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The coherent WaveBurst (cWB) search algorithm identifies generic gravitational wave (GW) signals in
the LIGO-Virgo strain data. We propose a machine learning (ML) method to optimize the pipeline
sensitivity to the special class of GW signals known as binary black hole (BBH) mergers. Here, we test the
ML-enhanced cWB search on strain data from the first and second observing runs of Advanced LIGO and
successfully recover all BBH events previously reported by cWB, with higher significance. For simulated
events found with a false alarm rate less than 1 yr~!, we demonstrate the improvement in the detection
efficiency of 26% for stellar-mass BBH mergers and 16% for intermediate mass black hole binary mergers.
To demonstrate the robustness of the ML-enhanced search for the detection of generic BBH signals, we
show that it has the increased sensitivity to the spin precessing or eccentric BBH events, even when trained
on simulated quasicircular BBH events with aligned spins.
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I. INTRODUCTION

The detection of the first gravitational wave (GW)
signal GW150914 [1] commenced the age of the GW
astronomy. Since then, the Advanced LIGO [2] and
Advanced Virgo [3] network of detectors have identified
11 GW candidates during the first two observing runs
(O1 and O2) [4], 39 GW candidates in the first half of the
third observing run (O3a) [5], and provided 20 GW
public alerts to EM astronomers during the second
half of the third observing run (O3b) [6]. With the
improving sensitivity of the GW detector network, it is
essential to refine the search algorithms used to detect GW
signals.

Coherent WaveBurst (cWB) is an algorithm that searches
for excess power in the time-frequency domain to identify
GW signals in the LIGO-Virgo strain data [7,8]. Unlike
other analysis pipelines which search for binary black hole
(BBH) mergers, cWB does not use template waveform
models. Instead, the cWB algorithm is model independent,
which makes it a valuable tool in the search for poorly
modeled or unexpected GW sources. cWB played an
integral role in the discovery of the first BBH merger
GW150914 [1] and, more recently, in the first direct
detection of an intermediate mass black hole (IMBH)
GW190521 [9,10]. Also, cWB has contributed to the
detection of 22 BBH events in the O1, O2, and O3a
observing runs [4,5].

The cWB pipeline generates summary statistics
for every identified event. These summary statistics
describe generic properties of reconstructed events such
as the characteristic frequency, duration, cross-correlation
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between different detectors, and other parameters described
in the Appendix A. In the standard cWB search framework,
we use summary statistics to construct vetoes designed to
reject noise events from the analysis and increase the
significance of detected GW events. Although this veto
procedure generally works well, it risks the removal of GW
signal events that lie near the border of the predefined veto
thresholds. In addition, designing vetoes is challenging
since they need to be redefined for each detector network
and are dependent on the run conditions.

Machine learning (ML) offers a novel approach to
solving complex problems. Accordingly, the interest of
ML techniques in GW astronomy has grown in recent years
[11-13] as ML has been applied to categorize noise
artifacts in the GW detector strain data [14-16], classify
GW signals [17-20], and estimate GW source parameters
[21-24]. ML has already been used in combination with
c¢WB for various other studies [25-28].

In this paper, we propose to use a decision tree based
ensemble learning algorithm called eXtreme-Gradient
Boost (XGBoost) [29] to automate the signal-noise clas-
sification in cWB and optimize the pipeline sensitivity to
BBH mergers. To preserve the waveform independent
analysis, we do not attempt to train the ML model directly
on the GW strain data. Instead, we utilize ¢cWB to
reconstruct events and generate their summary statistics,
and then we carefully select a subset of summary statistics
used for the construction of the ML model. The end result is
the ML-enhanced search pipeline which is resistant to
overfitting and provides the robust recovery of GW events
with the waveform parameters that could be outside of the
training set. We test the cWB pipeline enhanced with
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XGBoost on publicly available LIGO Hanford and LIGO
Livingston strain data from O1 and O2 [30].

The paper is organized as follows. In Sec. II, we
introduce the cWB search pipeline. In Sec. III, we describe
the data used to train and test our ML algorithm. In Sec. IV,
we demonstrate the implementation of ML into the detec-
tion procedure and define our new cWB reduced detection
statistic. In Sec. V, we compare the sensitivity of the ML-
enhanced cWB search against the sensitivity of the standard
cWB search. We report the updated significance of BBH
events detected during the Ol and O2 observing runs.
Finally, in Sec. VI, we state the conclusions of our study.

