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The coherent WaveBurst (cWB) search algorithm identifies generic gravitational wave (GW) signals in

the LIGO-Virgo strain data. We propose a machine learning (ML) method to optimize the pipeline

sensitivity to the special class of GW signals known as binary black hole (BBH) mergers. Here, we test the

ML-enhanced cWB search on strain data from the first and second observing runs of Advanced LIGO and

successfully recover all BBH events previously reported by cWB, with higher significance. For simulated

events found with a false alarm rate less than 1 yr−1, we demonstrate the improvement in the detection

efficiency of 26% for stellar-mass BBH mergers and 16% for intermediate mass black hole binary mergers.

To demonstrate the robustness of the ML-enhanced search for the detection of generic BBH signals, we

show that it has the increased sensitivity to the spin precessing or eccentric BBH events, even when trained

on simulated quasicircular BBH events with aligned spins.
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I. INTRODUCTION

The detection of the first gravitational wave (GW)

signal GW150914 [1] commenced the age of the GW

astronomy. Since then, the Advanced LIGO [2] and

Advanced Virgo [3] network of detectors have identified

11 GW candidates during the first two observing runs

(O1 and O2) [4], 39 GW candidates in the first half of the

third observing run (O3a) [5], and provided 20 GW

public alerts to EM astronomers during the second

half of the third observing run (O3b) [6]. With the

improving sensitivity of the GW detector network, it is

essential to refine the search algorithms used to detect GW

signals.

Coherent WaveBurst (cWB) is an algorithm that searches

for excess power in the time-frequency domain to identify

GW signals in the LIGO-Virgo strain data [7,8]. Unlike

other analysis pipelines which search for binary black hole

(BBH) mergers, cWB does not use template waveform

models. Instead, the cWB algorithm is model independent,

which makes it a valuable tool in the search for poorly

modeled or unexpected GW sources. cWB played an

integral role in the discovery of the first BBH merger

GW150914 [1] and, more recently, in the first direct

detection of an intermediate mass black hole (IMBH)

GW190521 [9,10]. Also, cWB has contributed to the

detection of 22 BBH events in the O1, O2, and O3a

observing runs [4,5].

The cWB pipeline generates summary statistics

for every identified event. These summary statistics

describe generic properties of reconstructed events such

as the characteristic frequency, duration, cross-correlation

between different detectors, and other parameters described

in the Appendix A. In the standard cWB search framework,

we use summary statistics to construct vetoes designed to

reject noise events from the analysis and increase the

significance of detected GW events. Although this veto

procedure generally works well, it risks the removal of GW

signal events that lie near the border of the predefined veto

thresholds. In addition, designing vetoes is challenging

since they need to be redefined for each detector network

and are dependent on the run conditions.

Machine learning (ML) offers a novel approach to

solving complex problems. Accordingly, the interest of

ML techniques in GWastronomy has grown in recent years

[11–13] as ML has been applied to categorize noise

artifacts in the GW detector strain data [14–16], classify

GW signals [17–20], and estimate GW source parameters

[21–24]. ML has already been used in combination with

cWB for various other studies [25–28].

In this paper, we propose to use a decision tree based

ensemble learning algorithm called eXtreme-Gradient

Boost (XGBoost) [29] to automate the signal-noise clas-

sification in cWB and optimize the pipeline sensitivity to

BBH mergers. To preserve the waveform independent

analysis, we do not attempt to train the ML model directly

on the GW strain data. Instead, we utilize cWB to

reconstruct events and generate their summary statistics,

and then we carefully select a subset of summary statistics

used for the construction of the MLmodel. The end result is

the ML-enhanced search pipeline which is resistant to

overfitting and provides the robust recovery of GW events

with the waveform parameters that could be outside of the

training set. We test the cWB pipeline enhanced with

PHYSICAL REVIEW D 104, 023014 (2021)

2470-0010=2021=104(2)=023014(10) 023014-1 © 2021 American Physical Society



XGBoost on publicly available LIGO Hanford and LIGO

Livingston strain data from O1 and O2 [30].

