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This paper presents an air traffic management framework to enable multiple fleets of unmanned aerial vehicles
to traverse dense, omni-directional air traffic safely and efficiently. The main challenge addressed here is
separation assurance in the absence of full coordination and communication. In this framework, each fleet
is independently managed by a routing agent, which progressively plans the non-overlapping move-ahead
corridors for vehicles in the fleet by solving a nonlinear optimization model. The model is artfully designed
so that agents of different fleets need not engage in complicated multilateral communications or make guesses
about external vehicles’ flight intents to maintain effective inter-vehicle separation. For a complex routing
problem, the framework is able to support centralized fleet routing, decentralized vehicle self-routing, and
any other agent-vehicle configuration in between, allowing for customized trade-off between response time
and traffic efficiency. Innovative algorithmic enhancements for solving the agent’s nonconvex routing problem
are prescribed with detailed annotation. The effectiveness and noteworthy properties of the framework are
demonstrated by several simulation experiments.

1. Introduction be highly dynamic and uncertain. Therefore, even a simple mission
such as going from point A to point B as is the case for most delivery
scenarios, is unlikely to be warranted an obstacle-free straight-line path
from A to B at the most energy-efficient cruise speed. Compromises
such as delayed takeoff, in-flight rerouting, forced loitering and speed
adjustments have to be effectively arbitrated among different airspace
users, to achieve socially efficient and equitable outcomes. Many so-
phisticated methods in the literature focused on addressing segregated

conflict scenarios, serving as decision support tools for human aviators.

Unmanned aerial vehicles (UAVs or drones, also referred as un-
manned aircraft systems (UASs)) have been widely used in both mil-
itary and civilian domains. As of March 2020, over 1.5 million drones
have been registered with the Federal Aviation Administration (FAA),
about 30% of which are commercial drones. The increasingly congested
air traffic requires an appropriate level of coordination to balance the
needs of safety, efficiency and equity. Conventional air traffic control
approaches, which rely on human-level response and dexterity, are

unable to cope with the unprecedented density and complexity of
unmanned air traffic. In the future-generation UAS traffic management
(UTM) paradigm, automation will be a central theme. The role of
mathematical optimization is expected to shift from providing decision
support for human operators to making real-time control decisions and
seeing through their execution on robotic platforms in complex and
uncertain environments.

To achieve the most efficient use of the airspace, a UAS’s flight
intent should not simply be equated to a preemptive corridor lock for
an extended period of time or over an extended volume of airspace,
because doing so would undermine the airspace utilization. Compared
to manned flights, UAS flight missions will be more frequent and
more ad-hoc. Pre-departure flight path planning will not work unless
activities of other airspace users are also considered, which may also
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Recent regulatory and technological advancements suggest that the
need for a fully automated air traffic management system is imminent.

In this paper, we propose a routing optimization model to be used
independently by multiple routing agents that allows real-time dynamic
allocation of airspace volumes with robust mechanisms for conflict
resolution. Safety standards held equal, a traffic management system
built on this model can support more concurrent flights in a given
volume of airspace than what existing systems are capable of, thus
allowing more goods to be transported via automated aerial delivery.
The intended use of the proposed system is to serve as the software core
of an enterprise-serving USS under the NASA-developed UTM architec-
ture (Kopardekar et al., 2016; Prevot et al., 2016; Jiang et al., 2016;
Rios et al., 2020; McCarthy et al., 2020). It is also applicable to the
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Fig. 1. Concept of the enterprise UAS service supplier (USS) and semi-cooperative trajectory management adopting a multi-agent optimization framework. Topleft: Two USS-
controlled fleets operate in the same urban airspace. Bottomleft: The same traffic scenario is perceived differently by different USSs. Right: A screenshot of our USS iOS App

adopting the proposed framework.

airspace service provider (ASP) or the air navigation service provider
(ANSP) concepts touted by Google and Amazon (Google Inc., 2020;
Amazon, 2018), respectively. An enterprise-serving USS is an entity
in charge of the entire operation planning and control of the private
fleet owned by an organization, such as a drone delivery company or a
Drones-as-a-Service (DaaS) platform operator. Multiple USS operating
in the same or adjacent geographic region(s) will share information
through standard protocols and infrastructure, such as the Low Altitude
Authorization and Notification Capability (LAANC) under FAA’s UAS
Data Exchange, the Remote ID protocol being developed by FAA and
industry participants (Federal Aviation Administration, 2020), and the
Discovery and Synchronization Service (DSS) in accordance with ASTM
WK65041 (ASTM Subcommittee F38.02, 2020), see Fig. 1 for a concept
illustration. Different from most other multi-agent concepts where each
agent represents a single vehicle or robot, in the proposed system an
agent represents a USS executing central control over its own fleet of
UAVs. Multiple agents passively interact with each other via observing
(and reacting to) the motion of each other’s fleets. No complicated
inter-agent communication is required to achieve harmonious traffic
outcomes. UAVs within the same fleet are cooperative, while UAVs
across different fleets are semi-cooperative—they share the same goal
of maintaining safe separation but do not communicate flight intents
or negotiate rights of way as do UAVs managed by the same USS.
Central to the proposed system is a nonlinear nonconvex optimization
problem to be solved independently by each agent. A solution approach
leveraging commercial off-the-shelf solvers is shown to be effective for
a wide range of realistic scenarios.

2. Literature review

Many new patents have been filed in recent years to address the
traffic management challenges in anticipation of some unprecedented
air traffic density and heterogeneity in the near future. Kopardekar
(2019) proposed that a traffic management system can be managed by
a commercial business, an academic institution, a government agency,
or a combination thereof, depending on application scenarios. Such

a system is by nature decentralized and portable. Chan et al. (2016)
invented a toll system for airway usage in which aircraft are billed for
their access to the airspace corridors, which are expected to become
a scarce resource. Shaw et al. (2018) proposed to manage the use of
the airspace via a radio access network (RAN), which implements a
prioritized queuing system for drones requesting access to the airspace
managed by a RAN node. Klooster et al. (2014) proposed the concept
of fleet wide trajectory management systems to be installed at UAS
operation control centers, which remotely plan, modify, predict, and
manage an aerial vehicle’s trajectory in four-dimensional (4D) airspace.
In the patent by Dupray and LeBlanc (2020), several embodiments of
UAV flight path planning procedures were envisioned, including the
use of Dijkstra’s algorithm for finding shortest paths, assessing the
probability of trajectory conflicts before taking evasive maneuvers, and
electronically “chaining” multiple UAVs together so that the operator
only needs to directly control the lead vehicle while the other vehicles
in the chain follow the lead in a specified formation. Despite the variety
of new ideas, a quick search of the patent database indicated that
mathematical optimization had been scantly mentioned by inventors
in this space.

Optimization-based traffic management approaches have been, how-
ever, extensively studied in the academic literature. Frazzoli et al.
(2001) developed a nonconvex quadratically constrained quadratic pro-
gram to model the planar, multiaircraft conflict resolution problem. The
overall framework consisted of centralized decision making for safety
and decentralized preference optimization for efficiency, whereas the
optimization objective was to minimize the deviation between the
desired and conflict-avoiding heading for each aircraft. The authors
furthermore presented a semidefinite programming relaxation scheme
and a randomized search approach for resolving various local conflict
patterns. Zhang et al. (2012) proposed a hierarchical flight planning
framework that decomposes the process of seeking optimal paths for
all flights in the air into two interactive decision layers. The first layer
turns on/off air sectors available for use in the future time slots based
on existing flight plans and traffic condition, while the second layer
optimizes individual flight paths subject to the traffic rules set in the



Y. Liu

first layer. The first layer problem and multiple second layer problems
are in the form of dual decomposition of the centralized planning prob-
lem. Global optimality not being a main concern, this approach allows
large-scale flight planning problems to be modeled flexibly and solved
efficiently. Another two-level approach, which resulted in a large mixed
integer programming (MIP) model, was presented in Dell’Olmo and
Lulli (2003). Zhu and Wei (2019) developed a linear programming
based approach to compute pre-departure conflict-free trajectories for
autonomous aircraft. The idea of dynamic geofencing, i.e., a moving
volume of reserved airspace that absorbs various uncertainty, was
exploited. Tan et al. (2019) addressed the multi-drone route planning
problem via evolutionary optimization algorithms, in which the total
flight delay and collision possibility were minimized via a specially
designed fitness function. Mukherjee and Hansen (2009) developed
MIP models to support flight rerouting in response to reduced airport
capacity in the context of uncertain and evolving weather conditions.
The models suggested that making rerouting decisions dynamically
would result in 10 to 15 percent reduction in delay cost compared to
static rerouting. Pallottino et al. (2002) attempted to resolve trajectory
conflicts among multiple aircraft by formulating a velocity change
problem and a heading angle change problem separately, and used
MIP techniques to model the or-clauses in the constraint set. The
models aimed to generate a one-shot velocity or heading change so
that trajectories will not overlap for the rest of the flight time in the
area. To balance equity and efficiency in the presence of flight plan
conflicts, Barnhart et al. (2012) developed an integer programming
model to minimize a (un)fairness metric that measures the deviation
from the default priority (first come first serve) in the presence of con-
flicts. The authors concluded the paper by recognizing that introducing
optimization into the FAA’s practices had been a significant challenge.
This is in sharp contrast to the wealth of optimization research effort
dedicated at addressing UAV application challenges, see survey papers
by Otto et al. (2018), Chung et al. (2020). This observation enhanced
our belief that for an emerging new system such as UTM, the resource
optimization mindset and available technologies should be assessed
early in the rulemaking and standardization processes, as it would be
much harder and costlier to mend inefficient mandates than making
them efficient in the first time.