II. ctWB SEARCH ALGORITHM

The cWB search algorithm is designed to detect GW
signals with minimal assumptions on the signal model
[8,31]. The detector strain data is mapped to the time-
frequency domain using the Wilson Daubechies Meyer
(WDM) wavelet transform [32] where the data is normal-
ized by the rms of the detector noise. The algorithm then
identifies WDM wavelets with excess power above the
average fluctuations of the detector noise. The selected
nearby wavelets are grouped into clusters. The pipeline
generates an event for each selected cluster and reconstructs
the signal waveform using the constrained maximum
likelihood method [8].

For each event, various summary statistics are estimated
by the pipeline which describes the time-frequency struc-
ture, signal strength, and coherence across the detector
network. The main detection statistic for the cWB generic
GW search is the signal-to-noise ratio (SNR) defined for
the LIGO detector network as:

Mo = Uﬁm- (1)

Here, E. denotes the coherent energy estimated by cross-
correlating the reconstructed signal waveforms across
different detectors, and y?> = E,/Ng4 where E, is the
estimated residual noise energy and Ny is the number
of independent wavelet amplitudes describing the event.
The y? correction in Eq. (1), which is close to unity for
genuine GW events, reduces the non-Gaussian noise
contribution. For the cWB searches which target BBH
events, the detection statistic is modified to favor events
which frequency is increasing with time:

m= ’10FM\/€M, (2)

where F is the event energy fraction and ey, is the event
ellipticity defined in Ref. [33]. Both parameters F; and e,
are close to unity for BBH events and penalize events
which time-frequency evolution is significantly different
from the chirping BBH signal.

GW detector data is hindered by noise artifacts known as
glitches, and consequently, some noise events are recon-
structed by the pipeline and leak into the analysis. In the
standard cWB analysis, we apply a series of vetoes to target
and remove these glitches. This approach, henceforth
known as the veto method, improves the significance of
candidate GW events by reducing excess background. The
veto method consists of applying a priori defined veto
thresholds on a set of the cWB summary statistics. This
procedure discretely classifies generated events into one of
the two categories: signal-like events and noiselike events.
Events that fall into the noiselike category are removed
from the analysis. This process could inevitably result in
discarding borderline GW events which do not pass the veto
thresholds and at the same time makes the pipeline
vulnerable to the high SNR glitches which do pass the
vetoes. Designing vetoes in the multidimensional space of
the summary statistics is challenging, and furthermore,
requires retuning of the veto thresholds for each detector
network configuration and each observing run.

In the standard cWB setup, the veto method is tuned
separately to improve the search sensitivity to stellar-mass
BBH mergers (M, < 100 M) and IMBH binary mergers
(M, Z 100 M ). While the GW waveforms of these two
classes are conceptually similar, the corresponding GW
signals observed in the LIGO frequency band are quite
different. A GW signal originating from the stellar-mass
BBH merger usually exhibits the full inspiral-merger-
ringdown waveform, whereas GW signals from IMBH
binary mergers are short in duration and contain mostly the
merger-ringdown waveform, with the inspiral signal buried
inside the low-frequency seismic noise. As a result, we
utilize two configurations of the cWB search tuned for
these systems: the BBH configuration which targets stellar-
mass BBH mergers, and the IMBH configuration which
targets IMBH binary mergers [10]. IMBH binaries are
expected to merge at lower frequencies compared to the
stellar-mass BBH mergers, and so the corresponding cWB
search configurations apply different vetoes to account for
the difference in the signal morphology.

III. DATA

We analyze publicly available strain data from Advanced
LIGO’s first two observational runs [30]. Here, we only
examine data from the LIGO Hanford and LIGO
Livingston detectors, with the inclusion of Virgo data left
for future work. To train and test our ML model, we require
a representative set of noise events and signal events.

