1	[Research article: FINAL JCB-2501]	
2	Running head: D.S. JOHNSON: INFECTED AMPHIPODS ARE NOT PHOTOPHILIC	
3		
4	Are amphipods Orchestia grillus (Bosc, 1802) (Amphipoda:	
5	Talitridae) infected with the trematode Levinseniella byrdi (Heard,	
6	1968) drawn to the light?	
7		
8	David S. Johnson	
9		
10	Virginia Institute of Marine Science, William & Mary, P.O. Box 1346,	
11	Gloucester Point, VA 23062, USA	
12		
13	Correspondence: D.S. Johnson; e-mail: dsjohnson@vims.edu	
14		
15	(Received 22 September 2021; accepted 21 February 2022)	
16		
17	ABSTRACT	
18	A parasite can change its host's behavior in spectacular ways. When the saltmarsh amphipod	
19	Orchestia grillus (Bosc, 1802) is infected with the trematode Levinseniella byrdi (Heard, 1968) it	
20	is bright orange and is found in the open unlike uninfected individuals. I tested the hypothesis	
21	that infected amphipods are found in the open because L. byrdi reverses their innate photophobia.	
22	During daytime treatments and when placed in a dark chamber, 0% of the uninfected and 20% of	

23	the infected amphipods, on average, moved to the light chamber after 30 minutes. When placed		
24	in a light chamber, 91% of the uninfected and 53% of the infected amphipods, on average, went		
25	to the dark side after 30 minutes. These results clearly indicate that O. grillus is normally		
26	photophobic, but not drawn to light when infected with L. byrdi. Instead, L. byrdi appears to		
27	neutralize the amphipod's photophobia. Uninfected O. grillus are typically found under		
28	vegetation. I hypothesize that O. grillus with L. byrdi infections wander into open, unvegetated		
29	habitats randomly. In addition, 94% of infected amphipods could be touched by a finger in the		
30	field suggesting they can be easily caught by predators. Levinseniella byrdi infects at least three		
31	other amphipod hosts, Chelorchestia forceps (Smith & Heard, 2001), Uhlorchestia spartinophila		
32	(Bousfield & Heard, 1986), and <i>U. uhleri</i> (Shoemaker, 1930). The parasite-manipulation		
33	hypothesis suggests that the parasite-induced changes (conspicuous body color and neutralized		
34	light response) are adaptive for L. byrdi to make amphipod hosts more susceptible to bird		
35	predators, the definitive hosts. This hypothesis remains to be tested.		
36			
37	Key Words: behavior, intertidal zone, negative phototaxis, parasite-manipulation hypothesis,		
38	positive phototaxis, salt marshes, semi-terrestrial amphipods		
39			
40			
41	INTRODUCTION		
42	Parasites must solve a constant problem: getting from one host to the next. One solution is to		
43	alter the phenotype of the current host, such as its behavior, color or shape, to facilitate		
44	transmission to the next, i.e., parasite-manipulation hypothesis (Moore, 2002; Thomas et al.,		
45	2005). This is especially true of multi-host parasites that must be trophically transmitted		

