
Alfonso: Matlab Package for Nonsymmetric Conic Optimization
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Abstract. We present alfonso, an open-source Matlab package for solving conic optimiza-
tion problems over nonsymmetric convex cones. The implementation is based on the
authors’ corrected analysis of a method of Skajaa and Ye. It enables optimization over any
convex cone as long as a logarithmically homogeneous self-concordant barrier is available
for the cone or its dual. This includes many nonsymmetric cones, for example, hyperbolicity
cones and their duals (such as sum-of-squares cones), semidefinite and second-order cone
representable cones, power cones, and the exponential cone. Besides enabling the solution
of problems that cannot be cast as optimization problems over a symmetric cone, algorithms
for nonsymmetric conic optimization also offer performance advantages for problems
whose symmetric cone programming representation requires a large number of auxiliary
variables or has a special structure that can be exploited in the barrier computation. The
worst-case iteration complexity of alfonso is the best known for nonsymmetric cone optimi-
zation:O( ��

ν
√

log(1=ε)) iterations to reach an ε-optimal solution, where ν is the barrier param-
eter of the barrier function used in the optimization. Alfonso can be interfaced with aMatlab
function (supplied by the user) that computes the Hessian of a barrier function for the cone.
A simplified interface is also available to optimize over the direct product of cones for which
a barrier function has already been built into the software. This interface can be easily ex-
tended to include new cones. Both interfaces are illustrated by solving linear programs. The
oracle interface and the efficiency of alfonso are also demonstrated using an optimal design
of experiments problem in which the tailored barrier computation greatly decreases the so-
lution time compared with using state-of-the-art, off-the-shelf conic optimization software.
Summary of Contribution: The paper describes an open-source Matlab package for opti-
mization over nonsymmetric cones. A particularly important feature of this software is
that, unlike other conic optimization software, it enables optimization over any convex
cone as long as a suitable barrier function is available for the cone or its dual, not limiting
the user to a small number of specific cones. Nonsymmetric cones for which such barriers
are already known include, for example, hyperbolicity cones and their duals (such as sum-
of-squares cones), semidefinite and second-order cone representable cones, power cones,
and the exponential cone. Thus, the scope of this software is far larger thanmost current conic
optimization software. This does not come at the price of efficiency, as the worst-case iteration
complexity of our algorithm matches the iteration complexity of the most successful interior-
point methods for symmetric cones. Besides enabling the solution of problems that cannot be
cast as optimization problems over a symmetric cone, our software can also offer perfor-
mance advantages for problems whose symmetric cone programming representation re-
quires a large number of auxiliary variables or has a special structure that can be exploited in
the barrier computation. This is also demonstrated in this paper via an example in which our
code significantly outperformsMosek 9 and SCS 2.
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1. Introduction
We present alfonso, an open-source, Octave-compatible
Matlab package for solving optimization problems over
(not necessarily symmetric) convex cones. More precise-
ly, alfonso can be used to solve primal-dual pairs of opti-
mization problems of the form

minimize
x∈Rn

cTx

subject to Ax � b

x ∈ K

(P)

maximize
s∈Rn, y∈Rm

bTy

subject to ATy + s � c
s ∈ K∗,

(D)

where K is a full-dimensional, pointed, closed, convex
cone and K∗ is its dual. The only additional assump-
tion K needs to satisfy is that an efficient algorithm to
compute the gradient and the Hessian of some logarithmi-
cally homogeneous self-concordant barrier function of K is
available (see Section 1.1). As an automatic generaliza-
tion, it is also sufficient to have such a barrier function
for only the dual cone K∗, because we can apply alfonso
to the dual problem. A feasible initial point is not re-
quired, only an initial point in the interior of K.

We may assume without loss of generality that
rank(A) �m. If rank(A) <m, then depending on whether
b ∈ range(A) or not, either the equality constraints in the
primal problem are inconsistent or some of the equalities
are redundant and can be removed.

The set of problems alfonso can solve includes
optimization over many nonsymmetric cones of great
interest, for example, hyperbolicity cones of efficiently
computable hyperbolic polynomials (Renegar 2004) and
their duals, sum-of-squares cones (Blekherman et al.
2013, chapter 3), Lp cones (Glineur and Terlaky 2004)
and other flavors of (generalized) power cones (Roy
and Xiao 2018), and the exponential cone (Chares 2009).