Noise events (background) are generated by systemati-
cally time-shifting the data from one detector with respect
to other detectors in the detector network. Each time shift is
chosen to be greater than one second to exclude astro-
physical signals. This process is repeated multiple times for
various time lags, and we count the number of background
events generated over the total accumulated background
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time. For the Ol run (GPS time: 1126051217—
1137254417), we accumulated approximately 16,000 years
and 4,000 years of the background time for the BBH and
IMBH searches, respectively. For the O2 run (GPS time:
1164556817—1187740818), we accumulated approxi-
mately 11,000 years of background for each search.

To generate a representative set of the signal events, we
add (inject) simulated GW signals to the detector data and
reconstruct them with cWB. In this work, we investigate
four sets of simulated signals: (i) a quasicircular spin-
aligned stellar-mass BBH set, (ii) a quasicircular IMBH
binary set, (iii) an eccentric BBH set, and (iv) a quasicir-
cular precessing BBH set. Only the first two simulation sets
of the quasicircular signals were used for ML training,
whereas the remaining two sets are used to test the
robustness of the ML implementation. In all four cases,
the binary orientation parameters (sky location, inclination
angle) for every simulated waveform are randomly drawn
from uniform distributions. The redshift z is drawn from a
uniform distribution in comoving volume, assuming Planck
2015 cosmology [34].

To simulate the stellar-mass BBH set, we use the
SEOBNRvV3 [35] and SEOBNRv4 [36] waveform approx-
imants. These waveform approximants include only the
dominant (£ =2, m = 2) harmonic mode. The source
frame total mass for these simulations ranges from approx-
imately 5 Mg to 100 My, and the mass ratio g = m,/m;
ranges from approximately 1/4 to 1. Component black hole
spins are aligned with the orbital plane.

For the IMBH binary set, we use numerical relativity
waveforms which include higher-order harmonics. We
consider 17 mass bins, as used in Ref. [37], which range
in source frame total mass from 120 M to 800 M, with
mass ratios ranging from 1 to 1/10.

For the high mass, eccentric BBH set, we also use
numerical relativity waveforms [38,39]. We consider 28
mass bins which range in total mass from 100 My to
250 M, mass ratio equal to 1, with eccentricities ranging
from 0.75 to 0.99.

For the precessing stellar-mass BBH set, we use the
SEOBNRV4PHM [40] waveform approximant, which
includes precession and higher-order harmonic modes.
The source frame total mass ranges from 4 Mg to
200 M, with mass ratios ranging from 1 to 1/20.
Component black hole spins are isotropically distributed.

The amount of simulation and background data used for
training and testing the ML algorithm is described in
Table II and further details on the training and testing
procedure is explained in Sec. IV B.

IV. MACHINE LEARNING IMPLEMENTATION

The veto method used in the standard cWB search
categorizes events into two discrete bins: signal events
and noise events. Here, the veto method effectively acts as a
decision tree with only two leaves, where the summary

statistics for a given event are compared against various
rules at each decision node until the event is classified as
either a signal event or a noise event. Since this method
produces a discrete outcome, it unavoidably removes signal
events which do not pass all veto thresholds.

We propose using ML, which produces continuous
ranking criteria for all reconstructed events, to replace
the veto method. Binary classification is a standard problem
in the ML literature. Moreover, many prominent ML
algorithms are based on the decision tree structure, which
we expect is well suited for the cWB classification
problem.

We use the boosted decision tree based ML algorithm
called XGBoost [29]. In XGBoost, instead of using a single
decision tree to classify events, an ensemble of decision
trees is generated. A decision tree is used as the base
learner, and subsequent learners (trees) are formed based on
the residual errors obtained after each iteration (boosting).
This process is expected to be more accurate and more
robust than using a single decision tree used by the veto
method. A continuous score is calculated by taking the
weighted average of output, obtained from each decision
tree in the ensemble. The final output Pxgg is computed by
taking the sigmoid of the continuous score, where a value
close to zero denotes a noiselike event and a value close to
one denotes a signal-like event.

To construct the ML model, we select a subset of 14
summary statistics estimated by cWB as input features for
the ML algorithm. Selected summary statistics describe the
signal strength and the correlation across the detectors (7,
ce, ny), the quality of the likelihood fit (E, /L, y*), the time-
frequency evolution of the event (AT, AF, fo, M, em)
and the two different estimators for the number of cycles in
the reconstructed waveform (Q,, Q). The detailed list of
selected summary statistics and their definitions can be
found in Appendix A.