(transmission from prey hosts to predator hosts) (McCurdy et al., 1999, Lagrue et al., 2007, Johnson & Heard, 2017). A breathtaking example is the trematode parasite *Leucocloridium* paradoxum (Carus, 1835), which fills the eyestalks of the freshwater snail Succinea putris Linnaeus, 1758 with sporocysts (asexual broodsacs) that pulsate white, green, and black stripes (Wesenberg-Lund, 1931 as cited in Wesołowska & Wesołowska, 2013). When these vividly pulsating broodsacs burst from the eyestalk, they imitate crawling caterpillars and are eaten by birds, the definitive host of the trematode (Ataev et al., 2016). In a less flashy, but still spectacular example, when the saltmarsh killifish, Fundulus parvipinnis Girard, 1854, is infected with larval trematodes, they shimmy and surface more than uninfected killifish, making them more susceptible to predation by definitive bird hosts (Lafferty & Morris, 1996). Crustaceans are common hosts for parasites and also experience remarkable transformations when infected (Moore, 1983; Maynard, et al. 1998; Lagrue et al., 2007; Johnson & Heard, 2017; MacKay & Moore 2021). When talitrid amphipods are infected with the trematode Levinseniella byrdi Heard, 1968, they turn bright orange and can be found in open patches of salt marsh (e.g., unvegetated mudbanks, footpaths) during the day. Uninfected amphipods, however, are brown/gray and hide under vegetation during the day (some venture out at night) (Bousfield & Heard, 1986; Johnson et al., 2009; Johnson, 2011; Overstreet & Lotz, 2016; Johnson & Heard, 2017). This suggests that L. byrdi affects the body color and light response of amphipods. In addition, amphipods infected with L. byrdi do not appear to escape potential predators as quickly as uninfected amphipods. For instance, when I collected infected Orchestia grillus (Bosc, 1802) by hand, the amphipods raise their antennae as I approach, some escaping only when touched. By contrast, uninfected amphipods scatter instantly once the grass

is pulled back. Collecting infected amphipods can be as easy as picking orange jellybeans from

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

<*Fig. 1>*

the mud, whereas collecting uninfected amphipods is like chasing rabbits through the bushes. Similarly, Bousfield & Heard (1986) observed that infected *Uhlorchestia uhleri* (Shoemaker, 1930) and *U. spartinophila* (Bousfield & Heard, 1986) moved much more slowly than uninfected animals. The parasite-manipulation hypothesis predicts that these changes in amphipod traits (body color, behavior) will facilitate transmission of *L. byrdi* from the amphipod to the bird.

Like many parasites that alter their hosts' traits, *L. byrdi* has a multi-host life cycle. Briefly, the life cycle begins when infected marsh birds, the definitive hosts, excrete feces containing *L. byrdi* eggs. Eggs are consumed by the first intermediate host, hydrobiid snails, while feeding on the sediment surface. Free-swimming larvae (cercariae) penetrate the tissues of the amphipod, encyst, and asexually developed infective metacercariae within the digestive gland (see Johnson & Heard, 2017 for more details on life cycle). After three to four weeks, when the metacercariae become fully developed and infective, the host amphipod changes from their natural brown or gray to bright orange (Fig. 1) (Johnson & Heard, 2017). The life cycle is completed when a foraging bird eats an infected amphipod and the sexual adult stage of *L. byrdi* begins producing infective eggs. *Levinseniella byrdi* is found in the intertidal salt marshes of the Atlantic and Gulf coasts of North America and is known to infect the amphipods *Chelorchestia forceps* (Smith & Heard, 2001), *U. uhleri*, *U. spartinophila*, and *O. grillus* (see Bousfield & Heard, 1986; Johnson *et al.*, 2009; Overstreet & Lotz, 2016; Johnson & Heard, 2017).

The observation that amphipods infected with *L. byrdi* can be found out in the open in the salt marsh during the day implies that *L. byrdi* reverses the photophobia of uninfected amphipods to make them photophilic and draw them to the light. Many parasites reverse the response of

their hosts to light (Bakker *et al.*, 1997; Tain *et al.*, 2006). Here, I tested the hypothesis that infected amphipods are found in the open in salt marshes because they are attracted to light. I also observed the response of amphipods infected with *L. byrdi* to a potential predator in the field.