The paper is organized as follows. In Sec. II, we

introduce the cWB search pipeline. In Sec. III, we describe

the data used to train and test our ML algorithm. In Sec. IV,

we demonstrate the implementation of ML into the detec-

tion procedure and define our new cWB reduced detection

statistic. In Sec. V, we compare the sensitivity of the ML-

enhanced cWB search against the sensitivity of the standard

cWB search. We report the updated significance of BBH

events detected during the O1 and O2 observing runs.

Finally, in Sec. VI, we state the conclusions of our study.

II. cWB SEARCH ALGORITHM

The cWB search algorithm is designed to detect GW

signals with minimal assumptions on the signal model

[8,31]. The detector strain data is mapped to the time-

frequency domain using the Wilson Daubechies Meyer

(WDM) wavelet transform [32] where the data is normal-

ized by the rms of the detector noise. The algorithm then

identifies WDM wavelets with excess power above the

average fluctuations of the detector noise. The selected

nearby wavelets are grouped into clusters. The pipeline

generates an event for each selected cluster and reconstructs

the signal waveform using the constrained maximum

likelihood method [8].

For each event, various summary statistics are estimated

by the pipeline which describes the time-frequency struc-

ture, signal strength, and coherence across the detector

network. The main detection statistic for the cWB generic

GW search is the signal-to-noise ratio (SNR) defined for

the LIGO detector network as:

η0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ec

2max ð1; χ2Þ

s

: ð1Þ

Here, Ec denotes the coherent energy estimated by cross-

correlating the reconstructed signal waveforms across

different detectors, and χ
2 ¼ En=Ndf where En is the

estimated residual noise energy and Ndf is the number

of independent wavelet amplitudes describing the event.

The χ
2 correction in Eq. (1), which is close to unity for

genuine GW events, reduces the non-Gaussian noise

contribution. For the cWB searches which target BBH

events, the detection statistic is modified to favor events

which frequency is increasing with time:

η1 ¼ η0FM

ffiffiffiffiffiffi

eM
p

; ð2Þ

where FM is the event energy fraction and eM is the event

ellipticity defined in Ref. [33]. Both parameters FM and eM
are close to unity for BBH events and penalize events

which time-frequency evolution is significantly different

from the chirping BBH signal.

GW detector data is hindered by noise artifacts known as

glitches, and consequently, some noise events are recon-

structed by the pipeline and leak into the analysis. In the

standard cWB analysis, we apply a series of vetoes to target

and remove these glitches. This approach, henceforth

known as the veto method, improves the significance of

candidate GW events by reducing excess background. The

veto method consists of applying a priori defined veto

thresholds on a set of the cWB summary statistics. This

procedure discretely classifies generated events into one of

the two categories: signal-like events and noiselike events.

Events that fall into the noiselike category are removed

from the analysis. This process could inevitably result in

discarding borderline GWevents which do not pass the veto

thresholds and at the same time makes the pipeline

vulnerable to the high SNR glitches which do pass the

vetoes. Designing vetoes in the multidimensional space of

the summary statistics is challenging, and furthermore,

requires retuning of the veto thresholds for each detector

network configuration and each observing run.

In the standard cWB setup, the veto method is tuned

separately to improve the search sensitivity to stellar-mass

BBH mergers (Mtot ≲ 100 M⊙) and IMBH binary mergers

(Mtot ≳ 100 M⊙). While the GW waveforms of these two

classes are conceptually similar, the corresponding GW

signals observed in the LIGO frequency band are quite

different. A GW signal originating from the stellar-mass

BBH merger usually exhibits the full inspiral-merger-

ringdown waveform, whereas GW signals from IMBH

binary mergers are short in duration and contain mostly the

merger-ringdown waveform, with the inspiral signal buried

inside the low-frequency seismic noise. As a result, we

utilize two configurations of the cWB search tuned for

these systems: the BBH configuration which targets stellar-

mass BBH mergers, and the IMBH configuration which

targets IMBH binary mergers [10]. IMBH binaries are

expected to merge at lower frequencies compared to the

stellar-mass BBH mergers, and so the corresponding cWB

search configurations apply different vetoes to account for

the difference in the signal morphology.