Letting computers to automatically resolve trajectory conflicts is not
new even for large aircraft. Erzberger (2004) hypothesized a computer
program for tactical separation assured flight environment (TSAFE) that
automatically takes control of resolving close-in conflicts when the time
to loss of separation breaches a critical time threshold, i.e., around
2 min. For an embodiment of TSAFE, Erzberger and Heere (2010)
developed a reliable (i.e., if-then rules) two-aircraft conflict resolution
algorithm based on analytical formulations of separation characteristics
with bank angle constraints. Given that the computation was to be
performed in a ground-based system which would then send maneuver
commands to the aircraft in a conflict via ground-air data link, the
authors went on to prescribe the data-link protocol requirements to
ensure a reliable implementation. We postulate a cloud-air communi-
cation link through the 4G/LTE cellular network for implementing the
framework proposed in this paper. While the reliability of this mode
of communication deserves a separate, thorough evaluation, in this
paper we build robustness measures in the routing model to account
for sporadic losses of connection between the vehicle in the air and the
agent’s command center in the cloud.

Hoekstra et al. (2011) presented many interesting empirical results,
analyses and analogies regarding free flight in a crowded airspace,
where “free flight” was the combined concept of free routing and
airborne separation. The author claimed that “it is right now and
will be for a long time impossible to guarantee the stability or risk
associated with the behavior of a large number of aircraft in any
configuration. ... The large-scale effects of traffic patterns can only be
studied using simulations”. Our computational experience corroborates
these conjectures—while there is no theoretical guarantee of traffic
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safety in face of uncooperative vehicle behaviors, the reliability of the
framework can be assessed by simulation and statistical methods. Jang
et al. (2017) envisioned a lane-based airspace structure, in which the
airspace in the urban area is divided into several layers by altitude,
and in each layer a number of air travel lanes are specified. Collision
avoidance could then be achieved by having each vehicle keep a
safe following distance, in the same way as automobiles would do in
highway traffic. The model in effect reduced the spatial dimension of
air traffic to one. It was demonstrated via simulation that the system-
wide speed and throughput were both negatively correlated with traffic
density. Our simulation experiments clearly reveal similar and even
stronger results, in the context of two-dimensional omni-directional
traffic which is more chaotic.

Ho et al. (2020) proposed a pre-flight deconfliction approach based
on pairwise prioritization and negotiations among agents involved
in trajectory conflicts. UAS service providers were allowed to plan
their flight paths based on individual needs (e.g., mission and cost
structure) and then would negotiate with each other to modify the
initial plans to avoid conflicts. The approach emphasized fairness in the
allocation of costs incurred by plan modifications. The tradeoff between
efficiency and fairness in the UTM context has also been studied in Chin
et al. (2020). The authors claimed that there was no all-encompassing
metric of fairness whereas the allocation of resources would depend
critically on the metric chosen. The tradeoff was evaluated in a rolling-
horizon simulation. Zhao et al. (2019) presented a simulation tool for
fast evaluation of the effects of different ATM policies on resource
utilization and traffic pattern, which was applied for evaluating cost
and benefits of cellular and satellite communication channels for UAV
operations (Zhong et al., 2020) and for evaluating a real-time routing
algorithm for small UAS (Jin et al., 2019). Recent simulation-driven ap-
proaches for assessing UTM performances can also be found in Bulusu
et al. (2017), Yang et al. (2020).

Chen et al. (2015) presented a multi-agent path planning algo-
rithm especially for drones flying in nonconvex shaped (e.g., indoor)
environments, which addressed a shortcoming in an earlier work,
i.e., Augugliaro et al. (2012), of applying sequential convex program-
ming (SCP) to the multi-drone motion planning problem. Specifically,
the SCP method developed in the latter paper tended to generate overly
conservative constraints when applied to nonconvex environments,
frequently leading to false claims of infeasibility. To overcome this
problem, the authors proposed a new method that was able to incre-
mentally tighten the constraints in the solution process, thus ensuring
the feasibility of the intermediate optimization problems. The authors
also experimented implementing the solution process in a decoupled
fashion, in which drones (agents) solved their own trajectory optimiza-
tion problems sequentially, in one pass. The decoupled implementation
helped to improve the computational tractability and was demonstrated
to better suit real-time trajectory planning needs.

Directly related to the present work is our prior work in Liu (2019),
in which a nonlinear optimization model and a progressive solution
approach were developed to route vehicles in dense air traffic with
feasibility guarantee. We implemented the framework in a working
software prototype to enable field tests on real drone platforms, and
conducted numerous software-in-the-loop (SITL) simulations (ArduPi-
lot Dev Team, 2020) and field tests. Several new challenges have been
identified through these tests. For one, the actual speed and accelera-
tion cannot be precisely dictated by high-level navigational commands,
so the trajectory planning model cannot assume that all the UAVs
under dispatch will reach the planned locations exactly on time. The
model must instead be able to tolerate locational discrepancies while
not compromising safety. Furthermore, in reality we must plan for such
occasions when a UAV temporarily loses connection with the command
center. We programmed the onboard failsafe mechanism to brake the
vehicle and have the vehicle hover still (or loiter) until the connection is
re-established. This seemingly innocuous action may disrupt the traffic,



Y. Liu

cause loss of separation, and break the progressive planning process.
These issues are mitigated by the new model presented in this paper.

Overall, this paper presents the following unique contributions. (1)
We propose a decentralized optimization model to implement the UTM
routing service for heterogeneous drone fleets; (2) We provide methods
for parameterizing and solving this optimization model effectively, to
guarantee a feasible chain of system states and inter-vehicle separation
assurance in practice; (3) We perform extensive numeric simulations
using the model to uncover important properties of the multi-agent air
traffic system and of the routing model in particular, which provides
guidance to UTM’s real-world implementation.

3. Problem statement

We focus on transportation-purposed UAV flights, that is, flying
horizontally from point A to point B as quickly as possible is a UAV’s
objective when it is requesting the UTM’s routing service. The routing
service under discussion is presumably for UAVs traversing the airspace
at a given altitude. Even though the proposed mathematical model is
agnostic of the space dimension (i.e., suitable for both 2D and 3D), we
believe it is more realistic to leave the takeoff and landing phases of
UAS flights, such as the approach sequence coordination and descend
trajectory management, for a separate program, e.g., operated by the
airport rather than by fleet operators/airspace users.

Consider this scenario: in a city’s airspace at a given altitude (as
specified by the city’s airspace access rules, e.g., 300 ft above ground
level), there are one or more last-mile delivery companies each oper-
ating its own fleet of UAVs (we will simply call them vehicles). Each
company employs a routing agent (i.e., a computer program) to guide
vehicles in its own fleet to their respective destinations. Note that this
is not a one-shot task but an always-on service, to accommodate con-
stantly emerging trip requests as the vehicles shuttle through the region
performing on-demand deliveries. A vehicle is guided by periodically
receiving navigational commands from its agent, whereas a command
specifies the next waypoint the vehicle should travel to and at what
speed. An agent is not only able to monitor the status of its own fleet,
but also able to frequently query the locations of vehicles from other
fleets in the airspace, via the Inter-USS network. Apart from publishing
the fleet locational information to the network, agents do not engage
in any bilateral or multilateral communications. There is no vehicle-to-
vehicle communication either. Using available information, an agent’s
task is to periodically compute navigational commands so as to guide
the vehicles to their destinations along the most efficient routes while
maintaining sufficient inter-vehicle separation at all times.

For simplicity, we take a temporal snapshot of the vehicle locations
and their intended destinations as the starting point for the multi-agent
routing process, and call such a snapshot a traffic scenario. Vehicles
that have reached their destinations during the routing process will exit
the system (i.e., disappear from the radar screens of all agents), while
new trip requests will be added to the system as they arise. Entrance
of new vehicles into the traffic can be handled in a similar way as
proposed in Liu (2019), thus will be omitted in this paper. We instead
focus on designing a framework that allows multiple agents to work
“semi-cooperatively” to route all vehicles to their destinations in any
given traffic scenario, regardless of how many vehicles and different
fleets there are in the scenario. The meaning of “semi-cooperative” will
become clearer when the agent’s model is discussed subsequently.

4. The agent’s optimization model

In this section, we propose the main routing model from an agent’s
perspective and develop the model parameters that will elicit tacit
agreements with other agents regarding the right of way. We call the
model SEMICO and its formulation is given by Egs. (1)—(6). It is a non-
linear minimization problem over a nonconvex continuous feasible set.
The solution process involves solving the problem instances repeatedly,
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Table 1
Notation definition.
Symbol Definition
u;, location of vehicle i at time t, in R?
v; velocity vector of vehicle i, in R?
w; loss of separation between vehicles i and j at time 7, in R,
V; maximum speed of vehicle i, in R,
D, destination coordinate of vehicle i, in R?
Sij intra-fleet separation distance between vehicles i and j, i,j € O
S,’[ inter-fleet separation distance between vehicles i and j, i€ O, j € €
a, p priorities and penalty factor, in R
i, expected location of external vehicle i at time ¢, in R?

once every few seconds, with updated status data. Commercial solvers
such as CONOPT will be used for local solutions.

Table 1 defines the symbols used in the model. The upper half of
the table lists decision variables and the lower half lists parameters. In
the text, we use the superscript * after a variable to mark the solution
value of that variable. The vector norm operator || - || is taken to be the
l,-norm. For instance, ||u;, — D;|| means the Euclidean distance between
vehicle i’s location at time ¢, u;,, and the vehicle’s destination, D;. We
discretize time and let symbol 7 represent the index set of time points
in the planning time frame in context. Throughout the paper, we use
1o to denote the “current” time point at which the model is run, and
use T to denote the length of the planning time frame, thus we have
T = {tg.t9g + 1,...,1g + T}. When symbols u, v and w are mentioned
without any subscript, they should be understood as vectors whose
elements are defined in Table 1.

