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Gravitational wave science is a pioneering field with rapidly evolving data analysis methodology
currently assimilating and inventing deep learning techniques. The bulk of the sophisticated flagship
searches of the field rely on the time-tested matched filtering principle within their core. In this paper, we
make a key observation on the relationship between the emerging deep learning and the traditional
techniques: matched filtering is formally equivalent to a particular neural network. This means that a
neural network can be constructed analytically to exactly implement matched filtering and can be further
trained on data or boosted with additional complexity for improved performance. Moreover, we show that
the proposed neural network architecture can outperform matched filtering, both with or without
knowledge of a prior on the parameter distribution. When a prior is given, the proposed neural network
can approach the statistically optimal performance. We also propose and investigate two different neural
network architectures MNet-Shallow and MNet-Deep, both of which implement matched filtering at
initialization and can be trained on data. MNet-Shallow has a simpler structure, while MNet-Deep is
more flexible and can deal with a wider range of distributions. Our theoretical findings are corroborated by
experiments using real LIGO data and synthetic injections, where our proposed methods significantly
outperform matched filtering at false positive rates above 5 × 10−3%. The fundamental equivalence
between matched filtering and neural networks allows us to define a “complexity standard candle” to
characterize the relative complexity of the different approaches to gravitational wave signal searches in a
common framework. Additionally, it also provides a glimpse of an intriguing symmetry that could provide
clues on interpretability, namely how neural networks approach the problem of finding signals in
overwhelming noise. Finally, our results suggest new perspectives on the role of deep learning in
gravitational wave detection.
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I. INTRODUCTION

The discovery of cosmic gravitational waves [1], the
windfall of binary black hole (BBH) merger detections
[2,3], and the spectacular insights that multimessenger
astrophysics provided [4,5] revolutionized how we under-
stand the Universe. This leap was due to multiple factors,
from instrumental advances to computing breakthroughs.
Emerging interferometric gravitational wave detectors,
KAGRA [6], GEO600 [7], Virgo [8], and LIGO [9,10],
played a critical role as they provided the technology [11–
13] enabling signals to be extracted from ripples in

Einstein’s space-time [14,15]. Of course, as it is not
sufficient to have data with faint cosmic signals buried
in the noise, the community had to rely on exquisitely
sensitive data analysis algorithms to extract transient
signals from the noisy data. The bulk of the discoveries
were made by two classes of powerful data analysis
approaches, excess power [16–18] and matched filtering

[19–25]. The flagship matched filtering methods [26–38]
reached unprecedented sophistication and became the
workhorse of the field [2,3]. Insightful work also exist
on the extent of optimality, role of intrinsic parameters, and
effect of non-Gaussian backgrounds [39–41]. There is more
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than historical evidence on their algorithmic power [42],
and they are also considered optimal [22] when searching
for chirps of known shape [20,43–45] embedded in well-
behaved Gaussian noise. Within the optimality and success
lie limitations, as the data are significantly more complex
[46,47] than Gaussian noise and many cosmic signals are
not as well known as the BBHmodels that are being used in
searches [48]. Therefore, it is critical that we both seek data
analysis methods beyond the horizon of current techniques
and rigorously understand the place of current techniques
in the broader field of possible methods.
An abundance of prior works has been using deep

learning methods for gravitational wave detection.
Convolutional neural networks have been shown to be
capable of identifying gravitational waves and their param-
eters from binary black holes and binary neutron stars, with
a performance approaching the matched filtering search
currently used by LIGO, Virgo and KARGA [49–73]. In
addition, these machine learning (ML) methods can also be
applied to glitches and noise transients identification
[53,74–79], signal classification and parameter estimation
[80–84], data denoising [85,86], etc. While these works
exhibit neural networks that could approach the perfor-
mance of matched filtering, they are still often applied as or
considered “black box” models. This makes it challenging
to evaluate the statistical evidence provided by neural
networks and to incorporate that evidence in downstream
analyses [87].
This paper is motivated by a critical observation, which

we substantiate below: matched filtering with a collection
of templates is formally equivalent to a particular

neural network, whose architecture and parameters are
dictated by the templates. This observation has prece-
dents in the machine learning literature, where deep
neural networks are sometimes viewed as hierarchical
template matching methods, with signal-dependent,
class-specific templates [88–94]. Here, we delineate a
simple and explicit equivalence between matched filter-
ing and particular neural networks, which can be con-
structed analytically from a set of templates. This
equivalence lies in the algorithmic level and does not
depend on specific problem formulations.
In order to study the potential performance gains of using

neural networks, we formulate the gravitational wave
detection problem abstractly as the detection of a para-
metric family of signals. Under this framework, we show
that the analytically constructed networks can also be used
as a principled starting point for learning from data,
yielding signal classifiers with better performance than
their initialization, namely “standing on the shoulder of
giants.” Such learning can be applied to scenarios both with
or without a prior distribution on the parameters. In
particular, when a prior distribution is given, we show that
the learned neural network can (empirically) approach the
statistically optimal performance.

We propose and investigate two different neural network
architectures for implementing matched filtering, respec-
tively, MNet-Shallow and MNet-Deep. The former has
a simpler structure, while the latter is more flexible and can
deal with a wider range of distributions. These learned
classifiers have a number of additional advantages: they do
not require prior knowledge of the noise distribution, can be
adapted to cope with time-varying noise distributions, and
suggest new approaches to computationally efficient signal
detection. We conducted experiments using real LIGO data
[95] in order to demonstrate the feasibility and power of
neural networks in comparison to matched filtering, where
we validate our findings empirically that neural networks
via training can reach better performance. Finally, inter-
preting matched filtering and neural networks in a common
framework also allows a clear comparison of their compu-
tational/storage complexities and statistical strengths, con-
sequently making deep-learning less of a mystery.
The rest of the paper is organized as follows. Section II

introduces the problem of parametric signal detection as an
abstraction of the gravitational-wave detection problem and
discusses the two formulations of the objective. Section III
discusses matched filtering as an approach to solving the
parametric detection problem, as well as its limitations.
Section IV illustrates how neural network models can be
applied in this problem, in a way that exactly implements
matched filtering at initialization. Section V discusses the
training process of neural network models, and in particu-
lar, how it is aligned with the parametric signal detection
problem. In Section VI, we present experimental results on
real LIGO data and synthetic injections. We discuss some
further implications of this work in Sec. VII and conclude
in Sec. VIII.