III. DATA

We analyze publicly available strain data from Advanced

LIGO’s first two observational runs [30]. Here, we only

examine data from the LIGO Hanford and LIGO

Livingston detectors, with the inclusion of Virgo data left

for future work. To train and test our ML model, we require

a representative set of noise events and signal events.

Noise events (background) are generated by systemati-

cally time-shifting the data from one detector with respect

to other detectors in the detector network. Each time shift is

chosen to be greater than one second to exclude astro-

physical signals. This process is repeated multiple times for

various time lags, and we count the number of background

events generated over the total accumulated background
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time. For the O1 run (GPS time: 1126051217—

1137254417), we accumulated approximately 16,000 years

and 4,000 years of the background time for the BBH and

IMBH searches, respectively. For the O2 run (GPS time:

1164556817—1187740818), we accumulated approxi-

mately 11,000 years of background for each search.

To generate a representative set of the signal events, we

add (inject) simulated GW signals to the detector data and

reconstruct them with cWB. In this work, we investigate

four sets of simulated signals: (i) a quasicircular spin-

aligned stellar-mass BBH set, (ii) a quasicircular IMBH

binary set, (iii) an eccentric BBH set, and (iv) a quasicir-

cular precessing BBH set. Only the first two simulation sets

of the quasicircular signals were used for ML training,

whereas the remaining two sets are used to test the

robustness of the ML implementation. In all four cases,

the binary orientation parameters (sky location, inclination

angle) for every simulated waveform are randomly drawn

from uniform distributions. The redshift z is drawn from a

uniform distribution in comoving volume, assuming Planck

2015 cosmology [34].

To simulate the stellar-mass BBH set, we use the

SEOBNRv3 [35] and SEOBNRv4 [36] waveform approx-

imants. These waveform approximants include only the

dominant (l ¼ 2, m ¼ 2) harmonic mode. The source

frame total mass for these simulations ranges from approx-

imately 5 M⊙ to 100 M⊙, and the mass ratio q ¼ m2=m1

ranges from approximately 1=4 to 1. Component black hole

spins are aligned with the orbital plane.

For the IMBH binary set, we use numerical relativity

waveforms which include higher-order harmonics. We

consider 17 mass bins, as used in Ref. [37], which range

in source frame total mass from 120 M⊙ to 800 M⊙, with

mass ratios ranging from 1 to 1=10.
For the high mass, eccentric BBH set, we also use

numerical relativity waveforms [38,39]. We consider 28

mass bins which range in total mass from 100 M⊙ to

250 M⊙, mass ratio equal to 1, with eccentricities ranging

from 0.75 to 0.99.

For the precessing stellar-mass BBH set, we use the

SEOBNRv4PHM [40] waveform approximant, which

includes precession and higher-order harmonic modes.

The source frame total mass ranges from 4 M⊙ to

200 M⊙, with mass ratios ranging from 1 to 1=20.
Component black hole spins are isotropically distributed.

The amount of simulation and background data used for

training and testing the ML algorithm is described in

Table II and further details on the training and testing

procedure is explained in Sec. IV B.

IV. MACHINE LEARNING IMPLEMENTATION

The veto method used in the standard cWB search

categorizes events into two discrete bins: signal events

and noise events. Here, the veto method effectively acts as a

decision tree with only two leaves, where the summary

statistics for a given event are compared against various

rules at each decision node until the event is classified as

either a signal event or a noise event. Since this method

produces a discrete outcome, it unavoidably removes signal

events which do not pass all veto thresholds.

We propose using ML, which produces continuous

ranking criteria for all reconstructed events, to replace

the veto method. Binary classification is a standard problem

in the ML literature. Moreover, many prominent ML

algorithms are based on the decision tree structure, which

we expect is well suited for the cWB classification

problem.

We use the boosted decision tree based ML algorithm

called XGBoost [29]. In XGBoost, instead of using a single

decision tree to classify events, an ensemble of decision

trees is generated. A decision tree is used as the base

learner, and subsequent learners (trees) are formed based on

the residual errors obtained after each iteration (boosting).