To maximally take advantage of this level of gener-
ality, alfonso can be interfaced directly with a function
handle to a membership and barrier function oracle, a
Matlab function that computes whether a given point
is in the interior of the cone and for interior points
computes the gradient and Hessian of an appropriate
barrier function. For convenience, we have also created
a simplified interface that allows the user to specify K
as the direct product of known cones for which alfonso
already has oracles implemented. Through this inter-
face, alfonso is easily extensible: the barrier function of
any cone may be implemented and then added to the
list of cones accepted by this interface, by adding only a
few additional lines to alfonso’s source code.

To our knowledge, there are very few other soft-
ware for nonsymmetric conic optimization and even
fewer that can be extended by the user to allow for

optimization over new cones. SCS (O’Donoghue et al.
2016) is a first-order, operator splitting method that
can solve conic optimization problems over any cone
that is easy to orthogonally project to and currently
supports the exponential and power cones in addition
to symmetric cones. ECOS (Domahidi et al. 2013) is a
second-order cone programming software whose lat-
est version also handles exponential cone constraints.
DDS (Karimi and Tunçel 2019) is a recent convex
optimization solver that can solve a wide variety of
problems that have no known representations as sym-
metric cone programs but with an entirely different
approach to domain definition. Hypatia is a recently
announced nonsymmetric cone optimization solver
written in Julia, based on a similar algorithm
as alfonso (Coey et al. 2020); but at the time of writing
this paper, the code does not appear to be publicly
available.1 In the commercial domain, Mosek 9 is ca-
pable of solving conic optimization problems with
any combination of symmetric, exponential, and pow-
er cone constraints (Mosek ApS 2019); but it is neither
open source nor extensible with new cones.

Besides enabling the solution of problems that cannot
be cast as optimization over a symmetric cone, algo-
rithms for nonsymmetric conic optimization can also of-
fer performance advantages for problems that can be
written as optimization problems over symmetric cones.
This is the case, for example, when the equivalent repre-
sentation as an optimization problem over a symmetric
cone requires an extended formulation with a large
number of auxiliary variables or when the representation
has some special structure that all-purpose optimization
software often do not take advantage of, such as Hankel,
Toeplitz, or low-rank structures in semidefinite program-
ming. An example of a family of optimization problems
that greatly benefit from a nonsymmetric cone optimiza-
tion approach is sum-of-squares optimization; this applica-
tion was the initial motivation for the development
of alfonso (Papp and Yıldız 2019). In Section 3, we dem-
onstrate another application in which alfonso is several
orders of magnitude more efficient than the straightfor-
ward semidefinite programming approach. Additional
complex examples with extensive computational results
comparing an earlier version of the code with state-of-
the-art off-the-shelf interior-point solvers can be found
in the authors’ recent work on polynomial optimization
(Papp 2019, Papp and Yıldız 2019).

The implementation is based on an interior-point
method (IPM) originally proposed by Skajaa and Ye
(2015) and subsequently improved by the authors
(Papp and Yıldız 2017). The iteration complexity of
the method matches the iteration complexity of popu-
lar algorithms for symmetric cone optimization.

The source code can be found in the supplemental
material and is available for download at https://
github.com/INFORMSJoC/2021.1058.
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1.1. Mathematical Background

Definition 1 (Proper Cone). We say that a set K ⊆ R
n is

a cone provided that for every x ∈ K and λ ≥ 0 we also
have λx ∈ K. A cone is proper if it satisfies all of the fol-
lowing: it is closed, convex, has a nonempty interior,
and does not contain a line.

Aside from closedness and convexity, the remain-
ing assumptions on K are essentially without loss of
generality in the sense that every finite-dimensional
closed convex optimization problem can be equiva-
lently written in the form of (P) with an appropriate
choice of the full-row-rank matrix A, vectors b, c, and
the proper cone K.

Definition 2 (Logarithmically Homogeneous Self-Con-
cordant Barrier Function, LHSCB). Let K◦ denote the in-
terior of K. A function f : K◦ 	→ R is a barrier function if
f (xi) →∞ for every sequence x1,x2, : : : of points xi ∈ K◦
converging to a boundary point of K. A barrier is self-
concordant if it is convex, three times continuously dif-
ferentiable, and if for every x ∈ K◦ and h ∈ R

n the in-
equality |D3f (x)[h,h,h]| ≤ 2D2f (x)[h,h]3=2 holds. The
self-concordant barrier f is called logarithmically homo-
geneous if there exists a scalar ν such that for every x ∈
K◦ and t > 0 we have f (tx) � f (x) − ν ln t: The scalar ν is
called the barrier parameter of K.

