
Journal of Symbolic Computation 114 (2023) 246–266
Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Duality of sum of nonnegative circuit
polynomials and optimal SONC bounds✩

Dávid Papp

North Carolina State University, Department of Mathematics, Campus Box 8205, Raleigh, NC 27695-8205, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 26 April 2022

MSC:
14Q30
90C23
49M29
90C25

Keywords:
Polynomial optimization
Nonnegativity certificates
Circuit polynomials
Convex optimization
Duality
Power cone

Circuit polynomials are polynomials with properties that make it
easy to compute sharp and certifiable global lower bounds for
them. Consequently, one may use them to find certifiable lower
bounds for any polynomial by writing it as a sum of circuit
polynomials with known lower bounds. Recent work has shown
that sums of nonnegative circuit polynomials (or SONC polynomials
for short) can be used to compute global lower bounds (called
SONC bounds) for polynomials in this manner very efficiently both
in theory and in practice, if the polynomial is bounded from below
and its support satisfies a certain nondegeneracy assumption.
The quality of the SONC bound depends on the circuits used in
the computation but finding the set of circuits that yield the
best attainable SONC bound among the astronomical number of
candidate circuits is a non-trivial task that has not been addressed
so far. We propose an efficient method to compute the optimal
SONC lower bound by iteratively identifying the optimal circuits
to use in the SONC bounding process. The method is derived
from a new proof of the result that every SONC polynomial
decomposes into SONC polynomials on the same support. This
proof is based on convex programming duality and motivates
a column generation approach that is particularly attractive for
sparse polynomials of high degree and with many unknowns.
The method is implemented and tested on a large set of sparse
polynomial optimization problems with up to 40 unknowns, of
degree up to 60, and up to 3000 monomials in the support. The

✩ This material is based upon work supported by the National Science Foundation under Grant No. DMS-1719828 and Grant
No. DMS-1847865.

E-mail address: dpapp@ncsu.edu.
https://doi.org/10.1016/j.jsc.2022.04.015
0747-7171/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jsc.2022.04.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2022.04.015&domain=pdf
mailto:dpapp@ncsu.edu
https://doi.org/10.1016/j.jsc.2022.04.015

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
results indicate that the method is efficient in practice and requires
only a small number of iterations to identify the optimal circuits.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Polynomial optimization, that is, computing the infimum of a polynomial over a basic closed
semialgebraic set is a fundamental computational problem in algebraic geometry with a wide range
of applications in areas such as discrete geometry, nonlinear dynamical systems, control, extremal
combinatorics, power systems engineering, and statistics, to name a few. It is well-known to be an in-
tractable problem; its difficulty stems from the computational complexity of deciding whether a given
polynomial is nonnegative, either over Rn or over a semialgebraic set given by a list of polynomial
inequalities (Dickinson and Gijben, 2014; Blekherman et al., 2013). The same problem, coupled with
the additional, even more challenging, task of finding a rigorous certificate of nonnegativity (that is
verifiable in polynomial time in exact arithmetic) is also a central question in symbolic computation
and automated theorem proving (also known as computer-assisted proofs) (Harrison, 2007; Kaltofen
et al., 2008; Magron et al., 2015).

Practically scalable approaches to polynomial optimization rely on tractable approximations of
cones of nonnegative polynomials. Inner approximations based on easily verifiable sufficient condi-
tions of nonnegativity are particularly desirable, as they can yield certificates of nonnegativity or
rigorous lower bounds on the infimum, even if one can only compute approximately optimal (but
feasible) numerical solutions to the optimization problems solved in the process of generating rig-
orous certificates (e.g., in hybrid symbolic-numerical methods). Undoubtedly, the most successful of
these approximations to date has been sum-of-squares (SOS) cones. Numerical optimization over SOS
cones, using semidefinite programming, began at least in the early 2000s (see (Nesterov, 2000; Parrilo,
2000; Lasserre, 2001), and even the earlier work of Shor (1987)) and have given rise to polynomial
optimization software such as GloptiPoly 3 (Henrion and Lasserre, 2003), SOSTOOLS (Prajna et al.,
2004), YALMIP (Löfberg, 2004), TSSOS (Wang et al., 2021), and alfonso (Papp and Yıldız, 2021).

More recently, a number of alternatives and extensions to SOS have been proposed to address dif-
ficulties often encountered when using SOS techniques for polynomials with either a large number
of unknowns or a high degree. Methods exploiting sparsity or symmetry of polynomials have been
proposed by many researchers including Kojima et al. (2004), Lasserre (2006), Wang et al. (2021),
and Riener et al. (2013). Ghasemi and Marshall (2012) suggest an approach using geometric program-
ming for nonnegativity certification, a more efficient convex optimization approach than semidefinite
programming commonly used in SOS optimization. Cones of SONC (sums of nonnegative circuit) poly-
nomials (Iliman and de Wolff, 2016) are another family of subcones of nonnegative polynomials that
neither contain SOS cones nor are they contained by them, and thus, in principle have the potential
to provide better bounds than SOS while promising to be faster than SOS optimization (Seidler and
de Wolff, 2018; Magron and Wang, 2021). The nonnegativity of SONC polynomials is established via
the AM/GM inequality; also related to this is the notation of SAGE functions (sums of AM/GM ex-
ponentials) (Chandrasekaran and Shah, 2016). Through further approximations of the SONC cone, a
linear programming approach has also been proposed in (Dressler et al., 2020) to address the com-
putational challenges that arise with the SONC and SAGE cones. In this work, we focus on SONC
polynomials, specifically on the problem of computing optimal SONC lower bounds efficiently, without
approximations.

Some, but not all, of these approaches can be paired with symbolic computing approaches or
implemented in rational arithmetic (or as a hybrid numeric-symbolic method) in order to compute
rigorously certifiable rational lower bounds for polynomials. In SOS setting, we point to Magron and
Safey El Din (2018), Papp and Yıldız (2019a), and Davis and Papp (2021) for examples of different
approaches; exact SONC decompositions are computed, e.g., in Magron et al. (2019).
247

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
The three main contributions of this paper are the following. Following a brief review on the
necessary background on SONC polynomials in Section 2, we provide a new conic optimization for-
mulation for determining whether a polynomial is SONC in Section 3; this formulation is somewhat
smaller and simpler than the relative entropy programming formulation used in previous work on
SONC polynomials. Using this formulation and convex programming duality, we prove in Section 4
that every SONC polynomial f can be written as a sum of nonnegative circuit polynomials supported
on the support of f and a sum of monomial squares. This was also shown (independently, and under
slightly different assumptions) by Wang (2019) and later Murray et al. (2021), using different meth-
ods, and by Katthän et al. (2020) in the setting of AG functions. In Section 5 we propose an algorithm,
motivated by our proof of this result, to iteratively identify the circuits that appear in the optimal
SONC decomposition. An implementation of this approach is discussed in Sections 6 and 7, where we
demonstrate that the approach can be used to find the optimal SONC lower bound on sparse polyno-
mials with up to 3000 monomials in minutes. We conclude with a discussion on possible extensions
and open questions in Section 8.

2. Preliminaries

Recall the following notation and definitions. For vectors z and α of dimension n, zα is a shorthand
for the monomial

∏n
i=1 z

αi
i . For an n-variate polynomial f given by f (z) = ∑

α∈supp(f) fαzα with
fα �= 0, the (finite) set of exponents supp(f) is called the support of f . The Newton polytope of f is
New(f) def= conv(supp(f)), the closed convex hull of the support. A polynomial is a monomial square if
it can be written as czα with c > 0 and α ∈ (2N)n . We are now ready to define the central objects of
this paper.

Definition 1. We say that a polynomial f is a circuit polynomial if its support can be written as
supp(f) = {α1, . . . , αr, β}, where the set {α1, . . . , αr} is affinely independent and β = ∑r

i=1 λiαi with
some λi > 0 satisfying

∑r
i=1 λi = 1. In other words, β lies in the convex hull of the αi , and the scalars

λi are the corresponding barycentric coordinates of β . The support set of a circuit polynomial is called
a circuit. The exponent β is referred to as the inner exponent of the circuit, while the αi are the outer
exponents.

Note that the affine independence condition on the exponents implies that the barycentric coor-
dinates λi are unique and strictly positive. Given a circuit C , NC(C) denotes the set of nonnegative
circuit polynomials supported on C . The vector of barycentric coordinates of the inner exponent is
denoted by λ(C).

