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Circuit polynomials are polynomials with properties that make it 
easy to compute sharp and certifiable global lower bounds for 
them. Consequently, one may use them to find certifiable lower 
bounds for any polynomial by writing it as a sum of circuit 
polynomials with known lower bounds. Recent work has shown 
that sums of nonnegative circuit polynomials (or SONC polynomials 
for short) can be used to compute global lower bounds (called 
SONC bounds) for polynomials in this manner very efficiently both 
in theory and in practice, if the polynomial is bounded from below 
and its support satisfies a certain nondegeneracy assumption. 
The quality of the SONC bound depends on the circuits used in 
the computation but finding the set of circuits that yield the 
best attainable SONC bound among the astronomical number of 
candidate circuits is a non-trivial task that has not been addressed 
so far. We propose an efficient method to compute the optimal 
SONC lower bound by iteratively identifying the optimal circuits 
to use in the SONC bounding process. The method is derived 
from a new proof of the result that every SONC polynomial 
decomposes into SONC polynomials on the same support. This 
proof is based on convex programming duality and motivates 
a column generation approach that is particularly attractive for 
sparse polynomials of high degree and with many unknowns. 
The method is implemented and tested on a large set of sparse 
polynomial optimization problems with up to 40 unknowns, of 
degree up to 60, and up to 3000 monomials in the support. The 
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results indicate that the method is efficient in practice and requires 
only a small number of iterations to identify the optimal circuits.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Polynomial optimization, that is, computing the infimum of a polynomial over a basic closed 
semialgebraic set is a fundamental computational problem in algebraic geometry with a wide range 
of applications in areas such as discrete geometry, nonlinear dynamical systems, control, extremal 
combinatorics, power systems engineering, and statistics, to name a few. It is well-known to be an in-
tractable problem; its difficulty stems from the computational complexity of deciding whether a given 
polynomial is nonnegative, either over Rn or over a semialgebraic set given by a list of polynomial 
inequalities (Dickinson and Gijben, 2014; Blekherman et al., 2013). The same problem, coupled with 
the additional, even more challenging, task of finding a rigorous certificate of nonnegativity (that is 
verifiable in polynomial time in exact arithmetic) is also a central question in symbolic computation 
and automated theorem proving (also known as computer-assisted proofs) (Harrison, 2007; Kaltofen 
et al., 2008; Magron et al., 2015).

Practically scalable approaches to polynomial optimization rely on tractable approximations of 
cones of nonnegative polynomials. Inner approximations based on easily verifiable sufficient condi-
tions of nonnegativity are particularly desirable, as they can yield certificates of nonnegativity or 
rigorous lower bounds on the infimum, even if one can only compute approximately optimal (but 
feasible) numerical solutions to the optimization problems solved in the process of generating rig-
orous certificates (e.g., in hybrid symbolic-numerical methods). Undoubtedly, the most successful of 
these approximations to date has been sum-of-squares (SOS) cones. Numerical optimization over SOS 
cones, using semidefinite programming, began at least in the early 2000s (see (Nesterov, 2000; Parrilo, 
2000; Lasserre, 2001), and even the earlier work of Shor (1987)) and have given rise to polynomial 
optimization software such as GloptiPoly 3 (Henrion and Lasserre, 2003), SOSTOOLS (Prajna et al., 
2004), YALMIP (Löfberg, 2004), TSSOS (Wang et al., 2021), and alfonso (Papp and Yıldız, 2021).

More recently, a number of alternatives and extensions to SOS have been proposed to address dif-
ficulties often encountered when using SOS techniques for polynomials with either a large number 
of unknowns or a high degree. Methods exploiting sparsity or symmetry of polynomials have been 
proposed by many researchers including Kojima et al. (2004), Lasserre (2006), Wang et al. (2021), 
and Riener et al. (2013). Ghasemi and Marshall (2012) suggest an approach using geometric program-
ming for nonnegativity certification, a more efficient convex optimization approach than semidefinite 
programming commonly used in SOS optimization. Cones of SONC (sums of nonnegative circuit) poly-
nomials (Iliman and de Wolff, 2016) are another family of subcones of nonnegative polynomials that 
neither contain SOS cones nor are they contained by them, and thus, in principle have the potential 
to provide better bounds than SOS while promising to be faster than SOS optimization (Seidler and 
de Wolff, 2018; Magron and Wang, 2021). The nonnegativity of SONC polynomials is established via 
the AM/GM inequality; also related to this is the notation of SAGE functions (sums of AM/GM ex-
ponentials) (Chandrasekaran and Shah, 2016). Through further approximations of the SONC cone, a 
linear programming approach has also been proposed in (Dressler et al., 2020) to address the com-
putational challenges that arise with the SONC and SAGE cones. In this work, we focus on SONC 
polynomials, specifically on the problem of computing optimal SONC lower bounds efficiently, without 
approximations.

Some, but not all, of these approaches can be paired with symbolic computing approaches or 
implemented in rational arithmetic (or as a hybrid numeric-symbolic method) in order to compute 
rigorously certifiable rational lower bounds for polynomials. In SOS setting, we point to Magron and 
Safey El Din (2018), Papp and Yıldız (2019a), and Davis and Papp (2021) for examples of different 
approaches; exact SONC decompositions are computed, e.g., in Magron et al. (2019).
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The three main contributions of this paper are the following. Following a brief review on the 
necessary background on SONC polynomials in Section 2, we provide a new conic optimization for-
mulation for determining whether a polynomial is SONC in Section 3; this formulation is somewhat 
smaller and simpler than the relative entropy programming formulation used in previous work on 
SONC polynomials. Using this formulation and convex programming duality, we prove in Section 4
that every SONC polynomial f can be written as a sum of nonnegative circuit polynomials supported 
on the support of f and a sum of monomial squares. This was also shown (independently, and under 
slightly different assumptions) by Wang (2019) and later Murray et al. (2021), using different meth-
ods, and by Katthän et al. (2020) in the setting of AG functions. In Section 5 we propose an algorithm, 
motivated by our proof of this result, to iteratively identify the circuits that appear in the optimal 
SONC decomposition. An implementation of this approach is discussed in Sections 6 and 7, where we 
demonstrate that the approach can be used to find the optimal SONC lower bound on sparse polyno-
mials with up to 3000 monomials in minutes. We conclude with a discussion on possible extensions 
and open questions in Section 8.

2. Preliminaries

Recall the following notation and definitions. For vectors z and α of dimension n, zα is a shorthand 
for the monomial 

∏n
i=1 z

αi
i . For an n-variate polynomial f given by f (z) = ∑

α∈supp( f ) fαzα with 
fα �= 0, the (finite) set of exponents supp( f ) is called the support of f . The Newton polytope of f is 
New( f ) def= conv(supp( f )), the closed convex hull of the support. A polynomial is a monomial square if 
it can be written as czα with c > 0 and α ∈ (2N)n . We are now ready to define the central objects of 
this paper.

