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ABSTRACT
A parasite can change its host’s behavior in spectacular ways. When the saltmarsh amphipod
Orchestia grillus (Bosc, 1802) is infected with the trematode Levinseniella byrdi (Heard, 1968) it
is bright orange and is found in the open unlike uninfected individuals. I tested the hypothesis
that infected amphipods are found in the open because L. byrdi reverses their innate photophobia.

During daytime treatments and when placed in a dark chamber, 0% of the uninfected and 20% of
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the infected amphipods, on average, moved to the light chamber after 30 minutes. When placed
in a light chamber, 91% of the uninfected and 53% of the infected amphipods, on average, went
to the dark side after 30 minutes. These results clearly indicate that O. grillus is normally
photophobic, but not drawn to light when infected with L. byrdi. Instead, L. byrdi appears to
neutralize the amphipod’s photophobia. Uninfected O. grillus are typically found under
vegetation. I hypothesize that O. grillus with L. byrdi infections wander into open, unvegetated
habitats randomly. In addition, 94% of infected amphipods could be touched by a finger in the
field suggesting they can be easily caught by predators. Levinseniella byrdi infects at least three
other amphipod hosts, Chelorchestia forceps (Smith & Heard, 2001), Uhlorchestia spartinophila
(Bousfield & Heard, 1986), and U. uhleri (Shoemaker, 1930). The parasite-manipulation
hypothesis suggests that the parasite-induced changes (conspicuous body color and neutralized
light response) are adaptive for L. byrdi to make amphipod hosts more susceptible to bird

predators, the definitive hosts. This hypothesis remains to be tested.

Key Words: behavior, intertidal zone, negative phototaxis, parasite-manipulation hypothesis,

positive phototaxis, salt marshes, semi-terrestrial amphipods

INTRODUCTION
Parasites must solve a constant problem: getting from one host to the next. One solution is to
alter the phenotype of the current host, such as its behavior, color or shape, to facilitate
transmission to the next, i.e., parasite-manipulation hypothesis (Moore, 2002; Thomas et al.,

2005). This is especially true of multi-host parasites that must be trophically transmitted
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(transmission from prey hosts to predator hosts) (McCurdy et al., 1999, Lagrue et al., 2007,
Johnson & Heard, 2017). A breathtaking example is the trematode parasite Leucocloridium
paradoxum (Carus, 1835), which fills the eyestalks of the freshwater snail Succinea putris
Linnaeus, 1758 with sporocysts (asexual broodsacs) that pulsate white, green, and black stripes
(Wesenberg-Lund, 1931 as cited in Wesotowska & Wesotowska, 2013). When these vividly
pulsating broodsacs burst from the eyestalk, they imitate crawling caterpillars and are eaten by
birds, the definitive host of the trematode (Ataev ef al., 2016). In a less flashy, but still
spectacular example, when the saltmarsh killifish, Fundulus parvipinnis Girard, 1854, is infected
with larval trematodes, they shimmy and surface more than uninfected killifish, making them
more susceptible to predation by definitive bird hosts (Lafferty & Morris, 1996).

Crustaceans are common hosts for parasites and also experience remarkable
transformations when infected (Moore, 1983; Maynard, et al. 1998; Lagrue ef al., 2007; Johnson
& Heard, 2017; MacKay & Moore 2021). When talitrid amphipods are infected with the
trematode Levinseniella byrdi Heard, 1968, they turn bright orange and can be found in open
patches of salt marsh (e.g., unvegetated mudbanks, footpaths) during the day. Uninfected
amphipods, however, are brown/gray and hide under vegetation during the day (some venture
out at night) (Bousfield & Heard, 1986; Johnson ef al., 2009; Johnson, 2011; Overstreet & Lotz,
2016; Johnson & Heard, 2017). This suggests that L. byrdi affects the body color and light
response of amphipods. In addition, amphipods infected with L. byrdi do not appear to escape
potential predators as quickly as uninfected amphipods. For instance, when I collected infected
Orchestia grillus (Bosc, 1802) by hand, the amphipods raise their antennae as I approach, some
escaping only when touched. By contrast, uninfected amphipods scatter instantly once the grass

is pulled back. Collecting infected amphipods can be as easy as picking orange jellybeans from
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the mud, whereas collecting uninfected amphipods is like chasing rabbits through the bushes.
Similarly, Boustfield & Heard (1986) observed that infected Uhlorchestia uhleri (Shoemaker,
1930) and U. spartinophila (Bousfield & Heard, 1986) moved much more slowly than
uninfected animals. The parasite-manipulation hypothesis predicts that these changes in
amphipod traits (body color, behavior) will facilitate transmission of L. byrdi from the amphipod
to the bird.