Our starting point is the well-known characterization of nonnegative circuit polynomials (Iliman
and de Wolff, 2016):

Proposition 2. Let f be an n-variate circuit polynomial satisfying f (z) = ∑r
i=1 fαi z

αi + fβzβ for some real
coefficients fαi and fβ and suppose that β = ∑r

i=1 λiαi with some λi > 0 satisfying
∑r

i=1 λi = 1. Then f is
nonnegative if and only if αi ∈ (2N)n and fαi > 0 for each i, and at least one of the following two alternatives
holds:

1. β ∈ (2N)n and fβ ≥ 0, or

2. | fβ | ≤ ∏r
i=1

(
fαi
λi

)λi
.

It has been shown by Dressler et al. (2017) that the inequality in the second alternative in Proposi-
tion 2 is convex in the coefficients of f , moreover, it can be represented using O (r) number of affine
and relative entropy cone constraints; see also (Chandrasekaran and Shah, 2016) for more on relative
entropy programming. In this work, we use conic constraints involving the generalized power cone
and its dual to represent nonnegative circuit polynomials, which has the advantage of requiring only
a single cone constraint per circuit. Additionally, power cone constraints are computationally easier to
handle than relative entropy constraints.
248

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
The (generalized) power cone with signature λ = (λ1, . . . , λr) is the convex cone defined as

Pλ
def=

{
(v, z) ∈ Rr+ ×R

∣∣∣ |z| ≤ vλ
}

. (1)

It can be shown that Pλ is a proper (closed, pointed, full-dimensional) convex cone for every λ ∈
]0, 1[r , and that its dual cone (with respect to the standard inner product) is the following (Chares,
2009):

P∗
λ

def=
{

(v, z) ∈ Rr+ ×R

∣∣∣∣∣ |z| ≤
r∏

i=1

(
vi

λi

)λi
}

.

(This has also been independently shown by Dressler et al. (2021).) This means that the second al-
ternative in Proposition 2 can be written simply as a single cone constraint (and without additional
auxiliary variables):

| fβ | ≤
r∏

i=1

(
fαi

λi

)λi

⇐⇒ (
(fα1 , . . . , fαr), fβ

) ∈ P∗
λ . (2)

Note that the cone depends on the circuit C = {α1, . . . , αr, β} only through its signature λ(C).
We say that a polynomial is a sum of nonnegative circuit polynomials, or SONC for short, if it can be

written as a sum of monomial squares and nonnegative circuit polynomials. SONC polynomials are ob-
viously nonnegative by definition. Since the nonnegativity of a circuit polynomial can be easily verified
using Proposition 2, the nonnegativity of a SONC polynomial can be certified by providing an explicit
representation of the polynomial as a sum of monomial squares and nonnegative circuit polynomials.
Such a certificate is called a SONC decomposition. As long as the number of circuits is sufficiently small,
a SONC decomposition can be verified efficiently. From (the conic version of) Carathéodory’s theorem
(Rockafellar, 1970, Corollary 17.1.2) it is clear that every SONC polynomial f can be written as a sum
of at most | supp(f)| nonnegative circuit polynomials, therefore, a “short” SONC decomposition exists.
Additionally, it is straightforward that only circuits supported on the Newton polytope need to be
considered. (See the proof of Theorem 5 below.) However, the number of circuits supported on the
Newton polytope of a polynomial can be astronomical even for polynomials with a relatively small
support set (see also Example 6), and it is not clear which of these circuits will be needed in a SONC
decomposition. This motivates the search for algorithms that can identify the relevant circuits and
compute short SONC decompositions.

3. SONC decompositions and optimization over power cones

Suppose we are given a polynomial f (z) = ∑
α∈supp(f) fαzα by its support and its coefficients

in the monomial basis, and that we are given a set of circuits C = {C1, . . . , CN}. We shall assume,
without loss of generality, that 0 ∈ supp(f) and that supp(f) ⊆ ⋃N

j=1 C
j .

Let S(C) be the set of polynomials that can be written as a sum of nonnegative circuit polynomials
whose support is a circuit belonging to C and of monomial squares supported on supp(f). Using
Proposition 2 and Equation (2), one may see that deciding whether f belongs to S(C) amounts to
solving a conic optimization problem. We shall give the details of this optimization problem next.

Let V be the vertices of New(f), and consider the following optimization problem, whose decision
variables are the nonnegative coefficients γ indexed by V :

minimize
γ ∈RV+

∑
α∈V

γα

subject to (z
→ f (z) +
∑
α∈V

γαz
α) ∈ S(C).

(3)

It is immediate that f has a desired SONC decomposition if and only if the optimal objective
function value of this problem is 0 and if this infimum is attained.
249

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
Making the SONC decomposition of the polynomial in the constraint explicit, problem (3) can also
be written as follows:

minimize
γ ,p1,...,pN ,δ

∑
α∈V

γα

subject to f (z) +
∑
α∈V

γαz
α ≡

N∑
j=1

p j(z)

︸ ︷︷ ︸
nonnegative

circuit polynomials

+
∑

α∈supp(f)∩(2N)n

δαz
α

︸ ︷︷ ︸
monomial squares

p j ∈ NC(C j) j = 1, . . . ,N

γα ≥ 0 α ∈ V

δα ≥ 0 α ∈ supp(f) ∩ (2N)n.

(4)

In computation, the polynomials required to be identical (by the first constraint) need to be repre-
sented by their coefficients in some basis, reducing the constraint to a system of | supp(f)| linear
equations. It is convenient to use the monomial basis, in which case, by way of Proposition 2 and
Eq. (2), the cone constraints p j ∈ NC(C j) can be written as cone constraints involving P∗

λ(C j)
. The de-

tails of this formulation are given next; they are straightforward, but in order to write the formulation
out explicitly, we need to introduce some additional notation.

Let us partition supp(f) into Seven
def= supp(f) ∩ (2N)n and Sodd

def= supp(f) \ (2N)n . Now, f (z) +∑
α∈V γαzα is SONC if and only if there exist nonnegative circuit polynomials p1, . . . , pN supported

on C1, . . . , CN , respectively and coefficients δα ≥ 0 for each α ∈ Seven such that p1(z) + · · · + pN (z) +∑
α∈Seven δαzα = f (z) + ∑

α∈V γαzα .

For each j ∈ {1, . . . , N}, let A j ∈ {0, 1}supp(f)×C j
be the matrix whose rows and columns are indexed

by the support of f and the circuit C j respectively, and whose (α,α)-th element is 1 for every
α ∈ C j(⊆ supp(f)). All other elements of A j are 0. In what follows, A j

α,· denotes the row of A j indexed
by the exponent vector α. Noting that V ⊆ Seven, we can now write the optimization problem (4) in
the monomial basis as follows:

minimize
γ ,x1,...,xN

∑
α∈V

γα

subject to
N∑
j=1

A j
α,·x j − γα ≤ fα α ∈ V

N∑
j=1

A j
α,·x j ≤ fα α ∈ Seven \ V

N∑
j=1

A j
α,·x j = fα α ∈ Sodd

γα ≥ 0 α ∈ V ,

x j ∈ P∗
λ(C j)

j = 1, . . . ,N.

(5)

To see this, note that the decision variable x j ∈ RC j
(j = 1, . . . , N) can be interpreted as the coeffi-

cient vector of the nonnegative circuit polynomial p j supported on C j , A j
α,·x j is the coefficient of zα

in p j(z), and the interpretation of the linear constraints is that
∑n

j=1 p j(·) = f (·) + ∑
α∈V γα(·)α −∑

α∈Seven δα(·)α for some nonnegative coefficients δα (α ∈ Seven) whose values are the slacks (dif-
ferences between the left-hand side and right-hand side values) of the first two sets of inequality
constraints.
250

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
In the dual problem of (5), the components of the vector of decision variables y may be indexed
by monomials in supp(f) = V ∪ (Seven \ V) ∪ Sodd, and the dual optimization problem can be written
as follows:

maximize
y∈Rsupp(f)

fTy

subject to − (A j)Ty ∈ Pλ(C j) j = 1, . . . ,N

1 + yα ≥ 0 α ∈ V

yα ≤ 0 α ∈ Seven.

