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Abstract

We examine energy dissipation of impinging molecules (CO) on Au(111) using
molecular dynamics on a machine learned high-dimensional potential energy surface
(PES) describing the molecular and surface degrees of freedom. The PES was trained
using a neural network method from density functional theory energies and gradients
obtained with a relatively small supercell size, but it is capable of providing an accurate
description of the molecule-surface interaction for larger supercells. This property
allowed us to investigate the dependence of the dissipation dynamics on the supercell
size. Our simulations indicated that the supercell size has essentially no effect on the
direct scattered molecules, but the energy dissipation of the trapping molecules is
significantly influenced by the size of the simulation cell. This observation has
important implications in understanding dissipation at the gas-surface interface and

their effects on various dynamics processes.



I. Introduction

Energy exchange between molecular species and metal surfaces represents an
unavoidable issue in gas-surface encounters, because it can significantly impact the
outcome. Adsorption, for example, is only possible if the impinging molecule loses
some of its kinetic energy to enable its trapping on the surface. Desorption, on the other
hand, is promoted by energy flow from the substrate to the adsorbate. As a result, a
thorough understanding of the energy exchange mechanism and dynamics is of
foundational importance in surface science.

It is well known that the energy carried by the impinging species can be either
mechanically dissipated to the lattice vibration through an electronically adiabatic
mechanism, or transferred to electron-hole pairs (EHPs) of metal surfaces via an
electronically nonadiabatic mechanism.[1-5] While state-of-the-art molecular beam
experiments provide detailed information about the energy conversion at gas-surface
interfaces,[6-12] accurate theoretical modelling is often required for an in-depth
understanding of the underlying mechanism and dynamics.[2,4,13-21] For example, it
was very recently revealed by theory that adiabatic vibrational energy transfer from the
molecule to surface phonons plays a non-negligible role in the scattering of highly
vibrationally excited NO molecules from Au(111),[22,23] which provided valuable
mechanistic insights into experimentally observed multi-quantum vibrational
relaxation in the scattered NO. In another example, theoretical understanding of the
physisorption and chemisorption wells for the current system and the associated energy

transfer mechanisms [24,25] was instrumental in resolving experimentally observed



long relaxation time for vibrationally excited CO on the Au(111) surface.[26,27]
First-principles characterizations of gas-surface systems are largely based on plane
wave density functional theory (DFT), which approximates an infinitely-extended
surface with a thin slab within a periodically repeated supercell. In many of the earlier
models, the surface degrees of freedom (DOFs) were usually neglected, resulting in
adiabatic potential energy surfaces (PESs) of molecules interacting with static surfaces.
This was necessary to avoid the construction of high-dimensional PESs that include the
surface atoms, but such a rigid surface treatment is only valid for scattering of very light
species such as H2.[28] A number of models have been proposed to approximately to
include the surface atom motion, as discussed in some details by two recent
reviews.[19,20] For example, the surface oscillator (SO) model[29,30] was proposed
to approximate the infinite surface vibration by a single harmonic oscillator. To include
energy dissipation, rigid surface based PESs can be coupled with a generalized
Langevin oscillator (GLO) model [31,32] as a thermal bath in terms of surface
harmonic oscillators described by generalized Langevin equations. Saalfrank et al.[33-
35] have further modified the SO model by introducing a linear coupling term to
account for the barrier change due to surface oscillation and replaced the single surface
oscillator by a set of GLOs. It was argued that it is better to include many GLOs
approximately than treating a single oscillator exactly.[35] While the GLO model has
been widely applied to many diatom-surface systems and Eley-Rideal processes,[36-
41] it represents only a phenomenological approximation of the realistic surface lattice

fluctuations. On the other hand, Jackson and coworkers[42-44] have carefully studied



lattice effects in CH4 dissociation on various metal surfaces and concluded that a sudden
lattice model is sufficient to provide quantitative corrections to the sticking probability.
This sudden model however does not allow for energy exchange between the molecule
and the surface. A modified GLO model has recently been proposed to better describe
the change of the dissociation barrier caused by individual surface atom
displacements,[45] but an atomistic characterization is still preferred for realistic
simulations.