As a shorthand, we say that f is a ν-LHSCB for K if f
is a logarithmically homogeneous self-concordant bar-
rier whose domain is the interior of a proper convex
cone K and if the barrier parameter of f is ν. For the in-
terested reader, the monograph from Nesterov and
Nemirovskii (1994) provides a comprehensive treat-
ment of LHSCBs. Renegar’s treatment (Renegar 2001)
of the subject is also excellent. Many fundamental
cones in the application of convex optimization have
known and easily computable LHSCBs.

Example 1. The following examples are proper con-
vex cones with the additional property that either the
cone or its dual has a known LHSCB with easily com-
putable derivatives. Only the first three cones are
symmetric; the remaining ones are not.

Example 1.1. The function f (x) � −lnx is an LHSCB
for R+, and more generally f (x) � −∑n

i�1lnxi is an n-
LHSCB for Rn

+.

Example 1.2. The function

f (x) � −ln x20 −
∑n
i�1

x2i

( )

is a two-LHSCB for the second-order cone

Qn+1 �def{(x0, : : : , xn) | x0 ≥ ||(x1, : : : , xn)||}:
Note that its barrier parameter is independent of the
dimension n.

Example 1.3. The function

f (X) � −ln det X

is an n-LHSCB for the cone of n × n positive semide-
finite real symmetric matrices.

Example 1.4. The exponential cone is the three-dimen-
sional cone

E �def cl({x ∈ R
2
+ × R | x1 > x2ex3=x2}):

The function

f (x) � −ln(x1) − ln(x2) − ln(x2ln(x1=x2) − x3)
is a three-LHSCB for this cone (Chares 2009, chapter 2).

Example 1.5. Suppose λ � (λ1, : : : ,λn) ∈ R
n satisfies

λi > 0 for each i and
∑n

i�1λi � 1. Then the (generalized)
power cone with signature λ is the convex cone defined
as

Pλ �def (x,z) ∈ R
n
+ × R

∣∣∣∣ |z| ≤∏n
i�1

xλi
i

{ }
: (1)

The function

f (x, z) � −ln ∏n
i�1

x2λi
i − z2

( )
−∑n

i�1
(1 − λi)ln(xi)

is an (n+ 1)-LHSCB for this cone. This was first prov-
en by Roy and Xiao (2018), who also study a number
of related cones. The dual cone of Pλ is identical to
the cone known in algebraic geometry as the sum of
nonnegative circuit polynomials cone (Iliman and de
Wolff 2016).

Example 1.6. A homogeneous n-variate polynomial
h of degree d is said to be hyperbolic with respect to the
point e ∈ R

n if h(e) > 0 and if for every x ∈ R
n, the uni-

variate polynomial h(x+ te) has only real roots. The
corresponding hyperbolicity cone is the set

Λ+
h,e �def{x ∈ R

n | h(x+ te) > 0 ∀t > 0}:
It can be shown that Λ+

h,e is a proper convex cone
for which −lnh(·) is a d-LHSCB (Güler 1997). Because
the determinant is a hyperbolic polynomial (with re-
spect to the identity matrix) whose hyperbolicity
cone is the semidefinite cone, optimization over hy-
perbolicity cones is a generalization of semidefinite
programming.

Example 1.7. If K1, : : : ,Kk are proper convex cones in
R

n whose interiors have a nonempty intersection and
fi is a νi-LHSCB for Ki (i � 1, : : : , k), then

∑k
i�1fi is a

ν-LHSCB for the intersection ∩k
i�1 Ki, with barrier pa-

rameter ν � ∑k
i�1νi.

Example 1.8. If K1 ⊆ R
n1 , : : : ,Kk ⊆ R

nk are proper con-
vex cones and fi is a νi-LHSCB for Ki (i � 1, : : : ,k), then
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∑k
i�1fi is a ν-LHSCB for the product cone K1 ×⋯ × Kk,

with barrier parameter ν � ∑k
i�1νi.

