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Abstract 

We examine energy dissipation of impinging molecules (CO) on Au(111) using 

molecular dynamics on a machine learned high-dimensional potential energy surface 

(PES) describing the molecular and surface degrees of freedom. The PES was trained 

using a neural network method from density functional theory energies and gradients 

obtained with a relatively small supercell size, but it is capable of providing an accurate 

description of the molecule-surface interaction for larger supercells. This property 

allowed us to investigate the dependence of the dissipation dynamics on the supercell 

size. Our simulations indicated that the supercell size has essentially no effect on the 

direct scattered molecules, but the energy dissipation of the trapping molecules is 

significantly influenced by the size of the simulation cell. This observation has 

important implications in understanding dissipation at the gas-surface interface and 

their effects on various dynamics processes. 
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I. Introduction 

Energy exchange between molecular species and metal surfaces represents an 

unavoidable issue in gas-surface encounters, because it can significantly impact the 

outcome. Adsorption, for example, is only possible if the impinging molecule loses 

some of its kinetic energy to enable its trapping on the surface. Desorption, on the other 

hand, is promoted by energy flow from the substrate to the adsorbate. As a result, a 

thorough understanding of the energy exchange mechanism and dynamics is of 

foundational importance in surface science. 

It is well known that the energy carried by the impinging species can be either 

mechanically dissipated to the lattice vibration through an electronically adiabatic 

mechanism, or transferred to electron-hole pairs (EHPs) of metal surfaces via an 

electronically nonadiabatic mechanism.[1-5] While state-of-the-art molecular beam 

experiments provide detailed information about the energy conversion at gas-surface 

interfaces,[6-12] accurate theoretical modelling is often required for an in-depth 

understanding of the underlying mechanism and dynamics.[2,4,13-21] For example, it 

was very recently revealed by theory that adiabatic vibrational energy transfer from the 

molecule to surface phonons plays a non-negligible role in the scattering of highly 

vibrationally excited NO molecules from Au(111),[22,23] which provided valuable 

mechanistic insights into experimentally observed multi-quantum vibrational 

relaxation in the scattered NO. In another example, theoretical understanding of the 

physisorption and chemisorption wells for the current system and the associated energy 

transfer mechanisms [24,25] was instrumental in resolving experimentally observed 



4 
 

long relaxation time for vibrationally excited CO on the Au(111) surface.[26,27] 

First-principles characterizations of gas-surface systems are largely based on plane 

wave density functional theory (DFT), which approximates an infinitely-extended 

surface with a thin slab within a periodically repeated supercell. In many of the earlier 

models, the surface degrees of freedom (DOFs) were usually neglected, resulting in 

adiabatic potential energy surfaces (PESs) of molecules interacting with static surfaces. 

This was necessary to avoid the construction of high-dimensional PESs that include the 

surface atoms, but such a rigid surface treatment is only valid for scattering of very light 

species such as H2.[28] A number of models have been proposed to approximately to 

include the surface atom motion, as discussed in some details by two recent 

reviews.[19,20] For example, the surface oscillator (SO) model[29,30] was proposed 

to approximate the infinite surface vibration by a single harmonic oscillator. To include 

energy dissipation, rigid surface based PESs can be coupled with a generalized 

Langevin oscillator (GLO) model [31,32] as a thermal bath in terms of surface 

harmonic oscillators described by generalized Langevin equations. Saalfrank et al.[33-

35] have further modified the SO model by introducing a linear coupling term to 

account for the barrier change due to surface oscillation and replaced the single surface 

oscillator by a set of GLOs. It was argued that it is better to include many GLOs 

approximately than treating a single oscillator exactly.[35] While the GLO model has 

been widely applied to many diatom-surface systems and Eley-Rideal processes,[36-

41] it represents only a phenomenological approximation of the realistic surface lattice 

fluctuations. On the other hand, Jackson and coworkers[42-44] have carefully studied 
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lattice effects in CH4 dissociation on various metal surfaces and concluded that a sudden 

lattice model is sufficient to provide quantitative corrections to the sticking probability. 