II. PARAMETRIC SIGNAL DETECTION

The problem of identifying gravitational waves [96] in a
single gravitational-wave detector data stream [97] can be
formulated as follows: we observe detector strain data x ∈

R
n and wish to determine whether x consists of astro-

physical signal plus noise, or noise alone. We can model
possible astrophysical signals as belonging to a parametric
family,

SΓ ¼ fsγjγ ∈ Γg; ð1Þ

where the parameters γ can represent properties of the
objects that generate the gravitational wave, such as
masses, orbits, and spins. We assume the signals are
normalized to have unit power, namely ksγk

2 ¼ 1 for all
γ. We model noise as a random vector z ∈ R

n, which is
assumed to follow distribution ρ0 and be probabilistically
independent of the signal. In this notation, our goal
becomes one of solving a hypothesis testing problem,
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H0∶x ¼ z; ð2Þ

or H1∶x ¼ sγ þ z for some γ ∈ Γ: ð3Þ

Note that except for special cases, such as when the
hypothesisH1 is simple, or when the parameters associated
withH1 satisfy certain monotone conditions, we usually do
not have a uniformly most powerful test [99].
Our broad goal is to identify decision rules δ∶Rn

→

f0; 1g that (i) have good statistical performance and (ii) can
be implemented efficiently. Our approach will start with
analytically defined neural networks, which precisely
replicate matched filtering, and then train these networks
to optimize their statistical performance. We will give
training approaches that are compatible with two classical
frameworks for formalizing the performance decision rules
δ: the Neyman-Pearson framework, in which the parameter
γ is a random vector with known distribution ν, and the
minimax framework, in which we control the worst
performance over all possible choices of the parameter γ.

A. Neyman-Pearson framework

In this setting, one assumes that γ is a random vector with
probability distribution ν. With this distribution ν, we can
then viewH1 as a simple hypothesis. The false positive rate
(FPR) associated with the rule δ is

FPR ¼ Pz½δðzÞ ¼ 1�: ð4Þ

The false negative rate (FNR) at signal sγ is

FNRγ ¼ Pz½δðsγ þ zÞ ¼ 0�: ð5Þ

The overall false negative rate is

FNR ¼

Z

FNRγdνðγÞ: ð6Þ

The Neyman-Pearson criterion seeks the optimal tradeoff
between FNR and FPR,

min
δ

FNR subject to FPR ≤ α; ð7Þ

where α is a user-specified significance level.
There is a classical closed form expression for the

optimal test under the Neyman-Pearson criterion: if ρ0
and ρ1 are the probability densities of the signal x under
hypothesesH0 andH1, respectively, then the optimal test is
given by comparing the likelihood ratio,

λðxÞ ¼
ρ1ðxÞ

ρ0ðxÞ
; ð8Þ

to a threshold τ, which depends on the significance level α.
An illustration of an example problem is shown in Fig. 1.

B. Minimax framework

When a good prior ν is not available or cannot
be assumed, we can instead seek a decision rule that
solves

min WFNR subject to FPR ≤ α: ð9Þ

at a given false positive rate, where WFNR is the worst

false negative rate defined as

WFNR ¼ max
γ∈Γ

FNRγ: ð10Þ

In contrast to the Neyman-Pearson criterion, there is in
general no simple expression for the minimax optimal rule
δ [100]. In the next section, we will review matched
filtering, a simple, popular approach to detection which
is compatible with the minimax framework [albeit sub-
optimal in terms of (9)], in the sense that it does not require
a prior on γ.

III. MATCHED FILTERING FOR PARAMETRIC

DETECTION

Matched filtering is a powerful classical approach to
signal detection, which applies a linear filter which is
chosen to maximize the signal-to-noise ratio (SNR).

A. Optimality for single signal detection

In the simplest possible setting, in which (i) there is only
one target signal s, (ii) the observation x has the same
length as s, and (iii) the noise is uncorrelated (i.e.,
E½zz�� ¼ σ2I), matched filtering simply computes the inner
product between the target s and the observation,

δðxÞ ¼ 1 iff hs; xi ≥ τ: ð11Þ

When detecting a single signal s in iid Gaussian noise, this
decision rule is optimal in both the Neyman-Pearson and

FIG. 1. An example of the parametric signal detection problem
with signal space SΓ. Densities ρ0 and ρ1 are shown in red and
blue, respectively.

GENERALIZED APPROACH TO MATCHED FILTERING USING … PHYS. REV. D 105, 043006 (2022)

043006-3



minimax senses: for example, if z ∼N ð0; σ2IÞ, the like-
lihood ratio,

λðxÞ ¼
ρ0ðx − sÞ

ρ0ðxÞ
¼ exp

�

hs; xi − ksk2=2

σ2

�

ð12Þ

is a monotone function of hs; xi, and so matched filtering
implements the (optimal) likelihood ratio test. Figure 2
illustrates this optimality geometrically.
The simplicity and optimality in this setting make

matched filtering a principled choice for signal detection
and have inspired its application in settings that go far
beyond the scope of this rigorous guarantee. In particular,
the simplest and most practical extension of this rule to
detecting parametric families of signals sγ is suboptimal in
both the Neyman-Pearson and minimax settings. Moreover,
there are a number of additional factors that contribute to its
suboptimality. These include unknown, non-Gaussian and
possibly time-varying noise distributions as well as density
and coverage issues in the template bank, which for
complexity reasons may cover only a small portion of
the phase space [22]. Nevertheless, we will see how
matched filtering can inspire principled approaches to
deriving more flexible decision rules which can address
many of these challenges.

B. Extensions to parametric detection

The simplest extension of the decision rule (11) to
parametric detection problems, in which there are multiple
potential targets sγ, involves taking the maximum over the
parameter space,

δðxÞ ¼ 1 iff max
γ∈Γ

hsγ; xi ≥ τ: ð13Þ

Here, we used the assumption that all templates have unit
norm, namely ksγk

2

2
¼ 1, ∀ γ ∈ Γ. When this rule (13) is

hard to implement in exact form, it can typically be
approximated by taking samples sγ1 ;…; sγk and setting

δðxÞ ¼ 1 iff max
i¼1;…;k

hsγi ; xi ≥ τ: ð14Þ

When the sampling is sufficiently dense, the sampled
matched filter rule (14) accurately approximates the ideal
matched filter rule (13) [22]. This rule, while simple, is an
important component of many sophisticated data analysis
pipelines, including LIGO, Virgo and KARGA’s template
based searches for compact binary coalescence signals.
Note that the matched filtering decision rule (13) has

connections to the (generalized) likelihood ratio test, where
H1 is the composite hypothesis sγ ∈ SΓ. While this test has
nice statistical properties, it is not guaranteed to be the
uniformly most powerful test when the hypotheses are
composite. For the rest of this paper, the term “likelihood
ratio test”will be reserved for the test with a given prior and
simple hypotheses, which satisfies the Neyman-Pearson
criterion.
In contrast to the single signal setting, the simple

extensions (13)–(14) of matched filtering to detecting
parametric families of signals are not optimal: in the
Neyman-Pearson setting, they do not achieve the minimal
FNR for a given FPR, while in the minimax setting, they do
not achieve the minimal WFNR for a given FPR.
The suboptimality of (13)–(14) under Neyman-Pearson

can be observed by noting that the decision statistic
maxγ hsγ; xi is not a monotone function of the likelihood
ratio, which in iid Gaussian noise, for example, takes the
form,