(6)

The constraints in (6) can be further simplified. Recalling the definition of A j , we have that −(A j)Ty =
(−yα)α∈C j . It is also convenient to replace in notation y with −y throughout. This leads to the fol-
lowing representation of the dual of (3):

maximize
y∈Rsupp(f)

− fTy

subject to (yα)α∈C j ∈ Pλ(C j) j = 1, . . . ,N

yα ≥ 0 α ∈ Seven,

yα ≤ 1 α ∈ V .

(7)

We are now ready to show that all these problems have attained optimal values, and that strong
duality holds for the optimization problems in Eq. (3) and Eq. (7).

Lemma 3. Suppose that V ⊆ (2N)n and that for every α j ∈ supp(f) \ V there is a circuit C ∈ C whose inner
monomial is α j and whose outer monomials are all members of V . Then the optimization problem (4) has a
strictly feasible solution as well as an optimal solution. Therefore, both (3) and (7) have optimal solutions, and
the optimal objective function values are equal.

Proof. We can construct a strictly feasible solution to (4) as follows. First, we fix δα = 1 for each
α ∈ Seven. Second, by assumption, for each exponent α j ∈ supp(f) \ V we can find a nonnegative
circuit polynomial p j ∈ NC(C j) whose inner monomial has the coefficient fα j (if α j ∈ Sodd) or fα j −1
(if α j ∈ Seven), while its outer monomials have sufficiently large positive coefficients to ensure that

p j is in the interior of the NC(C j). In the resulting sum p(z) def= ∑
j p j(z) + ∑

α δαzα , the coefficient
of each zα for α ∈ supp(f) \ V is equal to fα . By further increasing the outer coefficients in each p j ,
we can also ensure that for each α ∈ V the coefficient of each zα in p is strictly greater then fα .
The resulting p is a strictly feasible solution; we can set each γα to an appropriate positive value to
equate the two sides of the first constraint of (4).

Thus, the minimization problem (4) is feasible; however it cannot be unbounded since the objec-
tive function is constrained to be nonnegative on the feasible region. Therefore, its infimum is finite.
We show that this finite optimal value is attained using the Weierstrass Extreme Value Theorem.
We only need to show that the feasible region can be bounded a priori. First, observe that because
each γα is nonnegative and because there is some finite objective function value � attained by the
strictly feasible solution exhibited above, we can add to the formulation (4) the redundant constraints
γα ∈ [0, �] for every α ∈ V . Next, since each polynomial p j and δαzα on the right-hand side of the
first constraint of (4) is a nonnegative polynomial, each ‖p j‖ and ‖δα‖ can also be bounded from
above by ‖ f ‖ + �

∑
α∈V ‖zα‖. Thus, the feasible set is compact, and the infimum in (4) is attained

using the Weierstrass Extreme Value Theorem.
We have shown that (4) has an optimal solution and a Slater point. This implies that (4) and

its dual have optimal solutions with the same objective function values, therefore the equivalent
problems (3) and its dual (7) also have optimal solutions with the same optimal objective function
value. �
251

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
The number of decision variables in the explicit conic formulation (5), which can be directly fed
to a conic optimization solver, is |V | +∑N

j=1(r j +1). This can be prohibitively large for practical com-
putations if the number of circuits N is large. This motivates the rest of the paper, where we narrow
down the set of circuits that may be needed in a SONC decomposition and provide an algorithm to
iteratively identify the useful circuits.

4. Support of SONC decompositions

Let f (z) = ∑
α∈supp(f) fαzα be a SONC polynomial. It is straightforward to argue that in every

SONC decomposition of f , every circuit polynomial must be supported on a subset of New(f); for
completeness, we include a short argument in the proof of Theorem 5 below. It is equally natural to
ask whether there exists a SONC decomposition for f in which every circuit polynomial is supported
on a subset of supp(f). That this is indeed true was first shown recently independently in (Wang,
2019) and (Murray et al., 2021) using combinatorial and algebraic techniques (and some assumptions
on the structure of the support); we shall provide an independent proof using convex programming
duality and removing the additional assumption. In the proof, which also motivates the algorithmic
approach of the next section, we will need the following simple lemma.

Lemma 4. Let c ∈RN and d ∈R be arbitrary. Furthermore, let α1, . . . , αN and β be given vectors in Rn, and
consider the convex polytope P consisting of all convex combinations of the αi that yield β:

P =
{

λ ∈ RN+

∣∣∣∣∣
N∑

i=1

λiαi = β and
N∑

i=1

λi = 1

}
.

Then, if the inequality

cTλ ≤ d (8)

holds for every λ ∈ P for which the set Sλ
def= {αi | λi > 0} is affinely independent, then (8) holds for every

λ ∈ P .

Proof. This is a reformulation of the statement that every extreme point λ of the convex polytope P
corresponds to an affinely independent Sλ . This is immediate from the theory of linear optimization:
the basic components of every basic feasible solution of the (feasibility) linear optimization problem

findλ

N∑
i=1

λiαi = β

N∑
i=1

λi = 1

λi ≥ 0 i = 1, . . . ,N

correspond to linearly independent ((n + 1)-dimensional) vectors from {(α1
1

)
, . . . ,

(αN
1

)}; thus, the
nonzero components of every vertex of P correspond to affinely independent Sλ . �
Theorem 5. Every SONC polynomial f has a SONC decomposition in which every nonnegative circuit polyno-
mial and monomial square are supported on a subset of supp(f).

Proof. First, we argue that no monomial outside the Newton polytope New(f) can appear in any
SONC decomposition. Suppose otherwise, then the convex hull of the union of the circuits is a convex
polytope that has an extreme point α /∈ New(f). The corresponding monomial zα has a 0 coefficient
in f . At the same time, zα can only appear in the SONC decomposition as a monomial square or as
252

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
an outer monomial in a circuit, but never as an inner monomial. Therefore, its coefficient is 0 only if
its coefficient is 0 in every circuit it appears in, which is a contradiction.

Next, consider two instances of problem (3), or equivalently (5): in the first instance, to be called
(P1), we choose the circuits C = {C1, . . . , CN } to be the set of all circuits that are subsets of supp(f),
while in the second one, (P2), we choose the circuits to be the set of all circuits that are subsets of
New(f) ∩Nn . Let the duals of the corresponding problems, written in the form (7), be (D1) and (D2).
According to the discussion around (3), it suffices to show that (P1) and (P2) have the same optimal
objective function values, since in that case either both problems have an optimal solution attaining
the value 0 (and thus SONC decompositions using both sets of circuits exist) or both problems have a
strictly positive optimal value (and thus no SONC decomposition exists using either set of circuits).

Using Lemma 3, (P1) and (D1) have optimal solutions (x∗
1, . . . , x

∗
N) and y∗ attaining equal objective

function values. We now use these solutions to construct feasible solutions for both (P2) and (D2)

that attain the same objective function value.
For (P2) this is straightforward: in the formulation (5), keep the coefficients x j of the circuit

polynomials appearing in (P1) the same value x∗
j , and set x j = 0 for every new circuit that appears

only in (P2).
For (D2), we also keep yα = y∗

α for every α ∈ supp(f). With this choice, regardless of the choice
of the remaining components of y, every constraint in (D2) that already appeared in (D1) is auto-
matically satisfied; moreover, the objective function remains unchanged, since fα = 0 for the new
variables. Therefore, it only remains to show that (yα)α∈(New(f)∩Nn)\supp(f) can be chosen in a way
that every cone constraint (yα)α∈C ∈ Pλ(C) corresponding to a circuit C supported on New(f) ∩ Nn

is satisfied. We show, constructively, a slightly stronger statement: that if we assign values to the
new components of y one-by-one in any order, at each step it is possible to assign a value to the
component at hand in a way that satisfies every conic inequality that only involves already processed
exponents.

Suppose that some exponents have been given consistent values and let α̂ ∈ (New(f) ∩ Nn) \
supp(f) be the exponent whose corresponding yα̂ needs to be assigned a value next. In every circuit
that it appears in, the exponent α̂ is either an inner exponent, in which case the cone constraint
only provides an upper bound on |yα̂ |, or an outer exponent, in which case the cone constraint only
provides a lower bound on yα̂ . In particular, if α̂ /∈ (2N)n , then it cannot be an outer exponent, and
yα̂ = 0 will be a consistent choice. Similarly, if α̂ ∈ (2N)n but α̂ appears only as inner (respectively,
outer) exponent in every circuit, then it is easy to find a consistent value for yα̂ . (Zero, or a sufficiently
large positive value, respectively.) The only non-trivial case is when α̂ ∈ (2N)n and α̂ appears both as
inner and as outer exponent in a circuit.