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

92

93

94

95

MATERIALS AND METHODS

Response-to-light experiments

To test the hypothesis that L. byrdi reverses the light response of amphipods, I conducted a laboratory study with O. grillus. With the help of field assistants, I collected infected and uninfected amphipods by hand at low tide from a salt marsh within the Great Marsh in Ipswich, Massachusetts, USA (Great Marsh, 42°43'14"N 70°51'00"W) on 1 July 2021. We placed the amphipods in plastic containers with seawater-dampened paper towels, detritus, and algae, and kept in the field in a cooler with ice packs. Salt marshes are intertidal grasslands and O. grillus is a semi-terrestrial amphipod that spends most of the time on the sediment surface, even when flooded. Individuals do not burrow and rarely swim. The amphipod *U. spartinophila*, a host of *L*. byrdi, is also found in this salt marsh, but was not used in the experiment. Orange amphipods were identified as L. byrdi-infected and collected from exposed muddy walls that line the tidal creeks and human-dug ditches at low tide. These muddy walls are free of plants and are well-lit, though even infected amphipods avoid direct sunlight and prefer the shade. Brown amphipods were identified as uninfected and collected from under live and dead plants. At the end of the experiment, amphipods were dissected to determine their status. Because the metacercariae of L. byrdi are relatively large (0.5 mm diameter, on average) and found in the body cavity of O.

grillus, the dissections were relatively simple. Amphipods were used in experiments on the same day they were collected from the field.

Paired light and dark chambers (N = 10 pairs) were constructed out of cardboard boxes (20 cm × 8.5 cm × 3.2 cm (1 × w × h); Fig. 2). Two boxes were joined on one side with a 4-mm opening cut across the bottom of the joined wall allowing free movement between chambers while minimizing light into the dark chamber (Fig. 2). The tops of the light chambers were cut open and plastic wrap was placed on top to prevent escape and desiccation of amphipods. The bottoms of both chambers were wetted until saturated with deionized water and rewetted when necessary. The experiments were conducted on 1 July 2021 in an open garage on a warm (26 °C), overcast day away from direct light.

124 <*Fig. 2>*

I had three treatments for this experiment: 1) infection level (infected, uninfected), 2) ambient light (daytime, nighttime) and 3) initial placement (dark side, light side). To maintain independence, I conducted trials with infected and uninfected amphipods separately (see Table 1 for trials conducted and predictions). I used 10 amphipods per chamber pair for a total of 100 amphipods per trial. With the help of an assistant, we recorded the proportion of amphipods found in the light chamber at 0, 5, 15, and 30 min. For the daytime treatments, trials were conducted with the garage door open, and with the garage door closed for the nighttime treatments. These treatments simulated the darkness of night while eliminating the possible confounding factors that occur at night (e.g., lower temperature, higher humidity, changes in animal activity). We used headlamps with red lights turned on only during the time of observations to monitor the chambers and record results.

136 < *Table 1*>

Response to a potential predator

To observe how *O. grillus* infected with *L. byrdi* would respond to a potential predator, I or another researcher slowly approached infected amphipods (identified by their bright orange color) with an index finger. If an amphipod let us touch it, we tried to stroke its body and recorded the number of strokes made before it crawled or jumped away. These amphipods were clinging to the walls of the exposed mudbanks that line the tidal creeks at low tide. Creek walls are common places to find infected amphipods and it is where I have observed birds eating them (Johnson *et al.*, 2009). We approached amphipods from the top (their dorsum) or their front. We made these observations on sunny or overcast days in West Creek (42°44'14.3"N 70°50'51.1"W, 28 June and 7 July 2021) in Rowley, MA, and in Sweeney Creek (15 August 2015). We were not able to approach uninfected amphipods, which are found under the grass, because they fled as soon as the grass is lifted.

151 RESULTS

152 Levinseniella byrdi *infections*

All infected amphipods had at least one L. byrdi metacercaria. The mean intensity (number of metacercariae per infected amphipod) was 2.6, the median was 2, and the mode was 1 (N = 91 amphipods). On average, infected amphipods were 15.9 mm long. Of the amphipods identified as uninfected (i.e., brown), 3% (3/93) had 1 underdeveloped L. byrdi metacercaria per amphipod.

On average, uninfected amphipods were 17.0 mm long.