This sudden model however does not allow for energy exchange between the molecule 

and the surface. A modified GLO model has recently been proposed to better describe 

the change of the dissociation barrier caused by individual surface atom 

displacements,[45] but an atomistic characterization is still preferred for realistic 

simulations. 

With increasing computational power, atomistic models have started to emerge in 

recent years. For example, surface motion has been explicitly taken into account in the 

ab initio molecular dynamics (AIMD) approach, an increasingly popular way of 

modeling gas-surface scattering dynamics that bypasses difficulties in constructing 

high-dimensional PESs.[17,46-49] However, the high computational costs in AIMD 

calculations have limited the slab model to adopt relatively small supercell sizes. This 

may lead to unphysical energy flow to and from the lattice, especially for indirect 

processes with long residence time on the surface.[50] For example, Novko et al. [51] 

used a 2×2 supercell with five metal layers in their AIMD (and AIMD with electronic 

friction) simulations of the adsorption of atomic N on Ag(111) and found that at low 

temperature the metal atoms in the top two layers are unphysically heated after 1~2 ps. 

This problem was alleviated by incorporating an additional thermal bath. To better 

describe the adiabatic energy dissipation for surface processes, Meyer and Reuter [52] 

proposed an embedding method, in which a small quantum mechanical (QM) region 

including the molecule and a regular surface slab is embedded in a phononic bath 
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consisting of thousands of metal (Me) atoms described by empirical force fields. This 

so-called QM/Me model was applied to the O2 + Pd(100) system, revealing that a 

remarkable fraction (~80%) of the released chemisorption energy had propagated 

outside the QM region within 1.5 ps after O2 dissociation.[53,54] These results suggest 

that the conventional size of the supercell in AIMD simulations may not be sufficient. 

More recently, machine learning methods for fitting high-dimensional PESs have 

gradually matured. For example, the Behler-Parrinello neural network (BPNN) [55] and 

embedded atom neural network (EANN) [56] approaches have been successfully 

applied to generate DFT-based high-dimensional molecule-surface PESs including both 

molecular and surface DOFs in a supercell satisfying periodic boundary 

conditions.[22,25,57-66] Such analytical PESs are orders of magnitude faster than DFT 

calculations, thus enabling much more efficient MD simulations at the same level as 

AIMD. Importantly, the total energy in this atomistic type of NN PES is expressed as 

the sum of atomic energies accounting for modulations by their immediate environment. 

This offers scalability of such a PES in describing different supercell sizes, provided 

that the PES is well-trained, without sacrificing the accuracy of the interaction between 

surface atoms as in the QM/Me model. 

In this work, we investigate the energy transfer dynamics of vibrationally excited 

CO scattering/trapping from Au(111) using a DFT-based EANN PES with a special 

focus on the influence of the supercell size. This system is chosen because of the earlier 

mentioned experimental work from the Wodtke group on the surprisingly long lifetime 

of vibrationally excited CO adsorbed on the Au(111) surface.[26] These authors 
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prepared the CO adsorbate on the Au surface via impinging gaseous CO(v=2) molecules 

and found desorbed CO(v=1) after more than 100 ps on the metal surface. This was 

unexpected as the vibrational lifetime of CO on metal surfaces, such as Cu and Pt, is 

known to be very short (ps) due to strong nonadiabatic coupling with EHPs.[67,68] The 

vibrational relaxation lifetime of CO(v=1) on Au(111) at 35 K was later directly 

measured as 49±3 ps,[69] significantly longer than those on other metal surfaces. 