Like many parasites that alter their hosts’ traits, L. byrdi has a multi-host life cycle.
Briefly, the life cycle begins when infected marsh birds, the definitive hosts, excrete feces
containing L. byrdi eggs. Eggs are consumed by the first intermediate host, hydrobiid snails,
while feeding on the sediment surface. Free-swimming larvae (cercariae) penetrate the tissues of
the amphipod, encyst, and asexually developed infective metacercariae within the digestive
gland (see Johnson & Heard, 2017 for more details on life cycle). After three to four weeks,
when the metacercariae become fully developed and infective, the host amphipod changes from
their natural brown or gray to bright orange (Fig. 1) (Johnson & Heard, 2017). The life cycle is
completed when a foraging bird eats an infected amphipod and the sexual adult stage of L. byrdi
begins producing infective eggs. Levinseniella byrdi is found in the intertidal salt marshes of the
Atlantic and Gulf coasts of North America and is known to infect the amphipods Chelorchestia
forceps (Smith & Heard, 2001), U. uhleri, U. spartinophila, and O. grillus (see Bousfield &
Heard, 1986; Johnson et al., 2009; Overstreet & Lotz, 2016; Johnson & Heard, 2017).

<Fig. 1>

The observation that amphipods infected with L. byrdi can be found out in the open in the

salt marsh during the day implies that L. byrdi reverses the photophobia of uninfected amphipods

to make them photophilic and draw them to the light. Many parasites reverse the response of
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their hosts to light (Bakker et al., 1997; Tain et al., 2006). Here, I tested the hypothesis that
infected amphipods are found in the open in salt marshes because they are attracted to light. I

also observed the response of amphipods infected with L. byrdi to a potential predator in the

field.

MATERIALS AND METHODS
Response-to-light experiments
To test the hypothesis that L. byrdi reverses the light response of amphipods, I conducted a
laboratory study with O. grillus. With the help of field assistants, I collected infected and
uninfected amphipods by hand at low tide from a salt marsh within the Great Marsh in Ipswich,
Massachusetts, USA (Great Marsh, 42°43'14"N 70°51'00"W) on 1 July 2021. We placed the
amphipods in plastic containers with seawater-dampened paper towels, detritus, and algae, and
kept in the field in a cooler with ice packs. Salt marshes are intertidal grasslands and O. grillus is
a semi-terrestrial amphipod that spends most of the time on the sediment surface, even when
flooded. Individuals do not burrow and rarely swim. The amphipod U. spartinophila, a host of L.
byrdi, is also found in this salt marsh, but was not used in the experiment. Orange amphipods
were identified as L. byrdi-infected and collected from exposed muddy walls that line the tidal
creeks and human-dug ditches at low tide. These muddy walls are free of plants and are well-lit,
though even infected amphipods avoid direct sunlight and prefer the shade. Brown amphipods
were identified as uninfected and collected from under live and dead plants. At the end of the
experiment, amphipods were dissected to determine their status. Because the metacercariae of L.

byrdi are relatively large (0.5 mm diameter, on average) and found in the body cavity of O.
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grillus, the dissections were relatively simple. Amphipods were used in experiments on the same
day they were collected from the field.

Paired light and dark chambers (N = 10 pairs) were constructed out of cardboard boxes
(20cm x 8.5 cm x 3.2 cm (1 x w % h); Fig. 2). Two boxes were joined on one side with a 4-mm
opening cut across the bottom of the joined wall allowing free movement between chambers
while minimizing light into the dark chamber (Fig. 2). The tops of the light chambers were cut
open and plastic wrap was placed on top to prevent escape and desiccation of amphipods. The
bottoms of both chambers were wetted until saturated with deionized water and rewetted when
necessary. The experiments were conducted on 1 July 2021 in an open garage on a warm (26
°C), overcast day away from direct light.