λðxÞ ¼

Z

exp

�

hsγ; xi − ksγk
2=2

σ2

�

dνðγÞ: ð15Þ

Figures 3 and 4 illustrate such suboptimality for a
particular problem configuration in R

2. Note that through-
out our paper, we will slightly abuse the term of receiver
operating characteristic (ROC) curves by plotting FNR
against FPR, instead of the convention of plotting FPR
against true positive rate ðTPRÞ≡ 1 − FNR. This high-
lights the connection to the notion of error rates in machine

FIG. 2. Optimality of matched filtering in single signal
detection.

FIG. 3. Suboptimality of matched filtering under the Neyman-
Pearson framework.
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learning and more importantly, facilitates demonstration of
the curves and axis ranges at very low error rates.
It is, in a sense, unsurprising that matched filtering is

suboptimal in this setting, since the decision rules (13)–(14)
do not make use of the prior ν, while the likelihood ratio test
assumes (and uses) this prior.
However, the matched filtering rule (13)–(14) is also in

general suboptimal in the “prior-free” minimax setting.
Consider the scenario in Fig. 5 as an example, where the
signal space SΓ ⊂ R

2 consists of only two signals s1 ¼
½1; 0�T and s2 ¼ ½0; 1�T . Comparing the prior-free matched
filtering decision rule δMF with the optimal decision rule δ�
under the Neyman-Pearson framework with uniform prior
over the two signals, we see that δMF is suboptimal under
Neyman-Pearson criterion with uniform prior. Moreover,
from symmetry, it follows that for symmetric decision rules
such as δMF and δ� the worst FNR and the overall FNR are
equal. This implies that δMF is also worse than δ� under the
minimax criterion.

We also note that this suboptimality is, in some sense,
not because we do not have sufficient templates. In the
example shown in Fig. 5, the matched filtering model
already covers the entire signal set which consists of two
signals. Furthermore, we will see in the later discussions
that matched filtering has other structural limitations when
working with non-Gaussian noise distributions.

IV. FROM MATCHED FILTERING TO NEURAL

NETWORKS

Since the matched filtering rule (14) is suboptimal for
parametric detection, we will show that (i) the form of this
rule suggests approaches to learning optimal rules for
parametric detection, and (ii) the resulting classifiers have
additional advantages, including greater flexibility and
lower computational/storage complexity or cost. Our
approach is driven by the observation: the matched filtering
rule (14) is equivalent to a feed forward neural network.

A. Neural networks: Notation and basics

A neural network implements a mapping from the signal
space R

n to an output space R
d,

fθ∶R
n
→ R

d: ð16Þ

Here, θ represents the parameters of the network.
Specifically, a fully connected neural network can be
written as a composition of layers, each of which applies
an affine mapping,

x ↦ Wxþ b; ð17Þ

followed by an elementwise activation function ϕ,

fθðxÞ ¼ WLϕðWL−1ϕð…ϕðW1xþ b1Þ…Þ þ bL−1Þ þ bL:

ð18Þ

With slight abuse of notation, the activation function
ϕ∶R → R acts elementwise when applied to a vector,

ϕð½v1;…; vn�
TÞ ¼ ½ϕðv1Þ;…;ϕðvnÞ�

T : ð19Þ

The intermediate products,

αlðxÞ ¼ ϕðWlϕð…ϕðW1xþ b1Þ…þ blÞÞ; ð20Þ

are sometimes referred to as features [101]. In many
situations, it is useful to “pool” features—this is especially
useful for data with spatial or temporal structure; combin-
ing spatially adjacent features in a nonlinear fashion
renders the decision more stable with respect to deforma-
tions of the input [102]. For example, maximum pooling

takes the maximum of adjacent features. In our notation, we
can denote this operation by ρl and write

FIG. 5. Suboptimality of matched filtering under the minimax
framework.

FIG. 4. Comparison of ROC curves of the optimal classifier and
matched filtering in the two-dimensional concept as illustrated in
Fig. 3.
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αlðxÞ ¼ ρlϕðWlαl−1ðxÞ þ blÞ; ð21Þ

where the concise notation ρl suppresses certain details
about which features are combined. For clarity, we sum-
marize this discussion in the following mathematical
definition:
Definition 1: (Fully connected neural network) A

fully connected neural network (FCNN) with feature

dimensions n0;…;nL, preactivation dimensionsm1;…;mL,
parameters,

θ ¼ ðWL ∈ R
mL×nL−1 ;…;W1 ∈ R

m1×n0 ;

bL ∈ R
mL

;…; b1 ∈ R
m1

Þ; ð22Þ

activation function ϕ∶R → R (extended to vector inputs by
applying it elementwise), and pooling operations

ρl∶Rml
→nl given by

½ρl�iðvÞ ¼ max
j∈Il

i

vj; ð23Þ

with Il
1
;…; Il

nl
being disjoint subsets of ½ml�, is a mapping

fθ∶R
n
→ R

d defined inductively as fθðxÞ ¼ αLðxÞ by
setting α0ðxÞ ¼ x, and

αlðxÞ ¼ ρlϕðWlαl−1ðxÞ þ blÞ; l ¼ 1;…; L: ð24Þ

When discussing neural networks, it is conventional to
distinguish between the network architecture, which con-
sists of the choices of feature dimensions nl; ml, activation
function ϕ, and pooling operators ρl, and the network

parameters θ. Although we have stated a general definition,
in specific architectures, the activation function ϕ and/or
the pooling operators ρl can be chosen to be trivial
[ϕðtÞ ¼ t and/or ρlðvÞ ¼ v].
Architectures. Neural networks are flexible function

approximators [103]: universal approximation
theorems indicate that nonlinear neural networks (with
nonpolynomial activation ϕ) can accurately approximate
any continuous function, as long as the network is
sufficiently deep and/or wide [104–106]. There is a
growing body of empirical and theoretical evidence
showing that (relatively small) neural networks can learn
relatively smooth functions over low-dimensional sub-
manifolds of Rn with a complexity that is proportional
to the manifold dimension, which in our problem
equals the number of parameters in the parametrization
γ ↦ sγ [107].
Beyond these general considerations, there are scenarios