This process is expected to be more accurate and more

robust than using a single decision tree used by the veto

method. A continuous score is calculated by taking the

weighted average of output, obtained from each decision

tree in the ensemble. The final output PXGB is computed by

taking the sigmoid of the continuous score, where a value

close to zero denotes a noiselike event and a value close to

one denotes a signal-like event.

To construct the ML model, we select a subset of 14

summary statistics estimated by cWB as input features for

the ML algorithm. Selected summary statistics describe the

signal strength and the correlation across the detectors (η0,

cc, nf), the quality of the likelihood fit (Ec=L, χ
2), the time-

frequency evolution of the event (ΔTs, ΔFs, f0, M, eM)
and the two different estimators for the number of cycles in

the reconstructed waveform (Qa, Qp). The detailed list of

selected summary statistics and their definitions can be

found in Appendix A.

A. Tuning XGBoost hyper-parameters

XGBoost has a number of free hyper-parameters which

control various properties of the learning process to prevent

overfitting. These hyper-parameters need to be tuned for

each specific application. We use a small data set consisting

of 200 yr of background data (which equates to approx-

imately 500,000 noise events) and 2,000 simulated IMBH

binary events to tune the XGBoost hyper-parameters.

These background and simulation events are drawn from

the O2 run.

We perform a grid search over a range of six standard

XGBoost hyper-parameters, listed in Table I. We find the

most optimal set by evaluating each configuration of

XGBoost hyper-parameters with respect to the precision-

recall area under the curve (AUC PR) metric [41] over

10-fold cross-validation. The optimal configuration of

hyper-parameters, according to this criteria, is shown in

bold in Table I. We use a method known as early stopping
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to optimize the total number of trees generated. In early

stopping, a small fraction of the training data set is set aside

for validation. When the validation AUC PR score stops

improving, the training ends to prevent the XGBoost from

overfitting.

Overall, we found that the performance of the model was

not highly dependent on the chosen hyper-parameter

values. As a result, we keep this hyper-parameter configu-

ration for all models presented in this paper.

B. XGBoost model training

We train a separate ML model for each search configu-

ration and each observing run. In this paper, we have two

search configurations (BBH, IMBH) and analyze two

observing runs (O1, O2), a total of four models. The

estimated central frequency f0 of a GW signal is expected

to be inversely proportional to the red-shifted total

mass of the binary system. As such, we select events with

60 Hz < f0 < 300 Hz to train the BBH search models and

events with f0 < 200 Hz to train the IMBH search models.

Each trained model uses the same XGBoost hyper-

parameters discussed in Sec. IVA, and consists of around

600 total trees for O1 run and 1000 total trees for O2 run,

with an average of 20 leaves per tree.

For training, we select 100 yr of background data

(approximately 250,000 noise events) per data chunk.

For every 100 yr of background data we select approx-

imately 1000 simulation events. We use simulated quasi-

circular stellar-mass BBH mergers (simulation set (i) to

train the BBH search model, and we use simulated

quasicircular IMBH binary mergers (simulation set (ii) for

the IMBH search model. The remaining background and

simulation data are used for testing as reported in Table II.

The ML algorithm’s training and testing procedures are

computationally efficient and are completed within minutes

using one CPU core. Generally, ML classifiers are expected

to be more accurate when the same number of events per

class are used for training. However, in our case, using

balanced classes is not feasible. It is difficult to arbitrarily

increase the number of simulated events due to the

computational cost. Moreover, down-sampling the noise

event set is not prudent since we could lose valuable

information related to the high SNR tail of the background

distribution. Instead, we apply a weight to every sample

noise event to reduce the class imbalance. This weight is

dependent on η0 and gives less importance to the low SNR

glitches. The weighting procedure is described in more

detail in Appendix B.