Daytime treatments

When placed in the dark chamber, none of the uninfected amphipods went to the light side at any point during the trial (Fig. 3A). On average, 20% of the infected amphipods crawled to the light chamber after 30 min (Fig. 3A). I observed one infected amphipod crawl from the dark side, investigate most of the light side, and then turn around and crawl back to the dark side. When placed in the light chamber, an average of 91% of the uninfected amphipods went to the dark side after 30 min (Fig. 3C). Most of the uninfected amphipods fled to the dark side within seconds after being placed in the light chamber. Those that remained sought the edge and corners of the chamber, which may be a thigmotactic response of the amphipods who seek the corners and edges as refuges. When placed in the light chamber, 47% of the infected amphipods, on average, remained after 30 min (Fig. 3C). When the infected amphipods were placed in the light chamber, I noted, but did not quantify, that a few ran to the dark side within seconds, while most remained in the light chamber.

172 <*Fig. 3>*

Nighttime treatments

When placed in the dark chamber, 33% of the infected and 7% of the uninfected amphipods had gone to the light side after 30 min (Fig. 3B). When placed in the light chamber, 57% of the infected and 33% of the uninfected amphipods, on average, had gone to the dark side after 30 min (Fig. 3D). Infected amphipods moved between chambers freely, exploring and eating the damp cardboard chambers. Most of the uninfected amphipods, like the infected individuals, explored the chambers, with some eating the damp cardboard. An uninfected male engaged and then carried an uninfected female when placed on the light side in one of the chambers. Matecarrying was also observed in the field.

Behavior response to a potential predator

Ninety-four percent (33/35) of the infected amphipods raised their antennae when a finger approached (Table 2). Seventy-seven percent (28/35) of the infected amphipods allowed a finger to touch them at least once before trying to escape. Eight percent (3/35) of the infected amphipods jumped away before a finger could touch them, only when a researcher was within < 10 cm of the amphipod.

190 < *Table 2*>

192 DISCUSSION

My results demonstrate that *O. grillus* is photophobic and will flee from light. *Levinseniella byrdi* does not, however, appear to reverse this behavior. Infected *O. grillus* were not drawn to light; they appeared, instead, oblivious to the light. This was clear when infected amphipods were placed in the light chamber during the daytime treatments and they crawled to the dark side and back to the light side. Because infected amphipods are not drawn to the light, yet are found in the open in the field, my results suggest that infected amphipods move from protected, vegetated habitats to exposed, unvegetated ones randomly. Similarly, insects such as crickets and grasshoppers infected by nematomorphs were once thought to "commit suicide" by jumping in water so that adult nematomorphs could emerge (Thomas *et al.*, 2002). Instead, insects infected with nematomorphs have more erratic behavior and are more likely to encounter water than uninfected insects (Thomas *et al.*, 2002). The neutral light response of amphipods with *L. byrdi* might also explain why infected individuals are also found in protected, vegetated habitats and not exclusively in open habitats (Johnson, 2011; Johnson & Heard, 2017). Alternatively, infected

amphipods may be drawn into the open by some other factor not tested such as changes in humidity, temperature, or the presence of more benthic algae (one of their foods).

It is unclear how *L. byrdi* defuses the light response in amphipods, but neurological manipulation may be responsible. Serotonin is a key neuromodulator mediating behaviors in crustaceans (McPhee & Wilkens, 1989; Weiger, 1997) and has been implicated in parasite-induced changes in crustacean behavior (Maynard *et al.*, 1998; Helluy & Thomas, 2003; Guler & Ford, 2010). For instance, when the amphipod *Gammarus pulex* (Linnaeus, 1758) is infected with the acanthocephalan parasites *Pomphorhynchus laevis* Müller, 1776 or *P. tereticollis* (Rudolphi, 1809), it switches from photophobia to photophilia and has higher serotonin levels compared to uninfected animals (Tain *et al.*, 2006). Based on transcriptional analysis *O. grillus* infected with *L. byrdi*, D.M. Rand *et al.* (unpublished data) found increased expression of genes affecting "detection of stimuli," although they did not identify the specific neurological genes expressing changes. In a transcriptional analysis of 10 genes associated with serotonin production in the amphipod *Echniogammurus marinus* (Leach, 1815) infected with a trematode, Guler *et al.* (2015) found that half were upregulated and half were downregulated.