Definition 1. We say that a polynomial f is a circuit polynomial if its support can be written as 
supp( f ) = {α1, . . . , αr, β}, where the set {α1, . . . , αr} is affinely independent and β = ∑r

i=1 λiαi with 
some λi > 0 satisfying 

∑r
i=1 λi = 1. In other words, β lies in the convex hull of the αi , and the scalars 

λi are the corresponding barycentric coordinates of β . The support set of a circuit polynomial is called 
a circuit. The exponent β is referred to as the inner exponent of the circuit, while the αi are the outer 
exponents.

Note that the affine independence condition on the exponents implies that the barycentric coor-
dinates λi are unique and strictly positive. Given a circuit C , NC(C) denotes the set of nonnegative 
circuit polynomials supported on C . The vector of barycentric coordinates of the inner exponent is 
denoted by λ(C).

Our starting point is the well-known characterization of nonnegative circuit polynomials (Iliman 
and de Wolff, 2016):

Proposition 2. Let f be an n-variate circuit polynomial satisfying f (z) = ∑r
i=1 fαi z

αi + fβzβ for some real 
coefficients fαi and fβ and suppose that β = ∑r

i=1 λiαi with some λi > 0 satisfying 
∑r

i=1 λi = 1. Then f is 
nonnegative if and only if αi ∈ (2N)n and fαi > 0 for each i, and at least one of the following two alternatives 
holds:

1. β ∈ (2N)n and fβ ≥ 0, or

2. | fβ | ≤ ∏r
i=1

(
fαi
λi

)λi
.

It has been shown by Dressler et al. (2017) that the inequality in the second alternative in Proposi-
tion 2 is convex in the coefficients of f , moreover, it can be represented using O (r) number of affine 
and relative entropy cone constraints; see also (Chandrasekaran and Shah, 2016) for more on relative 
entropy programming. In this work, we use conic constraints involving the generalized power cone 
and its dual to represent nonnegative circuit polynomials, which has the advantage of requiring only 
a single cone constraint per circuit. Additionally, power cone constraints are computationally easier to 
handle than relative entropy constraints.
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The (generalized) power cone with signature λ = (λ1, . . . , λr) is the convex cone defined as

Pλ
def=

{
(v, z) ∈ Rr+ ×R

∣∣∣ |z| ≤ vλ
}

. (1)

It can be shown that Pλ is a proper (closed, pointed, full-dimensional) convex cone for every λ ∈
]0, 1[r , and that its dual cone (with respect to the standard inner product) is the following (Chares, 
2009):

P∗
λ

def=
{

(v, z) ∈ Rr+ ×R

∣∣∣∣∣ |z| ≤
r∏

i=1

(
vi

λi

)λi
}

.

(This has also been independently shown by Dressler et al. (2021).) This means that the second al-
ternative in Proposition 2 can be written simply as a single cone constraint (and without additional 
auxiliary variables):

| fβ | ≤
r∏

i=1

(
fαi

λi

)λi

⇐⇒ (
( fα1 , . . . , fαr ), fβ

) ∈ P∗
λ . (2)

Note that the cone depends on the circuit C = {α1, . . . , αr, β} only through its signature λ(C).
We say that a polynomial is a sum of nonnegative circuit polynomials, or SONC for short, if it can be 

written as a sum of monomial squares and nonnegative circuit polynomials. SONC polynomials are ob-
viously nonnegative by definition. Since the nonnegativity of a circuit polynomial can be easily verified 
using Proposition 2, the nonnegativity of a SONC polynomial can be certified by providing an explicit 
representation of the polynomial as a sum of monomial squares and nonnegative circuit polynomials. 
Such a certificate is called a SONC decomposition. As long as the number of circuits is sufficiently small, 
a SONC decomposition can be verified efficiently. From (the conic version of) Carathéodory’s theorem 
(Rockafellar, 1970, Corollary 17.1.2) it is clear that every SONC polynomial f can be written as a sum 
of at most | supp( f )| nonnegative circuit polynomials, therefore, a “short” SONC decomposition exists. 
Additionally, it is straightforward that only circuits supported on the Newton polytope need to be 
considered. (See the proof of Theorem 5 below.) However, the number of circuits supported on the 
Newton polytope of a polynomial can be astronomical even for polynomials with a relatively small 
support set (see also Example 6), and it is not clear which of these circuits will be needed in a SONC 
decomposition. This motivates the search for algorithms that can identify the relevant circuits and 
compute short SONC decompositions.

3. SONC decompositions and optimization over power cones

Suppose we are given a polynomial f (z) = ∑
α∈supp( f ) fαzα by its support and its coefficients 

in the monomial basis, and that we are given a set of circuits C = {C1, . . . , CN}. We shall assume, 
without loss of generality, that 0 ∈ supp( f ) and that supp( f ) ⊆ ⋃N

j=1 C
j .

Let S(C) be the set of polynomials that can be written as a sum of nonnegative circuit polynomials 
whose support is a circuit belonging to C and of monomial squares supported on supp( f ). Using 
Proposition 2 and Equation (2), one may see that deciding whether f belongs to S(C) amounts to 
solving a conic optimization problem. We shall give the details of this optimization problem next.

Let V be the vertices of New( f ), and consider the following optimization problem, whose decision 
variables are the nonnegative coefficients γ indexed by V :

minimize
γ ∈RV+

∑
α∈V

γα

subject to (z 
→ f (z) +
∑
α∈V

γαz
α) ∈ S(C).

(3)

It is immediate that f has a desired SONC decomposition if and only if the optimal objective 
function value of this problem is 0 and if this infimum is attained.
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Making the SONC decomposition of the polynomial in the constraint explicit, problem (3) can also 
be written as follows:

minimize
γ ,p1,...,pN ,δ

∑
α∈V

γα

subject to f (z) +
∑
α∈V

γαz
α ≡

N∑
j=1

p j(z)

︸ ︷︷ ︸
nonnegative

circuit polynomials

+
∑

α∈supp( f )∩(2N)n

δαz
α

︸ ︷︷ ︸
monomial squares

p j ∈ NC(C j) j = 1, . . . ,N

γα ≥ 0 α ∈ V

δα ≥ 0 α ∈ supp( f ) ∩ (2N)n.

(4)

In computation, the polynomials required to be identical (by the first constraint) need to be repre-
sented by their coefficients in some basis, reducing the constraint to a system of | supp( f )| linear 
equations. It is convenient to use the monomial basis, in which case, by way of Proposition 2 and 
Eq. (2), the cone constraints p j ∈ NC(C j) can be written as cone constraints involving P∗

λ(C j)
. The de-

tails of this formulation are given next; they are straightforward, but in order to write the formulation 
out explicitly, we need to introduce some additional notation.