C. cWB+ML detection statistic

We incorporate the predictions made by the ML model

directly into the detection statistic to improve noise

rejection. We define the reduced detection statistic used

for the ML-enhanced cWB search as:

ηr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ec

1þ χ
2ðmaxð1; χ2Þ − 1Þ

s

WXGB; ð3Þ

where WXGB is the XGBoost penalty factor. To compute

WXGB, we first apply a correction to the XGBoost output,

defined in Appendix C 1. This correction is designed to

suppress numerous noise events which have less than one

cycle in the time domain waveform, which is typical

for the known family of glitches found in the GW

detector data. Next, we apply a monotonic transformation,

defined in Appendix C 2, to obtain the penalty factor

WXGB ¼ WXGBðPXGBÞ. This transformation accentuates

the ranking of events with the values of PXGB very close

to unity. AlthoughWXGB itself could be used as a detection

statistic, we find that it is susceptible to assigning high

significance to low SNR noise events. Instead, we use it as a

penalty factor to the estimated effective correlated SNR η0.

The end result is a detection statistic ηr which is enhanced

by the ML classification and resistant to overfitting the low

SNR noise events.

TABLE I. Entries for XGBoost hyperparameters. We perform a

grid search over 432 combinations of hyperparameters. Bold

entries indicate the optimal choice.

XGBoost hyper-parameter Entry

objective binary:logistic

tree_method hist

grow_policy lossguide

n_estimators 20,000
a

max_depth 7, 9, 11, 13

learning_rate 0.1, 0.03

min_child_weight 5.0, 10.0

colsample_bytree 0.6, 0.8, 1.0

subsample 0.4, 0.6, 0.8

gamma 2.0, 5.0, 10.0

a
n_estimators is optimized using early stopping,

described in the main text.

TABLE II. Amount of background data (given in years) and the

number of simulated events used for training and testing the

respective ML models. We consider different observing runs (O1,

O2), search configurations (BBH, IMBH), and additional sim-

ulation cases to test the model robustness (eccentric BBH,

precessing BBH).

Background [yr] Simulation

Dataset Training Testing Training Testing

O1 BBH 900 15316 8662 38246

O1 IMBH 900 3123 8640 40806

O2 BBH 2100 8625 20957 203954

O2 IMBH 2100 8625 20776 150780

Eccentric BBH … 18000 … 42910

Precessing BBH … 18000 … 23043
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V. RESULTS

In this section, we present the results of the ML-

enhanced cWB search and compare its sensitivity to the

standard cWB search. The significance of a given candidate

event is estimated by its false alarm rate (FAR). It is

computed by counting the number of background events

with the equal or higher value of the detection statistic than

for the candidate event, divided by the total back-

ground time.

For the ML-enhanced cWB search, FAR is calculated

by using the reduced detection statistic ηr [Eq. (3)].

Whereas for the standard cWB BBH search, we first

remove vetoed events and then calculate FAR by using

the η1 detection statistic [Eq. (2)]. We compare the

performance of the different cWB searches by comparing

their detection efficiency defined as the number of detected

simulated events with FAR equal to or less than a given

threshold, divided by the total number of recovered

simulation events.

A. Reanalysis of O1 and O2 data

First, we examine the background noise distributions for

the ML-enhanced search. Figure 1 shows the rate of the

noise events for each search (BBH, IMBH) and each

observing run (O1, O2) as a function of the reduced

detection statistic ηr. In all cases, we do not observe

significant tails of the high ηr events, which indicates that

the ML-enhanced detection statistic efficiently suppresses

the high SNR outliers.

Next, we examine the sensitivities of each search for

various simulation data sets. The top panel of Fig. 2 shows

the detection efficiency as a function of FAR for the various

searches over the O1 (left) and O2 (right) data. The ML-

enhanced search (shown in red) is more sensitive than the

standard search with vetoes (black) in the wide range of the

FAR thresholds. For events detected with FAR < 1 yr−1,

we estimate the 26% improvement for the BBH configu-

ration and the 16% improvement for the IMBH configu-

ration, averaged over the two observing runs. For high

significance detection (FAR < 100 yr−1), we estimate the

22% improvement for the BBH configuration and the 13%

improvement for the IMBH configuration.

The bottom panel of Fig. 2 shows the detection effi-

ciency for events detected with FAR < 1 yr−1 as a function

of the central frequency f0. Here, we see that for most

frequency bins, the ML-enhanced search (red) is more

sensitive than the standard search (black). This indicates

that the ML-enhanced search is not overly tuned to any

specific frequency bins but shows consistent improvement

over the entire frequency range considered by the cWB

search configurations. Since the central frequency f0, is
expected to be inversely proportional to the detector frame

mass, we can infer that the ML-enhanced search is more

sensitive over the entire BBH mass range accessible

by LIGO.