Regardless of the mechanism, does defusing the amphipod's innate photophobia benefit *L. byrdi* or is it merely a side-effect or by-product of infection? The parasite-manipulation hypothesis predicts that it is adaptive because it will enhance transmission of *L. byrdi* to the next host, in this case a definitive bird host. For this hypothesis to be supported, infected amphipods must be more likely to be eaten by bird hosts than uninfected amphipods (Cézilly *et al.*, 2010). The neutral phototaxis of infected amphipods, which may randomly bring them out into the open, suggests that amphipods would be more vulnerable to bird predation. The parasitemanipulation hypothesis, however, has not been tested for *L. byrdi*.

Researchers debate the effectiveness of host manipulation by parasites on trophic transmission (e.g., Thomas *et al.* 2005; Cézilly *et al.*, 2010; Perrot-Minnot *et al.*, 2012), in part because the link between a single host trait and parasite transmission is difficult to demonstrate in the field. For instance, Perrot-Minnot *et al.* (2012) found that although gammarid amphipods infected with acanthocephalan parasites were more susceptible to predation by fish, photophilia, a condition of infection, alone was insufficient to make them more vulnerable to fish predation. Their results suggest that photophilia is not an adaptive trait and that some other trait or traits associated with infection is responsible for increased vulnerability to predation.

If the neutral phototaxis in amphipod hosts alone is not adaptive for *L. byrdi*, perhaps it is when combined with the amphipod's potential reduction in predator escape. I found that most infected amphipods could be touched by a finger and did not try to escape immediately. Almost all amphipods raised their second antennae when my finger approached, and were thus aware a finger was there. If my fingers were bird beaks, then they would have eaten almost all infected amphipods approached. That is, infected amphipods may be highly susceptible to predators.

Here I clearly demonstrate that *O. grillus* infected with *L. byrdi* are no longer photophobic but are not photophilic either. They have a neutral response to light. I hypothesize that infected *O. grillus* randomly wander from protected, vegetated habitats into risky, open ones as a result. It remains to be seen if changes in amphipod traits (neutral light response, conspicuous color, and potential reduction in predator escape) is adaptive for *L. byrdi* by making *O. grillus* more susceptible to predation by birds. Future work should compare infected and uninfected amphipods to investigate their susceptibility to birds, the influence of other environmental factors on their movements, and experimentally test their behavior (e.g., "boldness" *versus* "shyness").

The changed behavior of amphipods with *L. byrdi* infections has implications for saltmarsh functioning. For instance, *O. grillus* is an abundant detritivore in salt marshes (Johnson, 2011; Johnson & Heard, 2017) that eats dead marsh grass (Thompson, 1984) and can accelerate grass decomposition (Lopez *et al.*, 1977). *Orchestia grillus* normally lives under the dead thatch of grass and grazes detritus. In the open habitats of the marsh, where *O. grillus* with *L. byrdi* infections can be found, however, highly productive benthic microalgae grows. *Orchestia grillus* also consumes benthic microalgae in addition to detritus (Pascal & Fleeger, 2013). Infection prevalence of *L. byrdi* in *O. grillus* can be as high as 15% in the same marshes studied (Johnson & Heard, 2017). If *L. byrdi* infection reduces detrital grazing by *O. grillus*, whether by reducing the number of amphipods through bird predation or shifting its diet from detritus to algal grazing, then *L. byrdi* may indirectly control detrital stocks, much in the way that predators can indirectly control plant biomass in a trophic cascade.

ACKNOWLEDGEMENTS

I thank Richard Heard, Michael Roy, and three anonymous reviewers for their insightful comments. I thank Kayla Martínez-Soto, Valerie Acosta Rodríguez, Wendy White, Michael Moscote, and Leah Scott for their help in the field. This work was supported by the National Science Foundation under the following grants: Biological Oceanography 1637630 to the Plum Island Ecosystem Long Term Ecological Research site and Division of Environmental Biology 1902712 to the author. This is contribution 4077 from the Virginia Institute of Marine Science, William & Mary.