Let us partition supp( f ) into Seven
def= supp( f ) ∩ (2N)n and Sodd

def= supp( f ) \ (2N)n . Now, f (z) +∑
α∈V γαzα is SONC if and only if there exist nonnegative circuit polynomials p1, . . . , pN supported 

on C1, . . . , CN , respectively and coefficients δα ≥ 0 for each α ∈ Seven such that p1(z) + · · · + pN (z) +∑
α∈Seven δαzα = f (z) + ∑

α∈V γαzα .

For each j ∈ {1, . . . , N}, let A j ∈ {0, 1}supp( f )×C j
be the matrix whose rows and columns are indexed 

by the support of f and the circuit C j respectively, and whose (α,α)-th element is 1 for every 
α ∈ C j(⊆ supp( f )). All other elements of A j are 0. In what follows, A j

α,· denotes the row of A j indexed 
by the exponent vector α. Noting that V ⊆ Seven, we can now write the optimization problem (4) in 
the monomial basis as follows:

minimize
γ ,x1,...,xN

∑
α∈V

γα

subject to
N∑
j=1

A j
α,·x j − γα ≤ fα α ∈ V

N∑
j=1

A j
α,·x j ≤ fα α ∈ Seven \ V

N∑
j=1

A j
α,·x j = fα α ∈ Sodd

γα ≥ 0 α ∈ V ,

x j ∈ P∗
λ(C j)

j = 1, . . . ,N.

(5)

To see this, note that the decision variable x j ∈ RC j
( j = 1, . . . , N) can be interpreted as the coeffi-

cient vector of the nonnegative circuit polynomial p j supported on C j , A j
α,·x j is the coefficient of zα

in p j(z), and the interpretation of the linear constraints is that 
∑n

j=1 p j(·) = f (·) + ∑
α∈V γα(·)α −∑

α∈Seven δα(·)α for some nonnegative coefficients δα (α ∈ Seven) whose values are the slacks (dif-
ferences between the left-hand side and right-hand side values) of the first two sets of inequality 
constraints.
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In the dual problem of (5), the components of the vector of decision variables y may be indexed 
by monomials in supp( f ) = V ∪ (Seven \ V ) ∪ Sodd, and the dual optimization problem can be written 
as follows:

maximize
y∈Rsupp( f )

fTy

subject to − (A j)Ty ∈ Pλ(C j) j = 1, . . . ,N

1 + yα ≥ 0 α ∈ V

yα ≤ 0 α ∈ Seven.

(6)

The constraints in (6) can be further simplified. Recalling the definition of A j , we have that −(A j)Ty =
(−yα)α∈C j . It is also convenient to replace in notation y with −y throughout. This leads to the fol-
lowing representation of the dual of (3):

maximize
y∈Rsupp( f )

− fTy

subject to (yα)α∈C j ∈ Pλ(C j) j = 1, . . . ,N

yα ≥ 0 α ∈ Seven,

yα ≤ 1 α ∈ V .

(7)

We are now ready to show that all these problems have attained optimal values, and that strong 
duality holds for the optimization problems in Eq. (3) and Eq. (7).

Lemma 3. Suppose that V ⊆ (2N)n and that for every α j ∈ supp( f ) \ V there is a circuit C ∈ C whose inner 
monomial is α j and whose outer monomials are all members of V . Then the optimization problem (4) has a 
strictly feasible solution as well as an optimal solution. Therefore, both (3) and (7) have optimal solutions, and 
the optimal objective function values are equal.

Proof. We can construct a strictly feasible solution to (4) as follows. First, we fix δα = 1 for each 
α ∈ Seven. Second, by assumption, for each exponent α j ∈ supp( f ) \ V we can find a nonnegative 
circuit polynomial p j ∈ NC(C j) whose inner monomial has the coefficient fα j (if α j ∈ Sodd) or fα j −1
(if α j ∈ Seven), while its outer monomials have sufficiently large positive coefficients to ensure that 

p j is in the interior of the NC(C j). In the resulting sum p(z) def= ∑
j p j(z) + ∑

α δαzα , the coefficient 
of each zα for α ∈ supp( f ) \ V is equal to fα . By further increasing the outer coefficients in each p j , 
we can also ensure that for each α ∈ V the coefficient of each zα in p is strictly greater then fα . 
The resulting p is a strictly feasible solution; we can set each γα to an appropriate positive value to 
equate the two sides of the first constraint of (4).

Thus, the minimization problem (4) is feasible; however it cannot be unbounded since the objec-
tive function is constrained to be nonnegative on the feasible region. Therefore, its infimum is finite. 
We show that this finite optimal value is attained using the Weierstrass Extreme Value Theorem. 
We only need to show that the feasible region can be bounded a priori. First, observe that because 
each γα is nonnegative and because there is some finite objective function value � attained by the 
strictly feasible solution exhibited above, we can add to the formulation (4) the redundant constraints 
γα ∈ [0, �] for every α ∈ V . Next, since each polynomial p j and δαzα on the right-hand side of the 
first constraint of (4) is a nonnegative polynomial, each ‖p j‖ and ‖δα‖ can also be bounded from 
above by ‖ f ‖ + � 

∑
α∈V ‖zα‖. Thus, the feasible set is compact, and the infimum in (4) is attained 

using the Weierstrass Extreme Value Theorem.
We have shown that (4) has an optimal solution and a Slater point. This implies that (4) and 

its dual have optimal solutions with the same objective function values, therefore the equivalent 
problems (3) and its dual (7) also have optimal solutions with the same optimal objective function 
value. �
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The number of decision variables in the explicit conic formulation (5), which can be directly fed 
to a conic optimization solver, is |V | +∑N

j=1(r j +1). This can be prohibitively large for practical com-
putations if the number of circuits N is large. This motivates the rest of the paper, where we narrow 
down the set of circuits that may be needed in a SONC decomposition and provide an algorithm to 
iteratively identify the useful circuits.

4. Support of SONC decompositions

Let f (z) = ∑
α∈supp( f ) fαzα be a SONC polynomial. It is straightforward to argue that in every 

SONC decomposition of f , every circuit polynomial must be supported on a subset of New( f ); for 
completeness, we include a short argument in the proof of Theorem 5 below. It is equally natural to 
ask whether there exists a SONC decomposition for f in which every circuit polynomial is supported 
on a subset of supp( f ). That this is indeed true was first shown recently independently in (Wang, 
2019) and (Murray et al., 2021) using combinatorial and algebraic techniques (and some assumptions 
on the structure of the support); we shall provide an independent proof using convex programming 
duality and removing the additional assumption. In the proof, which also motivates the algorithmic 
approach of the next section, we will need the following simple lemma.

Lemma 4. Let c ∈RN and d ∈R be arbitrary. Furthermore, let α1, . . . , αN and β be given vectors in Rn, and 
consider the convex polytope P consisting of all convex combinations of the αi that yield β:

P =
{

λ ∈ RN+

∣∣∣∣∣
N∑

i=1

λiαi = β and
N∑

i=1

λi = 1

}
.