Theoretically, Lončarić et al.[24] found that the Bayesian Error Estimation Functional 

with van der Waals corrections (BEEF-vdW) [70] results in a physisorption well, which 

has a much larger surface-molecule distance than that of the chemisorption well 

predicted by a semi-local functional, responsible for the long vibrational lifetime for 

CO(v=1) on Au(111). Huang et al.[25] later constructed a BPNN PES for CO 

interaction with Au(111) with the same BEEF-vdW, uncovering a metastable 

chemisorption well as well as a physisorption one. Quasi-classical trajectory (QCT) 

results on this PES qualitatively reproduced the experimental data of direct scattering 

and also provided a possible mechanism to the experimentally observed vibrational 

relaxation of CO(v=2) to CO(v=1).[26] More recently, the intricate interplay between 

weak physisorption and chemisorption of CO on Au(111) was revealed by temperature 

dependent molecular beam experiments and kinetic modeling.[27]  

By refitting the same dataset with the EANN approach, we report here a new PES 

for this system that is more accurate and more efficient than the previous BPNN one. 

Interestingly, we find that this EANN PES constructed with a 3×3 supercell is capable 

of accurately predicting total energies for larger (e.g., 4×4 and 5×5) supercells. With 
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this new PES, we simulate the scattering/trapping of vibrationally excited CO 

molecules on Au(111) under experimental conditions, and examine the energy 

dissipation dynamics with different supercell sizes. While the final energy distributions 

of the directly scattered molecules are insensitive to the size of the supercell, the 

trapping probability is found to increase with the increasing number of atoms in the 

supercell, suggesting that more energy is transferred into the lattice with a larger cell. 

This study thus gains insights into the energy transfer dynamics and offers guidance on 

the size dependence for future dynamical simulations of molecule-surface scattering. 

 

II. Computational Details 

A. Training Dataset 

All the DFT forces and energies of points used for the EANN PES fitting were 

calculated via the Vienna ab initio simulation package (VASP) [71,72] with BEEF-

vdW.[70] A slab model with four layers in a 3×3 unit cell was used to represent the 

Au(111) surface with the top two layers relaxed and a vacuum region of 16 Å in the Z 

direction. The kinetic energy in the plane wave basis set was truncated by 450 eV and 

the Brillouin zone was sampled via a 5×5×1 Monkhorst-Pack k-point mesh.[73] In this 

work, the source of training dataset consists of two portions of data points. We first 

collected 10766 DFT points extracted from the AIMD simulations reported in Ref. [25]. 

In addition, we used an efficient trajectory-free active learning strategy[74,75] to select 

additional molecule-free 1696 surface configurations for a more accurate description of 

surface phonons. 
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B. Neural Network Potential Energy Surface 

The EANN approach proposed recently [56] was used to construct the CO+Au(111) 

PES, which is invariant with respect to permutation of identical nuclei. In the EANN 

framework, the total energy of the system is given as the sum of atomic energies, each 

of which is the output of an atomic neural network (ANN). Each atom can be considered 

as an impurity embedded in an environment composed of surrounding atoms and the 

embedded electron density at this atomic position is used as the structural descriptor for 

the ANN,[56] namely, 
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where Nc is the number of neighbor atoms within a cutoff radius (rc), fc(rij) is a cutoff 

function [76] to ensure that the contribution of neighbor atoms decay smoothly to zero 

at rc. For metals, the cutoff function decays quickly with the internuclear distance as 

the interaction is largely short ranged. This is important below when we use the same 

ANNs to describe interactions in different supercell sizes. The GTO is given by, 

( ) ( )2
sexpyx zll l

ij x y z r rϕ α= − −r       (3) 

where rij=(x, y, z) and r are Cartesian coordinates of the embedded atom i relative to 

atom j and its norm respectively; lx, ly and lz represent the angular momentum 

components along each Cartesian axis, and the orbital angular momentum (L) is the 
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sum of them; α and rs are parameters that determine the radial distribution of a GTO; cj 

in Eq. (2) serves like an element-dependent expansion coefficient of an atomic orbital 

for atom j, which is optimized together with ANN parameters. Compared with the 

BPNN approach used in Ref. [25], EANN can be even more accurate and much more 

efficient (see below). This is because that the embedded density-like descriptors given 

in Eq. (2) not only implicitly incorporate three-body information of the local 

environment, but also scale linearly with respect to the number of neighboring atoms. 

