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An easy-plane spin winding in a quantum spin chain can be treated as a transport quantity, which propagates
along the chain but has a finite lifetime due to phase slips. In a hydrodynamic formulation for the winding
dynamics, the quantum continuity equation acquires a source term due to the transverse vorticity flow. The latter
reflects the phase slips and generally compromises the global conservation law. A linear-response formalism for
the nonlocal winding transport then reduces to a Kubo response for the winding flow along the spin chain, in
conjunction with the parasitic vorticity flow transverse to it. One-dimensional topological hydrodynamics can be
recovered when the vorticity flow is asymptotically small. Starting with a microscopic spin-chain formulation,
we focus on the asymptotic behavior of the winding transport based on the renormalized sine-Gordon equation,
incorporating phase slips as well as Gilbert damping. A generic electrical device is proposed to manifest this
physics. We thus suggest winding conductivity as a tangible concept that can characterize low-energy dynamics
in a broad class of quantum magnets.
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I. INTRODUCTION

In addition to efficient heat transport carried by spin dy-
namics along electrically insulating spin chains [1], there has
also been much interest in their transmission of spin signals
[2]. In the case of spin currents polarized along a direction
of axial symmetry, the spin signals can propagate ballistically
or diffusively, while generally also undergoing decay due
to spin-nonconserving perturbations. Alternatively, transport
based on collective order-parameter dynamics and rooted in
topological conservation laws has been suggested for poten-
tially more robust propagation of signals [3].

The winding dynamics of planar spins in an easy-plane
(anti)ferromagnet is one ready example of this. Extending the
natural superfluid analogy for the SO(2) order parameter to
the nonequilibrium setting, scenarios for spin superfluidity
have been proposed [4,5] and experimentally pursued [6].
The spontaneously broken U(1) symmetry is replaced here
by the axial symmetry (say along the z axis) of the easy-
plane spin winding (in the xy plane). If the latter experiences
some anisotropies within the xy plane, however, the associ-
ated SO(2) symmetry gets broken directly, invalidating spin
conservation and possibly pinning the conjugate phase (i.e.,
the winding angle) altogether.

While the spin density ρz is then no longer acting as a long-
wavelength transport quantity, the winding density ρ ∝ ∂xϕ (x
being the spatial coordinate along the transport channel and ϕ
the azimuthal angle of the order parameter in the xy plane)
obeys a continuity equation (with the associated flux j ∝
−∂tϕ), irrespective of the anisotropies. This is crucially con-
tingent on the ability to unambiguously define ϕ(x, t ) along
the channel, at all times, which is compromised whenever a

vectorial order parameter traverses one of the poles along the
hard (z) axis. Such processes could be visualized as vortices in
the (1 + 1)-dimensional space-time, realizing a vorticity flow
transverse to the x axis. In analogy to similar parasitic events
in low-dimensional superfluids and superconductors [7], these
can be called phase slips [8,9].

In this paper, we set out to formulate a rigorous micro-
scopic formalism to address these issues, in regard to quantum
winding hydrodynamics [10], at an arbitrary temperature.
Once the formal framework is in place, our focus is going
to be on the role of anisotropies, phase slips, and general
magnetic damping, in relation to spatiotemporal transport
properties of the spin-winding flows. In particular, we wish to
establish regimes, where the notion of a winding conductivity
can be meaningful both theoretically and experimentally.

Our discussion is structured as follows. We start, in Sec. II,
by recapping vorticity dynamics in two spatial dimensions.
The notion of a topological conservation law is introduced for
a classical theory in Sec. II A, which is then discretized and
quantized into an exact quantum formulation on a generic spin
lattice, in Sec. II B. A similar procedure is then attempted for
the winding dynamics in Sec. III, where the quantum flow of
spin winding along a spin chain gets supplemented with vor-
ticity flow transverse to it. Here, we develop a quantum Kubo
formalism for the winding transport, and establish boundary
conditions that could allow us to read it out electrically. In
Sec. IV, a sine-Gordon model is treated systematically, in
order to study the interplay of the winding flow, phase slips,
and other sources of dissipation associated with collective
dynamics, both at zero and finite temperatures. A summary
and outlook are offered in Sec. V.
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II. 2D VORTICITY (HYDRO)DYNAMICS