<Fig. 2>

I had three treatments for this experiment: 1) infection level (infected, uninfected), 2)
ambient light (daytime, nighttime) and 3) initial placement (dark side, light side). To maintain
independence, I conducted trials with infected and uninfected amphipods separately (see Table 1
for trials conducted and predictions). I used 10 amphipods per chamber pair for a total of 100
amphipods per trial. With the help of an assistant, we recorded the proportion of amphipods
found in the light chamber at 0, 5, 15, and 30 min. For the daytime treatments, trials were
conducted with the garage door open, and with the garage door closed for the nighttime
treatments. These treatments simulated the darkness of night while eliminating the possible
confounding factors that occur at night (e.g., lower temperature, higher humidity, changes in
animal activity). We used headlamps with red lights turned on only during the time of
observations to monitor the chambers and record results.

<Table 1>
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Response to a potential predator

To observe how O. grillus infected with L. byrdi would respond to a potential predator, I or
another researcher slowly approached infected amphipods (identified by their bright orange
color) with an index finger. If an amphipod let us touch it, we tried to stroke its body and
recorded the number of strokes made before it crawled or jumped away. These amphipods were
clinging to the walls of the exposed mudbanks that line the tidal creeks at low tide. Creek walls
are common places to find infected amphipods and it is where I have observed birds eating them
(Johnson ef al., 2009). We approached amphipods from the top (their dorsum) or their front. We
made these observations on sunny or overcast days in West Creek (42°44'14.3"N 70°50'51.1"W,
28 June and 7 July 2021) in Rowley, MA, and in Sweeney Creek (15 August 2015). We were not
able to approach uninfected amphipods, which are found under the grass, because they fled as

soon as the grass is lifted.

RESULTS
Levinseniella byrdi infections
All infected amphipods had at least one L. byrdi metacercaria. The mean intensity (number of
metacercariae per infected amphipod) was 2.6, the median was 2, and the mode was 1 (N =91
amphipods). On average, infected amphipods were 15.9 mm long. Of the amphipods identified
as uninfected (i.e., brown), 3% (3/93) had 1 underdeveloped L. byrdi metacercaria per amphipod.

On average, uninfected amphipods were 17.0 mm long.

Daytime treatments
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When placed in the dark chamber, none of the uninfected amphipods went to the light side at any
point during the trial (Fig. 3A). On average, 20% of the infected amphipods crawled to the light
chamber after 30 min (Fig. 3A). I observed one infected amphipod crawl from the dark side,
investigate most of the light side, and then turn around and crawl back to the dark side. When
placed in the light chamber, an average of 91% of the uninfected amphipods went to the dark
side after 30 min (Fig. 3C). Most of the uninfected amphipods fled to the dark side within
seconds after being placed in the light chamber. Those that remained sought the edge and corners
of the chamber, which may be a thigmotactic response of the amphipods who seek the corners
and edges as refuges. When placed in the light chamber, 47% of the infected amphipods, on
average, remained after 30 min (Fig. 3C). When the infected amphipods were placed in the light
chamber, I noted, but did not quantify, that a few ran to the dark side within seconds, while most
remained in the light chamber.

<Fig. 3>

Nighttime treatments

When placed in the dark chamber, 33% of the infected and 7% of the uninfected amphipods had
gone to the light side after 30 min (Fig. 3B). When placed in the light chamber, 57% of the
infected and 33% of the uninfected amphipods, on average, had gone to the dark side after 30
min (Fig. 3D). Infected amphipods moved between chambers freely, exploring and eating the
damp cardboard chambers. Most of the uninfected amphipods, like the infected individuals,
explored the chambers, with some eating the damp cardboard. An uninfected male engaged and
then carried an uninfected female when placed on the light side in one of the chambers. Mate-

carrying was also observed in the field.
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Behavior response to a potential predator

Ninety-four percent (33/35) of the infected amphipods raised their antennae when a finger
approached (Table 2). Seventy-seven percent (28/35) of the infected amphipods allowed a finger
to touch them at least once before trying to escape. Eight percent (3/35) of the infected
amphipods jumped away before a finger could touch them, only when a researcher was within <
10 cm of the amphipod.

