and Wastewater Systems and Utilities: Challenges and 1015 

Opportunities during the COVID-19 Pandemic.” Journal of Water Resources Planning and 1016 

Management, 147(5). https://doi.org/10.1061/(ASCE)WR.1943-5452.0001373 1017 

Zhuang, J., & Sela, L. 2020. “Impact of Emerging Water Savings Scenarios on Performance of Urban 1018 

Water Networks.” Journal of Water Resources Planning and Management, 146(1), 04019063. 1019 

https://doi.org/10.1061/(ASCE)WR.1943-5452.0001139  1020 



FIGURES1021 

 1022 

Fig. 1. Footprint and timeline of data collection and hydraulic model development processes. 1023 
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Calibration & Analysis

=  1 month
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Fig. 2. A portion of the completed hydraulic model of the university water distribution network. 1025 
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 1026 

Fig. 3. Pressures at five locations in the study area: measured pressures (a); simulated pressures, base 1027 

demand scenario (b); simulated pressures, low demand scenario (c).  1028 
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 1029 

Fig. 4. Simulated pressure results for the base demand scenario (solid) and low demand scenario (dotted) 1030 

at a location in the central region of the study area (hour 0 = 12:00 am). (See S2 in SM for results at 1031 

additional locations).  1032 



 1033 

Fig. 5. Distribution (with median line) of differences between the base demand and low demand scenarios 1034 

(()0 − 1.$#) for three performance indicators: pressure (a), flow velocity (b), and water age (c).   1035 
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TABLES 1036 

Table 1. Success factors and challenges for hydraulic model development 1037 

Category Examples 

S
u

cc
es

s 
F

a
ct

o
rs

 

Open-Source Technical 
Support 

Online technical support resources in modeling, coding, analytics 
(blogs, videos, forums)  

Academic-Utility 
Partnership  

Willingness among utility managers to share data, knowledge, other 
resources 

Software* Access to ArcGIS, Bentley OpenFlows WaterGEMS via academic 
licenses 

Personnel* Available personnel with expertise to complete modeling process 

C
h

a
ll

en
g
es

 

Data Collection and 
Siloed Sources 

Data must be acquired from many different sources; little 
coordination between departments  

Data Integration Various data are in different formats, extensive processing required 

Data Quantity Overwhelming amounts of data that are unused; conversely, certain 
required data might not exist 

Data Quality Outdated data; human, meter, or recording errors 

Complex Customer 
Types  

High-demand water users have separate and irregular datasets 

Knowledge Transfer Individuals have specialized knowledge of parts of system; 
knowledge is not shared across areas of specialization  

Accessibility & 
Documentation 

Model assumptions and procedures not documented; practitioners 
might not own model 

Scheduling  Entire modeling process is lengthy, cannot be completed under crisis 
conditions  

* Factor could be a barrier rather than an advantage for a traditional water utility lacking financial or 1038 
technical resources  1039 
 1040 
Table 2. Hydraulic analysis summary statistics: water pressure, flow velocity, and water age*  1041 

* Water age entering university distribution system is assumed to be 0.  1042 

 Pressure (m) Velocity (m/s) Age (hr) 
Demand 
Scenario 

Min Max Mean Min Max Mean Min Max Mean 

Base  29.5 69.9 46.4 0 0.51 0.042  0 24 7.4 

Low  32.6 70.0 48.5 0 0.28 0.021 0 24 10.3 

Change: 
Base to 
Low  

+ 3.1 
(10.5%) 

+ 0.1 

(0.001%) 
+ 2.1 

(4.4%) 
0 

- 0.23 

(45.1%) 
- 0.021 

(50.0%) 
0 0 

+ 2.9 
(39.1%) 