A. Classical vorticity dynamics

A three-component real vector field m = (mx, my, mz ) re-
siding in 2 + 1 dimensions, m(r, t ), realizes an R2 → R3

mapping, at any given time t . These spatial field textures
are devoid of point defects, as the fundamental homotopy
group of the order-parameter space m is trivial: π1(R3) = 1.
Such two-dimensional textures are, furthermore, all topolog-
ically equivalent, having fixed the boundary profile of m on
a connected patch of R2, which is reflected in the fact that
π2(R3) = 1. Despite this, a smooth vector field defines a
topological hydrodynamics governed by the continuity equa-
tion ∂µ jµ = 0 (with the Einstein summation implied over the
Greek letters: µ = 0, 1, 2 → t, x, y), where [11]

jµ ≡ εµνξ z · ∂νm × ∂ξ m
2π

. (1)

Here, z is the z-axis unit vector and εµνξ is the Levi-Civita
symbol.

For the special case of a rigid texture sliding at a velocity
v, for example: j = ρv, where ρ ≡ j0 and j = ( jx, jy). For
another special case of a sharp vortex in a strongly easy-plane
magnet with the planar order parameter normalized to unity,
|m| → 1: ρ ≈ δ(r − r0), where r0 is the position at which
m tilts out of the plane (over an appropriate healing length
defining the size of the core). These examples intuitively
suggest a fluid whose density is given by the distribution of
vorticity in the system. While in the extreme easy-plane case,
a vortex core carries a quantized topological charge, we do not
generally assume this special limit.

The above conserved quantity j0 can be recast as a ficti-
tious flux

ρ = z · ∇ × A
2π

(2)

associated with the gauge field

A = mx∇my − my∇mx . (3)

Applying Green’s theorem, we then see that the conserved
topological charge within a patch ),

Q ≡
∫

)

d2r ρ =
∮

∂)

dr · A
2π

=
∮

∂)

dφ

2π
m2

‖ , (4)

is associated with the order-parameter winding around its
boundary ∂). m‖ is the field’s projection onto the xy plane
(within the order-parameter space) and φ is the associated
azimuthal angle. This reveals the geometrical meaning of the
conservation law: The charge Q in the bulk can change only
in response to a vorticity flow through the boundary.

B. Quantum vorticity dynamics

To construct a simple quantum theory, which reproduces
the above classical hydrodynamics of vorticity in the clas-
sical limit of h̄ → 0, let us consider a square lattice model
sketched in Fig. 1. We label each vertex of the lattice by
two integer indices: ı (along the x axis) and  (along the y
axis). The same indices are used to label the square plaquettes,
according to their lower left corner, as well as the vertical
links going upward and the horizontal links to the right of the

ρı

x (ı)

y ()

jx
ı

jy
ı

jy
ı̃

jx
ı̃

Sı

Sı̃̃

Sı̃

Sı̃

FIG. 1. The quantum spin lattice described by an arbitrary
Hamiltonian H . Sı is the spin operator at site ı , with index ı ( )
running along the x (y) axis. ı̃ = ı + 1 and ̃ =  + 1. ρı is the
conserved topological charge per plaquette ı , jx

ı ( jy
ı ) is the flux

per vertical (horizontal) link ı , which together satisfy the quantum
continuity equation (10).

site ı . Each site contains a quantum spin S = (Sx, Sy, Sz ),
of magnitude S (in units of h̄), characterized by the standard
angular-momentum algebra [Sa, Sb] = iεabcSc.

We associate a charge density

ρı ≡
Ax

ı − Ax
ı̃ + Ay

ı̃ − Ay
ı

2πa
(5)

to each plaquette, where a is the lattice spacing. Here, ı̃ ≡
ı + 1 and ̃ ≡  + 1, and

Ax
ı = z · (Sı̃ + Sı ) × (Sı̃ − Sı )

4aS2
+ H.c. = z · Sı × Sı̃

aS2
,

Ay
ı = z · (Sı̃ + Sı ) × (Sı̃ − Sı )

4aS2
+ H.c. = z · Sı × Sı̃

aS2
,

(6)
which we assign formally to the corresponding horizontal and
vertical sides of the plaquette, respectively. These definitions
mimic Eqs. (2) and (3), respectively, and should reproduce
them by coarse graining the magnetic textures in the classical
limit of S → ∞.