With increasing computational power, atomistic models have started to emerge in
recent years. For example, surface motion has been explicitly taken into account in the
ab initio molecular dynamics (AIMD) approach, an increasingly popular way of
modeling gas-surface scattering dynamics that bypasses difficulties in constructing
high-dimensional PESs.[17,46-49] However, the high computational costs in AIMD
calculations have limited the slab model to adopt relatively small supercell sizes. This
may lead to unphysical energy flow to and from the lattice, especially for indirect
processes with long residence time on the surface.[50] For example, Novko et al. [51]
used a 2x2 supercell with five metal layers in their AIMD (and AIMD with electronic
friction) simulations of the adsorption of atomic N on Ag(111) and found that at low
temperature the metal atoms in the top two layers are unphysically heated after 1~2 ps.
This problem was alleviated by incorporating an additional thermal bath. To better
describe the adiabatic energy dissipation for surface processes, Meyer and Reuter [52]
proposed an embedding method, in which a small quantum mechanical (QM) region

including the molecule and a regular surface slab is embedded in a phononic bath



consisting of thousands of metal (Me) atoms described by empirical force fields. This
so-called QM/Me model was applied to the O, + Pd(100) system, revealing that a
remarkable fraction (~80%) of the released chemisorption energy had propagated
outside the QM region within 1.5 ps after O dissociation.[53,54] These results suggest
that the conventional size of the supercell in AIMD simulations may not be sufficient.

More recently, machine learning methods for fitting high-dimensional PESs have
gradually matured. For example, the Behler-Parrinello neural network (BPNN) [55] and
embedded atom neural network (EANN) [56] approaches have been successfully
applied to generate DFT-based high-dimensional molecule-surface PESs including both
molecular and surface DOFs in a supercell satisfying periodic boundary
conditions.[22,25,57-66] Such analytical PESs are orders of magnitude faster than DFT
calculations, thus enabling much more efficient MD simulations at the same level as
AIMD. Importantly, the total energy in this atomistic type of NN PES is expressed as
the sum of atomic energies accounting for modulations by their immediate environment.
This offers scalability of such a PES in describing different supercell sizes, provided
that the PES is well-trained, without sacrificing the accuracy of the interaction between
surface atoms as in the QM/Me model.

In this work, we investigate the energy transfer dynamics of vibrationally excited
CO scattering/trapping from Au(111) using a DFT-based EANN PES with a special
focus on the influence of the supercell size. This system is chosen because of the earlier
mentioned experimental work from the Wodtke group on the surprisingly long lifetime

of vibrationally excited CO adsorbed on the Au(111) surface.[26] These authors



prepared the CO adsorbate on the Au surface via impinging gaseous CO(v=2) molecules
and found desorbed CO(v=1) after more than 100 ps on the metal surface. This was
unexpected as the vibrational lifetime of CO on metal surfaces, such as Cu and Pt, is
known to be very short (ps) due to strong nonadiabatic coupling with EHPs.[67,68] The
vibrational relaxation lifetime of CO(v=1) on Au(111) at 35 K was later directly
measured as 49+3 ps,[69] significantly longer than those on other metal surfaces.
Theoretically, Loncari¢ et al.[24] found that the Bayesian Error Estimation Functional
with van der Waals corrections (BEEF-vdW) [70] results in a physisorption well, which
has a much larger surface-molecule distance than that of the chemisorption well
predicted by a semi-local functional, responsible for the long vibrational lifetime for
CO(v=1) on Au(111). Huang et al[25] later constructed a BPNN PES for CO
interaction with Au(111) with the same BEEF-vdW, uncovering a metastable
chemisorption well as well as a physisorption one. Quasi-classical trajectory (QCT)
results on this PES qualitatively reproduced the experimental data of direct scattering
and also provided a possible mechanism to the experimentally observed vibrational
relaxation of CO(v=2) to CO(v=1).[26] More recently, the intricate interplay between
weak physisorption and chemisorption of CO on Au(111) was revealed by temperature
dependent molecular beam experiments and kinetic modeling.[27]

By refitting the same dataset with the EANN approach, we report here a new PES
for this system that is more accurate and more efficient than the previous BPNN one.
Interestingly, we find that this EANN PES constructed with a 3x3 supercell is capable

of accurately predicting total energies for larger (e.g., 4x4 and 5x5) supercells. With



this new PES, we simulate the scattering/trapping of vibrationally excited CO
molecules on Au(l11) under experimental conditions, and examine the energy
dissipation dynamics with different supercell sizes. While the final energy distributions
of the directly scattered molecules are insensitive to the size of the supercell, the
trapping probability is found to increase with the increasing number of atoms in the
supercell, suggesting that more energy is transferred into the lattice with a larger cell.
This study thus gains insights into the energy transfer dynamics and offers guidance on

the size dependence for future dynamical simulations of molecule-surface scattering.