274 REFERENCES

275	Ataev, G.L., Zhukova, A.A., Tokmakova, A.S. & Prokhorova, E.E. 2016. Multiple infection of	
276	amber Succinea putris snails with sporocysts of Leucochloridium spp. (Trematoda).	
277	Parasitology Research, 115: 3203–3208.	
278	Bakker, T.C.M., Mazzi, D. & Zala, S. 1997. Parasite-induced changes in behavior and color	
279	make Gammarus pulex more prone to fish predation. Ecology, 78: 1098–1104.	
280	Bosc, L.A.G. 1802. Histoire naturelle des vers, contenant leur déscription et leurs moeurs, avec	
281	figures dessinées d'après nature. Déterville, Paris.	
282	Bousfield, E.L. & Heard, R.W. 1986. Systematics, distributional ecology, and some host-parasit	
283	relationships of Uhlorchestia uhleri (Shoemaker) and U. spartinophila, new species	
284	(Crustacea: Amphipoda), endemic to salt marshes of the Atlantic coast of North	
285	America. Journal of Crustacean Biology, 6: 264–274.	
286	Cézilly, F., Thomas, F., Médoc, V. & Perrot-Minnot, M.J. 2010. Host-manipulation by parasites	
287	with complex life cycles: adaptive or not? <i>Trends in Parasitology</i> , 26 : 311–317.	
288	Guler, Y. & Ford, A. T. 2010. Anti-depressants make amphipods see the light. Aquatic	
289	Toxicology, 99 : 397–404.	
290	Guler, Y., Short, S., Etxabe, A.G., Sherhod, C.M., Kille, P. & Ford, A.T. 2015. Impacts of a	
291	newly identified behaviour-altering trematode on its host amphipod: from the level of	
292	gene expression to population. Parasitology, 142: 1469–1480.	
293	Helluy, S. & Thomas, F. 2003. Effects of Microphallus papillorobustus (Platyhelminthes:	
294	Trematoda) on serotonergic immunoreactivity and neuronal architecture in the brain of	
295	Gammarus insensibilis (Crustacea: Amphipoda). Proceedings of the Royal Society of	
296	London. Series B: Biological Sciences, 270: 563–568.	

297	Johnson, D.S. 2011. High-marsh invertebrate communities are susceptible to eutrophication.	
298	Marine Ecology Progress Series, 438 : 143–152.	
299	Johnson, D.S. & Heard, R. 2017. Bottom-up control of parasites. Ecosphere 8: e01885	
300	[https://doi.org/10.1002/ecs2.1885].	
301	Johnson, D.S., Fleeger, J.W. & Deegan, L.A. 2009. Large-scale manipulations reveal top-down	
302	and bottom-up controls interact to alter habitat utilization by saltmarsh fauna. Marine	
303	Ecology Progress Series 377: 33–41.	
304	Lafferty, K.D. & Morris, A.K. 1996. Altered behavior of parasitized killifish increases	
305	susceptibility to predation by bird final hosts. <i>Ecology</i> , 77: 1390–1397.	
306	Lagrue, C., Kaldonski, N., Perrot-Minnot, M.J., Motreuil, S. & Bollache, L. 2007. Modification	
307	of hosts' behavior by a parasite: field evidence for adaptive manipulation. Ecology, 88:	
308	2839–2847.	
309	Leach, W. E. 1815. A tabular view of the external characters of four classes of animals, which	
310	Linné arranged under Insecta Transactions of the Linnean Society of London, 11: 306-	
311	400.	
312	Linnaeus, C. 1758. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines,	
313	Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. Vol. 1, Edn. 10.	
314	Reformata. Laurentii Salvii, Holmiae [= Stockholm].	
315	Lopez, G.R., Levinton, J.S. & Slobodkin, L.B. 1977. The effect of grazing by the detritivore	
316	Orchestia grillus on Spartina litter and its associated microbial community. Oecologia,	
317	30 : 111–127.	
318	MacKay, R.N. & Moore, P.A. 2021. How a trematode parasite (Microphallus Ward, 1901)	
319	impacts the grazing behavior of an aquatic keystone species, the rusty crayfish Faxonius	