in which the nature of the task dictates specific architectural
choices. For example, in the field of inverse problems,
neural network architectures can be generated by interpret-
ing various optimization methods as taking on the structure
in Definition 1 [108]. Our proposals will have a similar

spirit, since they will interpret an existing method (matched
filtering) as a particular instance of Definition 1.
Finally, a major architectural choice is whether to

enforce additional structure on the matrices Wl. When
the input x is a time series, it is natural to structure the
linear maps α ↦ Wα to be time invariant, i.e., to be
convolution operators. To exhibit the equivalence
between matched filtering and neural networks in the
simplest possible setting, here we train our networks on
injections whose starting time is fixed, and focus on fully
connected neural networks (not enforcing convolutional
structure).
In deployment, the input data is a time series, and

astrophysical signals can occur at any time. In this setting,
the matched filtering rule is applied in a sliding fashion.
Similarly, the neural networks proposed here can be also
deployed in a sliding fashion, which effectively converts
them to particular convolutional networks. Both the equiv-
alence between matched filtering and particular neural
networks and the potential advantages of neural networks
carry over to this setting.
Parameters. There are various approaches to choosing

the network parameters θ. The dominant approach is to
learn these parameters by optimization on data: one
chooses initial parameters at random (with appropriate
variance to ensure stability) and then iteratively adjusts
them to best fit a given set of “training data.” However, it
is also possible in some scenarios to either (i) simply
choose the weights at random, or (ii) to generate the
weights analytically, either by connecting the network
architecture to existing structures/algorithms [108] or
from harmonic analysis considerations [109]. There are
approaches that lie in between purely data-driven and
purely analytical approaches to choosing θ. For example,
it is possible generate initial weights analytically, and then
tune them on training data. This hybrid approach achieves
excellent performance on a number of inverse problems in
imaging (super-resolution [110], magnetic resonance
image reconstruction [111] etc.).
In the following sections, we will follow this approach:

we will give two ways of interpreting the matched
filtering decision rule (14) as a fully connected neural
network, by making specific (analytical) choices of the
architecture and parameters. These analytically chosen
parameters can then be used as an initialization for
learning on data. We will also see that in addition to this
closed-form construction for equivalence, neural network
models can be further trained on data to achieve improved
performance.

B. Matched filtering as a shallow neural network

In the language of the previous section, it is not hard to
express the decision statistic (14) of matched filtering as a
specific fully connected neural network with one layer
(L ¼ 1). Writing
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ρ1ðzÞ ¼ max
i

zi; ð25Þ

ϕðtÞ ¼ t; ð26Þ

W1 ¼

2

6

6

6

6

6

4

s�γ1

s�γ2

.

.

.

s�γk

3

7

7

7

7

7

5

∈ R
k×n; ð27Þ

b1 ¼ 0; ð28Þ

([112]), we have

max
i
hsγi ; xi ¼ ρ1ϕðW1xþ b1Þ: ð29Þ

In words, the features produced by this neural network
correspond to the correlations of the input with the
templates sγ1 ;…; sγk . Figure 6 illustrates this (simple)
architecture, which we label MNet-Shallow.
Where needed below, we refer to the input-output

relationship implemented by this architecture as

fMNet-Shallow;θðxÞ; ð30Þ

where θ ¼ ðW1; b1Þ represent the weights and biases.
When these are chosen as in (27)–(28), MNet-

Shallow implements the matched filtering decision rule.
We note that these weights can be constructed analytically
based on the given templates.
By learning the weights W1 and biases b1 from exam-

ples, we can further adapt this network to implement a more
general family of decision rules, beyond matched filtering
(14) with templates sγ. Nevertheless, there are limitations to
this architecture. Notice that in MNet-Shallow there is
only one layer of affine operations, and so this architecture

does not satisfy the dictates of the universal approximation
theorem [105,113].
More geometrically, we can notice that the decision rule

associated with MNet-Shallow is a maximum of affine
functions. This means that for any choice ofW0 and b0, the
decision boundary is the boundary of a convex set. This
property is also true for matched filtering, which shares
exactly the same form. An illustration of this property is
shown in Fig. 7.
How restrictive is this limitation? In the context of

parametric detection, this depends largely on the noise
distribution. If the noise is Gaussian, the optimal decision
boundary is itself the boundary of a convex set:
Proposition 2: Suppose that the noise z ∼N ð0; σ2IÞ.

Then for any significance level α, the optimal (Neyman-
Pearson) decision region,

fxjλðxÞ ≤ τg; ð31Þ

is a convex subset of Rn, where τ is a constant determined
by the significance level α.
Proof.—Please see the Appendix. ▪

However, for general non-Gaussian distributions, the
optimal decision region is often nonconvex. We illustrate
this result in Fig. 8. In fact, this suggests an intrinsic
structural limitation of matched filtering and similar archi-
tectures. Since in reality the noise distribution is not
perfectly Gaussian, we cannot expect the optimal decision
region to be convex, and hence, the matched filtering
structure is unable to approach the performance of the
likelihood ratio test with arbitrary precision, even if any
number of templates (including ones outside the original
signal space) are allowed. In such cases, we can benefit
from using a more flexible architecture, which we now
introduce.

C. Matched filtering as a deep neural network

We describe an alternative way of expressing template
matching as a neural network, which leads to deep, non-
linear architectures that are more flexible than MNet-

Shallow. We label this structure MNet-Deep. In this
architecture, we do not compute the maximum in a
straightforward way using pooling. Instead, we propose
an alternative architecture which is more flexible, and can

FIG. 6. Illustration of MNet-Shallow. Bias terms are omitted
in the illustration. (We note that for more complex networks
arbitrary pooling operations can replace the “max” box.)