The EANN approach has been successfully applied to constructing PESs,[56,64,77,78] 

and extended to learn dipoles and polarizabilities,[79] as well as electronic friction 

tensors of adsorbates on surfaces.[80] 

As mentioned above, a total of 12462 points were used to fit the EANN PES, 

among which 90% of data points were used for training and the rest for testing. The 

hyperparameters of EANN are as follows: L=0, 1, and 2, rc=7.6 Å, α=0.65 Å–2, and 

rs=0.00, 0.55, 1.10, 1.65, 2.20, 2.75, 3.30, 3.85, 4.40, 4.95, 5.50, 6.05, 6.60, 7.15 and 

7.70 Å, which result in finally 39 embedded density features. Each ANN consists of 

two hidden layers with 40 and 60 neurons. 

 

II.C. Quasi-Classical Trajectory Calculations 

QCT calculations were performed with our in-house code heavily modified from 

VENUS.[81] The initial CO (v=2, J=0) molecule was launched from 8 Å above the 

Au(111) surface, whose orientation and position in the unit cell were sampled randomly. 

The diatomic molecule was treated as a vibrating rotor, whose internal energy was 
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calculated as a function of vibrational and rotational quantum numbers v and J semi-

classically.[82] Following the experiment,[26] the incidence angle was fixed at θ=9° 

from the surface normal with the azimuthal angle randomly sampled. Surface atoms in 

the top two layers are allowed to move in QCT calculations, while the bottom two layers 

are fixed. The initial surface configurations were sampled via Andersen thermostat[83] 

with the experimental surface temperature (Ts = 300 K), but no thermostat was imposed 

when simulating the collisional processes. Each trajectory was propagated with a time 

step of 0.1 fs via the velocity Verlet algorithm. The trajectory was terminated and 

labeled as a “scattered” event when molecule-surface vertical distance exceeded 8.1 Å 

and the molecule velocity was pointing away from surface, or alternatively, a “trapped” 

event for the molecule staying on the surface at the end of a given propagation time. 

No dissociation event was observed at all in our calculations. Following the definition 

in Ref. [25], those scattered trajectories experiencing less than four bounces (whenever 

the molecular center changes its velocity direction at the surface) were referred as 

“direct scattered” (DS), otherwise they were considered to be first trapped and then 

desorb, namely “trapping desorption” (TD). Note that the maximum propagation time 

is 50 ps in this work, but some results terminated in a shorter propagation time are also 

present (see discussion below and the caption of each Figure). The statistical errors of 

QCT results were calculated via ( )= 1 /p p Nσ − , where p is the probability in each 

condition and N is actual number of trajectories. 

We note that there is evidence that the vibrational relaxation of CO on the Au(111) 

surface is dominated by the nonadiabatic mechanism,[24,25] especially for highly 
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vibrationally excited CO.[84] However, the simulations reported here will only focus 

on the adiabatic energy dissipation involving the surface motion without vibrational 

relaxation. Consequently, the results here should not be directly compared with 

experiment and should serve as a pure theoretical exercise. The dependence of EHP-

induced energy dissipation on the size of the supercell is another open question. For 

example, increasing the size of the unit cell may effectively increase the number of 

interband excitations in the first Brillouin zone. Its influence on the strength of 

electronic friction tensor has been discussed by Box et al.[21], but is beyond the scope 

of this work. 