Example 1.9. Let K ⊆ R
n be a proper convex cone with

an LHSCB f and L be a linear subspace of Rn that in-
tersects K◦. Then f |L, the restriction of f to the subspace
L, is an LHSCB for K ∩ L. Denoting the orthogonal
projection matrix onto L by PL, the gradient and Hes-
sian of this barrier function are PL�f (x) and
PL�2f (x)PL, respectively.

In a different notation, if K ⊆ R
m is a proper convex

cone with an LHSCB fK and A ∈ R
m×n is a matrix

whose range space intersects K◦, then the cone

C � {x ∈ R
n | Ax ∈ K}

is a proper convex cone and fC(x) � fK(Ax) is an
LHSCB for C whose gradient and Hessian are easily
computable from the gradient and Hessian of fK. A no-
table special case is when K is the positive semidefin-
ite cone; sets C that can be written in this form are
called spectrahedral cones (Blekherman et al. 2013, chap-
ter 2).

Examples of spectrahedral cones that benefit from a
nonsymmetric cone optimization approach include
the epigraph of the spectral norm (Nesterov and
Nemirovskii 1994, proposition 5.4.6), also known as
the spectral norm cone, and the cone of sum-of-squares
polynomials, for which the LHSCB inherited from
semidefinite programming is particularly efficiently
computable when the polynomials are represented in
an interpolant basis (Papp and Yıldız 2019).

Example 1.9 is particularly notable because even
though we have easily computable LHSCBs for these
cones, there does not appear to be any straightforward
way to construct easily computable barrier functions
for their dual cones. Additional techniques to con-
struct LHSCBs for convex cones from known LHSCBs
of simpler cones can be found in Nesterov and Nemir-
ovskii (1994, chapter 5).

1.2. The Algorithm and Its Complexity
The implementation is based on an IPM applied to a
homogeneous self-dual embedding of (P)-(D) that was
originally proposed by Skajaa and Ye (2015) and
subsequently improved by the authors. We refer the
reader to Papp and Yıldiz (2017) for the details of the
algorithm and its analysis and Papp and Yıldız (2019,
section 2) for a brief summary.

This method is one of the theoretically most effi-
cient algorithms applicable to nonsymmetric cone
programming; its worst-case iteration complexity
matches the iteration complexity of successful IPMs
for symmetric cones. The main convergence and com-
plexity result from our analysis (Papp and Yıldız
2019, proposition 2.1) can be summarized as follows:
the number of iterations and number of calls to the

membership and barrier function oracle required to
reduce the primal and dual infeasibility and comple-
mentarity metrics to ε times their initial value are
O( ��

ν
√

log(1=ε)), where ν is the barrier parameter of the
barrier function. For most cones, this means
O( ��

n
√

log(1=ε)) iterations and oracle calls.

2. Interfaces
2.1. Installation
Alfonso is entirely written in Matlab m-code and is
thus portable and easy to install: unzip the down-
loaded files in any directory and add the alfonso
directory to the Matlab (or Octave) path. Some of the
examples that are not detailed in this paper require
additional packages.

2.2. Input Interfaces
An instance of the optimization Problem (P) can be
described by the problem data (A,b,c) and the cone
K. Because of the level of generality alfonso is aimed
at, there are two ways to specify the cone when inter-
facing with the code.

2.2.1. The Oracle Interface. The cone K can be speci-
fied using a membership and barrier function oracle,
which is a subroutine with the following signature:

1function[in,g,H,L]� oracle(x,bParams)

The first input argument x represents the primal
vector x, which is the oracle’s input.

The second argument bParams is an optional
one that can be used to specify other parameters for
the barrier function. For example, if oracle im-
plements an LHSCB for the generalized power cone
with signature k (recall Example 1.5), then it is con-
venient to pass k as a parameter. If necessary, mul-
tiple parameters that cannot be conveniently passed
as a single vector can be passed using a struct for
bParams.

If f denotes the LHSCB implemented in oracle,
then the four outputs of the oracle are

• in: a Boolean flag that is true if x ∈ K◦ and
false otherwise.

• g: a vector whose value is the gradient �f (x) if
x ∈ K◦. Its value is ignored otherwise.

• H: a matrix whose value is the Hessian �2f (x) if
x ∈ K◦. Its value is ignored otherwise.