Then, if the inequality

cTλ ≤ d (8)

holds for every λ ∈ P for which the set Sλ
def= {αi | λi > 0} is affinely independent, then (8) holds for every 

λ ∈ P .

Proof. This is a reformulation of the statement that every extreme point λ of the convex polytope P
corresponds to an affinely independent Sλ . This is immediate from the theory of linear optimization: 
the basic components of every basic feasible solution of the (feasibility) linear optimization problem

findλ

N∑
i=1

λiαi = β

N∑
i=1

λi = 1

λi ≥ 0 i = 1, . . . ,N

correspond to linearly independent ((n + 1)-dimensional) vectors from {(α1
1

)
, . . . , 

(αN
1

)}; thus, the 
nonzero components of every vertex of P correspond to affinely independent Sλ . �
Theorem 5. Every SONC polynomial f has a SONC decomposition in which every nonnegative circuit polyno-
mial and monomial square are supported on a subset of supp( f ).

Proof. First, we argue that no monomial outside the Newton polytope New( f ) can appear in any 
SONC decomposition. Suppose otherwise, then the convex hull of the union of the circuits is a convex 
polytope that has an extreme point α /∈ New( f ). The corresponding monomial zα has a 0 coefficient 
in f . At the same time, zα can only appear in the SONC decomposition as a monomial square or as 
252
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an outer monomial in a circuit, but never as an inner monomial. Therefore, its coefficient is 0 only if 
its coefficient is 0 in every circuit it appears in, which is a contradiction.

Next, consider two instances of problem (3), or equivalently (5): in the first instance, to be called 
(P1), we choose the circuits C = {C1, . . . , CN } to be the set of all circuits that are subsets of supp( f ), 
while in the second one, (P2), we choose the circuits to be the set of all circuits that are subsets of 
New( f ) ∩Nn . Let the duals of the corresponding problems, written in the form (7), be (D1) and (D2). 
According to the discussion around (3), it suffices to show that (P1) and (P2) have the same optimal 
objective function values, since in that case either both problems have an optimal solution attaining 
the value 0 (and thus SONC decompositions using both sets of circuits exist) or both problems have a 
strictly positive optimal value (and thus no SONC decomposition exists using either set of circuits).

Using Lemma 3, (P1) and (D1) have optimal solutions (x∗
1, . . . , x

∗
N) and y∗ attaining equal objective 

function values. We now use these solutions to construct feasible solutions for both (P2) and (D2)

that attain the same objective function value.
For (P2) this is straightforward: in the formulation (5), keep the coefficients x j of the circuit 

polynomials appearing in (P1) the same value x∗
j , and set x j = 0 for every new circuit that appears 

only in (P2).
For (D2), we also keep yα = y∗

α for every α ∈ supp( f ). With this choice, regardless of the choice 
of the remaining components of y, every constraint in (D2) that already appeared in (D1) is auto-
matically satisfied; moreover, the objective function remains unchanged, since fα = 0 for the new 
variables. Therefore, it only remains to show that (yα)α∈(New( f )∩Nn)\supp( f ) can be chosen in a way 
that every cone constraint (yα)α∈C ∈ Pλ(C) corresponding to a circuit C supported on New( f ) ∩ Nn

is satisfied. We show, constructively, a slightly stronger statement: that if we assign values to the 
new components of y one-by-one in any order, at each step it is possible to assign a value to the 
component at hand in a way that satisfies every conic inequality that only involves already processed 
exponents.

Suppose that some exponents have been given consistent values and let α̂ ∈ (New( f ) ∩ Nn) \
supp( f ) be the exponent whose corresponding yα̂ needs to be assigned a value next. In every circuit 
that it appears in, the exponent α̂ is either an inner exponent, in which case the cone constraint 
only provides an upper bound on |yα̂ |, or an outer exponent, in which case the cone constraint only 
provides a lower bound on yα̂ . In particular, if α̂ /∈ (2N)n , then it cannot be an outer exponent, and 
yα̂ = 0 will be a consistent choice. Similarly, if α̂ ∈ (2N)n but α̂ appears only as inner (respectively, 
outer) exponent in every circuit, then it is easy to find a consistent value for yα̂ . (Zero, or a sufficiently 
large positive value, respectively.) The only non-trivial case is when α̂ ∈ (2N)n and α̂ appears both as 
inner and as outer exponent in a circuit.

Let C1 be one of the circuits in which α̂ is an inner exponent and which gives the lowest upper 
bound on yα̂ , and let C2 be one of the circuits in which α̂ is an outer exponent and which gives 
the greatest lower bound on yα̂ . We need to show that these bounds are consistent. Let the outer 
exponents of the circuit C1 be α1, . . .αr and let (λi)i=1,...,r be the barycentric coordinates of α̂ in this 
circuit:

α̂ =
r∑

i=1

λiαi . (9)

Similarly in circuit C2, let η be the inner exponent, let α̂ and ω1, . . . , ωs be the outer exponents, and 
let ξ denote the barycentric coordinates of η:

η = ξ0α̂ +
s∑

j=1

ξ jω j. (10)

Then it suffices to show that there exists a yα̂ > 0 such that

log(yα̂) ≤
r∑

λi log(yαi ) (11)

i=1
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to satisfy the cone constraint |yα̂ | ≤ ∏r
i=1 yλi

αi
from C1 and

log(|yη|) ≤ ξ0 log(yα̂) +
s∑

j=1

ξ j log(yω j ) (12)

to satisfy the cone constraint |yη| ≤ yξ0
α̂

∏s
j=1 y

ξ j
ω j

from C2. The inequalities (11) and (12) are consis-
tent if and only if the lower and upper bounds they give for log(yα̂) are consistent, that is, if

1

ξ0
(log(|yη| −

s∑
j=1

ξ j log(yω j )) ≤
r∑

i=1

λi log(yαi ),

which can be rearranged as

log |yη| ≤
r∑

i=1

ξ0λi log(yαi ) +
s∑

j=1

ξ j log(yω j ). (13)

Now, note that from (9) and (10) we also have

η =
r∑

i=1

ξ0λiαi +
s∑

j=1

ξ jω j,

with coefficients ξ0λi ≥ 0 and ξ j ≥ 0 satisfying 
∑r

i=1 ξ0λi +∑s
j=1 ξ j = 1. Thus, (13) is almost identical 

to a power cone inequality corresponding to a circuit. The only difference is that the “outer expo-
nents” {α1, . . . , αr, ω1, . . . , ωs} are not necessarily affinely independent, thus these exponents and η
do not form a circuit. (If they do, we are done, by the inductive assumption that all power cone 
constraints corresponding to circuits that consists of assigned components of y are satisfied.)