320	rusticus Girard, 1852 (Decapoda: Decapoda: Astacidea: Cambaridae). Journal of
321	Crustacean Biology, 41: [https://doi.org/10.1093/jcbiol/ruab057].
322	Maynard, B.J., Wellnitz, T.A., Zanini, N., Wright, W.G. & Dezfuli, B.S. 1998. Parasite-altered
323	behavior in a crustacean intermediate host: field and laboratory studies. Journal of
324	Parasitology, 1: 1102–1106.
325	McCurdy, D.G., Forbes, M.R. & Boates, J.S. 1999. Testing alternative hypotheses for variation
326	in amphipod behaviour and life history in relation to parasitism. International Journal for
327	Parasitology, 29 : 1001–1009.
328	McPhee, M.J. & Wilkens, J.L. 1989. Serotonin, but not dopamine or octopamine, modifies
329	locomotor and phototaxic behavior of the crab, Carcinus maenas. Canadian Journal of
330	Zoology, 67 : 391–393.
331	Moore, J. 1983. Responses of an avian predator and its isopod prey to an acanthocephalan
332	parasite. <i>Ecology</i> , 64 : 1000–1015.
333	Moore, J. 2002. Parasites and the behavior of animals. Oxford Series in Ecology and Evolution.
334	Oxford University Press, New York.
335	Overstreet, R.M. & Lotz, J.M. 2016. Host-symbiont relationships: understanding the change
336	from guest to pest. In: The Rasputin effect: When commensals and symbionts become
337	parasitic (C.J. Hurst, ed.), pp. 27-64. Springer, Cham, Switzerland.
338	Pascal, P.Y. & Fleeger, J.W. 2013. Diverse dietary responses by saltmarsh consumers to chronic
339	nutrient enrichment. Estuaries and Coasts, 36: 1115-1124.
340	Perrot-Minnot, M.J., Kaldonski, N. & Cézilly, F. 2007. Increased susceptibility to predation and
341	altered anti-predator behaviour in an acanthocephalan-infected amphipod. International
342	Journal for Parasitology, 37: 645–651.

343	Perrot-Minnot, M.J., Maddaleno, M., Balourdet, A. & Cézilly, F. 2012. Host manipulation	
344	revisited: no evidence for a causal link between altered photophobia and increased	
345	trophic transmission of amphipods infected with acanthocephalans. Functional Ecology,	
346	26 : 1007–1014.	
347	Shoemaker, C.R. 1930. Descriptions of two new amphipod crustaceans (Talitridae) from the	
348	United States. Journal of the Washington Academy of Sciences, 20: 107–114.	
349	Smith, D.G. & Heard, R.W. 2001. A new species of Chelorchestia (Amphipoda: Talitridae) from	
350	southwest Florida, with comments on other species within the genus. Journal of	
351	Crustacean Biology, 21: 1031–1041.	
352	Tain, L., Perrot-Minnot, M.J. & Cézilly, F. 2006. Altered host behaviour and brain serotonergic	
353	activity caused by acanthocephalans: evidence for specificity. Proceedings of the Royal	
354	Society B: Biological Sciences, 273: 3039–3045.	
355	Thomas, F., Adamo, S. & Moore, J. 2005. Parasitic manipulation: where are we and where	
356	should we go? Behavioural Processes, 68: 185–199.	
357	Thomas, F., Schmidt-Rhaesa, A., Martin, G., Manu, C., Durand, P. & Renaud, F. 2002. Do	
358	hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial	
359	hosts? Journal of Evolutionary Biology, 15: 356–361.	
360	Thompson, L.S. 1984. Comparison of the diets of the tidal marsh snail, Melampus bidentatus and	
361	the amphipod, Orchestia grillus. Nautilus, 98: 44-53.	
362	Weiger, W.A. 1997. Serotonergic modulation of behaviour: a phylogenetic overview. Biological	
363	Reviews, 72 : 61–95.	
364	Wesołowska, W. & Wesołowski, T. 2014. Do Leucochloridium sporocysts manipulate the	
365	behaviour of their snail hosts? Journal of Zoology, 292: 151-155.	