SEMICO:

Min, , ,, z @ <2 s, — D,.||> +8- Z <Z w%y,) @
€O teT i€0, je€ \teT

s.t. U =, +Vv, Vi€ O, t €T /{ty} 2
o<1, VieO,teT 3
Ny —ujpll 28,5, Vi,j€O,i<j,t,l €T (€3]
N = ll +w; >8] VieO, je& teT (5)
w;;,20,Vi€eO, jeE teT. (6)

From an agent’s perspective, vehicles in the system are divided
into two subsets, own fleet @ and external fleet £. Vehicles in the
agent’s own fleet are controlled by the agent, while vehicles in any
external fleet are controlled by other agent(s), and their ID and location
information is observable (e.g., via the remote ID and the Inter-USS
infrastructure).

The agent’s task is to route its own fleet of vehicles to their re-
spective destinations along the most efficient paths, while maintaining
sufficient inter-vehicle separation at all times. The agent’s objective is
implemented by penalizing (minimizing) two terms in (1). The first
term is the total weighted distance to destination summed over all vehi-
cles and all time points in the agent’s look-ahead time frame. This term
encourages minimum-length path, as is also employed in Schulman
et al. (2014). The weighting factor «; > 1 represents the right-of-
way priority of vehicle i among all vehicles in @. The strategy for
setting its value is discussed in Section 5.2. The second term is the total
squared loss of buffer space between all own-external vehicle pairs.
Penalizing this quantity incentivizes vehicles in the own fleet to keep a
safe distance away from the external vehicles. Note that penalizing the
squared violation can incentivize the vehicle in control to stay away
equally from all external vehicles that give rise to a loss of separation
with it. In contrast, if the absolute value of w were penalized, then
the vehicle would not have such an incentive, causing some violation
more severe than others. The parameter f is a constant to add weight to
the second term. Its value determines the relative importance between
separation assurance and route efficiency. In computation, as long as
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Fig. 2. Snapshot of a motion plan for two internal vehicles with a planning horizon
T = 3. For i € {1,2}, solid dots mark U, Arrows mark Vv;, crosses mark D,, and
hollow diamonds mark u;, ., which are also the target waypoints sent to the respective
vehicles for execution.

a large value is set for it, the routing solution will be insensitive
to its specific value. Eqs. (2) and (3) describe the linear motion of
vehicles going from one waypoint to the next. Note that the velocity
vector v; is not indexed by time, thus the same velocity (direction and
magnitude) is applied to the entire planning time frame. Compared
to the model in Liu (2019) which allowed velocity to change across
time points within the planning horizon, this constraint amounts to a
restriction in the model’s flexibility—less assumption is made about the
controllability and certainty of the vehicles’ motion in the real world.
Specifically, suppose that we are at time 7, and the planning time frame
is T = {ty. 1y + 1,....1) + T'}. Instead of imposing a series of waypoints
(one for each time point) as done in the old model, in the current model
the agent commands the motion of vehicle i € O by sending a single
target coordinate, that is, “;k,r 4 OF equivalently, Ui + V;Tv; derived
from the difference equation ?2). Given that ; , and V; are both known
and fixed at the time of planning, ¢, the target coordinate is totally
determined by the computed speed vector v;. Another benefit of using
a time-invariant velocity vector is the reduced model complexity and
hence faster computations.

Constraint (4) imposes trajectory separation of all pairs of vehicles
in the own fleet. Any pair of vehicles / and j must remain at least S; ;
apart along their moving directions. Compared to the old model in Liu
(2019) which only checks matching time points (as would be written
as ||lu;, —u;,|l > S;;,Vi,j € O,t € T), this constraint requires separation
for all combinations of time points along the two trajectories. Essen-
tially, each vehicle claims an exclusive headway corridor of T' time
intervals along its moving direction. The spatial length of the corridor
is equal to V;Tv; for vehicle i. These treatments relieve the need for
time synchronization in the execution stage, thus can effectively hedge
against uncertain and off-nominal situations. For instance, in reality
the ground speed may not be perfectly controlled due to inertia, drag
and communication latency, so vehicles may reach their respective
waypoints earlier or later than the planned time points; furthermore,
if a vehicle experiences a loss of communication link it will brake and
hover/loiter until communication is regained. As long as the vehicle
stays in its headway corridor, traffic safety will not be jeopardized
by these situations. Fig. 2 illustrates the motion plan of two internal
vehicles. From the “decision-making under uncertainty” perspective,
this way of handling uncertainty can be viewed as a “robust” method,
whereas a “stochastic” counterpart can be found in ACAS X, in which
uncertainty in the aircraft’s state estimation is represented as a prob-
abilistic distribution, and this distribution specifies where to look in a
table to determine which conflict resolution advisory to provide to the
pilots (Kochenderfer et al., 2012).

Constraints (5) and (6) define the loss of separation w); it between
internal (own) and external vehicles that is to be penalized in the
objective function. For an internal vehicle i € O, keeping at least S/.”/.
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away from the external vehicle j € € is encouraged but not strictly
enforced—violation will be penalized but will not render the model
infeasible. The reason for using “soft” constraints here is that, in our
experience, if hard constraints were used no algorithm could guarantee
feasibility of the model without imposing additional assumptions about
other agents’ behavior or about the traffic density. For an extreme
instance where a hostile external vehicle (predator) seeks to collide
with some other vehicle (prey), nothing can stop the loss of separation
between the two if the predator’s maximum speed is greater than that
of the prey. Maintaining the chain of (mathematical) feasibility in the
solution process is highly desirable both in the algorithm evaluation
and in its practical use. We will show in the next section that the
soft constraints are generally conducive to the desired level of sepa-
ration between internal and external vehicles. Simulation experiments
in Section 7 will corroborate these conclusions.

Static obstacles and no fly zones can be handled endogenously by
the SEMICO model. In the low-altitude airspace (i.e., below 400 ft),
commonly encountered obstacles include tall buildings, areas claimed
by other airspace users, and FAA-recognized identification areas (FRIAs)
in compliance with the remote ID rule Federal Aviation Administration
(2019, 2020). At a given altitude, the cross sections of their spherical
or cylindrical envelopes form circular areas, see Fig. 3. From an agent’s
standpoint, such a circular area can be treated as a special vehicle
either in O or in €. Parameter setting and variable fixing for the dummy
vehicles are straightforward.

4.1. Parameter setting tactics in implementation

Parameters involved in the SEMICO model fall in three categories:
input data, algorithmic parameters, and user-defined parameters. Input
data include the vehicle-agent membership © and &, vehicle destination
D; and vehicle maximum speed V. Algorithmic parameters include «;, #
and 2;,, whose values are set by the routing algorithm to be discussed
in the next Section. Here, let us look at the user-defined parameters
including the length of the planning time frame T, and the separation
distances S; ; and Si,,j’ First, how long (or how many seconds) does a
modeling time interval correspond to in reality? To place an anchor
point, we assume throughout the paper that SEMICO is solved at every
modeling time point, that is, the current time #, advances one step at
a time. The length (in seconds or minutes) of the unit time interval
in the model is an important application-dependent parameter. Factors
such as vehicle type, size and maneuverability, minimum separation
headway time, desired look-ahead time, and the geographical span
of the airspace under management, will come into consideration. For
instance, the state-based conflict detection algorithm in the Free Flight
study uses a (pretty long) look-ahead time of five minutes to allow for
maneuvers that do not discount passenger comfort (Hoekstra et al.,
2011), while traffic collision avoidance system (TCAS) uses a look-
ahead time of 20 to 48 s (Table 2 in Federal Aviation Administration
(2011)) which may result in drastic evasive maneuvers for passenger
aircraft. In the airborne collision avoidance system (ACAS X), the air-
craft state is re-estimated once per second, based on which the conflict
resolution advisory is selected to provide to the pilots (Kochenderfer
et al., 2012). In Augugliaro et al. (2012), a modeling time unit of 0.2
s was adopted, and in Chen et al. (2015), a separation distance of
0.8 m was required for each time step, since the experimental scenarios
consisted of small quadcopters flying in an indoor arena.

Suppose that by user choice, each modeling time interval corre-
sponds to three seconds and that the planning horizon is 7' = 5, then
the routing process will go like this: at the current time point #, (let us
assume that the current clock mark is 1), the agent first reads in the
current locations of its own vehicles, u;, for i € O, as well as those
of external vehicles, i I for j € &, and predicts the future locations of
Jj € €. Absent further information, it is reasonable to set &, ,, = d;,
for k = 1,...,T and j € &. Given these inputs, the agent then plans
the fleet motion for the next five periods (15 s, or the [1, 16]-second
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Fig. 3. Illustration of circular no-fly zones which can be easily incorporated in the SEMICO model as a special non-moving vehicles.

period) by solving SEMICO. Suppose that solving SEMICO takes two
seconds of computing time, after which the agent sends the optimal
waypoints M?Jo 45 to each vehicle i in O. The agent then waits until a
total of 3 s (2 s computing time plus 1 s idle time) have elapsed to
begin repeating the above process—reading in the current locations,
solving SEMICO (for the next five intervals which corresponds to the
[4, 19]-second interval), and sending updated waypoints. To keep the
cadence, it is apparent that a modeling time interval must correspond
to a real time interval that is at least longer than the solution time of
SEMICO. In the next section, we will develop an algorithm that solves
SEMICO consistently quickly to allow for a small unit interval length.
On the other hand, updating waypoints too frequently (due to setting
a small unit interval length in the model) is not suitable for long-range
trips and low density traffic, for it would be a waste of computing and
data-link bandwidths.