FIG. 7. The set of points classified as noise by matched filtering
and MNet-Shallow is always a convex set.
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approximate a wider class of functions. In particular, we
will no longer be restricted to implementing decision
boundaries that are boundaries of convex sets, allowing
us to handle scenarios with non-Gaussian noise. An
illustration of this MNet-Deep is shown in Fig. 9.
Our construction is based on the rectified linear unit

(ReLU) nonlinearity,

ϕðtÞ ¼ maxðt; 0Þ: ð32Þ

This is arguably the most commonly used nonlinearity
function in modern deep learning.
The matched filtering decision rule takes the maximum

of a family of linear functions hsγi ; xi. Instead of simply
“pooling” these functions as in the previous section, we
implement the maximum operation using compositions of
ReLUs and linear operations. In particular, observe that the
maximum of two numbers can be written as a linear
combination of three ReLU units,

maxða;bÞ¼bþϕða−bÞ¼ϕðbÞ−ϕð−bÞþϕða−bÞ: ð33Þ

The basic idea is to create a hierarchical structure of such
3-ReLU-units; each of which takes a pairwise maximum of
its inputs. Our MNet-Deep construction will perform
convolutions with the templates sγi , followed by this
hierarchical structure for computing the maximum.
Figure 10 illustrates this hierarchical structure for the

particular example of four inputs. The network in Fig. 10
can be expressed as a ReLU network, with sparse weight
matrices Wlðl ¼ 0; 1; 2Þ for the layers, respectively,

W0 ¼

2

6

4

0 1

0 −1

1 −1

3

7

5
; W2 ¼ ½ 1 −1 1 �; ð34Þ

W1 ¼ W0 ⊗ W2 ¼

2

6

4

0 0 0 1 −1 1

0 0 0 −1 1 −1

1 −1 1 −1 1 −1

3

7

5
: ð35Þ

Generalizing this construction, we obtain a network
that takes the maximum of k numbers, using ⌈ log2 k⌉þ1

layers.

FIG. 8. Contours of log likelihood ratio with various noise distributions, and whether the optimal decision regions with δ ¼ 0 is always
convex. Yellow represents larger values, and blue represents lower values. From left to right: (1) Gaussian distribution, convex; (2) Sub-
Gaussian distribution ρnoiseðxÞ ∝ expð−Ckxk3Þ, not necessarily convex; (3) Laplace distribution, not necessarily convex.

FIG. 9. Illustration of MNet-Deep. Bias terms are omitted in
the illustration. This network structure is obtained by replacing
the max module in matched filtering (as in Fig. 6) with a deep
network.

FIG. 10. Illustration of implementing max with a ReLU net-
work. The dashed boxes in the middle are not actual nodes in the
network, but “imaginary” nodes to facilitate construction.
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While the example above delineates a precise form of the
ReLU network, this approach can in fact be made flexible.
To ensure that the network output is indeed the maximum
of the k inputs, we must ensure that at each layer, each
feature participates in at least one of the pairwise max
operations. This means that at layer l, we must have at
least k=2l features. However, we are free to add more
intermediate features, with additional (redundant) max
operations. This does not change the output of the net-
work, but it affords additional flexibility when we attempt
to train the network on data. In particular, this allows the
construction of arbitrarily wide or deep ReLU networks
and can therefore approximate any regular continuous
function [105,113].
There is also a degree of freedom in choosing which

features participate in each pairwise maximum operation,
which could be chosen in various ways. In our implemen-
tation, we use the following way to pair up the nodes in
layer l for pairwise maximum operations that get to layer
lþ 1. Assume layer l contains 2p nodes. First, pair up the
nodes with consecutive indices, namely pair up node 2i − 1

with node 2i for i ¼ 1;…; p. This ensures that each node is
covered by at least one maximum operation. After that, for
each leftover node in layer lþ 1, we establish the corre-
sponding pair in layer l by choosing the nodes at random in
layer l. In the following, we label this network MNet-

Deep. We emphasize for clarity that the nodes between
consecutive layers are fully connected in the neural net-
work; however, the weights not associated with pairwise
maximum operations are all initialized to zero. Below,
where needed we refer to the decision rule associated with
this network as

fMNet-Deep;θðxÞ; ð36Þ

where θ represent the collection of all weights and biases.
The above discussion again gives a recipe for choosing
these weights analytically such that the decision rule for
MNet-Deep coincides with the matched filtering rule.
In contrast to MNet-Shallow, MNet-Deep is a more

flexible architecture. In particular, this architecture satisfies
the dictates of the universal approximation theorem.
Geometrically, it is not restricted to convex decision
regions, which makes it capable of achieving optimal
decision boundaries even when the noise is heavy-tailed
or has other nonideal properties.

D. Equivalence of matched filtering

and neural networks

We have demonstrated by construction the follow-
ing claim:
Given any collection of templates sγ1 ;…; sγk (for

any k ≥ 1), one can analytically determine weights θs,
θd such that

fMNet-Shallow;θsðxÞ ¼ max
i¼1…k

hsγi ; xi ð37Þ

fMNet-Deep;θdðxÞ ¼ max
i¼1…k

hsγi ; xi ð38Þ

for all x ∈ R
n.

We emphasize the complete generality of this claim: it
holds for any number and choice of templates. Moreover, it
does not depend on training: the networks can be con-
structed analytically to implement the matched filtering
rule. Nevertheless, we will see in the next section that they
can be further adapted based on observed data to strictly
outperform matched filtering, in terms of the Neyman-
Pearson criterion.
The equivalence between matched filtering and particu-

lar neural networks has an additional conceptual advantage:
it allows for a clear comparison of the resource complexity
of different search methods, in terms of storage and
computation. This is valuable because different methods
may cut out very different tradeoffs between complexity
and accuracy/performance. Neural network implementa-
tions of matched filtering can be viewed as “complexity
standard candles” against which the performance of more
sophisticated networks can be measured. In particular, the
complexity of a neural network model may be quantified by
the total number of nodes (neurons) in the network, which
approximately characterizes the number of elementary
operations performed for evaluating an input instance
[114,115]. We will look for the most appropriate measure
of complexity for this problem, and provide detailed
analysis in future studies.

V. TRAINING TO APPROACH STATISTICAL

OPTIMALITY

In the previous section, we gave two ways of analytically
constructing neural networks that reproduce the matched
filtering decision rule and hence, exhibit exactly the same
performance as matched filtering. The major advantage of
this interpretation of matched filtering is that the resulting
model can be further trained on sample data to improve its
statistical performance or adapt it to handle non-Gaussian
noise distributions, or in other words “standing on the
shoulder of giants.” In a typical neural network training
problem, we have access to labeled samples,