According to these definitions,

ρı = z · cı

2πa2
, where cı ≡ 1

S2

∑

l

Sl × Sl̃ (7)

is the vector chirality of the corresponding plaquette, with the
sum running over the four vertices labeled by l (l̃ being the
vertex next to l , in the counterclockwise direction) [12]. We
also see [according to Eq. (5)] that

Q =
∑

ı

ρı (8)

vanishes in the bulk and reduces to the boundary terms, which
we can interpret as the quantum version of the vorticity (4).
This suggests a conservation law with the boundary fluxes
corresponding to the vorticity flow. Indeed, according to the
Heisenberg equation of motion (for Hamiltonian H and an
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arbitrary time-independent operator O),

∂tO ≡ i
h̄

[H,O] , (9)

the quantum vorticity density ρı is seen to satisfy the conti-
nuity equation:

∂tρı +
jx
ı̃ − jx

ı + jy
ı̃ − jy

ı

a
= 0 . (10)

The fluxes in the second term are consistent with quantizing
Eq. (1):

jx
ı = z · (Sı̃ − Sı ) × ∂t (Sı̃ + Sı )

4πaS2
+ H.c. , (11)

and similarly for the other components.
It is useful to emphasize that the associated conservation

law is not rooted in any specific symmetry of the system.
Indeed, the form of the Hamiltonian H still remains arbitrary.
The continuity is rather dictated by the topology associated
with the vorticity (hydro)dynamics in the interior of the sys-
tem. Specifically, an arbitrary local deformation of the field
in the bulk yields the same net vorticity, irrespective of the
details of the dynamics.

III. 1D WINDING DYNAMICS

In contrast to the vorticity flow, winding dynamics in, e.g.,
one-dimensional (1D) superfluids [7] or magnets [13] obey
the conservation law only approximately. In these systems,
the underlying topological invariant relies on a nonlinear con-
straint applied to the order parameter, which ultimately makes
the conserved quantity vulnerable to thermal fluctuations.
This leads to phase slips [8], which are detrimental to the
topological conservation law.

These issues carry over to the quantum regime, where
quantum phase slips arise due to tunneling [9]. Supposing
these could be neglected, in an appropriate limit, we wish to
formulate a Kubo approach for the topological quantum flow
in terms of the corresponding current autocorrelator.

A. Quantum winding dynamics

Let us illustrate these points by considering winding dy-
namics along a 1D quantum lattice, with an easy-plane
anisotropy in spin space, which constrains the (ferro- or
antiferro-)magnetic dynamics to lie close to the xy plane.
As we have already mentioned, a coarse-grained classical
hydrodynamics can be formulated in terms of the density
ρ = −∂xϕ/π and flux j = ∂tϕ/π , where ϕ is the azimuthal
angle of the order parameter in the xy plane, [13] such that
∂tρ + ∂x j = 0.

Allowing for arbitrary (unconstrained) spin dynamics, we
now formulate a quantum theory on a lattice through the
definitions

ρı = z · Sı̃ × Sı

πaS2
, jı = z · Sı × ∂t Sı

2πS2
+ H.c. , (12)

where, as before, ∂t should be understood according to the
Heisenberg equation of motion (9) (which depends on a con-
crete Hamiltonian, to be specified later). Since these reduce to
the winding density and flux, in the appropriate coarse-grained

FIG. 2. Schematic of a winding flow along a (horizontal) spin
chain. Transverse charge current I generates an effective chemical
potential bias µ that couples to the winding density at the left end. η

is a contact-dependent conversion parameter, which relates the input
current to the out-of-plane spin Hall torque τ = ηI/π acting on the
magnetic dynamics in the chain [5]. The injected winding flux is
governed by the winding conductivity σ , while being dissipated by
the transverse vortex flow ∝ κ . The net remaining winding outflow
produces a measurable transverse motive force E at the right electri-
cal contact.

classical limit, we may expect them to approximately obey the
continuity equation (when the phase slips can be disregarded).
Indeed,

∂tρı + jı̃ − jı
a

= z · (Sı̃ − Sı ) × ∂t (Sı̃ + Sı )
2πaS2

+ H.c . (13)

The term on the right-hand side (RHS), which spoils the exact
conservation law, can be recognized to be exactly (twice) the
vorticity flow transverse to the spin chain, cf. Eq. (11). If it
can be neglected, we would recover the continuity equation
and with it the Kubo formula (26) that governs the topologi-
cal flow and the electrical transconductance, to be discussed
below.