Let C1 be one of the circuits in which α̂ is an inner exponent and which gives the lowest upper
bound on yα̂ , and let C2 be one of the circuits in which α̂ is an outer exponent and which gives
the greatest lower bound on yα̂ . We need to show that these bounds are consistent. Let the outer
exponents of the circuit C1 be α1, . . .αr and let (λi)i=1,...,r be the barycentric coordinates of α̂ in this
circuit:

α̂ =
r∑

i=1

λiαi . (9)

Similarly in circuit C2, let η be the inner exponent, let α̂ and ω1, . . . , ωs be the outer exponents, and
let ξ denote the barycentric coordinates of η:

η = ξ0α̂ +
s∑

j=1

ξ jω j. (10)

Then it suffices to show that there exists a yα̂ > 0 such that

log(yα̂) ≤
r∑

λi log(yαi) (11)

i=1

253

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
to satisfy the cone constraint |yα̂ | ≤ ∏r
i=1 yλi

αi
from C1 and

log(|yη|) ≤ ξ0 log(yα̂) +
s∑

j=1

ξ j log(yω j) (12)

to satisfy the cone constraint |yη| ≤ yξ0
α̂

∏s
j=1 y

ξ j
ω j

from C2. The inequalities (11) and (12) are consis-
tent if and only if the lower and upper bounds they give for log(yα̂) are consistent, that is, if

1

ξ0
(log(|yη| −

s∑
j=1

ξ j log(yω j)) ≤
r∑

i=1

λi log(yαi),

which can be rearranged as

log |yη| ≤
r∑

i=1

ξ0λi log(yαi) +
s∑

j=1

ξ j log(yω j). (13)

Now, note that from (9) and (10) we also have

η =
r∑

i=1

ξ0λiαi +
s∑

j=1

ξ jω j,

with coefficients ξ0λi ≥ 0 and ξ j ≥ 0 satisfying
∑r

i=1 ξ0λi +∑s
j=1 ξ j = 1. Thus, (13) is almost identical

to a power cone inequality corresponding to a circuit. The only difference is that the “outer expo-
nents” {α1, . . . , αr, ω1, . . . , ωs} are not necessarily affinely independent, thus these exponents and η
do not form a circuit. (If they do, we are done, by the inductive assumption that all power cone
constraints corresponding to circuits that consists of assigned components of y are satisfied.)

We can now invoke Lemma 4 with {α1, . . . , αr, ω1, . . . , ωs} playing the role of α1, . . . , αN , the
exponent vector η playing the role of β , and (log(yα1), . . . , log(yαr), log(yω1), . . . , log(yωs)) playing
the role of c, and log |yη| playing the role of d: if every power cone inequality corresponding to
a circuit with inner exponent η holds, then (13) also holds. By the argument preceding (13), this
implies that yα̂ can be assigned a value that is consistent with the values of all already processed
component of y. �
5. Optimal SONC bounds and circuit generation

Theorem 5 allows us to dramatically simplify the search for SONC decompositions when the poly-
nomial to decompose is sparse, that is, when supp(f) is much smaller than New(f) ∩Nn . That said,
even the number of circuits supported on supp(f) can be exponentially large in the number of vari-
ables as the following example shows.

Example 6. Let ei denote the ith unit vector and 1 def= ∑n
i=1 ei , and let supp(f) be the set

{0, 1, 2ne1, . . . , 2nen, 4ne1, . . . , 4nen}. This support set has only 2n + 2 elements, but it supports 2n
different circuits with 1 as the inner exponent: independently for each i = 1, . . . , n, we can add either
2nei or 4nei to the circuit as an outer exponent, in addition to 0 (as the last outer exponent) and 1
(as the inner exponent).

In this section, we present an iterative method to identify the circuits that are necessary in a SONC
decomposition of a given polynomial f . We present the algorithm for the more general and widely
applicable problem of finding the highest SONC lower bound for a polynomial, which is defined as the
negative of the optimal value of the optimization problem
254

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
minimize
γ ∈R

γ

subject to (z
→ f (z) + γ) ∈ S(C)

(14)

This is a well-defined quantity for every polynomial f that has a SONC decomposition, and by exten-
sion for every polynomial that has a SONC bound, as the following Lemma shows.

Lemma 7. Suppose that f has a SONC decomposition with a given set of circuits C . Then (14) attains a mini-
mum.

Proof. The proof is essentially the same as the argument used in the last step of the proof of
Lemma 3. If f is SONC, then γ = 0 is a feasible solution to (14). At the same time, the problem
cannot be unbounded; indeed, the infimum cannot be lower than − f (0). So the infimum in (14) is
finite. Moreover, problem (14) can be equivalently written as

minimize γ

subject to f (z) + γ =
N∑
j=1

p j(z) +
∑

α∈supp(f)∩(2N)n

δαz
α

p j ∈ NC(C j) j = 1, . . . ,N

γ ∈ [− f (0),0]
δα ≥ 0 α ∈ supp(f) ∩ (2N)n

(15)

Since γ is already bounded, and each of the polynomials p j and δαzα on the right-hand side of the
first constraint is a nonnegative polynomial, any norm of each p j and δα can also be bounded a priori
by the same norm of f + γ , and thus the feasible region of (15) is compact. The claim now follows
from the Weierstrass Extreme Value Theorem. �

We now consider the problem of identifying the circuits necessary to obtain the strongest possible
SONC lower bound on a polynomial. Consider the optimal solution of (14) for a set of circuits C =
{C1, . . . , CN} for which this problem attains a minimum. Analogously to (7), the dual of (14) can be
written as

maximize
y∈Rsupp(f)

− fTy

subject to (yα)α∈C j ∈ Pλ(C j) j = 1, . . . ,N

yα ≥ 0 α ∈ supp(f) ∩ (2N)n,

y0 = 1.

(16)

Although Eq. (14) does not always have a Slater point, its dual (16) trivially has, therefore, the supre-
mum in (16) equals the attained minimum in (14). Thus, an (approximately) optimal solution to (16)
serves as a certificate of (approximate) optimality of the bound given by (14) for the given set of
circuits. For brevity, we state this formally without a proof.

Lemma 8. For every polynomial f and set of circuits C = {C1, . . . , CN }, the optimization problem (16) has
a Slater point. Therefore, if f has a SONC lower bound using the circuits in C , then the optimal value of (16)
equals the (attained) optimal values of (14) and (15).

Applying this Lemma by substituting the set of all circuits supported on supp(f) for C , we have
that if the optimal solution y∗ of (16) satisfies

(y∗
α)α∈C ∈ Pλ(C) (17)
255

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
for every circuit C supported on supp(f), then the optimal value γ ∗ of (14) cannot be improved by
adding more circuits supported on supp(f) to the problem. Conversely, if γ ∗ can be improved by
adding any circuits, then (17) must be violated by some circuit C supported on supp(f). Adding any
C that violates (17) to the set C may improve the bound given by (14). Finally, we can repeat the
argument of Theorem 5 (with the primal-dual optimization pair (14)-(16) playing the role of (4)-(7))
to show that adding any circuits that are not supported on supp(f) to C also cannot improve the
bound.

This motivates the iterative algorithm shown in Algorithm 1.

Algorithm 1: SONC bound with iterative circuit generation.
input : A polynomial f .
outputs : The optimal SONC lower bound for f and a SONC decomposition certifying the bound.

1 initialize C = {C1, . . . , CN }
2 repeat
3 solve the primal-dual pair (15)-(16) for the optimal (γ ∗, p∗, δ∗) and y∗
4 find the circuit C supported on supp(f) for which (17) is most violated
5 if no circuit violating (17) exists then
6 return γ ∗ and the SONC decomposition (p∗, δ∗) of f + γ ∗
7 else
8 add circuit C found in Step 4 (and possibly other circuits) to C
9 end if

10 until false

We defer the discussion on the initialization step to the end of this subsection and focus on the
main loop first, assuming that the initial set of circuits C has been chosen such that the optimal
solutions sought in Line 3 of the first iteration exist.