The value of T will affect the problem size, computing time and the
long-term planning efficiency. A greater value of T generally allows the
agent to plan farther into the future, therefore benefits the long-term
planning efficiency. In the meantime, a large T would make solving
SEMICO time-consuming, especially when the number of vehicles in
the own fleet is also large.

The required inter-vehicle separation distance is best specified in
terms of headway time, denoted by h. For instance, traffic safety rules
could mandate that any pair of vehicles in the same altitude layer must
be kept 6 s apart, meaning that it takes at least six seconds before
two vehicles can crash into each other even if they travel head-to-head
toward each other at their respective maximum speeds. Suppose that
the maximum speeds of the two involved vehicles, 1 and 2, are both
15 m/s, then the required separation distance will be 6 x (15+15) = 180
m. Converting this scenario into the modeling framework by assuming
3 s per modeling time interval, we get V| = ¥, = 15 X 3 = 45 m per time
interval, and the headway time 4 = 6/3 = 2 time intervals. It is analyzed
in Liu (2019) that discretizing time will cause a loss of separation in-
between successive time intervals. By applying the formula thereof, we
set the separation distance .S; ; in SEMICO by

S;; = Vh2+025(V; +V)).

Continuing with the above example, S|, is equal to V22 +0.25(45 +
45) = 1855 m.

For the separation buffer SI’ between an internal vehicle i and an
external vehicle j, extra room must be allotted for the uncontrollability
of the external vehicle j (or the behavior of the other agent controlling
vehicle j). Furthermore, for the pair of vehicles i and j that are con-
trolled by two different agents, the two involved agents should adopt
different buffer sizes in their respective models to form an implicit

right-of-way priority order between themselves with regard to i and j
in conflict. The simplest strategy to create the needed asymmetry is to
prioritize the vehicles in lexicographical order. Specifically, we propose
the following formula for setting S,.’J, i€, je¢E.

81 =(VR2+025+ by + 1 < Hb)(V; + V), @

where b, and b, are positive constants, and 1(-) is the indicator func-
tion, i.e., 1(E) is equal to 1 if the condition E is true, and equal to 0
if E is false. In this formula, b, represents the added buffer to account
for uncertainty and b, represents the priority difference between i and
J.

Continuing with the above numerical example with # = 2 and
V, = V, = 45, now suppose that vehicles 1 and 2 are controlled by
agents al and a2, respectively, and let us set b, = b, = 1, then agent
al will have S;,z = (V224025 + 1+ 1)(45 + 45) ~ 366 and agent a2

will have Sil = (V22 +0.25 + 1 + 0)(45 + 45) ~ 276. The implication
is as follows: as soon as the planned trajectories of vehicles 1 and 2
are closer than 366 m apart, al will start directing vehicle 1 to make
collision avoidance maneuvers. However, so long as the distance is
above 276 m, a2 will still perceive the situation as being safe hence
vehicle 2 will proceed as if vehicle 1 is not in its way. This asymmetry
creates a desirable tacit agreement: vehicle 1 yields the right-of-way to
vehicle 2, and vehicle 2 takes the courtesy to quickly pass through the
conflicted area.

The workings of the SEMICO model can be construed figuratively as
follows: each vehicle is a point mass surrounded by a circular forbidden
area for collision avoidance, thus spatially each vehicle i is represented
by a disc of radius VA2 + 0.25V; and constraint (4) says that the discs
of different vehicles in the same fleet should not overlap. The objective
function acts as applying a force to pull the discs toward the vehicles’
destinations, with the priority «; representing the relative strength of
the pulling force on vehicle i. When the imaginary discs (of radii
(VA2 4025+ by + (i < j)by)V; and (VAZ+025+ by + LG < j)b)V,,
respectively) of an interval vehicle i and an external vehicle j overlap
at time # € 7, a strong repulsion force of magnitude fw; ;, is applied
to push the vehicles apart.

Fig. 4 visualizes four contiguous temporal snapshots (time 15 to
18) of a two-agent traffic scene, to demonstrate how the model and
formula (7) works. Vehicles 1 (red) and 2 (blue), supposedly controlled
by agents al and a2, respectively, travel head-to-head toward their
destinations (marked by the crosses). By Eq. (7), vehicle 1 is more risk
averse than vehicle 2 so its safety disc is larger. The planning horizon
is T = 3 in this example. At time 15, both vehicles planned to move
ahead at full speed for no loss of separation would ensue—observe that
the solid red circles representing the safety discs of vehicle 1’s planned
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Fig. 4. Demonstration of what happens when vehicles from different fleets encounter. The two vehicles use different risk thresholds therefore form a tacit agreement for conflict
resolution. Vehicle 1 is more cautious about collision hence reacts to the situation earlier, whereas vehicle 2 is less sensitive hence reacts later. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

locations and the dashed red circle representing the safety disc of
vehicle 2’s anticipated location (in the eyes of agent al) do not overlap,
and the same observation goes for the solid and dashed blue circles as
in the eyes of agent a2. At time 16, vehicle 1 planned to reduce its
speed to a level such that a loss of separation with vehicle 2 barely
accrues—observe that the foremost solid red circle barely touches the
dashed red circle. However, vehicle 2 still planned a full-speed move
because the collision risk is not in sight yet for agent a2—the solid and
dashed blue circles are still apart. At time 17, vehicle 2 also planned
to reduce speed as the separation constraint kicked in for agent a2,
while vehicle 1 decided to turn around and escape the conflict. At
time 18, vehicle 1 planned to further ramp up speed in its escape,
while vehicle 2 changed speed direction to avoid the loss-of-separation
penalty. Overall, the conflict has been resolved elegantly by the two
autonomous agents, and no real loss of separation has occurred—due
to the added headway buffer b, +b, and b, in agent al’s and a2’s models,
respectively.

5. Solution process and feasibility guarantee

SEMICO is a nonlinear programming (NLP) model, used for generat-
ing a feasible motion plan for a set of cooperative vehicles (controlled
by the same agent) for the next few time periods. Each agent solves its
own copy of SEMICO in a rolling horizon framework, while passively
interacting with each other via the inter-fleet collision avoidance con-
straints (5) and the penalty terms in the objective function. We call
this fashion of multi-agent interaction ‘“‘semi-cooperative”, explaining
the name SEMICO.

The benefit of SEMICO is two-fold. On one hand, it implements the
decentralized paradigm of UTM spearheaded by NASA, by allowing an
arbitrary number of agents (i.e., USSs and/or UAS operators) to operate
in the shared airspace. On the other hand, it provides a sound basis for
promoting traffic efficiency via optimized fleet routing operations.

SEMICO is designed to be used as the routing module of an enter-
prise USS, to provide the routing service for a delivery fleet or for a
city-wide Drones-as-a-Service (DaaS) platform. The foremost require-
ment for an online service is its stability and resilience—it should not
easily break and when it does break, it should restore to the normal
operating condition with little hassle. Translating this requirement to
SEMICO, we need a robust solution process that guarantees a feasible
chain of system states. The robustness is enabled by the ability to
always obtain locally optimal (thus feasible) solutions to the SEMICO
model and to resolve deadlock situations effectively. We will develop

a solution algorithm (by leveraging off-the-shelf solver CONOPT) that
fulfills this requirement. As a side note, obtaining the globally optimal
solution to each run of SEMICO is unnecessary in the progressive
routing framework, with detailed justification provided in Liu (2019).

5.1. Starting point strategy for feasibility guarantee

The routing process involves solving SEMICO iteratively as time
increments by one unit per iteration. Let us use the notation SEMICO(7)
to denote the model instance spanning a given time frame 7. The
NLP solver CONOPT (Drud, 1994) has proven effective for finding
good-quality local solutions for large-scale nonconvex optimization
problems (Liu, 2019, 2020). In particular, the Generalized Reduced
Gradient (GRG) algorithm implemented in CONOPT is a primal method
with the property that, once a feasible solution is identified, the sub-
sequent candidate solutions remain feasible until a local optimum
is found (CONOPT, 2020). A feasible starting point eliminates stage
one of the CONOPT routine which is minimizing infeasibility, thus
saves computing time. Furthermore, a “good” feasible starting point
is instrumental for finding a good local solution. We will develop a
starting point strategy to realize these benefits.

The presence and behavior of external vehicles do not affect the
feasibility of an agent’s SEMICO instance, because any loss of separation
buffer is absorbed by the variable w. So let us focus on the constraints
(2)-(4) and the related variables u and v. To set the stage for discussion,
given an arbitrary integer 7, and an integer T > 1, let 7 = {17, +
l,...,tg+ T} and 7' = {ty + 1,y + 2, ..., 1o + T + 1}. Suppose that oY,
i € @ and “?,x’ i € O, 1 €T constitute a feasible solution to the problem
SEMICO(T), then a feasible solution to SEMICO(7") can be constructed
by simply setting v; to 0 for all i and setting u;, to uf 041 for all i and
all + € 7'. This always-feasible starting point is reassuring to have,
however, initializing key variables to zero is not actually helpful for the
nonlinear optimization process because it creates difficulty for finding
informed descent directions. We craft a more informative starting point
as follows. Let

vl = (T - Duf /T, Vi€ O (€)]
! =tV VieO,teT’ 9

w, t=u ot
then use them as the starting point to solve the problem SEMICO(7")
using CONOPT. The idea is to keep the same velocity direction as
the preceding solution but reduce the speed to a level such that the

new T-step trajectory falls in the same envelope as does the (feasible)
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Fig. 5. Demonstration of the caterpillar-like probing motion for setting the starting point for the succeeding iteration.

trajectory computed in the preceding iteration. Fig. 5 illustrates how
the motion plan is updated from one iteration to the next, i.e., from ¢, to
1o+ 1, as the above starting point strategy is employed. We can see that
the trajectory envelope (outlined in red dashed lines) of the starting-
point motion plan at 7, + 1 is a subset of that of the locally optimal
(thus feasible) motion plan found at ¢,, therefore, the starting point is
also feasible. Figuratively, the progression of the motion plan is much
like a caterpillar’s locomotion—squeezing muscles in an undulating
wave motion to drag the tail forward, while probing ahead. Unless in
extremely artificial cases (an example is provided in the appendix), the
starting point constructed above is feasible for SEMICO(7").