A. Tuning XGBoost hyper-parameters

XGBoost has a number of free hyper-parameters which
control various properties of the learning process to prevent
overfitting. These hyper-parameters need to be tuned for
each specific application. We use a small data set consisting
of 200 yr of background data (which equates to approx-
imately 500,000 noise events) and 2,000 simulated IMBH
binary events to tune the XGBoost hyper-parameters.
These background and simulation events are drawn from
the O2 run.

We perform a grid search over a range of six standard
XGBoost hyper-parameters, listed in Table I. We find the
most optimal set by evaluating each configuration of
XGBoost hyper-parameters with respect to the precision-
recall area under the curve (AUC PR) metric [41] over
10-fold cross-validation. The optimal configuration of
hyper-parameters, according to this criteria, is shown in
bold in Table I. We use a method known as early stopping
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TABLE 1. Entries for XGBoost hyperparameters. We perform a
grid search over 432 combinations of hyperparameters. Bold
entries indicate the optimal choice.

XGBoost hyper-parameter Entry

objective binary:logistic

tree_method hist
grow_policy lossguide
n _estimators 20,000?
max_depth 7,9, 11, 13
learning rate 0.1, 0.03
min child weight 5.0, 10.0
colsample bytree 0.6, 0.8, 1.0
subsample 04, 0.6, 0.8
gamma 2.0, 5.0, 10.0

‘n_estimators is
described in the main text.

optimized using early stopping,

to optimize the total number of trees generated. In early
stopping, a small fraction of the training data set is set aside
for validation. When the validation AUC PR score stops
improving, the training ends to prevent the XGBoost from
overfitting.

Overall, we found that the performance of the model was
not highly dependent on the chosen hyper-parameter
values. As a result, we keep this hyper-parameter configu-
ration for all models presented in this paper.

B. XGBoost model training

We train a separate ML model for each search configu-
ration and each observing run. In this paper, we have two
search configurations (BBH, IMBH) and analyze two
observing runs (O1, O2), a total of four models. The
estimated central frequency f,, of a GW signal is expected
to be inversely proportional to the red-shifted total
mass of the binary system. As such, we select events with
60 Hz < f, < 300 Hz to train the BBH search models and
events with f, < 200 Hz to train the IMBH search models.
Each trained model uses the same XGBoost hyper-
parameters discussed in Sec. IVA, and consists of around
600 total trees for O1 run and 1000 total trees for O2 run,
with an average of 20 leaves per tree.

For training, we select 100 yr of background data
(approximately 250,000 noise events) per data chunk.
For every 100 yr of background data we select approx-
imately 1000 simulation events. We use simulated quasi-
circular stellar-mass BBH mergers (simulation set (i) to
train the BBH search model, and we use simulated
quasicircular IMBH binary mergers (simulation set (ii) for
the IMBH search model. The remaining background and
simulation data are used for testing as reported in Table II.
The ML algorithm’s training and testing procedures are
computationally efficient and are completed within minutes
using one CPU core. Generally, ML classifiers are expected
to be more accurate when the same number of events per

TABLE II.  Amount of background data (given in years) and the
number of simulated events used for training and testing the
respective ML models. We consider different observing runs (O1,
02), search configurations (BBH, IMBH), and additional sim-
ulation cases to test the model robustness (eccentric BBH,
precessing BBH).

Background [yr] Simulation
Dataset Training Testing Training  Testing
O1 BBH 900 15316 8662 38246
O1 IMBH 900 3123 8640 40806
02 BBH 2100 8625 20957 203954
02 IMBH 2100 8625 20776 150780
Eccentric BBH 18000 42910
Precessing BBH 18000 23043

class are used for training. However, in our case, using
balanced classes is not feasible. It is difficult to arbitrarily
increase the number of simulated events due to the
computational cost. Moreover, down-sampling the noise
event set is not prudent since we could lose valuable
information related to the high SNR tail of the background
distribution. Instead, we apply a weight to every sample
noise event to reduce the class imbalance. This weight is
dependent on 7, and gives less importance to the low SNR
glitches. The weighting procedure is described in more
detail in Appendix B.