<Table 2>

DISCUSSION
My results demonstrate that O. grillus is photophobic and will flee from light. Levinseniella
byrdi does not, however, appear to reverse this behavior. Infected O. grillus were not drawn to
light; they appeared, instead, oblivious to the light. This was clear when infected amphipods
were placed in the light chamber during the daytime treatments and they crawled to the dark side
and back to the light side. Because infected amphipods are not drawn to the light, yet are found
in the open in the field, my results suggest that infected amphipods move from protected,
vegetated habitats to exposed, unvegetated ones randomly. Similarly, insects such as crickets and
grasshoppers infected by nematomorphs were once thought to “commit suicide” by jumping in
water so that adult nematomorphs could emerge (Thomas et al., 2002). Instead, insects infected
with nematomorphs have more erratic behavior and are more likely to encounter water than
uninfected insects (Thomas et al., 2002). The neutral light response of amphipods with L. byrdi
might also explain why infected individuals are also found in protected, vegetated habitats and

not exclusively in open habitats (Johnson, 2011; Johnson & Heard, 2017). Alternatively, infected
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amphipods may be drawn into the open by some other factor not tested such as changes in
humidity, temperature, or the presence of more benthic algae (one of their foods).

It is unclear how L. byrdi defuses the light response in amphipods, but neurological
manipulation may be responsible. Serotonin is a key neuromodulator mediating behaviors in
crustaceans (McPhee & Wilkens, 1989; Weiger, 1997) and has been implicated in parasite-
induced changes in crustacean behavior (Maynard et al., 1998; Helluy & Thomas, 2003; Guler &
Ford, 2010). For instance, when the amphipod Gammarus pulex (Linnaeus, 1758) is infected
with the acanthocephalan parasites Pomphorhynchus laevis Miiller, 1776 or P. tereticollis
(Rudolphi, 1809), it switches from photophobia to photophilia and has higher serotonin levels
compared to uninfected animals (Tain ef al., 2006). Based on transcriptional analysis O. grillus
infected with L. byrdi, D.M. Rand et al. (unpublished data) found increased expression of genes
affecting “detection of stimuli,” although they did not identify the specific neurological genes
expressing changes. In a transcriptional analysis of 10 genes associated with serotonin
production in the amphipod Echniogammurus marinus (Leach, 1815) infected with a trematode,
Guler ef al. (2015) found that half were upregulated and half were downregulated.

Regardless of the mechanism, does defusing the amphipod’s innate photophobia benefit
L. byrdi or is it merely a side-effect or by-product of infection? The parasite-manipulation
hypothesis predicts that it is adaptive because it will enhance transmission of L. byrdi to the next
host, in this case a definitive bird host. For this hypothesis to be supported, infected amphipods
must be more likely to be eaten by bird hosts than uninfected amphipods (Cézilly et al., 2010).
The neutral phototaxis of infected amphipods, which may randomly bring them out into the
open, suggests that amphipods would be more vulnerable to bird predation. The parasite-

manipulation hypothesis, however, has not been tested for L. byrdi.
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Researchers debate the effectiveness of host manipulation by parasites on trophic
transmission (e.g., Thomas et al. 2005; Cézilly et al., 2010; Perrot-Minnot et al., 2012), in part
because the link between a single host trait and parasite transmission is difficult to demonstrate
in the field. For instance, Perrot-Minnot et al. (2012) found that although gammarid amphipods
infected with acanthocephalan parasites were more susceptible to predation by fish, photophilia,
a condition of infection, alone was insufficient to make them more vulnerable to fish predation.
Their results suggest that photophilia is not an adaptive trait and that some other trait or traits
associated with infection is responsible for increased vulnerability to predation.