The above analysis as well as formula (8) and (9) assumes that the
motion plan is executed precisely, i.e., the starting location of vehicle i
for the planning cycle 7" is exactly u;‘ 41 3 planned in the previous cy-
cle 7. In practice, the starting location is populated by the vehicle’s GPS
location. There are always discrepancies between the planned location
and the actual location, which come from measurement errors, inertial
lags and flight controller’s delayed response to waypoint commands.
Accordingly, the starting point for 7/ should be revised as follows.

u’ -1
o = Mu Vieo 10)
||ui,TO+T Uity I

U, =g+t =19 =DV}, VieO,reT’ an

Ly

where #;, ,, is the actual location of vehicle i at time #, + 1. Formula
(8) and (9) are used in simulation experiments while formula (10) and
(11) are used in software implementation.

5.2. Deadlock resolution

Deadlock refers to a situation in which multiple vehicles block the
way of one another and settle at a locally optimal solution having all
involved vehicles come to a complete stop. Its occurrence is mainly
attributed to the nonconvexity of the SEMICO model as well as to the
limited horizon of the planning session. A simplest deadlock scenario is
when two (or more) vehicles having comparable priorities approach a
common destination simultaneously. It is analogous to simultaneously
pulling two (or more) balls toward a same anchor point using elastic
cords. It can be imagined that the balls will stabilize at pushing against
each other, none able to align its center to the anchor point.

Deadlocks cannot be resolved endogenously by the optimization
model without substantially complicating the formulation or making
extra assumptions. For instance, mixed integer programming (MIP)
models have been attempted in Zhou et al. (2020) to address the
sequencing and routing challenges of landing multiple aerial vehicles
at corridor-constrained vertiports, and pairwise prioritization and ne-
gotiation procedures were used in Ho et al. (2020). Here, we develop a

deadlock detection and correction method in the progressive motion
planning framework that employs the SEMICO model as a building
block.

Let /4;"/’[‘[, be the Lagrangian multiplier (or dual variable) for the
corresponding constraint (4) at the local optimal solution (u*, v*, w*) of
SEMICO, then by the first-order necessary condition for optimality the
following equation holds,

(lt, =y 1=, ) ) =0, Vicj €O # o1t €T

This means that when lli*,j,r,r’ > 0, the separation constraint between
vehicles i and j is binding at the time points 7 and ¢ along their
respective planned trajectories. When this happens for any 7,/ € T,
i.e., when max, sy ”ij,t,t’ > 0, we say that vehicles i and j are in a
binding cluster. The notion of binding cluster is transitive, that is, if i and
j are in a binding cluster, and j and k are in a binding cluster, then all
three of them are in the same binding cluster, even if max, s ;4;,*, it =
0.

After each solve of the SEMICO model, the following steps are
implemented to prevent and resolve deadlocks.

1. Set a; = 1, Vi € O, and identify all distinct binding clusters.
2. For each binding cluster C:

(a) Pick the smallest (in lexicographical order) vehicle and
set its priority to 100. Mathematically, set a;, = 100 where
i’ = min;gc i

(b) If all vehicles in the cluster stopped moving, then negate
the sign of their priorities except for the one picked in the
above step. Mathematically, if max;cc [[vf]| < €, then set
a;=—1foralliecC/{i'}.

Remarks: (1) The idea in step 2(a) is to give one vehicle a distinc-
tively higher priority than the other vehicles in the binding cluster,
to make that vehicle traverse quickly, therefore resolve the cluster
deadlock one vehicle at a time. The reason for using the lexicographical
order is for simplicity and for consistency across different iterations.
It is important to pick the same vehicle over the iterations until the
binding cluster dissolves, rather than alternating between different
vehicles. Lexicographical order can achieve this consistency without
extra bookkeeping. Other prioritizing schemes can be used in practice
as long as the consistency in vehicle selection is preserved. (2) Step
2(b) is a more dramatic measure to unravel deadlocks. The idea is
to temporarily “loosen up” the tightly packed cluster, to allow room
for the trapped high-priority vehicle to escape. One might wonder
why having a high priority alone is insufficient to guarantee the high-
priority vehicle’s ability to cut through the clustered congestion. The
fundamental cause is the inclusion of f#, in the set 7 in constraint
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(4) and the fact that Upgyr | € O, assumes a fixed value (current
location, which is read in). Suppose that vehicles i and j are in a
conflict and Step 2(a) is triggered to set @; = 1 and @; = 100. One
would then expect vehicle i to move away (back off or move sideways,
depending on the attack angle of vehicle ;) in order to make way
for vehicle j. In fact, the constraints iy —wjrll = S5 forY €T,
may prevent that from happening, because vehicle j is locked out of
vehicle ’s current location u;, no matter where vehicle i decides to
move—in this case vehicle i does not receive the needed incentive to
act as wanted. In general, whenever the low-priority vehicle’s actual
location (not the planned location at a future time) is in the way of
the high-priority vehicle, the prioritization method will fail to serve
its purpose of proactively resolving conflicts. In such situations, Step
2(b) is a necessary backup procedure to rectify stalemated deadlocks.
Admittedly, this is a heuristic approach. However, it has been tested
effective in numerical simulations of very high-density traffic scenarios.
We have not encountered a deadlock situation that cannot be resolved
by the above method.

After each iteration, the agent scans all vehicles in © and removes
those that have reached their destination. Specifically, the agent up-
dates O <« O/{i : e, 7 — Dill < r}, where r is a small positive
number representing the proximity threshold. This step mirrors what is
actually done in practice as vehicles exit the routing system. When two
(or more) vehicles have destinations that are too close to each other, a
situation also observed in Section 6.4 of Dechering (2019), the above
prioritization method works without a problem.

5.3. Reducing unnecessary corridor locks to effectivize prioritization

As analyzed above, constraint (4) enforced over time combinations
of (tg, 19 + 1), ..., (tg,tg + T) and (ty + 1,1y),...,(ty + T,1y) may nullify
the prioritization strategy. The rationale for enforcing these constraints
is to prevent nearby vehicles from running into a vehicle’s safety disc
in case the vehicle suddenly comes to a halt (brake and hover, as a
failsafe action triggered by the vehicle’s onboard computer). In fact,
we can remove certain time combinations over which the constraint is
enforced, so as to reinstate the effectiveness of prioritization without
compromising safety. The key point here is to exploit the fact that
a vehicle can move at most one step before re-planning occurs, so
a vehicle that (by motion plan) needs to travel two steps to reach
a point cannot possibly reach (or violate separation constraint with)
the point before the next re-planning. This means that constraint (4)
over (ty,ty + 2),...,(ty. 1y + T) and (ty + 2,1y),....(ty + T.1,) can be
safely relinquished. As a side note, constraints [lu;,, —u;, || > S, ;, for
i,j € O,i < j, are also redundant, because Uy I € O, are not really
variables—their values are fixed by actual status data read in at the
beginning of the current planning horizon. In summary, constraint (4)
is implemented as follows.

Ny —ujpll =85, 0,j €0i<j, 1, €T /{ty)

”ui,r0 U+ l=S;;.i.i€0,i<j
et a1 — wjs I =2 S 55 B,J € 0,0 <.

Compared to the original version, the above implementation makes the
prioritization strategy more effective in preventing deadlocks, as has
been verified by numerical experiments.

6. Performance evaluation metrics

The foremost benefit of using optimization-based route planning
method is to maximize traffic efficiency, particularly when the airspace
becomes a scarce resource due to high traffic density. We adopt the
following metrics to quantify traffic efficiency. For an individual vehi-
cle i, the instantaneous speed efficiency, heading efficiency and flow
efficiency at an arbitrary time point ¢, are defined as follows,

spd
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The corresponding efficiency metrics for the entire trip of a vehicle,
for all vehicles in a fleet, or for the entire traffic scenario consisting
of all fleets, can be calculated by summing the above quantities over
appropriate sets of time or vehicles.

Since the separation between vehicles of different fleets is enforced
as soft constraints in the SEMICO model, the effectiveness of the soft
constraints needs to be monitored after the fact. Questions such as
how frequently and how much the underlying separation requirement
is violated must be answered. To do so, after each routing iteration, we
calculate the following quantities for each pair of vehicles i and j, i < j,
that are controlled by different agents.

Eyj = max{(h(V, + V) = |, = uj, 1.0},
8, = 1(E;; > 0),
"= ey

1 J

Here, E;; is the distance by which the separation requirement between
i and j is violated at t,, §;; records whether a violation has occurred or
not, and p; ; is the relative extent (i.e., 100p; ; percent) of the violation.
These metrics can be summarized over relevant time periods and
selected sets of vehicles for customized reports.

7. Simulation experiments

In this section, we present numerical experiments to demonstrate
noteworthy properties of the SEMICO model and agent behaviors. All
experiments were performed on a Dell Precision Tower 8520 with
an Intel(R) Core(TM) i9-9900X CPU @ 3.50 GHz, 16.0 GB RAM and
Windows 10 Enterprise Operating System. We used GAMS 30.2.0 and
the CONOPT solver for modeling and solution. Default solver options
were used and the solver is single-threaded.