ðx1; y1Þ;…; ðxN ; yNÞ; ð39Þ

each of which consists of an observation xi ∈ R
n and a

corresponding label yi ∈ f0; 1g, which indicates whether xi
contains a noisy signal (yi ¼ 1) or noise only (yi ¼ 0). To
date, we have only a moderate number of confirmed
gravitational wave detections and hence, have far more
negative examples than positive examples. We address this
issue by generating our positive training examples by
injecting synthetic waveforms into (real) LIGO noise
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strains. Below, we describe two different training schemes,
motivated by the Neyman-Pearson and minimax criteria,
which leverage this data to perform training of the neural
networks.
Training for Neyman-Pearson. In this setting, we

assume that the prior ν is known, and generate positive
examples by first sampling γi ∼ ν, and setting xi ¼ sγi þ zi,
where zi is observed LIGO noise strain. We solve the
following optimization problem:

min
θ

RNðfθÞ ≔
1

N

X

N

i¼1

lðfθðxiÞ; yiÞ: ð40Þ

Here, the loss function lðŷ; yÞ measures the misfit between
the predicted label ŷ and the true label y. Typical choices
include the square loss ðŷ − yÞ2 and the logistic loss,

y logðfsigmoidðŷÞÞ þ ð1 − yÞ logð1 − fsigmoidðŷÞÞ; ð41Þ

where fsigmoidð·Þ denotes the logistic/sigmoid function,

fsigmoidðxÞ ¼
1

1þ expð−xÞ
: ð42Þ

Is this training strategy compatible with the Neyman-

Pearson criterion? The following proposition answers this
question in the affirmative. Consider the following setup:
training data ðxi; yiÞ are generated independently at ran-
dom, by setting yi ¼ 1 with probability p ∈ ð0; 1Þ and
choosing xi ¼ sγi þ zi when yi ¼ 1 and xi ¼ zi when
yi ¼ 0, with γi ∼ ν, and zi ∼ ρnoise. Let

R∞ðfÞ ¼ Eðx;yÞlðfðxÞ; yÞ: ð43Þ

This represents the large-sample limit of RN : as N → ∞,
RNðfÞ → R∞ðfÞ. The following proposition shows that
the population risk R∞ is minimized by (a monotone
function of) the likelihood ratio λ:
Proposition 3: Suppose that for any y ¼ 0, 1, the loss

lðŷ; yÞ is a strictly convex differentiable function of ŷ that
is minimized at ŷ ¼ y. [116] Then the unique optimal
solution f⋆ to the (functional) optimization problem,

min
f

R∞ðfÞ; ð44Þ

is a strictly increasing function of the likelihood ratio λ,

f⋆ðxÞ ¼ gðλðxÞÞ; ð45Þ

where g is a strictly increasing function that depends on l.
Proof.—Please see Appendix. ▪

This result can be interpreted as saying: “a sufficiently

flexible classifier, trained on a sufficiently large dataset

will produce the optimal decision rule.” Hence, training to

minimize the empirical risk RNðfθÞ is compatible with the
Neyman-Pearson criterion.
While this is a promising observation, we should keep in

mind a number of remaining issues: How much data are
required? What are effective approaches to minimizing the
empirical riskRN? In the next section, we investigate these
questions experimentally.
Training for minimax. In this setting, we do not assume

any prior, and aim to minimize the worst false negative rate
using the formulation in (9). We convert the constrained
problem (9) to an equivalent unconstrained problem,

min
δ

max
γ∈Γ

FNRγ þ c · FPR; ð46Þ

where c is a constant that depends on α. For tractability, we
will fix c at a constant value to obtain a concrete
optimization objective, and here, we fix c ¼ 1. In actual
deployment where a target significance level α is specified,
we can also choose c at the level that corresponds to the
specified α. Also, we sample the parameter space Γ at
points fγigNi¼1

. Since FPR does not depend on γ, it can be
moved inside the maximization. Therefore, the minimax
optimization problem can be transformed into

min
δ

max
i¼1;…;N

ðFNRγi
þ FPRÞ: ð47Þ

This suggests a natural approach to training under the
minimax criterion using first-order optimization methods.
At each iteration, we estimate FPR and FNRγi

for each
i ¼ 1;…; N, and choose i� with the highest FNRγi

. We then
aim to reduce FNRγi

þ FPR, which can be estimated by
using a sample dataset fðxi; yiÞg

N
i¼1

as

1

N

X

N

i¼1

1½fθðxiÞ ≠ yi�; ð48Þ

where in the dataset, all xi with corresponding yi ¼ 1 are
generated specifically with signal parameter γi�, and half of
data pairs in the dataset have yi ¼ 0. Finally, it is customary
in optimization to replace the nondifferentiable 0-1 loss
with a smooth loss function l, and hence, we get the
following risk minimization objective:

1

N

X

N

i¼1

lðfθðxiÞ; yiÞ: ð49Þ

This expression is similar to (40), but the difference is that
all positive data in the dataset here are associated with
signal parameters γi� .

JINGKAI YAN et al. PHYS. REV. D 105, 043006 (2022)

043006-10



VI. SIMULATIONS AND EXPERIMENTS

A. Data generation

Data-driven methods such as neural networks typically
require a large amount of data for training. The question of
data sufficiency is especially acute in gravitational wave
astronomy: we have only a moderate number of confirmed
detections to date. We address this issue by generating our
positive training examples by injecting synthetic wave-
forms into LIGO noise strains [95], which we elabo-
rate below.
For LIGO noise data, we use the L1 strain from LIGO

O2 run between August 1 and August 25, 2017, with
ANALYSIS_READY segments only. The announced con-
fident detections GW170809, GW170814, GW170817,
GW170818, and GW170823 are removed from the strain,
such that the data is at least 300 seconds away from these
events. We used a total of 338 frame files each of
4096 seconds long, namely a total of 384.57 hours. The
strain data are downsampled from the original 4096 Hz to
2048 Hz for processing efficiency. The downsampled L1
strain data are divided into segments of length 0.6 second,
with each successive segment overlapping 50% of the
previous segment.
We generate synthetic gravitational wave signals using

PyCBC [26–32], with the following parameters.
Approximant: IMRPhenomD. Mass range: 40 to 50 M⊙,
uniformly distributed. Spin: 0. Sampling rate: 2048 Hz.
Low frequency cutoff: 30 Hz. Coalescence phase: 0.
Polarization: plus [117]. With this specified mass range,
at least 99.5% of the energy of the signal lies in an interval
of length 0.3 second after preprocessing. We note that
although the templates are not chosen uniformly in actual
LIGO deployment [42,43,118–120], we make this choice
here due to simplicity, and also the fact that the large
number of templates make up for the possibly suboptimal
choice of templates.
The above data are used to generate training and test

datasets of positive and negative labeled data as follows.
We divide the collection of downsampled strain segments
randomly into training and test sets, ensuring that no
training segment overlaps a test segment. Within the
training and test sets, we generate both positive and
negative examples. The negative examples contain only
the strain data. For the positive examples, we inject
waveforms into the noise segments by aligning the peak
of the waveforms at the 90% location of the center 0.3 s,
namely at the location of 0.42 s within the entire segment
of 0.6 s. This choice was made as it safely covers the
injected waveforms. The amplitude of the injection is set
such that after filtering and whitening (to be described
below), the resulting signal-to-noise ratio (SNR) is con-
stant. For the experiment, the size of the training and test
datasets are, respectively, 2.62 million and 2 million
segments.