C. ¢WB + ML detection statistic

We incorporate the predictions made by the ML model
directly into the detection statistic to improve noise
rejection. We define the reduced detection statistic used
for the ML-enhanced cWB search as:

E
= - w 3
’71‘ \/1 +){2(max(1,)’/2) _ 1) XGB» ( )

where Wygp is the XGBoost penalty factor. To compute
Wxag, we first apply a correction to the XGBoost output,
defined in Appendix C 1. This correction is designed to
suppress numerous noise events which have less than one
cycle in the time domain waveform, which is typical
for the known family of glitches found in the GW
detector data. Next, we apply a monotonic transformation,
defined in Appendix C2, to obtain the penalty factor
Wxgs = Wxage(Pxgg)- This transformation accentuates
the ranking of events with the values of Pxgp very close
to unity. Although Wyp itself could be used as a detection
statistic, we find that it is susceptible to assigning high
significance to low SNR noise events. Instead, we use it as a
penalty factor to the estimated effective correlated SNR 7.
The end result is a detection statistic #, which is enhanced
by the ML classification and resistant to overfitting the low
SNR noise events.
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V. RESULTS

In this section, we present the results of the ML-
enhanced cWB search and compare its sensitivity to the
standard cWB search. The significance of a given candidate
event is estimated by its false alarm rate (FAR). It is
computed by counting the number of background events
with the equal or higher value of the detection statistic than
for the candidate event, divided by the total back-
ground time.

For the ML-enhanced cWB search, FAR is calculated
by using the reduced detection statistic n, [Eq. (3)].
Whereas for the standard ¢WB BBH search, we first
remove vetoed events and then calculate FAR by using
the 7, detection statistic [Eq. (2)]. We compare the
performance of the different cWB searches by comparing
their detection efficiency defined as the number of detected
simulated events with FAR equal to or less than a given
threshold, divided by the total number of recovered
simulation events.

A. Reanalysis of O1 and O2 data

First, we examine the background noise distributions for
the ML-enhanced search. Figure 1 shows the rate of the
noise events for each search (BBH, IMBH) and each
observing run (O1, O2) as a function of the reduced
detection statistic 7,. In all cases, we do not observe
significant tails of the high 7, events, which indicates that
the ML-enhanced detection statistic efficiently suppresses
the high SNR outliers.

Next, we examine the sensitivities of each search for
various simulation data sets. The top panel of Fig. 2 shows
the detection efficiency as a function of FAR for the various
searches over the Ol (left) and O2 (right) data. The ML-
enhanced search (shown in red) is more sensitive than the
standard search with vetoes (black) in the wide range of the
FAR thresholds. For events detected with FAR < 1 yr~!,

= 10! —— 02 BBH
L, —— O1 BBH
% R e N R 02 IMBH
r=T I A NG NG R B O1 IMBH
£ 107!

<]

£ 10-2

3 10

B 1073

3

o~ 1074 ________

0.0 2.5 5.0 7.5 10.0 12.5
T

FIG. 1. Rate of noise events vs detection statistic #, for each
search configuration (BBH, IMBH) and each observing run (O1,
02). We do not observe significant tails in the 7, distributions.

we estimate the 26% improvement for the BBH configu-
ration and the 16% improvement for the IMBH configu-
ration, averaged over the two observing runs. For high
significance detection (FAR < 100 yr~!), we estimate the
22% improvement for the BBH configuration and the 13%
improvement for the IMBH configuration.

The bottom panel of Fig. 2 shows the detection effi-
ciency for events detected with FAR < 1 yr~! as a function
of the central frequency f,. Here, we see that for most
frequency bins, the ML-enhanced search (red) is more
sensitive than the standard search (black). This indicates
that the ML-enhanced search is not overly tuned to any
specific frequency bins but shows consistent improvement
over the entire frequency range considered by the cWB
search configurations. Since the central frequency f, is
expected to be inversely proportional to the detector frame
mass, we can infer that the ML-enhanced search is more
sensitive over the entire BBH mass range accessible
by LIGO.