The most violated constraint in Line 4 can be efficiently computed using the following observation:
for a fixed exponent vector β , finding the circuit corresponding to the most violated constraint among
circuits with inner monomial zβ amounts to solving the linear optimization problem

minimize
∑

α∈supp(f)\{β}
λα log(yα)

subject to
∑
α

λαα = β

∑
α

λα = 1

λα ≥ 0 ∀α ∈ supp(f) \ {β}

(18)

Based on Lemma 4, every basic feasible solution λ of (18) corresponds to a circuit whose outer mono-
mials are {zα | λα > 0} and whose inner monomial is zβ . Recalling the definition of the power cone
from Eq. (1), if λ∗ is an optimal basic feasible solution of (18) and the optimal value is v∗ , then the
inequality (17) corresponding to λ∗ (and the circuit C determined by λ∗) is violated if and only if
exp(v∗) < |yβ |. Solving (18) for each β , we can either conclude that there are no circuits to add to
the formulation or find up to one promising circuit for each β to add to the formulation in Line 8. In
our implementation we add to C the circuit corresponding to the most violated inequality for each β .

Initialization. Problem (3) and the proof of Lemma 3 suggest a strategy for the initialization step of
Algorithm 1, which is also entirely analogous to solving linear optimization problems using a two-
phase method. We can apply the same circuit generation strategy as above to an instance of problem
(3), where C contains all possible circuits supported on supp(f). (Additionally, we may replace f by
any f + c with an arbitrary constant c.) An initial set of circuits for which this optimization problem
is feasible can be easily found: for each exponent α ∈ supp(f) that is not a monomial square (that
is, for which either α /∈ (2N)n or fα < 0 or both), find a circuit whose inner exponent is α and
256

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
whose outer exponents are among the vertices V of New(f). This can be done by computing a basic
feasible solution of a linear feasibility problem with |V | variables. If for any α such a circuit does
not exist, then (3) trivially does not have a feasible solution, and f + c does not have a SONC bound.
On the other hand, if the initial set of circuits exists, then (3) can be solved using the same column
generation strategy, and we either find that the optimal objective function value of (3) is positive, in
which case f + c does not have a SONC bound, or the optimal value is 0. In the latter case we also
obtain a feasible solution with a current set of circuits C . This set can be used as the initial set of
circuits in Algorithm 1 to find the best SONC bound on f .

Remark 9. There are many polynomials for which Algorithm 1 for the SONC bounding problem (14)
can be trivially initialized, without using (3) as a “Phase I” problem as described above. A sufficient
condition is the following: suppose that for every α ∈ supp(f) for which α /∈ (2N)n or fα < 0, the
exponent vector α is contained in the interior of a face of New(f) that also contains 0. Then for
each such α we can find a circuit whose inner exponent is α and for which 0 is one of the outer
exponents. Taking C as the set of these circuits, we see that (14) (or equivalently, (15)) is feasible.
This is the same condition as the nondegeneracy condition of (Seidler and de Wolff, 2018) and (Wang,
2019).

We end this section with a toy example to illustrate the steps of the algorithm.

Example 10. Consider the polynomial f given by

f (z1, z2) = 1+ z22 − z21z
2
2 + z21z

6
2 + z61z

2
2.

This polynomial has a SONC lower bound, since it has only one monomial that is not a mono-
mial square, −z21z

2
2, and the exponent of that monomial is the inner exponent of the circuit

C1 = {(0, 0), (2, 6), (6, 2), (2, 2)}, which contains 0 as an outer exponent and has signature λ(C1) =
(12 , 14 , 14). Thus, for a sufficiently large constant γ , we have γ + z21z

6
2 + z61z

2
2 − z21z

2
2 ≥ 0 for every z,

and the remaining terms in f are monomial squares.
Solving the primal-dual pair (14)-(16) with C = {C1}, we obtain the optimal value γ ∗ = − 7

8 , and
the SONC decomposition

f (z1, z2) − 7

8
= (z2)

2 +
(
1

8
+ z21z

6
2 + z61z

2
2 − z21z

2
2

)
;

the first term on the right-hand side is a monomial square, the second one is a member of
NC(C1). The dual optimal solution (indexing the components in degree lexicographic order) is
y∗ = (1, 0, 14 , 116 , 116).

The constraint generation algorithm consists of solving two linear optimization problems: one to
find the most promising circuit with z22 as the inner monomial and one to find the most promising
circuit with z21z

2
2 as the inner monomial. The remaining three monomials are vertices of the Newton

polytope, and need not be considered. The first search is unsuccessful: y∗
(0,2) = 0, therefore no circuit

with (0, 2) as an inner exponent can violate its corresponding power cone inequality (17). The second
linear optimization problem identifies the circuit C2 = {(0, 2), (6, 2), (2, 2)}, with signature λ(C2) =(
2
3 , 1

3

)
. The corresponding power cone constraint (17) is violated, since y∗

(2,2) = 1
4 > 0 = y∗

(0,2) .

Solving the primal-dual pair (14)-(16) with C = {C1, C2}, the optimal value improves to γ ∗ = −1,
and we obtain the SONC decomposition

f (z1, z2) − 1 = z21z
6
2 +

(
z22 + z61z

2
2 − z21z

2
2

)
;

the first term on the right-hand side is a monomial square, the second one is a member of NC(C2).
The circuit C1 is superfluous. The new optimal dual solution is y∗ = (1, 0, 0, 0, 0). Since every com-
ponent of y∗ that corresponds to a non-vertex exponent is zero, there cannot be any circuits whose
corresponding power cone inequality is violated, proving that we have found the optimal SONC bound.
257

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
In this example, we also have f (z1, 0) = 1, proving that 1 is the best possible global lower bound on
f , that is, the optimal SONC bound is the global minimum.

6. Implementation

In our implementation we use the open-source Matlab code alfonso (Papp and Yıldız, 2021,
2019b), a nonsymmetric cone optimization code that can directly solve the primal-dual pair (14)-(16)
using a predictor-corrector approach without any model transformation. (In particular, there is no
need to represent the SONC cone or its dual as an affine slice of a Cartesian product of exponential,
relative entropy, or second-order cones.) alfonso requires only an interior point in the primal cone
and a logarithmically homogeneous self-concordant barrier function for the primal cone as input.
Since the primal cone is a Cartesian product of nonnegative half-lines and dual cones of general-
ized power cones, both an easily computable initial point and a suitable barrier function are readily
available; see, for example, (Chares, 2009).

Alternatively, we can use (16) as the “primal” problem for alfonso. This cone is an intersection
of generalized power cones and a nonnegative orthant, so the barrier function is once again readily
available, this time as the sum of well-known barrier functions. Furthermore, the Slater point for
this problem (recall the discussion around Lemma 8) can be used as an easily computable initial
point after scaling to satisfy the only non-homogeneous constraint y0 = 1. In our implementation we
used the latter variant. When started with a feasible initial solution, alfonso maintains feasibility
throughout. Therefore, using the dual variant and the dual Slater point as an initial feasible solution,
we are guaranteed that are our near-optimal solution to (14)-(16) is dual feasible, and thus the dual
optimal value is a lower bound on the minimum even if the other optimality conditions are not
satisfied to a high tolerance.

In our first set of experiments (smaller instances with general Newton polytopes) we used the two-
phase version of the circuit generation algorithm. In our second set of experiments (larger problems
with simplex Newton polytopes) it was easy to find an initial set of circuits, and started with Phase
II. In the circuit generation steps, we added every promising circuit identified (up to one circuit for
each monomial that is not a vertex of the Newton polytope).

The linear optimization problems used in circuit generation were solved using Matlab’s built-in
linprog function with options that ensure that an optimal basic feasible solution is returned (and
not the analytic center of the optimal face).

7. Numerical experiments

The algorithm was tested on two sets of benchmark problems. These can be found in the online
repository https://github .com /dpapp -github /crup.