If the neutral phototaxis in amphipod hosts alone is not adaptive for L. byrdi, perhaps it is
when combined with the amphipod’s potential reduction in predator escape. I found that most
infected amphipods could be touched by a finger and did not try to escape immediately. Almost
all amphipods raised their second antennae when my finger approached, and were thus aware a
finger was there. If my fingers were bird beaks, then they would have eaten almost all infected
amphipods approached. That is, infected amphipods may be highly susceptible to predators.

Here I clearly demonstrate that O. grillus infected with L. byrdi are no longer
photophobic but are not photophilic either. They have a neutral response to light. I hypothesize
that infected O. grillus randomly wander from protected, vegetated habitats into risky, open ones
as a result. It remains to be seen if changes in amphipod traits (neutral light response,
conspicuous color, and potential reduction in predator escape) is adaptive for L. byrdi by making
O. grillus more susceptible to predation by birds. Future work should compare infected and
uninfected amphipods to investigate their susceptibility to birds, the influence of other
environmental factors on their movements, and experimentally test their behavior (e.g.,

“boldness” versus “shyness”).
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The changed behavior of amphipods with L. byrdi infections has implications for
saltmarsh functioning. For instance, O. grillus is an abundant detritivore in salt marshes
(Johnson, 2011; Johnson & Heard, 2017) that eats dead marsh grass (Thompson, 1984) and can
accelerate grass decomposition (Lopez et al., 1977). Orchestia grillus normally lives under the
dead thatch of grass and grazes detritus. In the open habitats of the marsh, where O. grillus with
L. byrdi infections can be found, however, highly productive benthic microalgae grows.
Orchestia grillus also consumes benthic microalgae in addition to detritus (Pascal & Fleeger,
2013). Infection prevalence of L. byrdi in O. grillus can be as high as 15% in the same marshes
studied (Johnson & Heard, 2017). If L. byrdi infection reduces detrital grazing by O. grillus,
whether by reducing the number of amphipods through bird predation or shifting its diet from
detritus to algal grazing, then L. byrdi may indirectly control detrital stocks, much in the way that

predators can indirectly control plant biomass in a trophic cascade.
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FIGURE CAPTIONS
Figure 1. Orchestia grillus infected with the trematode Levinseniella byrdi will eventually turn
from their cryptic brown or gray to a conspicuous orange. Images of amphipods from the Great

Marsh in northeast Massachusetts, USA.

Figure 2. Set-up of light and dark chambers.

Figure 3. Response of uninfected (grey circles) and infected (orange triangles) amphipods to
light when started in the dark chamber in daytime treatment (A), dark chamber in the nighttime
treatment (B), light chamber in daytime treatment (C), and light chamber in the nighttime
treatments (D). Sun represents daytime treatments, moon and stars nighttime treatments. Bold
symbols represent mean values; faded symbols are raw data, N = 10 per treatment. Raw data that

overlapped and were > 0% were jittered 2%—4%.
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Table 1. Trials and predictions.

Infected on light side
Uninfected on light side
Infected on dark side

Uninfected on dark side

Sunlight

Dark

Remain on light side
Flee to dark side
Go to light side

Remain on dark side

Randomly distributed
Randomly distributed
Randomly distributed

Randomly distributed
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Table 2. Response of Orchestia grillus infected with Levinseniella byrdi to the approach of an

index finger. Numbers in parentheses are the number of times behaviors were observed.

Approached from the top

Raised antennae, allowed finger to stroke back 1-5 times before crawling away (5)

Raised antennae, allowed finger to stroke back once or twice before jumping off the mudbank
into the water and swimming back to the mudbank (4)

Raised antennae, jumped into water before finger could get within 2 cm (2)

Did not raise antennae, jJumped off wall as soon as finger touched back (1)

Did not raise antennae, jumped off creek wall when finger was < 10 cm away (2)

Approached from the front

Raised antennae, palpated or touched finger with secondary antennae, allowed finger to stroke
head and body 14 times before crawling away (16)

Raised antennae, palpated or touched finger with secondary antennae, crawled or jumped away
3)

Raised antennae, allowed finger to stroke its back, rolled over on its side allowing finger to
stroke side before crawling away (1)

Raised antennae, allowing finger to stroke head and body, crawled onto finger (1)