This is how a traffic scenario consisting of N vehicles was generated.
The origin and destination (OD) coordinates (abscissa and ordinate)
of each of the N vehicles is randomly placed in a 500 x 500 square
area, subject to the following acceptance conditions: (1) the origins
of any pair of vehicles must be sufficiently apart so as not to violate
the separation constraints; (2) the OD distance should not be too short,
i.e., must be greater than 150. Vehicle maximum speeds are randomly
sampled from {8, 12,16}. Throughout the experiments, we set T' = 3,
h =1, f = 100, b = 1 (except in Section 7.2) and b, = 1. Video
demonstration of some experimental results can be found at https:
//youtu.be/vgHVcQ_i5RU.

7.1. The price of semi-cooperativeness

We want to understand how the number of agents in a UTM
system affects the traffic performance. To do so, we first apply the
SEMICO framework to three scenarios having 10, 30 and 50 vehicles,
respectively. Each scenario is run multiple times with different numbers
of agents. In multi-agent cases, each agent is set to control the same
number of vehicles. The vehicle-to-agent assignment is made sequen-
tially. For example, in the 10-vehicle scenario when five agents are
tested, each agent controls two vehicles: al controls vehicles 1 and 6,
a2 controls vehicles 2 and 7, and so forth. Fig. 6 demonstrates the traffic
scene at time 1 (i.e., vehicles’ starting positions and directions) as well
as the trajectory traces generated from the one-agent solutions. Full
results are summarized in Table 2. The column headers are explained
as follows. Detour and Delay are the (actual/oracle) type of ratios
to quantify efficiency. Specifically, Detour is calculated as the actual
travel distance of all vehicles divided by the total straight-line OD
distance; Delay is calculated as the total travel time of all vehicles
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divided by the total time distance between ODs, whereas the latter is
calculated assuming the vehicles travel at their respective maximum
speeds along the straight OD line. Higher values of Detour and Delay
indicate lower traffic efficiency. nViol is the number of violations
to the inter-vehicle separation requirement accrued during the entire
routing process (i.e., sum of §; ; over all (i, j),i < j and ¢), and pViol
is the maximum proportion of violation ever observed (i.e., max of
p;; over all (i,j),i < j and ). aCPU and mCPU are the average and
maximum computing time to solve an agent’s instance of SEMICO, in
seconds. Note that different agents can solve their respective SEMICO
problems simultaneously in different threads, that is why the per-agent
computing time is relevant here. nPriority and nNegate are the total
number of invocations of Step 2(a) and Step 2(b), respectively, in the
deadlock resolution procedure.

Key observations include: (1) The SEMICO model is generally
effective—all cases were solved successfully and only a few minor
separation violations occurred at relatively high traffic density. (2) For
the same traffic scenario, using more agents leads to faster routing
decisions but also reduces the overall traffic efficiency. This reflects
the typical tradeoff between efficiency and flexibility in the design of
UTM systems. Vehicles are fully cooperative when they are controlled by
the same agent, and are semi-cooperative when controlled by different
agents. We call the reduced traffic efficiency caused by the increased
number of agents the price of semi-cooperativeness, which is an important
factor to consider in the design of UTM systems. As the experiments
have shown, the SEMICO framework is able to cope with the whole
efficiency-flexibility spectrum, that is, for the same traffic scenario, any
agent-vehicle assignment scheme can be accommodated. (3) Deadlocks
arise, hence must be resolved, more frequently when more vehicles
are controlled by each agent, and when the traffic density is high.
Deadlocks, by design, will not arise in decentralized routing scenarios
where each agent controls one vehicles.

The SEMICO framework can also be used for decomposing the time-
consuming task of routing a large fleet of vehicles into multiple smaller
tasks to be handled in parallel by a choice number of routing agents.
For the above instance, routing 50 vehicles in a dense traffic can take
up to 13.6 s per iteration, which may be unbearably long for some
applications. If these vehicles were assigned to five routing agents,
then the per-iteration time could be reduced to less than one second.
This would amount to a 74% efficiency loss (i.e., Detour from 1.16 to
2.02) in exchange for a 18x speedup, a worthwhile trade in certain
applications.

To make a more vivid contrast between centralized and decen-
tralized routing outcomes, we make a stylized example, in which 20
vehicles start in a ring-shaped formation and each vehicle’s destination
is the opposite point along the diameter of the ring, see Fig. 7. We
run two extreme configurations. One configuration has a single agent
centrally controlling all vehicles, and the other configuration has 20
agents, each controlling a single vehicle. The resulting flight traces are
visualized in Fig. 8. The upper part of the figure shows the centralized
case and the lower part shows the decentralized case. The left plot of
each case flattens the temporal dimension so each distinct point in the
plot represents the 2D location of a vehicle (distinguished by color) at
a time point; the right plot of each case presents the continuous time
dimension along the vertical axis to demonstrate the non-overlapping
3D trajectories over space and time. We can see that when the traffic is
centrally managed, the available space is exploited more aggressively—
vehicles are packed tightly together when passing through congested
areas. This is because no additional buffer space is needed to account
for external uncertainty. In contrast, when vehicles route themselves in-
dependently in a busy traffic, more inter-vehicle distance is maintained,
leading to less efficient use of the airspace.
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7.2. Adjusting the safety buffer to cope with uncooperative vehicles

Fleet managers that use the SEMICO model to route their fleets
are not required to assume that other vehicles in the airspace are
subject to the same routing (behavioral) model. In reality, there may
be free-flying vehicles, or vehicles that simply follow pre-determined
flight paths with little regard to other airspace activities. As long as
these vehicles emit their real-time location coordinates (e.g., via the
remote ID infrastructure), SEMICO agents are able to cope with them.
To demonstrate this capability, we introduce several uncooperative
vehicles into a random 30-vehicle traffic scene. While the 30 vehicles
are being routed by the SEMICO framework, the uncooperative vehicles
simply travel along straight lines to their destinations at full speed, not
engaging in active deconfliction. It is then totally up to the SEMICO
agents to detect and avoid these “blind vehicles”.

We experimented with three values for the inter-fleet buffer time
by, i.e., b, € {1,2,3}, and four values for the number of blind vehicles
(Bv) introduced into the traffic scene, i.e., 2, 4, 6 and 8. The main
metrics of interest include the loss of separation metrics nViol and
pViol, and the traffic efficiency metrics Detour and Delay, when the
traffic is managed by different numbers of agents (Ag). The outcomes
are listed in Table 3, organized in a way to accommodate comparisons
from different viewpoints. We make two observations here. First, in all
cases increasing the buffer b, is an effective method to mitigate the
risk brought by uncooperative vehicles. In particular, when b, = 3
any number (up to 8) of uncooperative vehicles failed to cause loss
of separation, regardless of how decentralized the routing process is.
Second, centralized routing (Ag = 1) is more capable of coping with
uncooperative external vehicles than multi-agent routing. Everything
else held equal, centralized routing results in fewer loss-of-separation
incidences and smaller detour and delay factors.

7.3. Multi-agent routing performances at different densities

We test the routing performance using traffic scenarios consisting
of 30 to 100 vehicles, whereas for each scenario 20 random cases were
generated. We normalize the workload of agents across different scenar-
ios by assigning 10 vehicles to each agent. For example, three agents
were utilized for the 30-vehicle scenarios, four agents were utilized for
the 40-vehicle scenarios, and so forth. A total of 160 cases were tested,
having a total mission distance of about 3.1 million meters. All these
cases were successfully solved, with an average per-agent per-iteration
computing time of 0.38 s. Table 4 lists summary statistics by the
number of vehicles, including the mean (Mn) and standard deviation
(SD) of detour, delay and average per-agent computing time in seconds.
The Max CPU column lists the maximum per-agent computing time (in
seconds) ever observed in all the 20 test cases, so it reliably reflect the
upper bound of computing time one can expect for an instance of the
given size. Fig. 9 plots the detour factor and computing time v.s. traffic
density. The traffic density is defined as the total area of vehicles’ safety
discs divided by the area of the traffic scene, 500 x 500 = 250, 000.
We can see that traffic density causes routing inefficiency (Detour) to
grow almost linearly, while the average computing time exhibits an
accelerating growth as density increase. The delay v.s. density relation
is more or less of the same pattern as the relation between detour and
density, so its plot is omitted here.