7.1. The Seidler–de Wolff benchmark problems

The first set of instances the algorithm was tested on were problems from the database of un-
constrained minimization benchmark problems accompanying the paper (Seidler and de Wolff, 2018).
Each instance is a polynomial generated randomly in a way that the polynomial is guaranteed to have
a lower bound and a prescribed number of unknowns, degree, and cardinality of support (number of
monomials with nonzero coefficients). Since this database is enormous (it has over 30 000 instances),
we opted to use only the largest and most difficult instances: the ones with general (not simplex)
Newton polytopes and 500 monomials in their support. There are 438 such instances; the number of
unknowns n in these instances ranges from 4 to 40, the degree d between 6 and 60. These are indeed
very sparse polynomials, the dimensions

(n+d
d

)
of their corresponding spaces of “dense” polynomials

ranges from 8008 to 6 · 1025.
All experiments were run using Matlab 2017b on a Dell Optiplex 7050 desktop with a 3.6 GHz

Intel Core i7 CPU and 32 GB RAM.
Fig. 1 shows the histogram of the total number of circuit generation iterations in Phase I and

Phase II combined. The smallest possible value is therefore 2 (in the case when the initial set of
258

https://github.com/dpapp-github/crup

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
Fig. 1. Histogram of the total number of circuit generation iterations for the largest instances of the Seidler–de Wolff instances.
(438 instances; each with 500 monomials, with a varying number of unknowns and degree.) The smallest possible value is 2
(one Phase I iteration and one Phase II iteration). Most instances were solved in two or three iterations.

circuits is optimal). The histogram shows that in the vast majority of these instances no more than
1 additional iteration was needed, that is, all necessary circuits were either among the initial ones,
or were identified in the first circuit generation step of Phase II. Correspondingly, the scatterplot in
Fig. 2 shows that most of the instances could be solved under a minute, and that the total num-
ber of circuits needed to certify the optimal bound was under 1000. (Recall that the initial set of
circuits is below | supp(f)| = 500.) It is perhaps interesting to note that even in the “hardest” in-
stance, the algorithm generated fewer than 4500 circuits before the optimal bound was found. This
was the only instance where the total running time exceeded one hour; most instances were solved
under one minute, and nearly all of them under 5 minutes. There was no discernible pattern in-
dicating what made the difficult instances difficult. In particular, the number of unknowns and the
degree alone are not good predictors of the number of circuits or the number of circuit generation
iterations.

The optimal solutions or the best known lower bounds are not available in the database. However,
upper bounds on the minima of the polynomials can be computed using multi-start local optimiza-
tion. For simplicity and reproducibility, we used the NMinimize function in Mathematica (version
11.3) with default settings to compute approximate minimizers for each of the 438 instances. As the
histogram of optimality gaps in Fig. 3 shows, the computed SONC bounds were near-optimal for each
instance. This is somewhat surprising, and merits further investigation, as it is in general not guar-
anteed that a polynomial that is bounded from below has a SONC bound at all; one certainly cannot
expect that this bound will always be close to (or equal to) the infimum of the polynomial. Similarly,
it cannot be hoped that the local minimum returned by Mathematica is a global minimum. Never-
theless, in each of these instances, the SONC bound was within 1.2% of the global minimum of the
polynomial, and with the exception of 46 instances (=10.5%), the relative optimality gap was within
10−6.

7.2. Larger instances

The second set of instances were generated in a somewhat similar fashion as those in the previous
set, but the parameters were increased to test the limits of our approach (in particularly, increasing
the size of the support above 500). The instances for this experiment were polynomials of degree
d = 8 with n = 25 unknowns. The random supports and coefficients were generated in the following
259

Fig. 2. Scatter plot of the number of circuits in the final iteration of the algorithm and the total running time of the algorithm
for the Seidler–de Wolff instances, shown on a logarithmic scale for better visibility. Each dot represents an instance. Since the
number of iterations was uniformly small for most instances, the running times and the final number of circuits correlate well.
Most instances were solved under a minute, and nearly all of them under 5 minutes. One instance took over an hour to solve.

manner: the constant monomial and the monomials xdi were given random integer coefficients be-
tween 1 and 5, then a random subset of monomials with componentwise even exponents with total
degree less than d were selected (without replacement) and given a random non-zero integer coeffi-
cient between −5 and 5. The size of the support was varied in 5% increments up to the maximum of
3301 (the number of componentwise even 25-variate monomials with total degree less than d = 8).

Generating the instances in this fashion achieves the following: (1) it is clear a priori that the
polynomials can be bounded from below; (2) the Newton polytope New(f) is known in advance (an
(n + 1)-simplex whose vertices correspond to the monomials 0 and xd1, . . . , x

d
n); (3) Phase I can be

skipped, and Phase II can be started with an easily computable set of circuits: every exponent in
supp(f) \ V is the inner exponent of exactly one initial circuit whose outer exponents are appropriate
vertices of the simplex Newton polytope.

Componentwise even monomials were chosen to maximize the number of circuits that can be
formed by points in the support and thus make the problems more challenging. (Every exponent of
the support other than the vertices of the Newton polytope can be an inner or outer monomial of
a number of circuits.) One can also think of the lower bounding of these polynomials over Rn as
problems of bounding polynomials f of degree 4 over the nonnegative orthant by first applying the
change of variables zi ← w2

i and then bounding the polynomial w → f (w2) over Rn .
Each experiment was replicated 10 times (that is, 10 randomly generated instances were solved

for each problem size) using the same software and hardware as in the first set of experiments.
Fig. 4 shows the distribution of running times for each problem size. The running time increases
fairly moderately (approximately cubically) as the number of monomials increases; it remained under
D. Papp Journal of Symbolic Computation 114 (2023) 246–266
260

D. Papp Journal of Symbolic Computation 114 (2023) 246–266

Fig. 3. Histogram of the relative optimality gaps obtained for the Seider–de Wolff instances. Surprisingly, the computed SONC
lower bounds were close to the optimal value for each instance. (Note the logarithmic scale on the vertical axis.) The majority
of the instances had an optimality gap of 10−6 or smaller; too small for the resolution of this picture.

Fig. 4. Box-whisker plot of total running times as a function of problem size from the second experiment. Problem size (horizon-
tal axis) is measured by the number of monomials. Each box represents results from 10 experiments with random polynomials
of the same size. A cubic function fitted to the mean values is also shown.
261

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
Fig. 5. Box-whisker plot of the ratio between the final number of circuits and the initial number of circuits as a function of
problem size from the second experiment. Problem size (horizontal axis) is measured by the number of monomials. Each box
represents results from 10 experiments with random polynomials of the same size. The ratio appears to increase only linearly.

1.5 hours for every instance. To see where the increase in running time comes from, in Fig. 5 we
plot the ratio between the number of circuits at the end of the circuit generation algorithm and
the number of initial circuits, and in Fig. 6 we plot the number of circuit generation iterations. The
ratio appears to increase only linearly with the initial number of monomials, showing that the circuit
generation algorithm is very effective in choosing the right circuits to add to the formulation out of
the exponentially many circuits. (We have no theoretical explanation for this.) Although the number
of circuit generation iterations increases with increasing problem sizes (as expected), this increase is
very slow (clearly sublinear); most instances were solved in fewer than 8 iterations. Fig. 7 shows the
evolution of the number of circuits for each instance as the algorithm progresses. In conclusion, most
of the increase in the running time with the increasing problem size is attributable to the increased
computational cost per iteration; that is, to the increased amount of time that it takes to solve each
instance of the primal-dual pair of optimization problems (14)-(16) in each iteration.

8. Discussion

The computational results confirm that the proposed approach is well-suited for bounding sparse
polynomials even when the number of unknowns and the degree are fairly large. Theoretically, the
primary driver of the running time is the size of the support, which determines the number of cir-
cuits required for an optimal SONC decomposition. The number of circuit generation iterations also
appears to depend on the support size, but this dependence was surprisingly mild in all the experi-
ments. (This does not have an apparent theoretical support, but is in line with our experience with
column generation approaches in other settings.) Additionally, the dimension of the power cones (and
dual power cones) may depend on the number of unknowns, since each circuit may have up n + 1
outer exponents for polynomials with n unknowns. However, assuming that the support size and the
number of unknowns are fixed, the degree of the polynomials does not have an additional impact on
the time complexity of the algorithm.
262

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
Fig. 6. Box-whisker plot of the number of circuit generation iterations as a function of problem size from the second experiment.
Problem size (horizontal axis) is measured by the number of monomials. Each box represents results from 10 experiments with
random polynomials of the same size. The ratio appears to increase very slowly (sublinearly).