We can now invoke Lemma 4 with {α1, . . . , αr, ω1, . . . , ωs} playing the role of α1, . . . , αN , the 
exponent vector η playing the role of β , and (log(yα1 ), . . . , log(yαr ), log(yω1 ), . . . , log(yωs )) playing 
the role of c, and log |yη| playing the role of d: if every power cone inequality corresponding to 
a circuit with inner exponent η holds, then (13) also holds. By the argument preceding (13), this 
implies that yα̂ can be assigned a value that is consistent with the values of all already processed 
component of y. �
5. Optimal SONC bounds and circuit generation

Theorem 5 allows us to dramatically simplify the search for SONC decompositions when the poly-
nomial to decompose is sparse, that is, when supp( f ) is much smaller than New( f ) ∩Nn . That said, 
even the number of circuits supported on supp( f ) can be exponentially large in the number of vari-
ables as the following example shows.

Example 6. Let ei denote the ith unit vector and 1 def= ∑n
i=1 ei , and let supp( f ) be the set 

{0, 1, 2ne1, . . . , 2nen, 4ne1, . . . , 4nen}. This support set has only 2n + 2 elements, but it supports 2n
different circuits with 1 as the inner exponent: independently for each i = 1, . . . , n, we can add either 
2nei or 4nei to the circuit as an outer exponent, in addition to 0 (as the last outer exponent) and 1
(as the inner exponent).

In this section, we present an iterative method to identify the circuits that are necessary in a SONC 
decomposition of a given polynomial f . We present the algorithm for the more general and widely 
applicable problem of finding the highest SONC lower bound for a polynomial, which is defined as the 
negative of the optimal value of the optimization problem
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minimize
γ ∈R

γ

subject to (z 
→ f (z) + γ ) ∈ S(C)

(14)

This is a well-defined quantity for every polynomial f that has a SONC decomposition, and by exten-
sion for every polynomial that has a SONC bound, as the following Lemma shows.

Lemma 7. Suppose that f has a SONC decomposition with a given set of circuits C . Then (14) attains a mini-
mum.

Proof. The proof is essentially the same as the argument used in the last step of the proof of 
Lemma 3. If f is SONC, then γ = 0 is a feasible solution to (14). At the same time, the problem 
cannot be unbounded; indeed, the infimum cannot be lower than − f (0). So the infimum in (14) is 
finite. Moreover, problem (14) can be equivalently written as

minimize γ

subject to f (z) + γ =
N∑
j=1

p j(z) +
∑

α∈supp( f )∩(2N)n

δαz
α

p j ∈ NC(C j) j = 1, . . . ,N

γ ∈ [− f (0),0]
δα ≥ 0 α ∈ supp( f ) ∩ (2N)n

(15)

Since γ is already bounded, and each of the polynomials p j and δαzα on the right-hand side of the 
first constraint is a nonnegative polynomial, any norm of each p j and δα can also be bounded a priori 
by the same norm of f + γ , and thus the feasible region of (15) is compact. The claim now follows 
from the Weierstrass Extreme Value Theorem. �

We now consider the problem of identifying the circuits necessary to obtain the strongest possible 
SONC lower bound on a polynomial. Consider the optimal solution of (14) for a set of circuits C =
{C1, . . . , CN} for which this problem attains a minimum. Analogously to (7), the dual of (14) can be 
written as

maximize
y∈Rsupp( f )

− fTy

subject to (yα)α∈C j ∈ Pλ(C j) j = 1, . . . ,N

yα ≥ 0 α ∈ supp( f ) ∩ (2N)n,

y0 = 1.

(16)

Although Eq. (14) does not always have a Slater point, its dual (16) trivially has, therefore, the supre-
mum in (16) equals the attained minimum in (14). Thus, an (approximately) optimal solution to (16)
serves as a certificate of (approximate) optimality of the bound given by (14) for the given set of 
circuits. For brevity, we state this formally without a proof.

Lemma 8. For every polynomial f and set of circuits C = {C1, . . . , CN }, the optimization problem (16) has 
a Slater point. Therefore, if f has a SONC lower bound using the circuits in C , then the optimal value of (16)
equals the (attained) optimal values of (14) and (15).

Applying this Lemma by substituting the set of all circuits supported on supp( f ) for C , we have 
that if the optimal solution y∗ of (16) satisfies

(y∗
α)α∈C ∈ Pλ(C) (17)
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for every circuit C supported on supp( f ), then the optimal value γ ∗ of (14) cannot be improved by 
adding more circuits supported on supp( f ) to the problem. Conversely, if γ ∗ can be improved by 
adding any circuits, then (17) must be violated by some circuit C supported on supp( f ). Adding any 
C that violates (17) to the set C may improve the bound given by (14). Finally, we can repeat the 
argument of Theorem 5 (with the primal-dual optimization pair (14)-(16) playing the role of (4)-(7)) 
to show that adding any circuits that are not supported on supp( f ) to C also cannot improve the 
bound.

This motivates the iterative algorithm shown in Algorithm 1.

Algorithm 1: SONC bound with iterative circuit generation.
input : A polynomial f .
outputs : The optimal SONC lower bound for f and a SONC decomposition certifying the bound.

1 initialize C = {C1, . . . , CN }
2 repeat
3 solve the primal-dual pair (15)-(16) for the optimal (γ ∗, p∗, δ∗) and y∗
4 find the circuit C supported on supp( f ) for which (17) is most violated
5 if no circuit violating (17) exists then
6 return γ ∗ and the SONC decomposition (p∗, δ∗) of f + γ ∗
7 else
8 add circuit C found in Step 4 (and possibly other circuits) to C
9 end if

10 until false

We defer the discussion on the initialization step to the end of this subsection and focus on the 
main loop first, assuming that the initial set of circuits C has been chosen such that the optimal 
solutions sought in Line 3 of the first iteration exist.

The most violated constraint in Line 4 can be efficiently computed using the following observation: 
for a fixed exponent vector β , finding the circuit corresponding to the most violated constraint among 
circuits with inner monomial zβ amounts to solving the linear optimization problem

minimize
∑

α∈supp( f )\{β}
λα log(yα)

subject to
∑
α

λαα = β

∑
α

λα = 1

λα ≥ 0 ∀α ∈ supp( f ) \ {β}

(18)

Based on Lemma 4, every basic feasible solution λ of (18) corresponds to a circuit whose outer mono-
mials are {zα | λα > 0} and whose inner monomial is zβ . Recalling the definition of the power cone 
from Eq. (1), if λ∗ is an optimal basic feasible solution of (18) and the optimal value is v∗ , then the 
inequality (17) corresponding to λ∗ (and the circuit C determined by λ∗) is violated if and only if 
exp(v∗) < |yβ |. Solving (18) for each β , we can either conclude that there are no circuits to add to 
the formulation or find up to one promising circuit for each β to add to the formulation in Line 8. In 
our implementation we add to C the circuit corresponding to the most violated inequality for each β .