Table III reports the BBH candidates identified by the
ML-enhanced cWB search in the O1-O2 observing runs.
We recover 7 BBH candidates previously reported by the
standard ¢cWB search [4], all identified with higher sig-
nificance. Additionally, the ML-enhanced ¢cWB search
detected GW170809 with a FAR of 0.29 yr~!, which
was previously vetoed in the standard cWB search. No
other candidate events were identified with FAR less
than 1 yr!.

B. Test of model robustness

As a final test, we analyze the performance of the
ML-enhanced search on simulated waveforms outside of
the training set. First, we investigate the sensitivity of the
ML-enhanced IMBH search, which is trained on quasi-
circular binaries, to high mass BBH systems with highly
eccentric orbits (simulation set iii). In Fig. 3, we show the
sensitivity to the eccentric IMBH mergers of the
ML-enhanced IMBH search compared to the standard
IMBH search. The ML-enhanced search is more sensitive
to the eccentric BBH mergers despite the fact that we
trained the ML model only on the quasi-circular IMBH
waveforms.

Next, we test the ML-enhanced BBH search on precess-
ing BBH systems (simulation set iv). The training set
consists of simulated waveforms with the (2,2) harmonic
mode, aligned spins, and low mass ratio (I1-1/4).
The testing set consists of simulated waveforms with
higher-order modes, precessing spins, and a higher mass
ratio (1-1/20). In this case, the model is also trained on O2
data, whereas the testing set consists of O3a simulation and
background, which has very different GW detector sensi-
tivity. Figure 4 shows improved detection efficiency of the
ML-enhanced BBH search compared to the standard BBH
search.

023014-5



T. MISHRA et al.

PHYS. REV. D 104, 023014 (2021)

02
>
)
=
Q
kS;
=
5]
S
g —— ML-enhanced BBH
s 0ty e ML-enhanced IMBH
A 0.2 —— Standard BBH
""""" Standard IMBH
0.0 3 2 1 0 1 3 2 1 0 1
10~ 10~ 10~ 10 100 10~ 10~ 10~ 10 10
False alarm rate [yr— False alarm rate [yr~!]
1.0
g 08
R L ; ior
SR e H g
&= 0.6+ + . -
)
-V i Do
25 04
§ r : —4— ML-enhanced BBH b
] = # ML-enhanced IMBH +
A 0.2 1 —4— Standard BBH b
- Standard IMBH *iH
0.0 S S

50 100 150
Central frequency f; [Hz]

50 100 150
Central frequency f; [Hz]

FIG.2. Top: detection efficiency vs FAR for the O1 observing run (left) and the O2 observing run (right). Bottom: detection efficiency
for events identified with FAR less than 1 yr~! as a function of the central frequency f,, for O1 (left) and O2 (right). Solid lines
correspond to the BBH configuration, while dotted lines represent the IMBH configuration. Red curves represent the sensitivity of the
ML-enhanced cWB search, and black curves represent the sensitivity of the standard cWB search with the veto method.

These results demonstrate that the ML-enhanced search
is agnostic to the details of the BBH dynamical evolution
including eccentricity, spin effects, and higher-order

TABLE III.  O1-02 event candidates detected with the standard
cWB BBH search (17, + vetoes), and the ML-enhanced cWB
BBH search (1,). We report all detections with FAR less than
1 yr~!. Entries with a “<” sign indicate that the estimated
significance is limited by the amount of available background

data.

Standard cWB ML-enhanced cWB

(111 + vetoes) )
Event FAR [yr~!] FAR [yr!]
GW150914 <1.6x 10™* <7x%1073
GW151226 2 x 1072 6.5x 1073
GW170104 29 x 1074 <12x10™*
GW 170608 1.4 %1074 <12 x 107
GW170729 2 x 1072 <1.2x10™*
GW170809 2.9 % 107!
GW170814 <2.1x10™* <1.2x10™*
GW170823 2.1 x1073 <12x 107

modes. It retains the robustness of the standard search,
but with increased sensitivity.
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? 0.8 simulation
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A 0.2 ——  ML-enhanced IMBH
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0.0 —— " " " "
1073 1072 107! 10" 10
False alarm rate [yr~!]
FIG. 3. Detection efficiency vs FAR for a high mass, eccentric

BBH simulation set recovered with the cWB IMBH configura-
tion. The red curve represents the sensitivity of the ML-enhanced
cWB search, and the black curve represents the sensitivity of the
standard cWB search.
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FIG. 4. Detection efficiency vs FAR for a precessing BBH
simulation set recovered with the cWB BBH configuration. The
red curve represents the sensitivity of the ML-enhanced cWB
search, and the black curve represents the sensitivity of the
standard cWB search.