• L: a lower triangular Cholesky factor of the
Hessian.

Alfonso frequently calls the oracle with only the
first or the first two output arguments. Unless all out-
put parameters can be computed very efficiently, it is
highly recommended that the oracle only computes
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the necessary output arguments, using Matlab’s
nargout feature.

If H or L is sparse, they should be computed as
sparse matrices. The Cholesky factor can often be
determined in closed form; otherwise one may always
resort to the following generic code snippet to com-
pute L fromH:

ifnargout > 3
[L,err] � chol(H,‘lower’);
iferr > 0
in � false;g � NaN;H � NaN;L �NaN;
return;

end
end

Lastly, alfonso needs a starting point for the optimi-
zation. Only a primal initial point is needed, in the in-
terior of K; alfonso automatically computes an initial
primal-dual iterate on the central path.

Having all of this ready, the optimization problem
can be solved by calling

alfonso(probData,x0,@oracle,
bParams,opts)

The first argument is a Matlab struct with three
mandatory fields, A, b, and c; it contains the prob-
lem data. The second argument is the initial point.
The third is a function handle to the membership and
barrier function oracle, whereas the fourth (optional)
argument is the parameter to be passed to the oracle
as its second argument.

The last optional argument opts is a structure
specifying the optimization options. See Section 2.4
for more details on algorithmic and other options and
Section 2.5 for a complete example of how an optimi-
zation problem can be set up and solved using this
interface.

2.2.2. The Simple Interface. The goal of the simple in-
terface is to facilitate the reuse of previously imple-
mented barrier functions. In the simple interface, the
cone is specified as a Cartesian product K1 ×⋯× Kk of
known cones Ki passed to alfonso as a Matlab cell ar-
ray of structures whose ith element describes Ki.

In the cone array K, each element K{i} has two
mandatory fields: K{i}.type, a string that speci-
fies the cone Ki, and K{i}.dim, a string that speci-
fies the dimension of the cone. The already built-in
cones include

• type � ’l’ or ’lp’ represents the nonnegative
orthant.

• type � ’soc’ or ’socp’ represents the second-
order cone.

• type � ’exp’ represents the exponential cone.
• type � ’gpow’ represents a generalized power

cone (defined in Example 1.5). The parameter k must
be specified in the field K{i}.lambda as an addi-
tional vector.

Deviating slightly from the theory, variables in
alfonso are allowed to be free, that is, not to be a mem-
ber of any cone. This can be specified using
K{i}.type � ‘free’. Free variables are handled
by placing them in a second-order cone using a single
additional dummy variable, which is a common strat-
egy in conic optimization attributed to Andersen
(2002) and is also used, for instance, in SeDuMi.

For example, the cell array

K{1}.type� ‘socp’; % second-ordercone
K{1}.dim � 10;
K{2}.type � ‘free’;% freevariables
K{2}.dim � 6;
K{3}.type�‘lp’; %nonnegative orthant
K{3}.dim � 10;
K{4}.type�‘exp’; %exponentialcone,
always3-dimensional

defines the cone K �Q10 × R
6 × R

10
+ × E.

When K is the Cartesian product of known cones, it
is not necessary to provide an initial point; alfonso
defaults to the concatenation of known, “central,” in-
terior points of these cones. The syntax of the simple
interface is

alfonso_simple(c,A,b,K,x0,opts)

where the first four arguments are as described above,
x0 is the optional initial point (that can be set to []
for the default value) and the also optional opts
argument is the same options structure as used in the
oracle interface. (See Section 2.4 for more details on
the options.)

2.3. Outputs
Regardless of which interface is used, alfonso returns a
single structure as a result with over 20 fields that con-
tain various diagnostic elements and information about
the optimization process in addition to the primal and
dual solutions. The comments in the header of alfonso.
m contain a detailed description of all of them; here we
only summarize the most important ones:

• status: an integer representing the solver status
when the solver stopped. Its value is one if an approxi-
mately optimal solution was found;

• statusString: the same information as status
but in a human-readable format

• x,s, and y: the final primal and dual iterates;

Papp and Yıldız: Alfonso: Matlab Package for Nonsymmetric Conic Optimization
INFORMS Journal on Computing, Articles in Advance, pp. 1–9, © 2021 INFORMS 5



• pObj and dObj: final primal and dual objective
function values;

• time: the solution (wall-clock) time in seconds.