Table III reports the BBH candidates identified by the

ML-enhanced cWB search in the O1-O2 observing runs.

We recover 7 BBH candidates previously reported by the

standard cWB search [4], all identified with higher sig-

nificance. Additionally, the ML-enhanced cWB search

detected GW170809 with a FAR of 0.29 yr−1, which

was previously vetoed in the standard cWB search. No

other candidate events were identified with FAR less

than 1 yr−1.

B. Test of model robustness

As a final test, we analyze the performance of the

ML-enhanced search on simulated waveforms outside of

the training set. First, we investigate the sensitivity of the

ML-enhanced IMBH search, which is trained on quasi-

circular binaries, to high mass BBH systems with highly

eccentric orbits (simulation set iii). In Fig. 3, we show the

sensitivity to the eccentric IMBH mergers of the

ML-enhanced IMBH search compared to the standard

IMBH search. The ML-enhanced search is more sensitive

to the eccentric BBH mergers despite the fact that we

trained the ML model only on the quasi-circular IMBH

waveforms.

Next, we test the ML-enhanced BBH search on precess-

ing BBH systems (simulation set iv). The training set

consists of simulated waveforms with the (2,2) harmonic

mode, aligned spins, and low mass ratio (1–1/4).

The testing set consists of simulated waveforms with

higher-order modes, precessing spins, and a higher mass

ratio (1–1/20). In this case, the model is also trained on O2

data, whereas the testing set consists of O3a simulation and

background, which has very different GW detector sensi-

tivity. Figure 4 shows improved detection efficiency of the

ML-enhanced BBH search compared to the standard BBH

search.

FIG. 1. Rate of noise events vs detection statistic ηr for each

search configuration (BBH, IMBH) and each observing run (O1,

O2). We do not observe significant tails in the ηr distributions.
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These results demonstrate that the ML-enhanced search

is agnostic to the details of the BBH dynamical evolution

including eccentricity, spin effects, and higher-order

modes. It retains the robustness of the standard search,

but with increased sensitivity.

FIG. 2. Top: detection efficiency vs FAR for the O1 observing run (left) and the O2 observing run (right). Bottom: detection efficiency

for events identified with FAR less than 1 yr−1 as a function of the central frequency f0 for O1 (left) and O2 (right). Solid lines

correspond to the BBH configuration, while dotted lines represent the IMBH configuration. Red curves represent the sensitivity of the

ML-enhanced cWB search, and black curves represent the sensitivity of the standard cWB search with the veto method.

TABLE III. O1-O2 event candidates detected with the standard

cWB BBH search (η1 þ vetoes), and the ML-enhanced cWB

BBH search (ηr). We report all detections with FAR less than

1 yr−1. Entries with a “<” sign indicate that the estimated

significance is limited by the amount of available background

data.

Standard cWB ML-enhanced cWB

(η1 þ vetoes) (ηr)

Event FAR [yr−1] FAR [yr−1]

GW150914 <1.6 × 10−4 <7 × 10−5

GW151226 2 × 10−2 6.5 × 10−3

GW170104 2.9 × 10−4 <1.2 × 10−4

GW170608 1.4 × 10−4 <1.2 × 10−4

GW170729 2 × 10−2 <1.2 × 10−4

GW170809 � � � 2.9 × 10−1

GW170814 <2.1 × 10−4 <1.2 × 10−4

GW170823 2.1 × 10−3 <1.2 × 10−4

FIG. 3. Detection efficiency vs FAR for a high mass, eccentric

BBH simulation set recovered with the cWB IMBH configura-

tion. The red curve represents the sensitivity of the ML-enhanced

cWB search, and the black curve represents the sensitivity of the

standard cWB search.
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VI. CONCLUSION

In conclusion, we introduce a novel method to automate

the noise rejection in cWB with ML, and we demonstrate

that the ML-enhanced cWB search has improved sensitivity

to the BBH mergers. Unlike the standard cWB search,

which decimates noise events with the veto method, the

ML-enhanced search uses a continuous ranking statistic

and does not remove any events. Instead, it penalizes noise

events with the newly designed detection statistic ηr, which

combines the correlated network SNR with the penalty

factor based on the signal-noise classification provided by

the XGBoost model. This new detection statistic ηr is

resistant to loud noise glitches and allows cWB identifi-

cation of BBH events with higher significance.