366		
367		
368	FIGURE CAPTIONS	
369	Figure 1. Orchestia grillus infected with the trematode Levinseniella byrdi will eventually turn	
370	from their cryptic brown or gray to a conspicuous orange. Images of amphipods from the Grea	
371	Marsh in northeast Massachusetts, USA.	
372		
373	Figure 2. Set-up of light and dark chambers.	
374		
375	Figure 3. Response of uninfected (grey circles) and infected (orange triangles) amphipods to	
376	light when started in the dark chamber in daytime treatment (A), dark chamber in the nighttime	
377	treatment (B), light chamber in daytime treatment (C), and light chamber in the nighttime	
378	treatments (D). Sun represents daytime treatments, moon and stars nighttime treatments. Bold	
379	symbols represent mean values; faded symbols are raw data, $N = 10$ per treatment. Raw data that	
380	overlapped and were $> 0\%$ were jittered $2\%-4\%$.	
381		
382		
383		

Figure 1

388 Figure 2

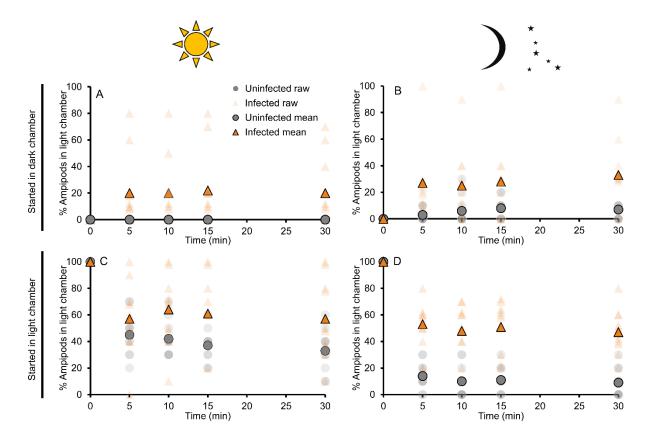


Figure 3

405

 Table 1. Trials and predictions.

	Sunlight	Dark
Infected on light side	Remain on light side	Randomly distributed
Uninfected on light side	Flee to dark side	Randomly distributed
Infected on dark side	Go to light side	Randomly distributed
Uninfected on dark side	Remain on dark side	Randomly distributed

407

422 **Table 2**. Response of *Orchestia grillus* infected with *Levinseniella byrdi* to the approach of an 423 index finger. Numbers in parentheses are the number of times behaviors were observed. 424 Approached from the top Raised antennae, allowed finger to stroke back 1–5 times before crawling away (5) Raised antennae, allowed finger to stroke back once or twice before jumping off the mudbank into the water and swimming back to the mudbank (4) Raised antennae, jumped into water before finger could get within 2 cm (2) Did not raise antennae, jumped off wall as soon as finger touched back (1) Did not raise antennae, jumped off creek wall when finger was < 10 cm away (2) Approached from the front Raised antennae, palpated or touched finger with secondary antennae, allowed finger to stroke head and body 1–4 times before crawling away (16) Raised antennae, palpated or touched finger with secondary antennae, crawled or jumped away (3) Raised antennae, allowed finger to stroke its back, rolled over on its side allowing finger to

Raised antennae, allowing finger to stroke head and body, crawled onto finger (1)

stroke side before crawling away (1)

425 426 427