2.4. Algorithmic and Other Options
Options for alfonso can be set using the optional last
argument to the alfonso() or alfonso_sim-
ple() function. This argument is a structure
(struct) with fields set to their desired values. Any
options not specified this way will take their default
values, which are detailed in the header of alfonso.m.
The options that the users are most likely to want to
change are the following:

• optimTol: optimality tolerance ε; default value:
1e-6;

• verbose: a Boolean flag controlling the output
level; default value: 1.

The remaining options adjust various parameters of
the algorithm (such as the line search procedure);
these are documented in the header of alfonso.m and
are omitted here, as changing them is only recom-
mended in very particular situations.

2.5. A Minimal Example: Solving
Linear Programs

In this section, we use the toy example of solving line-
ar programs in standard form to illustrate how prob-
lem data are structured for each of the two interfaces.
This example (with additional comments) is also in-
cluded in the package in the files random_lp.m and
random_lp_simple.m. Additional examples can be
found in the examples subdirectory of the code.

2.5.1. The Oracle Interface. To solve a linear program
using the oracle interface, the user must implement
a Matlab function that solves the membership prob-
lem and (for points in the interior) computes the
gradient and factors the Hessian of an LHSCB for
the nonnegative orthant K � R

n
+. For the nonnegative

orthant, we use the logarithmic barrier f given by
f (x) � −∑n

i�1ln(xi). A straightforward implementation

is shown on Figure 1. For efficiency, we use sparse
matrices. The second input argument of the barrier
function (that allows the passing of parameters) is
not used.

With the oracle gH_lp() ready, a linear program
in standard form, with problem data A, b, and c as in
(P), can be solved by simply calling

probData�struct(‘c’,c,‘A’,A,‘b’,b);
results� alfonso(probData,x0,@gH_lp);

where x0 is any componentwise positive initial point,
for example, the all-ones vector ones (n,1). The
optimal solution will be returned in results.x.

If any options are to be changed, the second line
needs to include the options structure. In the follow-
ing example, we decrease the optimality tolerance:

opts.optimTol � 1e-7;
results � alfonso(probData, x0, @gH_lp,
[],opts);

The empty list in the fourth argument is a place-
holder for the optional parameters to pass to the func-
tion gH_lp, which is not used in this example.

2.5.2. The Simple Interface. Using the simple interface,
the user only needs to represent the n-dimensional
nonnegative orthant in a cone structure (cell array) as
follows:

K{1} � struct(‘type’,‘lp’,‘dim’,n);
results � alfonso_simple(c, A, b, K, x0,
opts);

Note that using the simple interface, the fourth ar-
gument x0 may be replaced by [], in which case
alfonso will choose the default value (in this example,
the all-ones vector).

Figure 1. (Color online) AMembership and Barrier Function Oracle for Solving Linear Programs in Standard Form
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Figure 2. (Color online) AMembership and Barrier Function Oracle for the E-Optimal Design Example
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3. Numerical Illustration: Design of
Experiments

In this section, we illustrate the potential benefit of
customizable barrier computation for a semidefinite
representable problem using the example of optimal
design of experiments, comparing the performance of
alfonso to SCS 2.1.1 and Mosek 9.2.16. For the sake of
brevity, we shall forego the detailed description of the
statistical problem in order to focus on the formula-
tion of the relevant convex optimization problem,
which is stated as follows (Boyd and Vandenberghe
2004, section 7.5).

In the optimal design problem, the input data are a
(usually dense) matrix V ∈ R

n×p; we seek a vector x ∈
R

p that solves the following optimization problem:

maximize
x∈Rn

Φ(Vdiag(x)VT)
subject to 1Tx � 1

x ≥ 0

(2)

for some optimality criterion Φ that maps positive defi-
nite matrices to reals. (Implicit is the constraint that the
argument of Φ is a positive definite matrix.) Most opti-
mality criteria that are interesting from a statistical per-
spective are semidefinite representable in the sense of
Ben-Tal and Nemirovski (2001), implying that these
problems are solvable using semidefinite programming.
For example, the choice of Φ(M) � λmin(M) leads to an
E-optimal design; see Boyd and Vandenberghe (2004,
section 7.5.2) for a statistical interpretation.