8. Conclusion

While centralized traffic management is most conducive to efficient
point-to-point air trips, the practical reality demands a more flexible
architecture in which multiple private fleets can operate independently,
yet harmoniously, in a shared airspace. Sufficient separation is the most
fundamental operating requirement shared among all airspace users,
but how to maintain the desired level of separation in a decentralized
operation environment is a core challenge to be addressed. This paper
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Table 2
Solution summary of different multi-agent routing scenarios.
Vehicles Agents Detour Delay nViol pViol aCPU mCPU nPriority nNegate
1 1.09 1.31 0 0 0.12 0.27 44 2
10 2 1.11 1.31 0 0 0.1 0.19 31 0
5 1.25 1.53 0 0 0.1 0.28 0 0
10 1.24 1.51 0 0 0.09 0.22 0 0
1 1.08 1.31 0 0 0.94 11.11 90 4
2 1.53 1.91 0 0 0.24 1.63 175 7
30 5 1.65 2.03 0 0 0.13 0.43 132 0
10 1.71 2.11 0 0 0.12 0.42 38 0
15 1.89 2.35 0 0 0.12 0.45 13 0
30 1.89 2.3 0 0 0.11 0.43 0 0
1 1.16 1.47 0 0 2.89 13.58 364 48
2 1.84 2.25 0 0 0.71 3.93 519 23
50 5 2.02 2.55 0 0 0.22 0.74 356
10 2.34 3.01 0 0 0.19 0.44 217 1
25 2.26 2.88 0 0 0.17 0.66 48 0
50 2.14 2.88 0 0 0.16 0.51 0 0
1 1.2 2.14 0 0 5.74 47.08 753 417
2 2.19 3.07 0 0 1.91 13.12 1145 247
70 7 3.08 4.53 0 0 0.41 2.09 866 11
10 3.37 4.9 0 0 0.38 1.04 907 1
35 3.36 5.07 1 0.01 0.32 0.71 240 1
70 3.43 5.14 0 0 0.31 0.79 0 0
1 1.18 1.78 0 0 29.1 248.92 951 343
2 2.06 2.83 0 0 6.79 42.22 1729 188
100 5 2.79 4.07 0 0 1.14 7.54 1780 41
10 3.29 4.94 0 0 0.76 2.18 1393 18
20 3.52 5.18 3 0.09 0.68 1.29 837 10
50 3.47 5.11 22 0.26 0.59 1.31 230 1
Time: 1 Speed: 1 Heading: 0.998 Flow: 0.998 Time: 1 Speed: 1 Heading: 0.992 Flow: 0.992 Time: 1 Speed: 1 Heading: 0.992 Flow: 0.992
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Fig. 6. Traffic scenarios consisting of 10, 30 and 50 vehicles (upper) and trajectory traces generated by the centralized (one-agent) solution.

has demonstrated a remarkably simple, scalable and effective solution
to this problem, predicated on limited information sharing enabled by
the remote ID protocol. Simply put, each fleet internally solves its own
routing optimization problem, and by observing some global ordering

convention, such as ordering vehicles alphabetically by their unique
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IDs, inter-fleet trajectory conflicts can be resolved most of the time—
no complicated inter-fleet communication or negotiation is needed, and
no assumption about other fleets’ behavior is required.

The routing optimization framework boasted several elements de-
signed to work in practical software, including the corridor lock for cop-
ing with locational variance and contingent conditions, the caterpillar-
like heuristic for finding useful feasible solutions, the Lagrangian-based
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Table 3
Performance of the routing system’s response to uncooperative vehicles in traffic.
Ag/Bv b =1 by =2 b =3
2 4 6 8 2 4 6 8 2 4 6 8
1 0 0 0 12 0 0 0 2 0 0 0 0
2 3 7 0 0 0 0 0 1 0 0 0 0
aViol 5 0 2 2 2 0 0 2 0 0 0 0 0
10 0 1 3 2 0 0 0 0 0 0 0 0
15 0 2 2 5 0 0 0 0 0 0 0 0
30 0 10 5 1 0 0 0 0 0 0 0 0
1 0 0 0 0.79 0 0 0 0.15 0 0 0 0
2 0.26 0.20 0 0 0 0 0 0.15 0 0 0 0
Viol 5 0 0.06 0.06 0.06 0 0 0.18 0 0 0 0 0
P 10 0 0.01 0.23 0.01 0 0 0 0 0 0 0 0
15 0 0.06 0.06 0.16 0 0 0 0 0 0 0 0
30 0 0.21 0.26 0.01 0 0 0 0 0 0 0 0
1 1.13 1.18 1.25 1.26 1.19 1.28 1.37 1.44 1.26 1.39 1.56 1.60
2 1.47 1.52 1.68 1.50 1.83 2.03 1.94 1.78 2.36 2.21 2.24 2.17
Detour 1.63 1.84 1.86 1.87 2.52 2.54 2.26 2.46 3.30 3.24 2.96 2.95
10 1.94 1.95 2.02 2.25 2.67 3.03 2.48 2.87 3.59 3.22 3.42 4.06
15 1.88 2.09 1.92 2.27 2.62 2.78 2.82 2.75 3.55 4.07 3.31 3.57
30 1.95 2.03 2.11 2.21 2.46 2.89 2.86 2.52 3.70 3.70 3.47 3.40
1 1.42 1.52 1.59 1.63 1.58 1.64 1.68 1.83 1.65 1.81 1.88 2.02
2 1.83 2.00 2.08 1.83 2.36 2.64 2.43 2.31 3.16 2.96 2.83 2.79
Dela 2.06 2.29 2.29 2.26 3.33 3.04 291 3.06 4.30 4.52 3.70 3.53
Y 10 2.47 2.42 2.46 2.61 3.61 3.78 3.25 3.54 4.85 4.55 4.32 5.08
15 2.34 2.55 2.37 2.75 3.37 3.77 3.47 3.40 4.74 5.58 4.31 4.74
30 2.43 2.51 2.59 2.75 3.08 3.76 3.77 3.18 5.46 4.94 4.64 4.95
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Fig. 7. A stylized scenario with 20 vehicles starting in a ring-shaped formation, each
aiming to reach the opposite position on the ring.

Table 4

Summary of randomized computational results.
Vehicles Detour Delay Avg CPU Max CPU

Mn SD Mn SD Mn SD

30 1.61 0.08 2.06 0.11 0.25 0.01 1.12
40 2.01 0.17 271 0.31 0.29 0.01 1.53
50 2.21 0.25 3.13 0.42 0.35 0.02 2.09
60 2.40 0.15 3.48 0.35 0.42 0.02 5.13
70 2.75 0.22 4.08 0.49 0.52 0.06 4.01
80 2.94 0.23 4.48 0.52 0.53 0.06 4.27
90 3.13 0.29 4.90 0.58 0.68 0.05 5.80
100 3.21 0.31 5.15 0.79 0.87 0.09 16.54
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predictive deadlock detection mechanism, and the two-step deadlock
resolution strategy. The framework has been validated to work as
intended in a variety of simulation experiments.

In both the patent and academic literature, conceptual and theo-
retical works greatly outnumber evidence-based analyses. However, in
an emerging, regulation-bound industry, concrete data and empirical
analysis from field trials (or authentic simulations of field operations)
may be more valuable and more convincing to regulators and investors
alike. Therefore, meaningful future work can include implementing the
framework on real UAV fleets to understand and improve its real-world
performance, and establishing true-to-life virtual environments to speed
up the evaluation of business model hypotheses, concepts of operations
and technological innovations.
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Appendix. A crafted case for which the caterpillar-like starting
point method loses feasibility

The case is demonstrated in Fig. A.10. Two vehicles travel along
parallel paths from left to right. At time ¢, the top vehicle is at point
A and its planned future locations are B, C and D; the bottom vehicle
is at point E and its planned future locations are F, G and H. Their
planned speeds are the same (and apparently the top vehicle is not at
its maximum speed). Their plans constitute a feasible solution because
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none of the circles centered at {4, B,C, D} overlaps with any of the According to the formula (10) and (11), the starting-point plan at #;+ 1
circles centered at {E, F, G, H }. Now suppose the vehicles follow their for the top vehicle’s planned future locations are B’, C’ and D, and

plans and move one step ahead, to point B and point F, respectively. for the bottom vehicle’s planned future locations are F’, G’ and H. We
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Fig. A.10. A crafted case for which the caterpillar-like starting point method looses
feasibility.

can see that the two vehicles’ planned locations at certain non-matching
future time points actually violate the separation constraints, because
the corresponding circles slightly overlap. The example demonstrates
that the starting point strategy is just a heuristic. Nonetheless, such an
extreme corner case almost never occurs in reality, and even when it
does occur, the infeasible starting point should not be a big problem
because CONOPT solver’s phase 1 is usually quite effective for restoring
feasibility from a reasonable non-trivial starting point.

References

Amazon, 2018. Amazon Prime Air. URL: https://www.amazon.com/Amazon-Prime-
Air/b?ie=UTF8&node=8037720011. Accessed on March 18, 2020.

ArduPilot Dev Team, 2020. SITL simulator (software in the loop). Online Manual.

ASTM Subcommittee F38.02, 2020. Standard specification for remote ID and tracking.

Augugliaro, F., Schoellig, A.P., D’Andrea, R., 2012. Generation of collision-free trajec-
tories for a quadrocopter fleet: A sequential convex programming approach. In:
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp.
1917-1922.

Barnhart, C., Bertsimas, D., Caramanis, C., Fearing, D., 2012. Equitable and efficient
coordination in traffic flow management. Transp. Sci. 46 (2), 262-280.

Bulusu, V., Sengupta, R., Polishchuk, V., Sedov, L., 2017. Cooperative and non-
cooperative UAS traffic volumes. In: 2017 International Conference on Unmanned
Aircraft Systems (ICUAS). pp. 1673-1681.

Chan, A.K., Jesse R. Cheatham, I., Duncan, W.D., Hwang, E.Y., Hyde, R.A., Pan, T.S.,
Tegreene, C.T., Wood, V.Y.H., 2016. System and method for management of
airspace for unmanned aircraft. Elwha LLC, U.S. Patent US9508264B2.

Chen, Y., Cutler, M., How, J.P., 2015. Decoupled multiagent path planning via incre-
mental sequential convex programming. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA). pp. 5954-5961.

Chin, C., Gopalakrishnan, K., Evans, A., Egorov, M., Balakrishnan, H., 2020. Tradeoffs
between efficiency and fairness in unmanned aircraft systems traffic management.
In: 9th International Conference on Research in Air Transportation.

Chung, S.H., Sah, B., Lee, J., 2020. Optimization for drone and drone-truck combined
operations: A review of the state of the art and future directions. Comput. Oper.
Res. 123, 105004.

CONOPT, 2020. CONOPT Solver Manual in GAMS Documentation.

Dechering, M.J., 2019. Traffic management of small-unmanned aerial systems in an
urban environment. (Ph.D. thesis). University of Cincinnati, p. 97,

Dell’Olmo, P., Lulli, G., 2003. A new hierarchical architecture for Air Traffic Manage-
ment: Optimisation of airway capacity in a Free Flight scenario. European J. Oper.
Res. 144 (1), 179-193.