The second phase of the circuit generation approach finds the optimal SONC bound (and the cor-
responding circuits and SONC decomposition) once a SONC bound is known to exist from Phase I. The
first phase, however, does something slightly weaker than certifying the existence or non-existence of
a SONC bound: it finds circuits to prove a target lower bound if possible; in other words, for a given
polynomial f and constant c, it can decide whether f + c is SONC or not. If it is, it finds a SONC
decomposition of f + c, if it is not, it finds a (numerical) certificate of f + c being outside of SONC.
It is not clear how one would close this theoretical gap with a purely numerical method: we cannot
certify the non-existence of SONC bounds in general, since the set of polynomials with a finite SONC
lower bound is not closed. For instance, fε(z)

def= (1 + ε)z21 −2z1z2 + z22 −2z1 has a SONC lower bound
for every ε > 0 (because fε + 1/ε is SONC) but f0 does not have a SONC lower bound (because it is
not bounded from below). Practically, this means that we can run the first phase with a “large” value
of c and either conclude that a “useful” SONC bound does not exist (because f + c is not SONC) or
that f has a SONC lower bound (greater than −c); in the latter case Phase II can compute the optimal
SONC lower bound.

There are many possible extensions of the algorithm proposed in this paper. The theoretically most
straightforward one is to apply the same principle to general optimization problems in which the non-
negativity of an unknown polynomial appears as a constraint. Replacing the nonnegativity constraint
with a SONC constraint, this leads to optimization problems similar to the ones we considered, except
that every coefficient of the polynomials in question becomes a decision variable (rather than only
the constant term being an optimization variable), and the problem may have additional optimization
variables. A circuit generation procedure can be derived entirely analogously for problems of this type
as long as the additional optimization variables are related to the coefficients of the SONC polynomials
through linear constraints.

One may also use this approach to generate circuits for an optimal decomposition of a polynomial
into the sum of a SONC polynomial and a sum-of-squares (SOS) polynomial. Theoretically, neither
the SOS nor the SONC bound is always better than the other (bivariate counterexamples are easy to
263

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
Fig. 7. Diagram showing the number of circuits in each iteration for each instance of the second experiment. Most circuits are
added in the first few iterations of the algorithm, in which a new circuit is added for nearly each monomial; later iterations add
circuits more selectively. For most instances, several iterations add only a very small number of circuits. The objective function
values (not shown) also reveal that in these iterations the bound often does not improve, but the promising circuits need to be
added in order to certify the optimality of the bound.

find); a combined SOS+SONC bound would of course be at least as good as either of them. This is
not a straightforward computational problem, however, because SOS bounds are typically computed
using semidefinite programming algorithms, using software that cannot handle the power cone con-
straints used in our algorithm. However, the primal-dual algorithm and software used in this paper
(alfonso) had also been used earlier to efficiently compute SOS bounds for polynomials (Papp and
Yıldız, 2019a), implying that the same code could also be used to compute SOS+SONC bounds. The
most recent version (version 9) of the commercial conic optimization software Mosek (MOSEK ApS,
2019) also supports the simultaneous use of semidefinite and power cone constraints.

Should the number of circuits generated by the algorithm become prohibitively large, one may
consider an improved version of Algorithm 1 which does not only add new promising circuits but
also attempts to remove the unnecessary ones in each iteration. This problem did not arise in our ex-
periments (the number of circuits never increased above 10 times the number of circuits used in the
optimal SONC decomposition), hence we did not pursue this direction in the paper. We note however
that dropping all circuits not used in the last iteration may lead to cycling (the same circuits being
added again in the next iteration and than dropped again). An example of a constraint generation
algorithm for convex optimization that drops unnecessary cone constraints but safeguards against
cycling and could be adapted to our problem is (Mehrotra and Papp, 2014).

Lastly, we leave it for future work to implement an extension of the proposed method to a hybrid
symbolic-numerical method that generates rigorous global lower bounds and certificates that can be
verified in exact arithmetic from the numerical SONC decompositions computed by our algorithm.
Since the numerical method used in our implementation is a primal-dual interior-point approach that
computes a strictly interior feasible solution y∗ to the problem (16), it is a trivial matter to compute a
nearby rational feasible solution yrat to the same problem by componentwise rounding the numerical
vector y∗ to a close enough rational vector without violating any of the cone constraints. Finally, the
problem’s only equality constraint can be satisfied exactly by scaling yrat (although this does leave
264

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
a square root in the final symbolic solution). The resulting dual objective function value −fTyrat is a
rigorous global lower bound on f , close to the numerically obtained bound, whose correctness can
be verified in exact arithmetic by verifying the strict feasibility of yrat . The reconstruction of a primal
certificate, that is, a verifiable exact SONC decomposition by computing a rational feasible solution
(p1, . . . , pN) of the primal problem (15) from the near-optimal, and only near-feasible, numerical
solution is a more complicated matter.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported in this paper.

References

Blekherman, G., Parrilo, P.A., Thomas, R.R. (Eds.), 2013. Semidefinite Optimization and Convex Algebraic Geometry. MOS-SIAM
Series on Optimization, vol. 13. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

Chandrasekaran, V., Shah, P., 2016. Relative entropy relaxations for signomial optimization. SIAM J. Optim. 26, 1147–1173.
https://doi .org /10 .1137 /140988978.

Chares, R., 2009. Cones and interior-point algorithms for structured convex optimization involving powers and exponentials.
Ph.D. thesis. Université Catholique de Louvain.

Davis, M.M., Papp, D., 2021. Dual certificates and efficient rational sum-of-squares decompositions for polynomial optimization
over compact sets. arXiv:2105 .11369.

Dickinson, P.J.C., Gijben, L., 2014. On the computational complexity of membership problems for the completely positive cone
and its dual. Comput. Optim. Appl. 57, 403–415. https://doi .org /10 .1007 /s10589 -013 -9594 -z.

Dressler, M., Iliman, S., de Wolff, T., 2017. A Positivstellensatz for sums of nonnegative circuit polynomials. SIAM J. Appl. Algebra
Geom. 1, 536–555. https://doi .org /10 .1137 /16M1086303.

Dressler, M., Heuer, J., Naumann, H., de Wolff, T., 2020. Global optimization via the dual sonc cone and linear programming.
In: Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation. Association for Computing
Machinery, New York, NY, USA, pp. 138–145.

Dressler, M., Naumann, H., Theobald, T., 2021. The dual cone of sums of non-negative circuit polynomials. Adv. Geom. 21,
227–236. https://doi .org /10 .1515 /advgeom -2020 -0019.

Ghasemi, M., Marshall, M., 2012. Lower bounds for polynomials using geometric programming. SIAM J. Optim. 22, 460–473.
https://doi .org /10 .1137 /110836869.

Harrison, J., 2007. Verifying nonlinear real formulas via sums of squares. In: Schneider, K., Brandt, J. (Eds.), Theorem Proving in
Higher Order Logics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 102–118.

Henrion, D., Lasserre, J.B., 2003. GloptiPoly: global optimization over polynomials with Matlab and SeDuMi. ACM Trans. Math.
Softw. 29, 165–194. https://doi .org /10 .1145 /779359 .779363.

Iliman, S., de Wolff, T., 2016. Amoebas, nonnegative polynomials and sums of squares supported on circuits. Res. Math. Sci. 3,
9. https://doi .org /10 .1186 /s40687 -016 -0052 -2.

Kaltofen, E., Li, B., Yang, Z., Zhi, L., 2008. Exact certification of global optimality of approximate factorizations via rationalizing
sums-of-squares with floating point scalars. In: Proceedings of the Twenty-First International Symposium on Symbolic and
Algebraic Computation. ACM, New York, NY, pp. 155–164.

Katthän, L., Naumann, H., Theobald, T., 2020. A unified framework of SAGE and SONC polynomials and its duality theory. Math.
Comput. 90, 1297–1322. https://doi .org /10 .1090 /mcom /3607.

Kojima, M., Kim, S., Waki, H., 2004. Sparsity in sums of squares of polynomials. Math. Program. 103, 45–62. https://doi .org /10 .
1007 /s10107 -004 -0554 -3.

Lasserre, J.B., 2001. Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817. https://
doi .org /10 .1137 /S1052623400366802.

Lasserre, J.B., 2006. Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J. Optim. 17, 822–843. https://
doi .org /10 .1137 /05064504x.