II. Computational Details
A. Training Dataset

All the DFT forces and energies of points used for the EANN PES fitting were
calculated via the Vienna ab initio simulation package (VASP) [71,72] with BEEF-
vdW.[70] A slab model with four layers in a 3x3 unit cell was used to represent the
Au(111) surface with the top two layers relaxed and a vacuum region of 16 A in the Z
direction. The kinetic energy in the plane wave basis set was truncated by 450 eV and
the Brillouin zone was sampled via a 5x5x1 Monkhorst-Pack k-point mesh.[73] In this
work, the source of training dataset consists of two portions of data points. We first
collected 10766 DFT points extracted from the AIMD simulations reported in Ref. [25].
In addition, we used an efficient trajectory-free active learning strategy[74,75] to select
additional molecule-free 1696 surface configurations for a more accurate description of

surface phonons.



B. Neural Network Potential Energy Surface

The EANN approach proposed recently [56] was used to construct the CO+Au(111)
PES, which is invariant with respect to permutation of identical nuclei. In the EANN
framework, the total energy of the system is given as the sum of atomic energies, each
of which is the output of an atomic neural network (ANN). Each atom can be considered
as an impurity embedded in an environment composed of surrounding atoms and the
embedded electron density at this atomic position is used as the structural descriptor for

the ANN,[56] namely,
N N
E:ZEi:ZNN[(pi), (1)

In practice, a group of orbital-dependent density features {p;} can be generated by

Gaussian-type orbitals (GTOs) centered at neighboring atoms,
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where N. is the number of neighbor atoms within a cutoff radius (r¢), fc(7;) is a cutoff
function [76] to ensure that the contribution of neighbor atoms decay smoothly to zero
at r.. For metals, the cutoff function decays quickly with the internuclear distance as
the interaction is largely short ranged. This is important below when we use the same

ANN: s to describe interactions in different supercell sizes. The GTO is given by,

1 2
gp(ry):xlxyyzlz exp(—a|r—rs ) 3)
where r;=(x, y, z) and r are Cartesian coordinates of the embedded atom i relative to

atom ;j and its norm respectively; /, [, and [ represent the angular momentum

components along each Cartesian axis, and the orbital angular momentum (L) is the



sum of them; ¢ and 7, are parameters that determine the radial distribution of a GTO; ¢;
in Eq. (2) serves like an element-dependent expansion coefficient of an atomic orbital
for atom j, which is optimized together with ANN parameters. Compared with the
BPNN approach used in Ref. [25], EANN can be even more accurate and much more
efficient (see below). This is because that the embedded density-like descriptors given
in Eq. (2) not only implicitly incorporate three-body information of the local
environment, but also scale linearly with respect to the number of neighboring atoms.
The EANN approach has been successfully applied to constructing PESs,[56,64,77,78]
and extended to learn dipoles and polarizabilities,[79] as well as electronic friction
tensors of adsorbates on surfaces.[80]

As mentioned above, a total of 12462 points were used to fit the EANN PES,
among which 90% of data points were used for training and the rest for testing. The
hyperparameters of EANN are as follows: =0, 1, and 2, »=7.6 A, ¢=0.65 A=, and
rs=0.00, 0.55, 1.10, 1.65, 2.20, 2.75, 3.30, 3.85, 4.40, 4.95, 5.50, 6.05, 6.60, 7.15 and
7.70 A, which result in finally 39 embedded density features. Each ANN consists of

two hidden layers with 40 and 60 neurons.