Initialization. Problem (3) and the proof of Lemma 3 suggest a strategy for the initialization step of 
Algorithm 1, which is also entirely analogous to solving linear optimization problems using a two-
phase method. We can apply the same circuit generation strategy as above to an instance of problem 
(3), where C contains all possible circuits supported on supp( f ). (Additionally, we may replace f by 
any f + c with an arbitrary constant c.) An initial set of circuits for which this optimization problem 
is feasible can be easily found: for each exponent α ∈ supp( f ) that is not a monomial square (that 
is, for which either α /∈ (2N)n or fα < 0 or both), find a circuit whose inner exponent is α and 
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whose outer exponents are among the vertices V of New( f ). This can be done by computing a basic 
feasible solution of a linear feasibility problem with |V | variables. If for any α such a circuit does 
not exist, then (3) trivially does not have a feasible solution, and f + c does not have a SONC bound. 
On the other hand, if the initial set of circuits exists, then (3) can be solved using the same column 
generation strategy, and we either find that the optimal objective function value of (3) is positive, in 
which case f + c does not have a SONC bound, or the optimal value is 0. In the latter case we also 
obtain a feasible solution with a current set of circuits C . This set can be used as the initial set of 
circuits in Algorithm 1 to find the best SONC bound on f .

Remark 9. There are many polynomials for which Algorithm 1 for the SONC bounding problem (14)
can be trivially initialized, without using (3) as a “Phase I” problem as described above. A sufficient 
condition is the following: suppose that for every α ∈ supp( f ) for which α /∈ (2N)n or fα < 0, the 
exponent vector α is contained in the interior of a face of New( f ) that also contains 0. Then for 
each such α we can find a circuit whose inner exponent is α and for which 0 is one of the outer 
exponents. Taking C as the set of these circuits, we see that (14) (or equivalently, (15)) is feasible. 
This is the same condition as the nondegeneracy condition of (Seidler and de Wolff, 2018) and (Wang, 
2019).

We end this section with a toy example to illustrate the steps of the algorithm.

Example 10. Consider the polynomial f given by

f (z1, z2) = 1+ z22 − z21z
2
2 + z21z

6
2 + z61z

2
2.

This polynomial has a SONC lower bound, since it has only one monomial that is not a mono-
mial square, −z21z

2
2, and the exponent of that monomial is the inner exponent of the circuit 

C1 = {(0, 0), (2, 6), (6, 2), (2, 2)}, which contains 0 as an outer exponent and has signature λ(C1) =
( 12 , 14 , 14 ). Thus, for a sufficiently large constant γ , we have γ + z21z

6
2 + z61z

2
2 − z21z

2
2 ≥ 0 for every z, 

and the remaining terms in f are monomial squares.
Solving the primal-dual pair (14)-(16) with C = {C1}, we obtain the optimal value γ ∗ = − 7

8 , and 
the SONC decomposition

f (z1, z2) − 7

8
= (z2)

2 +
(
1

8
+ z21z

6
2 + z61z

2
2 − z21z

2
2

)
;

the first term on the right-hand side is a monomial square, the second one is a member of 
NC(C1). The dual optimal solution (indexing the components in degree lexicographic order) is 
y∗ = (1, 0, 14 , 116 , 116 ).

The constraint generation algorithm consists of solving two linear optimization problems: one to 
find the most promising circuit with z22 as the inner monomial and one to find the most promising 
circuit with z21z

2
2 as the inner monomial. The remaining three monomials are vertices of the Newton 

polytope, and need not be considered. The first search is unsuccessful: y∗
(0,2) = 0, therefore no circuit 

with (0, 2) as an inner exponent can violate its corresponding power cone inequality (17). The second 
linear optimization problem identifies the circuit C2 = {(0, 2), (6, 2), (2, 2)}, with signature λ(C2) =(
2
3 , 1

3

)
. The corresponding power cone constraint (17) is violated, since y∗

(2,2) = 1
4 > 0 = y∗

(0,2) .

Solving the primal-dual pair (14)-(16) with C = {C1, C2}, the optimal value improves to γ ∗ = −1, 
and we obtain the SONC decomposition

f (z1, z2) − 1 = z21z
6
2 +

(
z22 + z61z

2
2 − z21z

2
2

)
;

the first term on the right-hand side is a monomial square, the second one is a member of NC(C2). 
The circuit C1 is superfluous. The new optimal dual solution is y∗ = (1, 0, 0, 0, 0). Since every com-
ponent of y∗ that corresponds to a non-vertex exponent is zero, there cannot be any circuits whose 
corresponding power cone inequality is violated, proving that we have found the optimal SONC bound. 
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In this example, we also have f (z1, 0) = 1, proving that 1 is the best possible global lower bound on 
f , that is, the optimal SONC bound is the global minimum.

6. Implementation

In our implementation we use the open-source Matlab code alfonso (Papp and Yıldız, 2021, 
2019b), a nonsymmetric cone optimization code that can directly solve the primal-dual pair (14)-(16)
using a predictor-corrector approach without any model transformation. (In particular, there is no 
need to represent the SONC cone or its dual as an affine slice of a Cartesian product of exponential, 
relative entropy, or second-order cones.) alfonso requires only an interior point in the primal cone 
and a logarithmically homogeneous self-concordant barrier function for the primal cone as input. 
Since the primal cone is a Cartesian product of nonnegative half-lines and dual cones of general-
ized power cones, both an easily computable initial point and a suitable barrier function are readily 
available; see, for example, (Chares, 2009).

Alternatively, we can use (16) as the “primal” problem for alfonso. This cone is an intersection 
of generalized power cones and a nonnegative orthant, so the barrier function is once again readily 
available, this time as the sum of well-known barrier functions. Furthermore, the Slater point for 
this problem (recall the discussion around Lemma 8) can be used as an easily computable initial 
point after scaling to satisfy the only non-homogeneous constraint y0 = 1. In our implementation we 
used the latter variant. When started with a feasible initial solution, alfonso maintains feasibility 
throughout. Therefore, using the dual variant and the dual Slater point as an initial feasible solution, 
we are guaranteed that are our near-optimal solution to (14)-(16) is dual feasible, and thus the dual 
optimal value is a lower bound on the minimum even if the other optimality conditions are not 
satisfied to a high tolerance.

In our first set of experiments (smaller instances with general Newton polytopes) we used the two-
phase version of the circuit generation algorithm. In our second set of experiments (larger problems 
with simplex Newton polytopes) it was easy to find an initial set of circuits, and started with Phase 
II. In the circuit generation steps, we added every promising circuit identified (up to one circuit for 
each monomial that is not a vertex of the Newton polytope).

The linear optimization problems used in circuit generation were solved using Matlab’s built-in
linprog function with options that ensure that an optimal basic feasible solution is returned (and 
not the analytic center of the optimal face).

7. Numerical experiments

The algorithm was tested on two sets of benchmark problems. These can be found in the online 
repository https://github .com /dpapp -github /crup.