Löfberg, J., 2004. YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the 2004 IEEE International
Conference on Robotics and Automation. Taipei, Taiwan, pp. 284–289. https://yalmip .github .io/.

Magron, V., Safey El Din, M., 2018. On exact Polya and Putinar’s representations. In: ISSAC’18: Proceedings of the 2018 ACM
International Symposium on Symbolic and Algebraic Computation. ACM, New York, NY, USA, pp. 279–286. http://arxiv.org /
abs /1802 .10339.

Magron, V., Wang, J., 2021. SONC Optimization and Exact Nonnegativity Certificates via Second-Order Cone Programming. Tech-
nical report. https://arxiv.org /abs /2012 .07903.

Magron, V., Allamigeon, X., Gaubert, S., Werner, B., 2015. Formal proofs for nonlinear optimization. J. Formaliz. Reason. 8, 1–24.
https://doi .org /10 .6092 /ISSN.1972 -5787 /4319. http://jfr.unibo .it /article /view /4319.

Magron, V., Seidler, H., de Wolff, T., 2019. Exact optimization via sums of nonnegative circuits and arithmetic-geometric-mean-
exponentials. In: Proceedings of the ISSAC ’19, pp. 291–298.

Mehrotra, S., Papp, D., 2014. A cutting surface algorithm for semi-infinite convex programming with an application to moment
robust optimization. SIAM J. Optim. 24, 1670–1697. https://doi .org /10 .1137 /130925013.
265

http://refhub.elsevier.com/S0747-7171(22)00035-9/bib99DEA1A11ABE90D1520224B5AB974863s1
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib99DEA1A11ABE90D1520224B5AB974863s1
https://doi.org/10.1137/140988978
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib2C5948881610B42CF17434ED83DA46C6s1
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib2C5948881610B42CF17434ED83DA46C6s1
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib1B1BD26CC63495A09A253D8BC47BC69Cs1
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib1B1BD26CC63495A09A253D8BC47BC69Cs1
https://doi.org/10.1007/s10589-013-9594-z
https://doi.org/10.1137/16M1086303
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib9670AA5AFF7C8FAF729988C3EB6FDAE8s1
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib9670AA5AFF7C8FAF729988C3EB6FDAE8s1
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib9670AA5AFF7C8FAF729988C3EB6FDAE8s1
https://doi.org/10.1515/advgeom-2020-0019
https://doi.org/10.1137/110836869
http://refhub.elsevier.com/S0747-7171(22)00035-9/bibA93A9A53E7D249FD2498321D8ABD62FAs1
http://refhub.elsevier.com/S0747-7171(22)00035-9/bibA93A9A53E7D249FD2498321D8ABD62FAs1
https://doi.org/10.1145/779359.779363
https://doi.org/10.1186/s40687-016-0052-2
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib664619AC07D5F68BC84F2FCF231DB135s1
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib664619AC07D5F68BC84F2FCF231DB135s1
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib664619AC07D5F68BC84F2FCF231DB135s1
https://doi.org/10.1090/mcom/3607
https://doi.org/10.1007/s10107-004-0554-3
https://doi.org/10.1007/s10107-004-0554-3
https://doi.org/10.1137/S1052623400366802
https://doi.org/10.1137/S1052623400366802
https://doi.org/10.1137/05064504x
https://doi.org/10.1137/05064504x
https://yalmip.github.io/
http://arxiv.org/abs/1802.10339
http://arxiv.org/abs/1802.10339
https://arxiv.org/abs/2012.07903
https://doi.org/10.6092/ISSN.1972-5787/4319
http://jfr.unibo.it/article/view/4319
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib4D7BE7BBA26A083184958FD397CC8C4Fs1
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib4D7BE7BBA26A083184958FD397CC8C4Fs1
https://doi.org/10.1137/130925013

D. Papp Journal of Symbolic Computation 114 (2023) 246–266
MOSEK ApS, 2019. MOSEK optimization suite release 9.1.5. https://docs .mosek.com /9 .1 /intro .pdf.
Murray, R., Chandrasekaran, V., Wierman, A., 2021. Newton polytopes and relative entropy optimization. Found. Comput.

Math. 21, 1703–1737. https://doi .org /10 .1007 /s10208 -021 -09497 -w.
Nesterov, Y., 2000. Squared functional systems and optimization problems. In: Frenk, H., Roos, K., Terlaky, T., Zhang, S. (Eds.),

High Performance Optimization. In: Applied Optimization, vol. 33. Kluwer Academic Publishers, Dordrecht, pp. 405–440.
Papp, D., Yıldız, S., 2019a. Sum-of-squares optimization without semidefinite programming. SIAM J. Optim. 29, 822–851. https://

doi .org /10 .1137 /17M1160124.
Papp, D., Yıldız, S., 2019b. alfonso: ALgorithm FOr non-symmetric optimization. https://github .com /dpapp -github /alfonso.
Papp, D., Yıldız, S., 2021. alfonso: Matlab package for nonsymmetric conic optimization. INFORMS J. Comput. 34 (1), 11–19. URL:

https://arxiv.org /abs /2101.04274.
Parrilo, P.A., 2000. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization.

Ph.D. thesis. California Institute of Technology.
Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.A., 2004. SOSTOOLS: sum of squares optimization toolbox for MATLAB.

http://www.cds .caltech .edu /sostools.
Riener, C., Theobald, T., Andrén, L.J., Lasserre, J.B., 2013. Exploiting symmetries in SDP-relaxations for polynomial optimization.

Math. Oper. Res. 38, 122–141. https://doi .org /10 .1287 /moor.1120 .0558.
Rockafellar, R.T., 1970. Convex Analysis. Princeton University Press, Princeton, NJ.
Seidler, H., de Wolff, T., 2018. An experimental comparison of SONC and SOS certificates for unconstrained optimization. arXiv

preprint arXiv:1808 .08431.
Shor, N.Z., 1987. An approach to obtaining global extremums in polynomial mathematical programming problems. Cybernet-

ics 23, 695–700.
Wang, J., 2019. Nonnegative polynomials and circuit polynomials. arXiv preprint arXiv:1804 .09455.
Wang, J., Magron, V., Lasserre, J.B., 2021. TSSOS: a moment-SOS hierarchy that exploits term sparsity. SIAM J. Optim. 31, 30–58.

https://doi .org /10 .1137 /19M1307871.
266

https://docs.mosek.com/9.1/intro.pdf
https://doi.org/10.1007/s10208-021-09497-w
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib6AC07553F8EC42BA0DEE5E69D01D59FBs1
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib6AC07553F8EC42BA0DEE5E69D01D59FBs1
https://doi.org/10.1137/17M1160124
https://doi.org/10.1137/17M1160124
https://github.com/dpapp-github/alfonso
https://arxiv.org/abs/2101.04274
http://refhub.elsevier.com/S0747-7171(22)00035-9/bibCC700C4384E809FC6BA1D3924385B690s1
http://refhub.elsevier.com/S0747-7171(22)00035-9/bibCC700C4384E809FC6BA1D3924385B690s1
http://www.cds.caltech.edu/sostools
https://doi.org/10.1287/moor.1120.0558
http://refhub.elsevier.com/S0747-7171(22)00035-9/bibB3FEE42D594C247400F34081B712B3EEs1
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib2C03C869FACAB6E8A3A9FE075603444Es1
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib2C03C869FACAB6E8A3A9FE075603444Es1
http://refhub.elsevier.com/S0747-7171(22)00035-9/bibB6EF06A2C233601AC16636FB38F560D8s1
http://refhub.elsevier.com/S0747-7171(22)00035-9/bibB6EF06A2C233601AC16636FB38F560D8s1
http://refhub.elsevier.com/S0747-7171(22)00035-9/bib39B0888669CF6D30AB651A45B98FDA47s1
https://doi.org/10.1137/19M1307871

	Duality of sum of nonnegative circuit polynomials and optimal SONC bounds
	1 Introduction
	2 Preliminaries
	3 SONC decompositions and optimization over power cones
	4 Support of SONC decompositions
	5 Optimal SONC bounds and circuit generation
	6 Implementation
	7 Numerical experiments
	7.1 The Seidler--de Wolff benchmark problems
	7.2 Larger instances

	8 Discussion
	Declaration of competing interest
	References