I1.C. Quasi-Classical Trajectory Calculations

QCT calculations were performed with our in-house code heavily modified from
VENUS.[81] The initial CO (v=2, J=0) molecule was launched from 8 A above the
Au(111) surface, whose orientation and position in the unit cell were sampled randomly.
The diatomic molecule was treated as a vibrating rotor, whose internal energy was
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calculated as a function of vibrational and rotational quantum numbers v and J semi-
classically.[82] Following the experiment,[26] the incidence angle was fixed at ¢=9°
from the surface normal with the azimuthal angle randomly sampled. Surface atoms in
the top two layers are allowed to move in QCT calculations, while the bottom two layers
are fixed. The initial surface configurations were sampled via Andersen thermostat[83]
with the experimental surface temperature (75 = 300 K), but no thermostat was imposed
when simulating the collisional processes. Each trajectory was propagated with a time
step of 0.1 fs via the velocity Verlet algorithm. The trajectory was terminated and
labeled as a “scattered” event when molecule-surface vertical distance exceeded 8.1 A
and the molecule velocity was pointing away from surface, or alternatively, a “trapped”
event for the molecule staying on the surface at the end of a given propagation time.
No dissociation event was observed at all in our calculations. Following the definition
in Ref. [25], those scattered trajectories experiencing less than four bounces (whenever
the molecular center changes its velocity direction at the surface) were referred as
“direct scattered” (DS), otherwise they were considered to be first trapped and then
desorb, namely “trapping desorption” (TD). Note that the maximum propagation time
is 50 ps in this work, but some results terminated in a shorter propagation time are also
present (see discussion below and the caption of each Figure). The statistical errors of
QCT results were calculated via o=,/ p(l — p) / N , where p is the probability in each
condition and N is actual number of trajectories.

We note that there is evidence that the vibrational relaxation of CO on the Au(111)
surface is dominated by the nonadiabatic mechanism,[24,25] especially for highly
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vibrationally excited CO.[84] However, the simulations reported here will only focus
on the adiabatic energy dissipation involving the surface motion without vibrational
relaxation. Consequently, the results here should not be directly compared with
experiment and should serve as a pure theoretical exercise. The dependence of EHP-
induced energy dissipation on the size of the supercell is another open question. For
example, increasing the size of the unit cell may effectively increase the number of
interband excitations in the first Brillouin zone. Its influence on the strength of
electronic friction tensor has been discussed by Box ef al.[21], but is beyond the scope

of this work.

I1I. Results and Discussion

Let us first check the overall reliability of the EANN PES. The root mean square
errors (RMSEs) of the total energies and atomic forces for training and validation sets
were found to be 3.37/4.14 meV and 9.38/10.71 meV/A, respectively. The small RMSE
for the validation set suggests no overfitting. These values are merely half of those
reported on the previous BPNN PES in Ref. [25], namely 9.78 meV (energies) and
20.00 meV/A (forces). Furthermore, even when the cutoff radius in EANN PES is 0.6
A larger than that in the BPNN PES (to better capture the long-range interaction
between CO and the gold surface), the former is ~7 times faster than the latter. Such a
speedup largely arises from the linear scaling in computing the embedded density
descriptors in EANN versus the quadratic scaling in computing atom centered
symmetry functions in the BPNN approach. These results underscore the high accuracy
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and high efficiency of the EANN PES.

To illustrate the fitting quality, we compare several representative one-dimensional
cuts of the EANN PES with the DFT data. Specifically, when the center of mass (COM)
of CO is fixed at the fcc/top site and the orientation of CO is parallel/perpendicular to
the Au(111) surface within a 3x3 supercell (Figures la and 1b), the EANN PES
faithfully reproduces the corresponding DFT points. The predicted adsorption energies
and geometries of the physisorption and (metastable) chemisorption wells are in
excellent agreement with those reported on the BPNN PES in Ref. [25]. More
importantly, as the supercell is enlarged to a size of 4x4 (Figure lc and 1d) and 5x5
(Figure le and 1f), the agreement between DFT energies and the EANN PES remains
good, especially for parallel orientation. The EANN PES slightly underestimates the
well depth for the metastable state of CO perpendicular to the fcc site within the 5x5
supercell. It should be emphasized that the EANN PES was trained with the data points
generated from the 3x3 cell only, so this level of agreement is quite satisfactory. This
excellent agreement confirms that the atomistic representation of PES allows us to
expand the supercell size while keeping the accuracy of the PES with periodic boundary
conditions. This is made possible by the “nearsightedness” of the interatomic
interaction within the metal, which is shorter ranged than the cell size. Figure 1 also
suggests that the molecule-surface interaction energy is largely converged for this
system in the 3x3 supercell, from a static point of view. Further extending the cell size
has a minor effect on the energetics.