VI. CONCLUSION

In conclusion, we introduce a novel method to automate
the noise rejection in cWB with ML, and we demonstrate
that the ML-enhanced cWB search has improved sensitivity
to the BBH mergers. Unlike the standard cWB search,
which decimates noise events with the veto method, the
ML-enhanced search uses a continuous ranking statistic
and does not remove any events. Instead, it penalizes noise
events with the newly designed detection statistic #,, which
combines the correlated network SNR with the penalty
factor based on the signal-noise classification provided by
the XGBoost model. This new detection statistic 7, is
resistant to loud noise glitches and allows cWB identifi-
cation of BBH events with higher significance.

For the stellar-mass BBH mergers, the detection effi-
ciency of the ML-enhanced cWB search is improved by 26%
compared to the standard cWB search (at FAR less than
1 yr~"). Similarly, for the simulation set of IMBH binary
mergers, the detection efficiency is improved by 16%. While
we do not claim any new BBH detections in the O1 and O2
data, we do improve the detection confidence of the
previously identified GW candidates and recovered the
GW170809 event missed by the standard cWB search.

The ML-enhanced cWB search is capable of detecting
BBH signals well outside of the training set. We demon-
strate the improved pipeline sensitivity to the highly
eccentric BBH mergers despite only being trained on the
quasicircular IMBH signals. We also found the search to be
agnostic to other binary waveform properties including
precession, high mass ratio, and higher-order harmonic
modes. We expect the search to be sensitive to BBH signals
even if the GW waveforms used for training are not exactly
representative of true astrophysical signals.

The ML-enhanced BBH search is a promising addition
to the cWB pipeline for future planned observing runs,

where we expect numerous BBH detections. While in this
study, we use only the LIGO Hanford and LIGO Livingston
detector network, in future work we will expand the ML-
enhanced search to the other detector networks which
include Virgo and Kagra detectors. This will further
improve the cWB sensitivity to the BBH mergers. The
ML-enhanced pipeline could be also used for the low
latency cWB searches in the future observing runs.
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APPENDIX A: ¢WB ESTIMATED SUMMARY
STATISTICS

The ML algorithm is tuned and trained on the data from a
selected subset of cWB summary statistics for each event.
We start by truncating this subset by selecting the summary
statistics that have a low correlation with each other. We
also aggregate a few summary statistics together to prune
the list of summary statistics that are used as input features
for the ML algorithm. We select 14 cWB summary
statistics in total that are used by the ML algorithm as
the input list of features. The summary statistics are
listed below:
(1) no—Main cWB detection statistic for the generic
GW search. For the ML study, we cap the 7, value at
8 (any event with higher 7 is assigned a value of 8)
so the algorithm is not affected by the high SNR
events in the background distribution, which is a
steep function of 7.

(i) c.—Coherent energy divided by the sum of coherent
energy and null energy, defined in Ref. [31].

(iii) n;—Effective number of time-frequency resolutions

used for event detection and waveform reconstruction.

(iv) E./L—Ratio of the coherent energy to the network

likelihood.

(v) AT—Energy weighted signal duration.

(vi) AF,—Energy weighted signal bandwidth.

(vii) fo—Energy weighted signal central frequency.
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(viii)) M—Chirp mass parameter estimated in the time-
frequency domain, defined in Ref. [33].

(ix) epn—Chirp mass goodness of the fit metric, pre-
sented in Ref. [33].

(x) Q,—The waveform shape parameter [46] developed
to identify a characteristic family of (blip) glitches
present in the detectors [4,47]. A value of Q,
corresponds to the cWB event being a blip glitch.

(xi) Q,—An estimation of the effective number of cycles
in a cWB event.

(xii) L,—for the loudest pixel, the ratio between the pixel
energy and the total energy of an event [48].