7.1. The Seidler–de Wolff benchmark problems

The first set of instances the algorithm was tested on were problems from the database of un-
constrained minimization benchmark problems accompanying the paper (Seidler and de Wolff, 2018). 
Each instance is a polynomial generated randomly in a way that the polynomial is guaranteed to have 
a lower bound and a prescribed number of unknowns, degree, and cardinality of support (number of 
monomials with nonzero coefficients). Since this database is enormous (it has over 30 000 instances), 
we opted to use only the largest and most difficult instances: the ones with general (not simplex) 
Newton polytopes and 500 monomials in their support. There are 438 such instances; the number of 
unknowns n in these instances ranges from 4 to 40, the degree d between 6 and 60. These are indeed 
very sparse polynomials, the dimensions 

(n+d
d

)
of their corresponding spaces of “dense” polynomials 

ranges from 8008 to 6 · 1025.
All experiments were run using Matlab 2017b on a Dell Optiplex 7050 desktop with a 3.6 GHz 

Intel Core i7 CPU and 32 GB RAM.
Fig. 1 shows the histogram of the total number of circuit generation iterations in Phase I and 

Phase II combined. The smallest possible value is therefore 2 (in the case when the initial set of 
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Fig. 1. Histogram of the total number of circuit generation iterations for the largest instances of the Seidler–de Wolff instances. 
(438 instances; each with 500 monomials, with a varying number of unknowns and degree.) The smallest possible value is 2
(one Phase I iteration and one Phase II iteration). Most instances were solved in two or three iterations.

circuits is optimal). The histogram shows that in the vast majority of these instances no more than 
1 additional iteration was needed, that is, all necessary circuits were either among the initial ones, 
or were identified in the first circuit generation step of Phase II. Correspondingly, the scatterplot in 
Fig. 2 shows that most of the instances could be solved under a minute, and that the total num-
ber of circuits needed to certify the optimal bound was under 1000. (Recall that the initial set of 
circuits is below | supp( f )| = 500.) It is perhaps interesting to note that even in the “hardest” in-
stance, the algorithm generated fewer than 4500 circuits before the optimal bound was found. This 
was the only instance where the total running time exceeded one hour; most instances were solved 
under one minute, and nearly all of them under 5 minutes. There was no discernible pattern in-
dicating what made the difficult instances difficult. In particular, the number of unknowns and the 
degree alone are not good predictors of the number of circuits or the number of circuit generation 
iterations.

The optimal solutions or the best known lower bounds are not available in the database. However, 
upper bounds on the minima of the polynomials can be computed using multi-start local optimiza-
tion. For simplicity and reproducibility, we used the NMinimize function in Mathematica (version 
11.3) with default settings to compute approximate minimizers for each of the 438 instances. As the 
histogram of optimality gaps in Fig. 3 shows, the computed SONC bounds were near-optimal for each 
instance. This is somewhat surprising, and merits further investigation, as it is in general not guar-
anteed that a polynomial that is bounded from below has a SONC bound at all; one certainly cannot 
expect that this bound will always be close to (or equal to) the infimum of the polynomial. Similarly, 
it cannot be hoped that the local minimum returned by Mathematica is a global minimum. Never-
theless, in each of these instances, the SONC bound was within 1.2% of the global minimum of the 
polynomial, and with the exception of 46 instances (=10.5%), the relative optimality gap was within 
10−6.

7.2. Larger instances

The second set of instances were generated in a somewhat similar fashion as those in the previous 
set, but the parameters were increased to test the limits of our approach (in particularly, increasing 
the size of the support above 500). The instances for this experiment were polynomials of degree 
d = 8 with n = 25 unknowns. The random supports and coefficients were generated in the following 
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Fig. 2. Scatter plot of the number of circuits in the final iteration of the algorithm and the total running time of the algorithm 
for the Seidler–de Wolff instances, shown on a logarithmic scale for better visibility. Each dot represents an instance. Since the 
number of iterations was uniformly small for most instances, the running times and the final number of circuits correlate well. 
Most instances were solved under a minute, and nearly all of them under 5 minutes. One instance took over an hour to solve.

manner: the constant monomial and the monomials xdi were given random integer coefficients be-
tween 1 and 5, then a random subset of monomials with componentwise even exponents with total 
degree less than d were selected (without replacement) and given a random non-zero integer coeffi-
cient between −5 and 5. The size of the support was varied in 5% increments up to the maximum of 
3301 (the number of componentwise even 25-variate monomials with total degree less than d = 8).

Generating the instances in this fashion achieves the following: (1) it is clear a priori that the 
polynomials can be bounded from below; (2) the Newton polytope New( f ) is known in advance (an 
(n + 1)-simplex whose vertices correspond to the monomials 0 and xd1, . . . , x

d
n); (3) Phase I can be 

skipped, and Phase II can be started with an easily computable set of circuits: every exponent in 
supp( f ) \ V is the inner exponent of exactly one initial circuit whose outer exponents are appropriate 
vertices of the simplex Newton polytope.

Componentwise even monomials were chosen to maximize the number of circuits that can be 
formed by points in the support and thus make the problems more challenging. (Every exponent of 
the support other than the vertices of the Newton polytope can be an inner or outer monomial of 
a number of circuits.) One can also think of the lower bounding of these polynomials over Rn as 
problems of bounding polynomials f of degree 4 over the nonnegative orthant by first applying the 
change of variables zi ← w2

i and then bounding the polynomial w → f (w2) over Rn .
Each experiment was replicated 10 times (that is, 10 randomly generated instances were solved 

for each problem size) using the same software and hardware as in the first set of experiments. 
Fig. 4 shows the distribution of running times for each problem size. The running time increases 
fairly moderately (approximately cubically) as the number of monomials increases; it remained under 
D. Papp Journal of Symbolic Computation 114 (2023) 246–266
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Fig. 3. Histogram of the relative optimality gaps obtained for the Seider–de Wolff instances. Surprisingly, the computed SONC 
lower bounds were close to the optimal value for each instance. (Note the logarithmic scale on the vertical axis.) The majority 
of the instances had an optimality gap of 10−6 or smaller; too small for the resolution of this picture.

Fig. 4. Box-whisker plot of total running times as a function of problem size from the second experiment. Problem size (horizon-
tal axis) is measured by the number of monomials. Each box represents results from 10 experiments with random polynomials 
of the same size. A cubic function fitted to the mean values is also shown.
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Fig. 5. Box-whisker plot of the ratio between the final number of circuits and the initial number of circuits as a function of 
problem size from the second experiment. Problem size (horizontal axis) is measured by the number of monomials. Each box 
represents results from 10 experiments with random polynomials of the same size. The ratio appears to increase only linearly.