Based on this EANN PES, we first calculated 5000 trajectories of CO(v=2)
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scattering from Au(111) for different sizes of the slab with the same incident energy of
E;;=0.32 eV up to 50 ps. We should note that the dynamics results on the EANN PES
are very close to those on the BPNN PES (when used the 3x3 cell),[25] so their
comparison is thus not discussed here.

In Figures 2 and 3, the distributions of vibrational energy, rotational energy,
translational energy and scattering angles of the scattered CO in the DS and TD
channels are compared, respectively, for different slab models. Consistent with the
previous results,[25] the vibrational energy ( £/, ) distributions are very narrow in both
channels, regardless of cell sizes, suggesting strong vibrational elasticity in the absence
of the electronic friction. This can be attributed to the large frequency mismatch
between the CO vibration and surface phonons. Rotational energy ( £/, ) distributions
of two channels are similar, except for a slight increase in the proportion of high
rotational energy in the DS channel. In comparison, a large discrepancy is found for the

distributions of translational energy ( E,

rans

) between the two channels, where the peak
of the distribution is much lower in the TD (~0.05 eV) channel than that in the DS
(~0.15 eV) channel. In addition, in contrast to a narrow and near specular angular
distribution in the DS channel, the TD channel has a much broader angular distribution.
These results suggest that the TD trajectories experience on average more prominent
translational energy losses during the gas-surface encounters, due probably to the
multiple contact between the molecule and the surface. Overall, there is no significant
difference among these results with the three cell sizes, implying that the energy transfer
occurring in a relatively short timescale can be reliably described by a small supercell.
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Now let us turn to the trapping and desorption of the impinging CO. In Figure 4,
we compare the trapping probability as a function of the incident energy obtained by
QCT calculations (5000 trajectories launched at every incident energy) with that of
experiment at 7,=273 K.[85] It is worth emphasizing that the experimental trapping
probability at 100 K was measured by the King-Wells method and at other temperatures
was fitted to a simple exponential function from time-of-flight distributions of the
trapping-desorption component.[85] The residence time of CO on the clean Au(l11)
surface was estimated to be less than ~1 s at 100 K,[85] a macroscopic time-scale that
is impossible to model by QCT simulations. Here, the QCT -calculations were
performed with the 3x3 supercell and 10 ps of propagation time. So the comparison
between theoretical and experimental trapping probability curves is qualitative and the
theoretical results do follow the experimental trend quite well. However, this good
agreement is deceiving as shown by results at £;,=0.32 eV with larger supercells and
longer propagation times (see the blue diamond in Figure 4 and results in Figure 5). On
one hand, for a given propagation time, the trapping probability increases with the cell
size, indicating dependence of energy dissipation with the size of the cell used in the
simulation. Even for the largest cell used in our study, the trapping probability is not
yet converged. On the other hand, for a given cell size, the trapping probability
decreases exponentially with the propagation time, as expected for a first-order
trapping-desorption kinetics. Because of the limited propagation time (10 ps), the
calculated trapping probability is apparently overestimated. The combination of the two
factors suggests that any quantitative comparison of theoretical and experimental
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trapping probabilities for molecular adsorption processes at solid surfaces should be
taken with caution.