B. Boundary conditions

In order to place the spin chain (of length L) into a measur-
able external circuit, let us suppose it is biased by spin torques
(polarized along the z axis) τL(R) at its left (right) ends. The
(semiclassical) work associated with the left torque is

/WL =
∫

dtτL∂tϕ = πτL

∫
dt j = πτL/QL , (14)

where /QL is the topological charge transfer into the chain
through the left end. This translates into the effective chemical
potential bias at the left end given by

µL = /WL

/QL
= πτL . (15)

Similarly for the right end, we get

µR = /WR

/QR
= −πτR . (16)

Such torques can be induced, for example, by the spin Hall
effect triggered by an electrical current flowing transverse to
the chain [5]. See Fig. 2 above.
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Reciprocally to these torques, the precessional dynamics
produces a transverse motive force on the electrons in the
contacts, which can be used to detect the outflow of the
topological charge through the ends [5,13]. We will return to
discuss this in more detail in Sec. III D.

C. Kubo formula

We are now ready to define the bulk impedance for the
topological flow, as an intrinsic property of the quantum mag-
net. Starting with a continuity equation for the coarse-grained
quantum dynamics in the bulk, we have

∂tρ + ∂x j = 0 , (17)

where the conserved density and current are obtained from
Eqs. (12), and we neglect the RHS of Eq. (13), i.e., phase
slips, for now. We recall that the time derivatives are obtained
in the Heisenberg picture. If we perturb the system by a
scalar potential φ(x, t ) that couples linearly to the topological
charge, the Hamiltonian becomes

H → H +
∫

dx φ(x, t )ρ(x) . (18)

Note that the topological density is even under time reversal,
while the flux is odd (supposing the Hamiltonian is time-
reversal invariant), so it vanishes in equilibrium, when φ ≡ 0.
For a finite time-dependent potential φ, on the other hand, the
linear response dictates

j(x, t ) = 1
h̄

∫
dx′dt ′G(x − x′, t − t ′)φ(x′, t ′) , (19)

where

G(x − x′, t − t ′) ≡ −iθ (t − t ′)[ j(x, t ), ρ(x′, t ′)] , (20)

according to the Kubo formula (with the equilibrium expecta-
tion value implicit on the right-hand side).

To invoke the continuity equation, we differentiate the re-
sponse function in time:

∂tG(x − x′, t − t ′) = iθ (t − t ′)[ j(x, t ), ∂t ′ρ(x′, t ′)] − iδ(t − t ′)[ j(x), ρ(x′)]

= −iθ (t − t ′)[ j(x, t ), ∂ ′
x j(x′, t ′)] + δ(t − t ′)∂ ′

x p(x − x′) ,
(21)

where the auxiliary function p(x − x′) is obtained by integrat-
ing

∂ ′
x p(x − x′) = −i[ j(x), ρ(x′)] . (22)

Fourier transforming in time, j(ω) =
∫

dteiωt j(t ) etc., we
finally get

j(x,ω) = i
h̄ω

∫
dx′ς (x − x′,ω)ε(x′,ω) , (23)

where

ς (x − x′, t − t ′) ≡ − iθ (t − t ′)[ j(x, t ), j(x′, t ′)]

+ δ(t − t ′)p(x − x′)
(24)

involves the current autocorrelator and

ε ≡ −∂xφ (25)

is the effective electric field. This gives for the conductivity
relating j(k,ω) to ε(k,ω):

σ (k,ω) = i
h̄ω

ς (k,ω) , (26)

having also Fourier transformed in real space,
∫

dx e−ikx .
For a torque-biased spin chain,

ε = µL − µR

L
= π

τL + τR

L
, (27)

supposing that the length of the topological transport channel
L is long enough, so that the bulk dominates over the interfa-
cial impedances and focusing on the DC limit [3].

While evaluating the Kubo formula, we should in general
also calculate the phase-slip rate governed by the RHS of
Eq. (13) (driven by the potential φ gradient that couples to

the winding density ρ). For the internal consistency of the
hydrodynamic treatment, it must be small compared to the
induced winding flux along the spin chain. Writing the phase-
slip rate per unit length (i.e., the vorticity flux transverse to the
chain) as

jφ = κε , (28)

where ε = −∂xφ is the effective field that drives the winding
flow, we thus require (taking the k → 0 and ω → 0 limit for
σ )

L * σ

κ
, (29)

for the validity of the (approximate) conservation law (13). At
the same time, however, we should not forget that L must be
long enough for us not to concern with the effective interfacial
resistance, if we want the overall impedance to be governed by
the bulk.