 

III. Results and Discussion 

Let us first check the overall reliability of the EANN PES. The root mean square 

errors (RMSEs) of the total energies and atomic forces for training and validation sets 

were found to be 3.37/4.14 meV and 9.38/10.71 meV/Å, respectively. The small RMSE 

for the validation set suggests no overfitting. These values are merely half of those 

reported on the previous BPNN PES in Ref. [25], namely 9.78 meV (energies) and 

20.00 meV/Å (forces). Furthermore, even when the cutoff radius in EANN PES is 0.6 

Å larger than that in the BPNN PES (to better capture the long-range interaction 

between CO and the gold surface), the former is ~7 times faster than the latter. Such a 

speedup largely arises from the linear scaling in computing the embedded density 

descriptors in EANN versus the quadratic scaling in computing atom centered 

symmetry functions in the BPNN approach. These results underscore the high accuracy 
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and high efficiency of the EANN PES. 

To illustrate the fitting quality, we compare several representative one-dimensional 

cuts of the EANN PES with the DFT data. Specifically, when the center of mass (COM) 

of CO is fixed at the fcc/top site and the orientation of CO is parallel/perpendicular to 

the Au(111) surface within a 3×3 supercell (Figures 1a and 1b), the EANN PES 

faithfully reproduces the corresponding DFT points. The predicted adsorption energies 

and geometries of the physisorption and (metastable) chemisorption wells are in 

excellent agreement with those reported on the BPNN PES in Ref. [25]. More 

importantly, as the supercell is enlarged to a size of 4×4 (Figure 1c and 1d) and 5×5 

(Figure 1e and 1f), the agreement between DFT energies and the EANN PES remains 

good, especially for parallel orientation. The EANN PES slightly underestimates the 

well depth for the metastable state of CO perpendicular to the fcc site within the 5×5 

supercell. It should be emphasized that the EANN PES was trained with the data points 

generated from the 3×3 cell only, so this level of agreement is quite satisfactory. This 

excellent agreement confirms that the atomistic representation of PES allows us to 

expand the supercell size while keeping the accuracy of the PES with periodic boundary 

conditions. This is made possible by the “nearsightedness” of the interatomic 

interaction within the metal, which is shorter ranged than the cell size. Figure 1 also 

suggests that the molecule-surface interaction energy is largely converged for this 

system in the 3×3 supercell, from a static point of view. Further extending the cell size 

has a minor effect on the energetics. 

Based on this EANN PES, we first calculated 5000 trajectories of CO(v=2) 
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scattering from Au(111) for different sizes of the slab with the same incident energy of 

Ein=0.32 eV up to 50 ps. We should note that the dynamics results on the EANN PES 

are very close to those on the BPNN PES (when used the 3×3 cell),[25] so their 

comparison is thus not discussed here. 

In Figures 2 and 3, the distributions of vibrational energy, rotational energy, 

translational energy and scattering angles of the scattered CO in the DS and TD 

channels are compared, respectively, for different slab models. Consistent with the 

previous results,[25] the vibrational energy ( f
vibE ) distributions are very narrow in both 

channels, regardless of cell sizes, suggesting strong vibrational elasticity in the absence 

of the electronic friction. This can be attributed to the large frequency mismatch 

between the CO vibration and surface phonons. Rotational energy ( f
rotE ) distributions 

of two channels are similar, except for a slight increase in the proportion of high 

rotational energy in the DS channel. In comparison, a large discrepancy is found for the 

distributions of translational energy ( f
transE ) between the two channels, where the peak 

of the distribution is much lower in the TD (~0.05 eV) channel than that in the DS 

(~0.15 eV) channel. In addition, in contrast to a narrow and near specular angular 

distribution in the DS channel, the TD channel has a much broader angular distribution. 

These results suggest that the TD trajectories experience on average more prominent 

translational energy losses during the gas-surface encounters, due probably to the 

multiple contact between the molecule and the surface. Overall, there is no significant 

difference among these results with the three cell sizes, implying that the energy transfer 

occurring in a relatively short timescale can be reliably described by a small supercell. 
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Now let us turn to the trapping and desorption of the impinging CO. In Figure 4, 

we compare the trapping probability as a function of the incident energy obtained by 