1.5 hours for every instance. To see where the increase in running time comes from, in Fig. 5 we 
plot the ratio between the number of circuits at the end of the circuit generation algorithm and 
the number of initial circuits, and in Fig. 6 we plot the number of circuit generation iterations. The 
ratio appears to increase only linearly with the initial number of monomials, showing that the circuit 
generation algorithm is very effective in choosing the right circuits to add to the formulation out of 
the exponentially many circuits. (We have no theoretical explanation for this.) Although the number 
of circuit generation iterations increases with increasing problem sizes (as expected), this increase is 
very slow (clearly sublinear); most instances were solved in fewer than 8 iterations. Fig. 7 shows the 
evolution of the number of circuits for each instance as the algorithm progresses. In conclusion, most 
of the increase in the running time with the increasing problem size is attributable to the increased 
computational cost per iteration; that is, to the increased amount of time that it takes to solve each 
instance of the primal-dual pair of optimization problems (14)-(16) in each iteration.

8. Discussion

The computational results confirm that the proposed approach is well-suited for bounding sparse 
polynomials even when the number of unknowns and the degree are fairly large. Theoretically, the 
primary driver of the running time is the size of the support, which determines the number of cir-
cuits required for an optimal SONC decomposition. The number of circuit generation iterations also 
appears to depend on the support size, but this dependence was surprisingly mild in all the experi-
ments. (This does not have an apparent theoretical support, but is in line with our experience with 
column generation approaches in other settings.) Additionally, the dimension of the power cones (and 
dual power cones) may depend on the number of unknowns, since each circuit may have up n + 1
outer exponents for polynomials with n unknowns. However, assuming that the support size and the 
number of unknowns are fixed, the degree of the polynomials does not have an additional impact on 
the time complexity of the algorithm.
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Fig. 6. Box-whisker plot of the number of circuit generation iterations as a function of problem size from the second experiment. 
Problem size (horizontal axis) is measured by the number of monomials. Each box represents results from 10 experiments with 
random polynomials of the same size. The ratio appears to increase very slowly (sublinearly).

The second phase of the circuit generation approach finds the optimal SONC bound (and the cor-
responding circuits and SONC decomposition) once a SONC bound is known to exist from Phase I. The 
first phase, however, does something slightly weaker than certifying the existence or non-existence of 
a SONC bound: it finds circuits to prove a target lower bound if possible; in other words, for a given 
polynomial f and constant c, it can decide whether f + c is SONC or not. If it is, it finds a SONC 
decomposition of f + c, if it is not, it finds a (numerical) certificate of f + c being outside of SONC. 
It is not clear how one would close this theoretical gap with a purely numerical method: we cannot 
certify the non-existence of SONC bounds in general, since the set of polynomials with a finite SONC 
lower bound is not closed. For instance, fε(z) 

def= (1 + ε)z21 −2z1z2 + z22 −2z1 has a SONC lower bound 
for every ε > 0 (because fε + 1/ε is SONC) but f0 does not have a SONC lower bound (because it is 
not bounded from below). Practically, this means that we can run the first phase with a “large” value 
of c and either conclude that a “useful” SONC bound does not exist (because f + c is not SONC) or 
that f has a SONC lower bound (greater than −c); in the latter case Phase II can compute the optimal 
SONC lower bound.

There are many possible extensions of the algorithm proposed in this paper. The theoretically most 
straightforward one is to apply the same principle to general optimization problems in which the non-
negativity of an unknown polynomial appears as a constraint. Replacing the nonnegativity constraint 
with a SONC constraint, this leads to optimization problems similar to the ones we considered, except 
that every coefficient of the polynomials in question becomes a decision variable (rather than only 
the constant term being an optimization variable), and the problem may have additional optimization 
variables. A circuit generation procedure can be derived entirely analogously for problems of this type 
as long as the additional optimization variables are related to the coefficients of the SONC polynomials 
through linear constraints.

One may also use this approach to generate circuits for an optimal decomposition of a polynomial 
into the sum of a SONC polynomial and a sum-of-squares (SOS) polynomial. Theoretically, neither 
the SOS nor the SONC bound is always better than the other (bivariate counterexamples are easy to 
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Fig. 7. Diagram showing the number of circuits in each iteration for each instance of the second experiment. Most circuits are 
added in the first few iterations of the algorithm, in which a new circuit is added for nearly each monomial; later iterations add 
circuits more selectively. For most instances, several iterations add only a very small number of circuits. The objective function 
values (not shown) also reveal that in these iterations the bound often does not improve, but the promising circuits need to be 
added in order to certify the optimality of the bound.

find); a combined SOS+SONC bound would of course be at least as good as either of them. This is 
not a straightforward computational problem, however, because SOS bounds are typically computed 
using semidefinite programming algorithms, using software that cannot handle the power cone con-
straints used in our algorithm. However, the primal-dual algorithm and software used in this paper 
(alfonso) had also been used earlier to efficiently compute SOS bounds for polynomials (Papp and 
Yıldız, 2019a), implying that the same code could also be used to compute SOS+SONC bounds. The 
most recent version (version 9) of the commercial conic optimization software Mosek (MOSEK ApS, 
2019) also supports the simultaneous use of semidefinite and power cone constraints.

Should the number of circuits generated by the algorithm become prohibitively large, one may 
consider an improved version of Algorithm 1 which does not only add new promising circuits but 
also attempts to remove the unnecessary ones in each iteration. This problem did not arise in our ex-
periments (the number of circuits never increased above 10 times the number of circuits used in the 
optimal SONC decomposition), hence we did not pursue this direction in the paper. We note however 
that dropping all circuits not used in the last iteration may lead to cycling (the same circuits being 
added again in the next iteration and than dropped again). An example of a constraint generation 
algorithm for convex optimization that drops unnecessary cone constraints but safeguards against 
cycling and could be adapted to our problem is (Mehrotra and Papp, 2014).

Lastly, we leave it for future work to implement an extension of the proposed method to a hybrid 
symbolic-numerical method that generates rigorous global lower bounds and certificates that can be 
verified in exact arithmetic from the numerical SONC decompositions computed by our algorithm. 
Since the numerical method used in our implementation is a primal-dual interior-point approach that 
computes a strictly interior feasible solution y∗ to the problem (16), it is a trivial matter to compute a 
nearby rational feasible solution yrat to the same problem by componentwise rounding the numerical 
vector y∗ to a close enough rational vector without violating any of the cone constraints. Finally, the 
problem’s only equality constraint can be satisfied exactly by scaling yrat (although this does leave 
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a square root in the final symbolic solution). The resulting dual objective function value −fTyrat is a 
rigorous global lower bound on f , close to the numerically obtained bound, whose correctness can 
be verified in exact arithmetic by verifying the strict feasibility of yrat . The reconstruction of a primal 
certificate, that is, a verifiable exact SONC decomposition by computing a rational feasible solution 
(p1, . . . , pN) of the primal problem (15) from the near-optimal, and only near-feasible, numerical 
solution is a more complicated matter.
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