Lower bound constraints on the smallest eigenvalue
of a matrixM can be cast in terms of a linear matrix in-
equality using the fact that

t ≤ λmin(M) ⇐⇒ M�tIn:

Because in our application M �Vdiag(x)VT is a linear
function of our decision variables x, Equation (2) can
be readily translated to a semidefinite program with
the help of an additional decision variable t and sub-
sequently solved by any semidefinite programming
solver. This is the formulation that we use with Mosek
and SCS.

Instead of this semidefinite programming ap-
proach, alfonso, equipped with a custom barrier ora-
cle implementation, can be used to solve Equation
(2) directly as an optimization problem over the non-
symmetric cone

KV �def (t, x) ∈ R × R
n
+ | t ≤ λmin(Vdiag(x)VT){ }

:

Figure 2 shows our implementation of the n-LHSCB
for this cone inherited from the semidefinite formula-
tion. This example is also included with alfonso in the
file e_design.m; it has been slightly reformatted here
to fit the page.

Table 1 shows the numerical results from a set of
synthetic instances of (2) with p � 2n and n ∈ {50,
200, : : : , 500}, using randomly generated matrices V.
Mosek and SCS were interfaced via Matlab. All com-
putational results were obtained on a standard desk-
top computer equipped with 32GB RAM and a 4-GHz
Intel Core i7 processor with four cores running using
Matlab R2017b for Windows 10. Alfonso’s optimality
tolerance was reduced to ε � 10−8 from the default 10−6
to match the accuracy of Mosek’s solutions. Mosek and
SCS were run using their default options except for in-
creasing the maximum number of iterations for SCS to
avoid early termination, tacitly acknowledging that as a
first-order method, SCS is designed and expected to
yield solutions with substantially lower accuracy than
the interior-point methods. The solutions returned by
SCS with its default tolerance settings correspond to ε ≈
10−3 in our stopping criterion. The complete code of
this example can be found in e_design.m.

In spite of returning lower-accuracy solutions, SCS
exceeded one hour in the solution of the larger prob-
lems. Alfonso was significantly faster than both
Mosek and SCS.

4. Discussion
Alfonso provides an easily usable and customizable, yet
efficient, open-source tool for conic optimization. Using
its oracle interface, researchers and practitioners can
solve optimization problems over nonsymmetric cones
that do not have a convenient representation in terms
of symmetric cone constraints. Additionally, as our last
example shows, it can even provide a significant speed-
up over state-of-the-art solvers in problems with a
straightforward, semidefinite programming formula-
tion by exploiting the problem’s structure and avoiding
the introduction of a large number of auxiliary varia-
bles. A key feature of the underlying algorithm is that

Table 1. Solver Statistics (Number of Iterations and Total
Solver Time in Seconds) from Alfonso, Mosek 9, and SCS 2
Solving the E-Optimal Design Problem (2)

Alfonso Mosek SCS
n Iter Time Iter Time Iter Time

50 48 0.46 10 0.52 3,080 2.30
100 55 1.37 11 2.80 9,340 45.23
150 49 1.51 11 12.24 18,800 270.51
200 46 2.15 11 33.71 20,540 640.21
250 51 5.36 13 92.88 40,320 2,387.81
300 44 4.41 10 155.84 >1 hr
350 50 9.25 11 304.98
400 46 7.94 11 521.45
450 57 20.70 12 908.56
500 51 12.85 12 1,420.50

Notes. Alfonso and Mosek returned solutions with tolerance ε � 10−8;
the accuracy of the SCS solutions is ε � 10−3. Missing values indicate
that the solver exceeded one hour. Iter, iteration.
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all of its parameters are generic, applicable to any con-
vex cone. Therefore, the user only needs to provide the
code to compute the derivatives of the barrier function
and a point in the interior of the cone.

4.1. Extending the Simple Interface
The simple interface currently supports a limited
number of nonsymmetric cones (mostly the same
ones as SCS and Mosek). New cones can be easily
added with minimal changes to the code, limited to a
single file alfonso_simple.m. Specifically, once the
membership and barrier function oracle is prepared
(as a separate Matlab file), the simple interface only
needs a pointer to the cone and an interior point, both
added in the form of a new line in a switch-case
structure.

Endnote
1 As of October 2020, Hypatia has been released.
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