QCT calculations (5000 trajectories launched at every incident energy) with that of 

experiment at Ts=273 K.[85] It is worth emphasizing that the experimental trapping 

probability at 100 K was measured by the King-Wells method and at other temperatures 

was fitted to a simple exponential function from time-of-flight distributions of the 

trapping-desorption component.[85] The residence time of CO on the clean Au(l11) 

surface was estimated to be less than ~1 s at 100 K,[85] a macroscopic time-scale that 

is impossible to model by QCT simulations. Here, the QCT calculations were 

performed with the 3×3 supercell and 10 ps of propagation time. So the comparison 

between theoretical and experimental trapping probability curves is qualitative and the 

theoretical results do follow the experimental trend quite well. However, this good 

agreement is deceiving as shown by results at Ein=0.32 eV with larger supercells and 

longer propagation times (see the blue diamond in Figure 4 and results in Figure 5). On 

one hand, for a given propagation time, the trapping probability increases with the cell 

size, indicating dependence of energy dissipation with the size of the cell used in the 

simulation. Even for the largest cell used in our study, the trapping probability is not 

yet converged. On the other hand, for a given cell size, the trapping probability 

decreases exponentially with the propagation time, as expected for a first-order 

trapping-desorption kinetics. Because of the limited propagation time (10 ps), the 

calculated trapping probability is apparently overestimated. The combination of the two 

factors suggests that any quantitative comparison of theoretical and experimental 
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trapping probabilities for molecular adsorption processes at solid surfaces should be 

taken with caution.  

To further explore the influence of slab size on the energy dissipation and the 

resultant trapping/desorption dynamics, the mean kinetic energy of CO (Figure 6) and 

the surface temperature Ts (Figure 7) were monitored over time with the average of all 

trapped trajectories. Here, the surface temperature is approximated by the time average 

kinetic energy of the surface atoms. In Figure 6, a stronger fluctuation of the mean 

kinetic energy of CO in the 3×3 cell is found than in the 4×4 and 5×5 cells, especially 

during the first 2.5 ps, corresponding to the first a few bounces of the molecule right 

after the collision. This stronger fluctuation is likely a result of the smaller amount of 

surface atoms with which the incident CO molecule can exchange energy, which will 

accordingly cause more facile desorption (a lower trapping probability) of CO, as 

observed in Figure 5. In addition, we find in Figure 7 that in each case the surface 

temperature quickly elevates upon the gas-surface collision and then reaches to a 

relatively stable value. Interestingly, a larger cell tends to reach the equilibrium in a 

shorter period with an average Ts closer to the initial temperature (Ts=300 K), e.g., Ts ≈ 

358 K (3×3 cell) > Ts ≈ 334 K (4×4 cell) > Ts ≈ 322 K (5×5 cell). Our findings are 

consistent with the observations of Alducin and coworkers,[51] both of which indicate 

that the insufficient number of surface atoms used in the simulations will lead to the 

accumulation of most of the energy exchanged with the adsorbate, leading to unphysical 

heating of surface. This problems was even more severe in their calculations for the 

highly exothermic adsorption of atomic nitrogen on Ag(111),[51] where the substrate 
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temperature was increased by several hundred Kelvins during the fast adsorption 

process (~3.5 ps), if no thermal bath was imposed. These results clearly suggest that 

gas-surface energy dissipation is more adequately described when more surface atoms 

are explicitly involved during molecular dynamics simulations. It should be noted that 

energy transfer could also depend on the number of metal layers, but the current PES is 

less reliable to directly describe extra layers beyond the four-layer slab, due presumably 

to the lack of training data for relevant atomic structures. Another effective way to 

describe energy dissipation is to couple the lower layers of the surface with a thermostat, 

as performed in the work of Alducin et al.[51]and Groß.[86] Alternatively, we expect 

that an improved QM/Me model [52] with the QM part replaced by an analytical EANN 

PES would be useful and more efficient than the original version. Even better, a well-

trained EANN PES in a sufficiently large supercell and more surface layers should offer 

a better description for the surface itself so that the empirical force field for the metal 

is unnecessary. This pure EANN approach will overcome the limit of the number of 

layers and the supercell explored in this work and allow for first-principles simulations 

of a much large slab size. Further investigations along this direction will be very 

promising. 