For the stellar-mass BBH mergers, the detection effi-

ciency of theML-enhanced cWBsearch is improved by 26%

compared to the standard cWB search (at FAR less than

1 yr−1). Similarly, for the simulation set of IMBH binary

mergers, the detection efficiency is improved by 16%.While

we do not claim any new BBH detections in the O1 and O2

data, we do improve the detection confidence of the

previously identified GW candidates and recovered the

GW170809 event missed by the standard cWB search.

The ML-enhanced cWB search is capable of detecting

BBH signals well outside of the training set. We demon-

strate the improved pipeline sensitivity to the highly

eccentric BBH mergers despite only being trained on the

quasicircular IMBH signals. We also found the search to be

agnostic to other binary waveform properties including

precession, high mass ratio, and higher-order harmonic

modes. We expect the search to be sensitive to BBH signals

even if the GW waveforms used for training are not exactly

representative of true astrophysical signals.

The ML-enhanced BBH search is a promising addition

to the cWB pipeline for future planned observing runs,

where we expect numerous BBH detections. While in this

study, we use only the LIGOHanford and LIGO Livingston

detector network, in future work we will expand the ML-

enhanced search to the other detector networks which

include Virgo and Kagra detectors. This will further

improve the cWB sensitivity to the BBH mergers. The

ML-enhanced pipeline could be also used for the low

latency cWB searches in the future observing runs.
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APPENDIX A: cWB ESTIMATED SUMMARY

STATISTICS

TheML algorithm is tuned and trained on the data from a

selected subset of cWB summary statistics for each event.

We start by truncating this subset by selecting the summary

statistics that have a low correlation with each other. We

also aggregate a few summary statistics together to prune

the list of summary statistics that are used as input features

for the ML algorithm. We select 14 cWB summary

statistics in total that are used by the ML algorithm as

the input list of features. The summary statistics are

listed below:

(i) η0—Main cWB detection statistic for the generic

GW search. For the ML study, we cap the η0 value at

8 (any event with higher η0 is assigned a value of 8)

so the algorithm is not affected by the high SNR

events in the background distribution, which is a

steep function of η0.

(ii) cc—Coherent energy divided by the sum of coherent

energy and null energy, defined in Ref. [31].

(iii) nf—Effective number of time-frequency resolutions

used for event detection and waveform reconstruction.

(iv) Ec=L—Ratio of the coherent energy to the network

likelihood.

(v) ΔTs—Energy weighted signal duration.

(vi) ΔFs—Energy weighted signal bandwidth.

(vii) f0—Energy weighted signal central frequency.

FIG. 4. Detection efficiency vs FAR for a precessing BBH

simulation set recovered with the cWB BBH configuration. The

red curve represents the sensitivity of the ML-enhanced cWB

search, and the black curve represents the sensitivity of the

standard cWB search.
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(viii) M—Chirp mass parameter estimated in the time-

frequency domain, defined in Ref. [33].

(ix) eM—Chirp mass goodness of the fit metric, pre-

sented in Ref. [33].

(x) Qa—The waveform shape parameter [46] developed

to identify a characteristic family of (blip) glitches

present in the detectors [4,47]. A value of Qa

corresponds to the cWB event being a blip glitch.

(xi) Qp—An estimation of the effective number of cycles

in a cWB event.

(xii) Lv—for the loudest pixel, the ratio between the pixel

energy and the total energy of an event [48].

(xiii) χ
2
—quality of the event reconstruction, χ

2 ¼
En=Ndf where En is the residual noise energy

estimated and Ndf is the number of independent

wavelet amplitudes describing an event.