We preprocess all training and test data, by applying an
FIR bandpass filter with cutoff frequencies 30 Hz and
400 Hz, whitening using a power spectral density estimated
from the L1 strain data, and finally truncating to keep only
the center 0.3 s (614 samples).

B. Matched filtering configuration

We first need to determine the necessary number of
templates to use in matched filtering, given the space of
parameters. We set 10, 100, 1000, and 10000 as the
candidate numbers of templates. For each candidate num-
ber, we independently repeat the following process 30
times: randomly choose the specified number of pairs of
parameters uniformly from ½40; 50� × ½40; 50�, generate
waveforms according to these parameters, preprocess
(bandpass, whiten and truncate) as described above, and
then normalize to equal power. This produces the templates
for a matched filtering model. We evaluate the model on the
test dataset to obtain an ROC curve. For each candidate
number of templates and for each value of FPR, we take the
lowest FNR outcome among the 30 independent runs. This
is used to approximately represent the best performance
achievable with a given number of templates.
The result is shown in Fig. 11. We see that the best

performance of matched filtering in this setting starts to
saturate at approximately 1000 templates, and the best
performance with 1000 templates is almost identical to the
that with 10000 templates. Therefore, we choose the best
performance of matched filtering with 10000 templates,
namely the bright blue curve, as the performance curve of
the matched filtering method in this setting, against which
we will be comparing our neural network method.

C. Neural network configuration

To initialize the templates of the neural network models
for both MNet-Shallow and MNet-Deep, we generate
1000 random waveforms from a uniform distribution over

FIG. 11. The best performance of matched filtering with given
number of templates across 30 independent runs. The perfor-
mance starts to saturate above 1000 templates.

GENERALIZED APPROACH TO MATCHED FILTERING USING … PHYS. REV. D 105, 043006 (2022)

043006-11



the same parameter range, subject to the same preprocess-
ing and normalization process as done in matched filtering.
For the MNet-Deep architecture, in addition to the

1000 initialized templates, we also need to specify the
number of layers and the feature dimension of each layer. In
the experiment, we choose L ¼ 17 and

ðn1; n2;…; nLÞ ¼ ð1000; 1800; 1200; 720; 480; 300; 180;

120; 90; 60; 36; 24; 18; 12; 6; 3; 1Þ:

Here, these feature dimensions nl are chosen arbitrarily
so long as they satisfy n2 ≥

3

2
n1, nl ≥

1

2
nl−1 for all

3 ≤ l ≤ L − 1, nL−1 ¼ 3, nL ¼ 1, and that n2;…; nL−2
are all divisible by 6 (which facilitates construction using
our proposed initialization scheme).
For minimax training, in order to search the parameter

space for the worst performance, we sample the parameter
space ½40; 50� × ½40; 50� of ðm1; m2Þ using a square grid
sampler with interval 0.5. After discarding equivalent
samples due to the symmetry between m1 and m2, there
are in total 231 samples in the parameter space.
For the optimization parameters of the neural network,

we train the network using logistic loss, the Adam
optimizer [121], and a constant learning rate of 10−5.

D. Simulation results

Performance under minimax. In this experiment, we
perform injections such that SNR is 5, and only for the
MNet-Shallow model. While this SNR value is smaller
than the range of meaningful observed events, we choose
this value for the simplicity of exposition and reduction of
training time, since the training procedure for minimax
criterion is rather computationally heavy. Similar results
should hold at higher SNR values. Figure 12 plots the ROC
curves for both matched filtering and MNet-Shallow

trained for minimax, measured in terms of both worst
performance and the average performance over a uniform
prior. We see that the trained neural network achieves better
performance than matched filtering under minimax, while
achieving approximately identical performance as matched
filtering under Neyman-Pearson with a uniform prior. This
is not surprising since the training process is designed to
only optimize for the minimax criterion, and not the
Neyman-Pearson criterion with uniform prior.
Performance under a uniform prior. In this experiment,

we perform injections such that SNR is 9. Figure 13 plots
the ROC curves for both formulations MNet-Shallow

and MNet-Deep trained for Neyman-Pearson, as well as
that of matched filtering. As expected, the neural network
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neural network was aimed for the minimax criterion only.
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models strictly improves over matched filtering. Moreover,
the MNet-Deep architecture has a slight performance
advantage over MNet-Shallow. The performance
improvement of the trained models over matched filtering
is especially remarkable with low FNR values, which is
arguably the more important scenario for gravitational
wave detection, since we can hardly afford to miss actual
astrophysical events which are quite scarce.

VII. DISCUSSION

Our experiments demonstrate the potential of neural
networks to outperform matched filtering, especially at low
false negative rates. The flexibility of neural networks also
enables this architecture to implement more general
variations of matched filtering, such as with weights or
aggregation functions different from the maximum.
Neural networks have additional potential advantages:
deep networks can adapt to unknown and/or non-Gaussian
noise distributions. In addition, architectural ideas in deep
networks such as pooling help to convey invariances that
may be helpful in detecting some “unknown unknowns”
that lie outside of the span of a prespecified family of
templates. This should be investigated in the future.
The proposed architectures can be adapted to time-

varying noise distributions, by pretraining on very large
collections of (synthetic) Gaussian noise and then adapting
the pretrained network using a smaller number of online
examples. This kind of pretraining may also be helpful in
deploying our methods across larger mass ranges, which
require more training data.
We note that it is, in some sense, unsurprising that deep

networks can exhibit advantages over matched filtering,
since the former can be made arbitrarily complex and can
approximate essentially arbitrary functions. An important
direction for future work is to study architectures that not
only approach optimal statistical performance, but exhibit
good complexity-performance tradeoffs. There are a num-
ber of concrete directions for achieving this—in particular,
the weight matrices learned by our Neyman-Pearson net-
works exhibit particular types of low-dimensional (low-
rank and sparse) structure, which can be leveraged to
reduce complexity. Interpreting matched filtering as a
particular neural network facilitates the study of complex-
ity-performance tradeoffs, since it allows these distinct
methods to be studied in a unified framework. Another
avenue for complexity reduction is to define and train very
large (overparametrized) networks and then prune them to
produce much smaller subnetworks with good perfor-
mance. MNet-Deep is particularly promising in this
regard, since this construction yields networks of arbitrary
depth.
One future possibility of the approach is to go beyond the

fixed template banks that constrain the limited set of
parameters taken into account. For example, to limit the
size of the template bank, BH spins that are misaligned