(xiii) y>—quality of the event reconstruction, y> =
E,/Ng where E, is the residual noise energy
estimated and Ny is the number of independent
wavelet amplitudes describing an event.

(xiv) C,—Data chunk number. LIGO-Virgo data is di-
vided into time segments known as chunks, which
typically contain a few days of strain data. Including
the data chunk number allows the ML algorithm to
respond to changes in detector sensitivity across
separate observing runs and chunks.

APPENDIX B: NOISE EVENT SAMPLE WEIGHT

In the initial testing phase with the trained XGBoost
model, we found a tail of high SNR background events,
most of which were consistent with blip glitches. This tail is
caused by the suboptimal ML model due to the high class
imbalance between the high SNR noise events and signal
events. To correct for this tail, we applied an 7, dependent
sample weight to the noise events while training the
XGBoost models. This weight provides us with a weighted
background distribution as shown in Fig. 5, which is similar
for any observing run.

The sample weight for the simulation events is set to 1.
For the noise events, we divide 7, into 231 bins with values

10°

weighted background
simulation

Weighted number of events

b

5.0 9.9 6.0 6.5 7.0 7.5 8.0
7o

FIG. 5. Weighted event distribution as a function of 7, for
background events and simulated events. Here, we show the
IMBH configuration with the O1 run data.

ranging from 5 to 8 and apply the sample weight wg for
each bin as follows:

(Ns(n9) — a) + beld=m)
NB(’?O)

w (1) = . (BD)

where Ng(70) is the number of signal events and Ng(7) is
the number of noise events, in a given bin. We found that
the sample weight works reasonably well for the following
choices of values: a = 65,56 = 0.8, ¢c = 0.9, and d = 12.9.
The number of simulation events for 5, > 8 were re-
sampled to match the number of background events with
the same range of 7,. This application of sample weight
enables the algorithm to successfully remove almost all the
high SNR outliers while keeping the weighted events class
imbalance (Ng/Ng) to around 20 for any given observing
run. Without the application of the sample weight, the class
imbalance ranges from 50 to 600 or even higher for the
given training setup depending on the observing run and
the search configuration.

APPENDIX C: XGBOOST PENALTY FACTOR

1. ¢WB correction to Pxgy in the IMBH configuration

Further investigation revealed that in the IMBH con-
figuration, high SNR background outliers were found in a
specific parameter space represented by the O, — Q, plotin
Fig. 6. In the standard veto method, the application of the
0, and Q, vetoes would have removed all events below the
predefined thresholds at the cost of losing a small fraction
of simulated events. In the ML method, we apply a
correction to the ranking criteria Pygg such that we
suppress the background outliers in the affected parameter
space below the magenta-colored curve in Fig. 6.

10°

FIG. 6. Q, — Q, parameter space plot for the IMBH configu-
ration with O1 run data. Black dots represent loud background
noise events (179 > 8). Red dots represent loudest background
outliers (175 > 10). The heat map represents the simulated IMBH
distribution.
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The correction to the continuous ranking criteria output
Pxgg from XGBoost is applied only to the IMBH con-
figuration (shorter signals with fewer cycles in the time
domain), given by the following equations:

Pxgp — (0.15 = Q,(Q, — 0.8)).
if 0,(Q, —0.8) <0.15

(under the curve)
Pxcp = (C1)
Pxcg.

if 0,(Q, —0.8) > 0.15

(above the curve).

This correction enhances detection of signal and sup-
presses glitches in the desired part of the O, — Q,, param-
eter space explicitly without any changes to the XGBoost
training and testing procedure. The correction comes at the
cost of losing a small fraction of IMBH signals with small
values of Q.

2. Monotonic transformation Wxgp

The monotonic transformation applied on Pxgg is
defined as follows,

—log(1.0 — 0.995,/Pxcp)
53

Wxcn(Pxap) = ; (C2)

which counterbalances the steep sigmoid function used by
XGBoost while producing Pxgg. The Pxgg output by
XGBoost for any event has a precision of up to 5 decimal
places. As a result, the effect of using Pxgp directly as a
penalty factor is not effective. The transformation in
Eq. (C2) allows us to zoom in on the high precision
Pxgp values close to unity. This helps us differentiate
between high SNR background events and simulation
events that typically end up with high values of Pxgg.
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