Expanding the supercell also has an influence on the estimation of the residence 

lifetime of CO on Au(111). Following our previous work,[25] the lifetime (τ) is 

approximately extracted from the slope of the trapping probability v.s. propagation time 

in the logarithmic plot (Figure 5), assuming a first-order kinetics for desorption. It is 

found that the lifetime of trapped CO(v =2) increases monotonically from ~39 to ~54 
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ps as the slab size increases from 3×3 to 5×5, although the difference becomes smaller 

between 3×3 and 4×4 than between 4×4 and 5×5. It should be noted that this value 

cannot be directly compared with the measured vibrational relaxation lifetime of 

CO(v=1) on Au(111) at 35 K (49±3 ps) [69], because the realistic conditions are rather 

different, e.g., the surface temperature, the initial state, and most importantly the extent 

departing from equilibrium (scattering v.s. pre-adsorption). Furthermore, the electron 

friction is ignored in this work. Nonetheless, our results point to the necessity of using 

a sufficiently large cell size in describing trapping dynamics, despite the higher 

computational cost. 

 

IV. Conclusions 

 In this work, we report a scalable neural network PES for describing CO interaction 

with Au(111), based on a high-quality fit of tens of thousands of DFT data points. With 

the help of the atomistic representation of this EANN PES, we investigate the influence 

of the supercell size on the scattering of CO from Au(111) using a quasi-classical 

method. It is found that the distributions of vibrational energy, rotational energy, 

translational energy, scattering angle of the directly scattered CO molecules are largely 

insensitive to the supercell size. Whereas the calculated trapping probability always 

decreases with the propagation time, the absolute value increases with the increasing 

slab size, so as the estimated residence lifetime of the trapped CO molecule. Our 

analysis indicates that the surface may suffer from artificial heating upon the molecular 

collision if a small cell size is used, resulting in stronger fluctuation of surface atoms 
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and energy flow back to the molecule, and eventually lowering the trapping probability. 

Altogether, we argue that the commonly-used 3×3 supercell is sufficient to accurately 

capture the energy transfer dynamics in a relatively short timescale, but a larger 

supercell is required for describing the trapping dynamics, which requires a long 

propagation time. 
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Figure 1. One-dimensional cuts of the EANN PES as a function of Z (the distance 

between the CO center of mass and surface) for CO at fcc/top sites and 

parallel/perpendicular to the Au(111) surface, compared with DFT data with 3×3 (a-b), 

4×4 (c-d), and 5×5 (e-f) supercells. 
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Figure 2. Distributions of (a) vibrational energy ( f
vibE ), (b) rotational energy ( f

rotE ), (c) 

translational energy ( f
transE ) and (d) scattering angle of the directly scattered (DS) CO 

for three different slab sizes, at Ein=0.32 eV and Ts=300 K. 
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Figure 3. The same as Figure 2 but for the trapping desorption (TD) channel. 
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Figure 4. Qualitative comparison of the trapping probabilities as a function of incident 

energy (Ein) calculated on the EANN PES with the 3×3 supercell for 10 ps propagation 

(Ts=300 K) and measured in experiment (Ts=273 K).[85] The blue diamond represents 

the trapping probability when the propagation time is extended to 50 ps at Ein=0.32 eV. 
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Figure 5. Fraction of CO molecules trapped on the surface as a function of time for 

different slab sizes, along with the residence lifetime (τ) estimated by the slope of each 

fitted line. 
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Figure 6. Mean kinetic energy of CO against time for different slab sizes and the inset 

amplifies the first 2.5 ps. 
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Figure 7. Variation of surface temperature (Ts) over time in different slab sizes with an 

initial Ts of 300 K. The gray dashed lines guide the eyes for seeing the equilibrium 

temperature in each case. 