D. Electrical transconductance

If the winding injection is performed electrically, so that
the effective chemical potential (conjugate to the topological
charge) µ = ηI , where I is the applied current, the Onsager
reciprocity dictates the backaction motive force on the elec-
trons E = η j (which translates directly into a measurable
voltage) [3]. Putting this together, for a circuit sketched in
Fig. 2, we obtain the electrical transconductance

G = E
I

= η2g , (30)
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mediated by the winding flow across the chain. The (linear
response) effective winding conductance here,

g ≡ j
µ

, (31)

would be given by σ/L in the absence of phase slips, but is
degraded by them otherwise, as a function of L [14].

IV. SINE-GORDON MODEL

As a concrete illustration of this general field-theoretic
formalism, let us now consider an ideal 1D spin chain
with an easy-plane collinear order parameter parametrized
by azimuthal angle ϕ(x) and the (canonically conjugate)
out-of-plane spin density s(x). Our main focus is on the
antiferromagnetic case (which will affect the phase-slip con-
siderations). The classical low-energy dynamics are generated
by the (sine-Gordon) Hamiltonian density

H = s2

2χ
+ A(∂xϕ)2

2
+ K cos(2ϕ) , (32)

along with the Poisson bracket {ϕ(x), s(x′)} = δ(x − x′). It is
assumed here that the order-parameter configuration is close
to the easy plane, at all times. χ , A, and K are respectively the
out-of-plane spin susceptibility, order-parameter stiffness, and
the axial in-plane anisotropy. [It is useful to emphasize that
the spin density s(x) is not conserved in the presence of the
axial-symmetry breaking anisotropy K .] The Hamiltonian is
invariant under time reversal, when s → −s and ϕ → ϕ + π .
The sign of K is inconsequential, as it can be flipped by a
phase change, ϕ → ϕ + π/2.

A. Luttinger-liquid mapping

This description can be quantized by promoting the Pois-
son bracket to the commutator:

[ϕ(x), s(x′)] = ih̄δ(x − x′) , (33)

making the theory formally analogous to a spinless Luttinger
liquid [15]. s(x) would then correspond to the linear-
momentum density 5 and the topological density to the
particle density ∂xφ/π . Indeed, the (spinless) Luttinger-liquid
Hamiltonian density is

H = u
2

[
πg
h̄

52 + h̄
πg

(∂xφ)2
]

+ K cos(4φ) , (34)

where [φ(x),5(x′)] = ih̄δ(x − x′). u is the speed of sound
and g > 0 is the interaction parameter (u → vF , the Fermi
velocity, and g → 1, for free electrons; g < 1 signals electron
repulsion and g > 1 attraction). K parametrizes umklapp scat-
tering (which requires an appropriate lattice filling factor).

The corresponding Euclidean Lagrangian density is

L = h̄
2πg

[
1
u

(∂τϕ)2 + u(∂xϕ)2
]

+ k
2(πa)2

cos(2ϕ) , (35)

a being a short-distance cutoff. We have redefined the dis-
placement field φ → ϕ/2 and appropriately rescaled g, in
order to match the notation of our spin model (32). Under the
Wilsonian renormalization-group (RG) rescaling [15], we get

the Kosterlitz-Thouless flow equations:

dy
dl

= (2 − g)y ,
dg
dl

= −g3y2/8 , (36)

where y ≡ k/π h̄u (which we can take to be positive, without
loss of generality), and we have omitted the nonuniversal
cutoff-dependent numerical prefactor on the right-hand side of
the second equation. The RG flow of y corresponds simply to
the scaling dimension of the cosine operator [15]. The generic
reduction in g, under the RG flow (36), corresponds to the
stiffening of the order parameter ϕ due to the cosine term ∝ K
in the Lagrangian (35) (which tries to order the field ϕ).