from the orbital angular momentum are not widely used
yet. Also, due to the lack of available template banks, some
astrophysically feasible scenarios receive relatively little
attention, including eccentric binary merger template banks
where every new template requires a computationally very
expensive general-relativity simulation. Therefore, gener-
alized matched filtering needs to be investigated in this
context, to measure its performance on signal classes that
current templates do not cover. Additionally, training it
with a sample of eccentric waveforms could enable the
detection of other eccentric BBHs even with properties not
covered by the limited simulation used for training.
Exploring these scenarios are very important experiments
for the future.
Another desirable goal is to allow matched filtering

algorithms to run “coherently,” treating the GW detectors
worldwide as a single detector and analyzing data from
multiple GW detectors together as a single data stream. The
main difficulty is that the sky direction of the cosmic source
is unknown; therefore, there are many unknown time shifts
among the detectors’ data. Searching a large number of
different combinations can be cost prohibitive with current
approaches. It is important to experimentally investigate the
ML extensions to matched filtering to measure the
increased sensitivity due to the coherent framework.
Furthermore, experiments on the natural generalization

of the approach where one does not aim to find the best
matching waveform, but instead aims to estimate the
parameters of the BBH system are needed. For example,
instead of having the maximum reported, one could report
the probability distribution over parameters. The difficulty
here is that searches usually have much fewer parameters
than what is used for parameter estimation. The perfor-
mance of the ML framework in parameter estimation
should be quantified in the future, even if it comes at
the price of precision and is therefore only used as a first
estimate.

VIII. CONCLUSION

In this paper, we highlighted the idea that matched
filtering currently applied by LIGO is formally equivalent
to a particular neural network, which can be defined
analytically in closed form. We also modeled the LIGO
gravitational wave search as the parametric signal detection
problem and illustrated the suboptimality of matched
filtering regardless of whether a prior distribution on the
parameter space is given. On the other hand, we proposed
neural network architectures MNet-Shallow and MNet-
Deep, which are initialized to implement matched filtering
exactly, and then trained on data for improved performance.
In particular, we showed that when the prior distribution is
known, the training process is aligned with the statistically
optimal decision rule. Between the two proposed archi-
tectures, the former more closely resembles the architecture
of matched filtering, while the latter has a more flexible
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architecture capable of dealing with a wider range of
distributions. We conducted experiments using LIGO strain
data from O2 and synthetic waveform injections, and
showed that our trained network can achieve uniformly
better performance than matched filtering both with or
without a known prior, especially in scenarios where false
negative rate is low.
Through this work, we seek to bridge the gap between

data-driven methods such as deep learning and those
detection methods currently in use in LIGO, and explore
the possibility of incorporating them into the gravitational
wave search of LIGO, as well as broader areas of scientific
discovery. In the future work, we aim to explore the
potentials of efficiency gains of neural networks over
matched filtering, and also establish an end-to-end guar-
antee for the performance of the proposed framework.
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APPENDIX: PROOFS OF KEY TECHNICAL

CLAIMS

1. Proof of Proposition 1

Combining the definitions of the likelihood ratio λðxÞ
and the probability densities ρ0ðxÞ and ρ1ðxÞ, we have

λðxÞ ¼

R

ρnoiseðx − sγÞdνðγÞ

ρnoiseðxÞ
ðA1Þ

¼

Z

ρnoiseðx − sγÞ

ρnoiseðxÞ
dνðγÞ: ðA2Þ

When the noise is GaussianN ð0; σ2IÞ, the integrand equals

ρnoiseðx − sγÞ

ρnoiseðxÞ
¼ exp

�

hx; sγi − ksγk
2=2

σ2

�

; ðA3Þ

which is a convex function of x. Hence after integrating
over γ, the resulting function λðxÞ is still a convex function
of x. The optimal decision region is a sublevel set of λðxÞ
and is hence a convex set.

2. Proof of Proposition 2

Assume the training data is drawn iid from some
distribution on ðx; yÞ ∈ R

n × f0; 1g. In this setting, the
previous defined densities p0ðxÞ and p1ðxÞ can be
expressed as p0ðxÞ¼pðxjy¼0Þ and p1ðxÞ ¼ pðxjy ¼ 1Þ.
If the predictor function is f∶Rn

→ R, then the risk is

RðfÞ ¼ Eðx;yÞ½lðfðxÞ; yÞ� ðA4Þ

¼ P½y ¼ 0� · Exjy¼0½lðfðxÞ; 0Þ�

þ P½y ¼ 1� · Exjy¼1½lðfðxÞ; 1Þ� ðA5Þ

¼ P½y ¼ 0�

Z

R
n

lðfðxÞ; 0Þp0ðxÞdx

þ P½y ¼ 1�

Z

R
n

lðfðxÞ; 1Þp1ðxÞdx ðA6Þ

JINGKAI YAN et al. PHYS. REV. D 105, 043006 (2022)

043006-14



¼

Z

R
n

ðð1 − cÞlðfðxÞ; 0Þp0ðxÞ

þ clðfðxÞ; 1Þp1ðxÞÞdx; ðA7Þ

where c ≔ P½y ¼ 1� ∈ ð0; 1Þ is an exogenous constant that
only depends on the data distribution. The function that
minimizes the above risk is

f⋆ðxÞ¼ argmin
ŷ

ð1−cÞlðŷ;0Þp0ðxÞþclðŷ;1Þp1ðxÞ; ðA8Þ

for all x ∈ R
n, or equivalently,

f⋆ðxÞ ¼ arg min
ŷ
lðŷ; 0Þ þ

cλðxÞ

1 − c
lðŷ; 1Þ: ðA9Þ

Therefore, the optimal predicted value at a point is the
solution to an optimization problem that only depends on
the likelihood ratio λðxÞ.

Take an arbitrary fixed x. From the assumption that
lðŷ; yÞ is strictly convex and minimized at ŷ ¼ y, it follows

that lðŷ; 0Þ þ cλðxÞ
1−c

lðŷ; 1Þ is strictly convex in ŷ, strictly
decreasing on ð−∞; 0� and strictly increasing on ½1;∞Þ.
Hence, for any x, the risk minimization problem of Eq. (A9)
has a unique solution in [0, 1]. The optimal solution can be
found from the first-order-condition (FOC). Noticing that ŷ
cannot be 0 or 1 under the FOC, we can rewrite the FOC as

l
0ðŷ; 0Þ

−l0ðŷ; 1Þ
¼

cλðxÞ

1 − c
: ðA10Þ

From the assumption of strong convexity, we know that on
the interval (0,1) we have l

0ðŷ; 0Þ > 0 and l
0ðŷ; 1Þ < 0,

where in l0 the derivative is taken with respect to the first
argument. Hence the left-hand side of (A10) is strictly
increasing in ŷ.
This concludes that the optimal decision function f⋆ðxÞ

is strictly increasing in λðxÞ.
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