To further explore the influence of slab size on the energy dissipation and the
resultant trapping/desorption dynamics, the mean kinetic energy of CO (Figure 6) and
the surface temperature 7§ (Figure 7) were monitored over time with the average of all
trapped trajectories. Here, the surface temperature is approximated by the time average
kinetic energy of the surface atoms. In Figure 6, a stronger fluctuation of the mean
kinetic energy of CO in the 3x3 cell is found than in the 4x4 and 5x5 cells, especially
during the first 2.5 ps, corresponding to the first a few bounces of the molecule right
after the collision. This stronger fluctuation is likely a result of the smaller amount of
surface atoms with which the incident CO molecule can exchange energy, which will
accordingly cause more facile desorption (a lower trapping probability) of CO, as
observed in Figure 5. In addition, we find in Figure 7 that in each case the surface
temperature quickly elevates upon the gas-surface collision and then reaches to a
relatively stable value. Interestingly, a larger cell tends to reach the equilibrium in a
shorter period with an average T closer to the initial temperature (7:=300 K), e.g., Ts~
358 K (3x3 cell) > Ty~ 334 K (4%x4 cell) > Ty~ 322 K (5%5 cell). Our findings are
consistent with the observations of Alducin and coworkers,[51] both of which indicate
that the insufficient number of surface atoms used in the simulations will lead to the
accumulation of most of the energy exchanged with the adsorbate, leading to unphysical
heating of surface. This problems was even more severe in their calculations for the
highly exothermic adsorption of atomic nitrogen on Ag(111),[51] where the substrate
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temperature was increased by several hundred Kelvins during the fast adsorption
process (~3.5 ps), if no thermal bath was imposed. These results clearly suggest that
gas-surface energy dissipation is more adequately described when more surface atoms
are explicitly involved during molecular dynamics simulations. It should be noted that
energy transfer could also depend on the number of metal layers, but the current PES is
less reliable to directly describe extra layers beyond the four-layer slab, due presumably
to the lack of training data for relevant atomic structures. Another effective way to
describe energy dissipation is to couple the lower layers of the surface with a thermostat,
as performed in the work of Alducin et al.[51]and GroB.[86] Alternatively, we expect
that an improved QM/Me model [52] with the QM part replaced by an analytical EANN
PES would be useful and more efficient than the original version. Even better, a well-
trained EANN PES in a sufficiently large supercell and more surface layers should offer
a better description for the surface itself so that the empirical force field for the metal
is unnecessary. This pure EANN approach will overcome the limit of the number of
layers and the supercell explored in this work and allow for first-principles simulations
of a much large slab size. Further investigations along this direction will be very
promising.

Expanding the supercell also has an influence on the estimation of the residence
lifetime of CO on Au(111). Following our previous work,[25] the lifetime (7) is
approximately extracted from the slope of the trapping probability v.s. propagation time
in the logarithmic plot (Figure 5), assuming a first-order kinetics for desorption. It is
found that the lifetime of trapped CO(v =2) increases monotonically from ~39 to ~54
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ps as the slab size increases from 3x3 to 5x5, although the difference becomes smaller
between 3x3 and 4x4 than between 4x4 and 5x5. It should be noted that this value
cannot be directly compared with the measured vibrational relaxation lifetime of
CO(v=1) on Au(111) at 35 K (4943 ps) [69], because the realistic conditions are rather
different, e.g., the surface temperature, the initial state, and most importantly the extent
departing from equilibrium (scattering v.s. pre-adsorption). Furthermore, the electron
friction is ignored in this work. Nonetheless, our results point to the necessity of using
a sufficiently large cell size in describing trapping dynamics, despite the higher

computational cost.

IV. Conclusions

In this work, we report a scalable neural network PES for describing CO interaction
with Au(111), based on a high-quality fit of tens of thousands of DFT data points. With
the help of the atomistic representation of this EANN PES, we investigate the influence
of the supercell size on the scattering of CO from Au(111) using a quasi-classical
method. It is found that the distributions of vibrational energy, rotational energy,
translational energy, scattering angle of the directly scattered CO molecules are largely
insensitive to the supercell size. Whereas the calculated trapping probability always
decreases with the propagation time, the absolute value increases with the increasing
slab size, so as the estimated residence lifetime of the trapped CO molecule. Our
analysis indicates that the surface may suffer from artificial heating upon the molecular
collision if a small cell size is used, resulting in stronger fluctuation of surface atoms
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and energy flow back to the molecule, and eventually lowering the trapping probability.
Altogether, we argue that the commonly-used 3x3 supercell is sufficient to accurately
capture the energy transfer dynamics in a relatively short timescale, but a larger
supercell is required for describing the trapping dynamics, which requires a long

propagation time.
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Figure 1. One-dimensional cuts of the EANN PES as a function of Z (the distance
between the CO center of mass and surface) for CO at fcc/top sites and
parallel/perpendicular to the Au(111) surface, compared with DFT data with 3x3 (a-b),
4x4 (c-d), and 5x5 (e-f) supercells.
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Figure 2. Distributions of (a) vibrational energy ( £7,), (b) rotational energy ( E7 ), (c)
translational energy ( £/, ) and (d) scattering angle of the directly scattered (DS) CO

for three different slab sizes, at £;,=0.32 ¢V and 7,=300 K.
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Figure 3. The same as Figure 2 but for the trapping desorption (TD) channel.
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the trapping probability when the propagation time is extended to 50 ps at E;,=0.32 eV.
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