For our original spin system, Eq. (32), u =
√

A/χ , g =
h̄/π

√
Aχ . We interpret the cutoff as a ∼

√
A/K⊥ [16], where

K⊥ . K is a strong easy-plane anisotropy that keeps spin
dynamics close to the xy plane. The bare order-parameter
stiffness is A ≈ S2Ja and spin susceptibility χ ≈ h̄2/4Ja, in
the large-spin Heisenberg limit (which acquire some cor-
rections due to quantum fluctuations when S ∼ 1). These
estimates boil down to: u ≈ Ja/h̄, g ≈ 2/πS, y ∼ K/K⊥ * 1.
Going beyond the Heisenberg limit, with a large easy-plane
anisotropy, would decrease χ , while not similarly affecting A,
and thus increase the value of g.

Expanding g close to its critical value gc = 2, g → 2 + g,
we get [15]

dy
dl

= −gy ,
dg
dl

= −y2 , (37)

which parametrize hyperbolic trajectories with g2 − y2 =
const. These equations flow rapidly to a noninteracting (gap-
less) fixed point g∗ > 0 and y = 0, if 0 < |y| < g. Otherwise,
the flow takes us to a gapped strong coupling, with |y| → ∞,
where the phase is pinned along the easy axis (i.e., ϕ → 0
or π ). In this latter case, the elementary dynamics could be
constructed out of the corresponding domain walls or their
composites [15].

B. Quantum phase slips

It is important to also make an internal consistency check to
ensure that the original spin system can indeed be described
effectively by the sine-Gordon Lagrangian (35) for nonsin-
gular fields ϕ (i.e., configurations free of vortex singularities
in the 1 + 1 space-time dimensions). In the absence of the
anisotropy K (or when it renormalizes down to zero due to
quantum fluctuations), the easy-plane antiferromagnetic spin
chain undergoes a (Kosterlitz-Thouless type) spin superfluid-
insulator transition at S ≈ 2 (1/2), for integer (half-integer)
spin S [9], with larger S placing us in the (gapless) superfluid
phase. In the latter, the magnetic vortices and antivortices
bind, and we restore an easy-plane σ model with well-defined
winding (hydro)dynamics.

The rate of quantum phase slips, κ , in this limit is given by
[9]

κ ∝ ρπq2S−3 , (38)

at zero temperature (with a similar scaling with temperature,
at zero winding density ρ), where the elementary vorticity
is q = 1 (2) for the integer (half-integer) spin S [17]. The
suppression of the phase slips as ρ → 0, at low temperatures,
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gives us an algebraically large window, Eq. (29), for the spin-
chain length L with conserved winding transport [18].

Summarizing the requirements for the low-energy hydro-
dynamic regime described by the effective long-wavelength
Hamiltonian

H = s2

2χ
+ A(∂xϕ)2

2
, (39)

with canonically conjugate s and ϕ (and effective, renormal-
ized χ and A), we need S ! 1/2 (for the half-integer case,
where the leading-order phase slips are mediated by double
vortices, due to destructive interference of single vortices [9]),
while g > 2 and y ≡ k/π h̄u < g − 2.

The generic mean-field parameters for a Heisenberg anti-
ferromagnetic chain[19] estimated in Sec. IV A thus place us
at a cusp of the gapless (hydrodynamic) phase for S = 1/2
(with a clear tendency to flow to the gapped phase for a larger
spin). g should exceed the Heisenberg limit when the easy-
plane anisotropy is large (i.e., comparable to the exchange
interaction), which would suppress the spin susceptibility χ .
A more detailed and careful analysis would be needed, in
principle, in order to establish the exact microscopic values
of the parameters yielding the ballistic transport regime in
this quantum limit of S ∼ 1/2. A fermionic treatment in the
Wigner-Jordan representation of spin dynamics [20] is one
possible approach to that end.

C. Winding hydrodynamics

Supposing we wind up with a gapless regime described
by the Hamiltonian (39) (if the anisotropy K is weak and/or
irrelevant), we are ready to formulate a transport theory for
the winding density ρ = −∂xϕ/π . The associated current op-
erator, j = ∂tϕ/π , becomes [cf. Eq. (33)]

j = i
π h̄

[H,ϕ] = s
πχ

. (40)

From Eq. (22), we thus get

∂ ′
x p(x − x′) = −i[ j(x), ρ(x′)] = − h̄

π2χ
∂ ′

xδ(x − x′) , (41)

so that

p(x − x′) = h̄
π2χ

δ(x − x′) . (42)