(xiv) Cn—Data chunk number. LIGO-Virgo data is di-

vided into time segments known as chunks, which

typically contain a few days of strain data. Including

the data chunk number allows the ML algorithm to

respond to changes in detector sensitivity across

separate observing runs and chunks.

APPENDIX B: NOISE EVENT SAMPLE WEIGHT

In the initial testing phase with the trained XGBoost

model, we found a tail of high SNR background events,

most of which were consistent with blip glitches. This tail is

caused by the suboptimal ML model due to the high class

imbalance between the high SNR noise events and signal

events. To correct for this tail, we applied an η0 dependent

sample weight to the noise events while training the

XGBoost models. This weight provides us with a weighted

background distribution as shown in Fig. 5, which is similar

for any observing run.

The sample weight for the simulation events is set to 1.

For the noise events, we divide η0 into 231 bins with values

ranging from 5 to 8 and apply the sample weight wB for

each bin as follows:

wBðη0Þ ¼
ðNSðη0Þ − aÞ þ becðd−η0Þ

NBðη0Þ
; ðB1Þ

where NSðη0Þ is the number of signal events and NBðη0Þ is
the number of noise events, in a given bin. We found that

the sample weight works reasonably well for the following

choices of values: a ¼ 65, b ¼ 0.8, c ¼ 0.9, and d ¼ 12.9.

The number of simulation events for η0 ≥ 8 were re-

sampled to match the number of background events with

the same range of η0. This application of sample weight

enables the algorithm to successfully remove almost all the

high SNR outliers while keeping the weighted events class

imbalance (NB=NS) to around 20 for any given observing

run. Without the application of the sample weight, the class

imbalance ranges from 50 to 600 or even higher for the

given training setup depending on the observing run and

the search configuration.

APPENDIX C: XGBOOST PENALTY FACTOR

1. cWB correction to PXGB in the IMBH configuration

Further investigation revealed that in the IMBH con-

figuration, high SNR background outliers were found in a

specific parameter space represented by theQa −Qp plot in

Fig. 6. In the standard veto method, the application of the

Qa andQp vetoes would have removed all events below the

predefined thresholds at the cost of losing a small fraction

of simulated events. In the ML method, we apply a

correction to the ranking criteria PXGB such that we

suppress the background outliers in the affected parameter

space below the magenta-colored curve in Fig. 6.

FIG. 5. Weighted event distribution as a function of η0 for

background events and simulated events. Here, we show the

IMBH configuration with the O1 run data.

FIG. 6. Qa −Qp parameter space plot for the IMBH configu-

ration with O1 run data. Black dots represent loud background

noise events (η0 ≥ 8). Red dots represent loudest background

outliers (η0 ≥ 10). The heat map represents the simulated IMBH

distribution.
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The correction to the continuous ranking criteria output

PXGB from XGBoost is applied only to the IMBH con-

figuration (shorter signals with fewer cycles in the time

domain), given by the following equations:

PXGB ¼

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

PXGB − ð0.15 −QaðQp − 0.8ÞÞ;
ifQaðQp − 0.8Þ ≤ 0.15

ðunder the curveÞ
PXGB;

if QaðQp − 0.8Þ > 0.15

ðabove the curveÞ:

ðC1Þ

This correction enhances detection of signal and sup-

presses glitches in the desired part of the Qa −Qp param-

eter space explicitly without any changes to the XGBoost

training and testing procedure. The correction comes at the

cost of losing a small fraction of IMBH signals with small

values of Qp.

2. Monotonic transformation WXGB

The monotonic transformation applied on PXGB is

defined as follows,

WXGBðPXGBÞ ¼
− logð1.0 − 0.995

ffiffiffiffiffiffiffiffiffiffiffi

PXGB

p Þ
5.3

; ðC2Þ

which counterbalances the steep sigmoid function used by

XGBoost while producing PXGB. The PXGB output by

XGBoost for any event has a precision of up to 5 decimal

places. As a result, the effect of using PXGB directly as a

penalty factor is not effective. The transformation in

Eq. (C2) allows us to zoom in on the high precision

PXGB values close to unity. This helps us differentiate

between high SNR background events and simulation

events that typically end up with high values of PXGB.
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