Drud, A.S., 1994. CONOPT - A large-scale GRG code. ORSA J. Comput. 6 (2), 207-216.

Dupray, D.J., LeBlanc, F.W., 2020. Unmanned aerial vehicles. US Patent
US10586464B2.

14

EURO Journal on Transportation and Logistics 10 (2021) 100058

Erzberger, H., 2004. Transforming the NAS: The next generation air traffic control
system. NASA/TP-2004-212828.

Erzberger, H., Heere, K., 2010. Algorithm and operational concept for resolving
short-range conflicts. Proc. Inst. Mech. Eng. 224, 225-243.

Federal Aviation Administration, 2011. Introduction to TCAS II version 7.1.

Federal Aviation Administration, 2019. Remote identification of unmanned aircraft
systems. Technical Report, (2019-28100), Federal Register.

Federal Aviation Administration, 2020. UAS Remote Identification. https://www.faa.
gov/uas/research_development/remote_id/.

Frazzoli, E., Mao, Z.-H., Oh, J.-H., Feron, E., 2001. Resolution of conflicts involving
many aircraft via semidefinite programming. J. Guid. Control Dyn. 24 (1).

Google Inc., 2020. Google UAS airspace system overview. Accessed June 2020.

Ho, F., Geraldes, R., Gongalves, A., Rigault, B., Sportich, B., Kubo, D., Cavazza, M.,
Prendinger, H., 2020. Decentralized multi-agent path finding for UAV traffic
management. [EEE Trans. Intell. Transp. Syst. 1-12.

Hoekstra, J., Ruigrok, R.C., van Gent, R.N., 2011. Free flight in a crowded airspace? In:
Air Transportation Systems Engineering. American Institute of Aeronautics and
Astronautics, Inc., pp. 533-545.

Jang, D.-S., Ippolito, C.A., Sankararaman, S., Stepanyan, V., 2017. Concepts of airspace
structures and system analysis for UAS traffic flows for urban areas. In: AIAA
Information Systems-AIAA Infotech @ Aerospace.

Jiang, T., Geller, J., Ni, D., Collura, J., 2016. Unmanned aircraft system traffic
management: Concept of operation and system architecture. International Journal
of Transportation Science and Technology 5 (3), 123-135.

Jin, Z., Zhao, Z., Luo, C., Basti, F., Solomon, A., Gursoy, M.C., Caicedo, C., Qiu, Q.,
2019. Simulation of real-time routing for UAS traffic management with communi-
cation and airspace safety considerations. In: 2019 IEEE/AIAA 38th Digital Avionics
Systems Conference (DASC). pp. 1-10.

Klooster, J.K., Ren, L., Hochwarth, J.K.U., 2014. Method and system for aerial vehicle
trajectory management. European Patent EP2503530B1.

Kochenderfer, M., Holland, J., Chryssanthacopoulos, J., 2012. Next generation airborne
collision avoidance system. Linc. Lab. J. 19, 17-33.

Kopardekar, P., 2019. Unmanned aircraft systems traffic management. U.S. Patent
US10332405B2.

Kopardekar, P., Rios, J., Prevot, T., Johnson, M., Jung, J., III, J.E.R., 2016. Unmanned
aircraft system traffic management (UTM) concept of operations. In: 16th AIAA
Aviation Technology, Integration, and Operations Conference.

Liu, Y., 2019. A progressive motion-planning algorithm and traffic flow analysis for
high-density 2D traffic. Transp. Sci. 53 (6), 1501-1525.

Liu, Y., 2020. A note on solving DiDi’s driver-order matching problem. Optim. Lett.
1-17.

McCarthy, T., Pforte, L., Burke, R., 2020. Fundamental elements of an urban UTM.
Aerospace 7 (7: 85).

Mukherjee, A., Hansen, M., 2009. A dynamic rerouting model for air traffic flow
management. Transp. Res. B 43 (1), 159-171.

Otto, A., Agatz, N., Campbell, J., Golden, B., Pesch, E., 2018. Optimization approaches
for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey.
Networks 72 (4), 411-458.

Pallottino, L., Feron, E., Bicchi, A., 2002. Conflict resolution problems for air traffic
management systems solved with mixed integer programming. IEEE Trans. Intell.
Transp. Syst. 3 (1), 3-11.

Prevot, T., Rios, J., Kopardekar, P., IIl, J.E.R., Johnson, M., Jung, J., 2016. UAS
traffic management (UTM) concept of operations to safely enable low altitude
flight operations. In: 16th AIAA Aviation Technology, Integration, and Operations
Conference.

Rios, J., Aweiss, A., Jung, J., Homola, J., Johnson, M., Johnson, R., 2020. Flight
demonstration of unmanned aircraft system (UAS) traffic management (UTM) at
technical capability level 4. In: ATAA AVIATION 2020 Forum.

Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, 1., Bradlow, H., Pan, J., Patil, S., Gold-
berg, K., Abbeel, P., 2014. Motion planning with sequential convex optimization
and convex collision checking. Int. J. Robot. Res. 33 (9), 1251-1270.

Shaw, V., Cu, Z., Dowlatkhah, S., 2018. Intelligent drone traffic management via radio
access network. U.S. Patent US9940842B2.

Tan, Q., Wang, Z., Ong, Y.-S., Low, K.H., 2019. Evolutionary optimization-based mission
planning for UAS traffic management (UTM). In: 2019 International Conference on
Unmanned Aircraft Systems (ICUAS). pp. 952-958.

Yang, X., Egorov, M., Evans, A., Munn, S., Wei, P., 2020. Stress testing of UAS traffic
management decision making systems. In: AIAA AVIATION 2020 FORUM.

Zhang, W., Kamgarpour, M., Sun, D., Tomlin, C., 2012. A hierarchical flight planning
framework for air traffic management. Proc. IEEE 100 (1), 179-194.

Zhao, Z., Luo, C., Zhao, J., Qiu, Q., Gursoy, M.C., Caicedo, C., Basti, F., 2019. A
simulation framework for fast design space exploration of unmanned air system
traffic management policies. In: 2019 Integrated Communications, Navigation and
Surveillance Conference (ICNS). pp. 1-10.

Zhong, C., Zhao, Z., Luo, C., Gursoy, M.C., Qiu, Q., Caicedo, C., Basti, F.,
Solomon, A., 2020. A cost-benefit analysis to achieve command and control (C2)
link connectivity for beyond visual line of sight (BVLOS) operations. In: 2020
Integrated Communications Navigation and Surveillance Conference (ICNS). pp.
2D1-1-2D1-14.

Zhou, Z., Chen, J., Liu, Y., 2020. Optimized landing of drones in the context of
congested air traffic and limited vertiports. IEEE Trans. Intell. Transp. Syst. 1-11.

Zhu, G., Wei, P., 2019. Pre-departure planning for urban air mobility flights with
dynamic airspace reservation. In: AIAA Aviation 2019 Forum.


https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb2
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb3
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb4
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb4
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb4
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb4
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb4
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb4
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb4
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb5
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb5
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb5
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb6
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb6
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb6
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb6
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb6
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb7
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb7
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb7
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb7
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb7
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb8
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb8
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb8
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb8
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb8
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb9
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb9
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb9
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb9
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb9
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb10
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb10
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb10
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb10
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb10
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb11
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb12
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb12
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb12
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb13
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb13
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb13
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb13
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb13
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb14
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb15
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb15
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb15
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb16
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb16
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb16
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb17
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb17
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb17
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb18
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb19
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb19
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb19
https://www.faa.gov/uas/research_development/remote_id/
https://www.faa.gov/uas/research_development/remote_id/
https://www.faa.gov/uas/research_development/remote_id/
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb21
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb21
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb21
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb22
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb23
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb23
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb23
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb23
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb23
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb24
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb24
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb24
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb24
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb24
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb25
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb25
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb25
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb25
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb25
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb26
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb26
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb26
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb26
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb26
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb27
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb27
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb27
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb27
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb27
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb27
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb27
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb28
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb28
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb28
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb29
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb29
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb29
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb30
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb30
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb30
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb31
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb31
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb31
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb31
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb31
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb32
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb32
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb32
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb33
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb33
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb33
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb34
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb34
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb34
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb35
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb35
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb35
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb36
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb36
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb36
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb36
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb36
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb37
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb37
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb37
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb37
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb37
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb38
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb38
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb38
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb38
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb38
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb38
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb38
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb39
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb39
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb39
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb39
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb39
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb40
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb40
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb40
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb40
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb40
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb41
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb41
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb41
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb42
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb42
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb42
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb42
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb42
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb43
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb43
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb43
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb44
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb44
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb44
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb45
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb45
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb45
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb45
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb45
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb45
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb45
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb46
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb46
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb46
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb46
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb46
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb46
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb46
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb46
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb46
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb47
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb47
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb47
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb48
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb48
http://refhub.elsevier.com/S2192-4376(21)00026-1/sb48

	A multi-agent semi-cooperative unmanned air traffic management model with separation assurance
	Introduction
	Literature review
	Problem statement
	The agent's optimization model
	Parameter setting tactics in implementation

	Solution process and feasibility guarantee
	Starting point strategy for feasibility guarantee
	Deadlock resolution
	Reducing unnecessary corridor locks to effectivize prioritization

	Performance evaluation metrics
	Simulation experiments
	The price of semi-cooperativeness
	Adjusting the safety buffer to cope with uncooperative vehicles
	Multi-agent routing performances at different densities

	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix. A crafted case for which the caterpillar-like starting point method loses feasibility
	References