The current-current correlator in Eq. (24) vanishes in the limit
k → 0 (while maintaining a finite ω) [21], so that we end up
with the conductivity (26):

σ (k → 0,ω) = i
π2χω

= iA
ω

, (43)

where A = 1/π2χ .
Regularizing this result at zero frequency, ω → ω + i0+,

we get Reσ = πAδ(ω). As expected, the static conductivity
diverges in the low-frequency limit. In this case, the superfluid
bulk has no impedance and the winding conductance of the en-
tire structure needs to be determined by carefully considering
the interfacial injection physics, which is akin to the Andreev
conductance of normal-superconducting interfaces [22]. The
resultant winding conductance of a clean finite-length spin

chain should thus be governed by the contact impedance,
similarly to the charge conductance of a ballistic electronic
wire (whose contact resistance depends both on the details of
the contact itself as well as the electron-electron interactions
in the wire [23].)

If, on the other hand, we add some spin-relaxing impurities
to the Hamiltonian, so that the collective spin density defining
the topological current according to Eq. (40) is now allowed
to relax, the dynamic spin susceptibility can be obtained at
k → 0 according to the Bloch phenomenology:

ds(t )
dt

= − s(t ) − s0(t )
τ

. (44)

Here s0(t ) = χh(t ) is the (instantaneous) equilibrium spin
density, according to the Zeeman coupling to a magnetic field:
H → H − hs. The dynamic spin susceptibility is thus:

χs(ω) ≡ s(ω)
h(ω)

= χ

1 − iωτ
≈ χ (1 + iωτ ) , (45)

at ω * 1/τ . This, in turn, gives us the current (40) self-
correlator, from which we find the low-frequency topological
conductivity according to Eq. (26):

σ (ω) = i
ω

(
− χs

(πχ )2
+ 1

π2χ

)
= τ

π2χ
. (46)

The response is Drude-like, with a well-defined DC limit and
the ballistic Drude weight ∝ χ−1. In the Gilbert damping phe-
nomenology of magnetic dynamics [24], the spin-pumping
rate (i.e., torque τα) into the environment is given by

−ds
dt

≡ τα = α∂tϕ = α
s − s0

χ
, (47)

which can be obtained by supplementing the Heisenberg-
Hamilton dynamics of the planar order parameter with the
Rayleigh dissipation function R = α(∂tϕ)2/2 [25]. We are
defining the Gilbert constant α here in units of spin density.
This gives τ = χ/α for spin-relaxation time, resulting in the
low-frequency winding conductivity of

σ = 1
π2α

. (48)

A larger damping implies lower winding conductivity.
The corresponding electrical transconductance (30), G ∝

(αL)−1, reproduces the spin-superfluid mediated transconduc-
tance (drag) derived in Ref. [5], when L → ∞. Indeed, in the
limit of no axial anisotropy K in Eq. (32) or when it renor-
malizes down by quantum fluctuations, the out-of-plane spin
s is conserved and follows a superfluid-like hydrodynamics
(with spin flux ∝ ∂xϕ). This provides a dual description for
the long-range signal propagation along the spin chain. In
general, however, when the spin is not conserved, the winding
hydrodynamics based on Eq. (13) establishes a more univer-
sal framework for low-frequency long-distance transport in
anisotropic spin chains. This is illustrated in our next and final
example.

D. Finite temperatures

In the opposite, classical limit of S ! 1 and thus g < 2
in Eq. (36), the phase ϕ is pinned and the winding dynam-
ics are gapped. In this case, the zero-temperature transport
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is exponentially suppressed over a long spin chain [20]. At
finite temperatures, however, we generally anticipate a diffu-
sive regime for thermally activated chiral domain walls [13],
along with the parasitic thermal phase slips [8]. If the latter
is governed by a larger energy gap, in comparison to the
domain-wall energy (which is the case when K⊥ > K), we
can have a meaningful transport scenario for the conserved
winding carried by the Brownian motion of domain walls,
along a finite-length spin chain [13].

In the strong easy-plane limit, when the winding is carried
by a classical gas of stable solitonic domain walls (of width
λ =

√
A/K) with quantized topological charge ±1 and mo-

bility M, the corresponding conductivity is simply σ = 2nM,
where n is the density of domain walls of a given chirality.
The associated diffusion coefficient is given by D = kBT M,
according to the Einstein-Smoluchowski relation. Within the
Gilbert-damping phenomenology [24], the mobility of a rigid
soliton is given by M ∼ λ/α. Since σ ∝ n ∝ e−βE [13], while
κ ∝ e−βF [8], where E = 4

√
AK is the domain-wall energy

and F = 4
√

AK⊥ . E is the thermal phase-slip barrier, we
can easily satisfy Eq. (29) at low temperatures. In the limit
of K → 0 (and/or high temperature, kBT ! E ), the domain
walls coalesce and we reproduce the conductivity (48) [13].

E. Noise and quantum relaxometry

In addition to an electrical measurement of winding
transport, as sketched in Fig. 2, it may be possible to in-
vestigate the associated topological transport properties, such
as winding conductivity, using quantum-impurity (such as
nitrogen-vacancy) relaxometry [26]. Similarly to the Johnson-
Nyquist noise generally associated with charge conductivity,
the winding transport is noisy. In particular, the out of the
easy-plane spin fluctuations (being canonically conjugate to
the planar spin precession, irrespective of the nature of the
spin order), should produce a detectable magnetostatic sig-
nal [27]. We expect it to reflect similar winding transport
properties as the electrical setup of Fig. 2 (without the
issues pertaining to the contacts), in the long-wavelength low-
frequency limit of the dynamics. The latter can be controlled
by the quantum-impurity positioning and applied magnetic
field (e.g., Zeeman splitting of the nitrogen-vacancy spin
states), respectively [28].

V. DISCUSSION

In summary, we have constructed a general framework to
study winding dynamics in spin chains, from the perspec-
tive of a transport phenomenon. Motivated by the mean-field
considerations that draw on the notions of spin superflows
along the chain and parasitic vorticity flows transverse to it,
we developed a fully quantum theory, where both the wind-
ing transport and its relaxation by phase slips can be treated
systematically by field-theoretical approaches.

We illustrated the general formalism by specializing to
the case of antiferromagnetic easy-plane dynamics, whose
salient features can be captured by a sine-Gordon model.
Two distinct scenarios then arise concerning the winding
flows: the spin-superfluid regime, where the parasitic in-plane

anisotropy is washed out by quantum (or thermal) fluctua-
tions, and the solitonic regime, where chiral domain walls
carry conserved winding density by Brownian motion (at fi-
nite temperatures). Both of these limits are addressed within
our general Kubo formalism, reproducing and complimenting
the pertinent special cases known in the literature. We see that
rather generically, in the presence of magnetic damping, the
winding flow can exhibit Drude-like dynamic response. This
corresponds to an effectively metallic behavior of the con-
served winding transport. The key internal-consistency check
for these findings concerns the transverse vorticity flow, which
reflects phase slips and needs to be smaller than the winding
flow along the spin chain.

One of our central motivations for this work is the po-
tential ability to detect the topological transport, either in an
electrical device (cf. Fig. 2) or by a nonintrusive quantum-
impurity relaxometry (cf. Sec. IV E). The field-theoretical
framework combined with the experimental tangibility should
open gates for nonelectrical transport-based investigations of
correlated magnetic materials. It is useful to add, furthermore,
that a long-range order of any kind is neither assumed nor
needed for the emergence of topological hydrodynamics. Our
microscopic quantum formulation, which we have explicitly
constructed for vorticity and winding flows, furthermore, does
not even rely on a local ordering or any semiclassical approx-
imations.

We have largely left out the contact-impedance consider-
ations in our device concept sketched in Fig. 2. This may be
justified when there a finite bulk resistivity for the topolog-
ical flow. In the opposite, clean limit, the transport physics
would, however, generally be dominated by the contacts and,
at low temperatures, potentially strongly dependent on the
many-body effects away from the contacts. These aspects are
left for future work. No attempt has been made to classify
scenarios of topological hydrodynamics for general quantum
magnets in arbitrary dimensions, which also goes beyond our
scope here. Quantum skyrmions in two spatial dimensions
[29] and hedgehogs in three dimensions [30] provide other
interesting examples, with skyrmions, like winding, obeying
only an approximate continuity equation. We thus anticipate
rich possibilities for topological hydrodynamics in magnetic
materials, with implications for novel probes and device con-
cepts that do not rely on electronic (charge) transport.
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