
Newtonian Event-Chain Monte Carlo and
Collision Prediction with Polyhedral Particles

Marco Klement,† Sangmin Lee,‡,¶ Joshua A. Anderson,‡ and Michael Engel∗,†

†Institute for Multiscale Simulation, IZNF, Friedrich-Alexander University
Erlangen-Nürnberg, 91058 Erlangen, Germany

‡Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
¶Department of Biochemistry, University of Washington, Seattle, WA 98195, USA

E-mail: michael.engel@fau.de

Abstract

Polyhedral nanocrystals are building blocks
for nanostructured materials that find appli-
cations in catalysis and plasmonics. Synthe-
sis efforts and self-assembly experiments have
been assisted by computer simulations that
predict phase equilibra. Most current simu-
lations employ Monte Carlo methods, which
generate stochastic dynamics. Collective and
correlated configuration updates are alterna-
tives that promise higher computational effi-
ciency and generate trajectories with realis-
tic dynamics. One such alternative involves
event-chain updates and has recently been pro-
posed for spherical particles. In this contribu-
tion, we develop and apply event-chain Monte
Carlo for hard convex polyhedra. Our sim-
ulation makes use of an improved computa-
tional geometry algorithm XenoSweep, which
predicts sweep collision in a particularly simple
way. We implement Newtonian event chains in
the open source general-purpose particle simu-
lation toolkit HOOMD-blue for serial and par-
allel simulation. The speed-up over state-of-
the-art Monte Carlo is between a factor of 10
for nearly spherical polyhedra and a factor of
2 for highly aspherical polyhedra. Finally, we
validate the Newtonian event-chain algorithm
by applying it to a current research problem,
the multi-step nucleation of two classes of hard
polyhedra.

1 Introduction

Nanocrystals can be synthesized in a variety of
polyhedral Wulff shapes. They self-assemble
by destabilization in solution or in evapora-
tion and sedimentation experiments.1–4 The re-
sulting superlattices have applications as func-
tional materials.5 Some particles have several
competing superlattice candidates. Octahedra,
for example, can form four different superlat-
tice structures. Three of these are extremal in
packing density or contact area between parti-
cles.1,6 While the structures predicted can be
reproduced in experiment reliably, the order-
ing phenomena and pathways to the superlat-
tices are often not well understood. Varying
the types and amounts of ligand molecules af-
fects the structures found.7,8 Only for special
cases, predictive rules have been found. One
such case are hard particles, in which shape
alone is the dominating factor. Hard-particle
phase diagrams9–12 and equations of states13–15

help to understand experiments and to select
promising polyhedral shapes and target struc-
tures. Other studies utilize simulations to pre-
dict photonic properties.16

Simulations of anisotropic particles are of-
ten performed stochastically with Monte Carlo
methods. Molecular dynamics would in prin-
ciple be favored because it equilibrates config-
urations more efficiently.17 The reason is that
density fluctuations relax with the speed of
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sound in molecular dynamics, whereas such
fluctuations equilibrate by diffusion in local
reversible Monte Carlo algorithms. Further-
more, molecular dynamics creates realistic tra-
jectories, which are an advantage when com-
paring details of trajectories with experiment.
However, integrating the equations of motion
for anisotropic particles is not easily possi-
ble. This is in particular the case for hard
anisotropic particles, which interact via discon-
tinuous forces. Event-driven molecular dynam-
ics is a well-established method for hard spheres
to obtain Newtonian trajectories.18 But event-
driven molecular dynamics for anisotropic par-
ticles requires solving collision equations that
involve rotations and thus trigonometric func-
tions. The solution of these non-linear equa-
tions is only possible numerically by itera-
tion with approximations19 and is necessarily
slow. In Monte Carlo, the problematic collision
checks are replaced by overlap checks. Impor-
tantly, overlaps can be solved analytically in a
finite number of steps for many shapes, includ-
ing for polyhedra.20,21,21,22 It is thus desirable to
combine the advantages of molecular dynam-
ics (fast equilibration and realistic dynamics)
with the advantages of Monte Carlo (simple al-
gorithm and no approximation).

Here, we develop a simulation method that
combines the advantages of Monte Carlo and
molecular dynamics in an algorithm that avoids
approximations and iterations to the extend
possible. Our starting point is event-chain
Monte Carlo,23,24 which offers efficient equi-
libration and prediction of structures, espe-
cially in the recently proposed variant of New-
tonian event chains.17 We generalize Newtonian
event-chain Monte Carlo to hard convex poly-
hedra. The algorithmic bottleneck for event-
chain Monte Carlo is the prediction of collisions
between non-rotating polyhedra. The detail
that the polyhedra are non-rotating is crucial.
It means the underlying equations do not con-
tain trigonometric functions and can be solved
analytically.

Fast collision detection is a classic problem in
computer graphics.25–27 Solutions started with
the evaluation of all vertex–face and edge–edge
feature combinations of the two polyhedra in

question.20 Because the number of such com-
binations increases rapidly with the number of
polyhedron vertices, a brute-force calculation of
all combinations is too time consumption. The
algorithm by Gilbert, Johnson, and Kerthi21

(GJK) was a major breakthrough. It was not
only faster because it avoided checking com-
binations of vertices, edges, and vertices, but
supported all sorts of convex objects – as long
as there is a support function that returns the
furthest vector of an object for any given di-
rection. Due to its conceptual complexity, the
GJK algorithm remains cumbersome to imple-
ment. Snethen22 created with Xenocollide a de-
rived algorithm for which the state can easily
be visualized at any step. Xenocollide is the
starting point of the collision prediction algo-
rithm presented in this paper. Similar to the
directional contact range28 calculation, we de-
termine the directional contact distance of con-
vex polyhedra. This is the distance by which a
polyhedron can be translated without rotation
up to collision, a process called ‘sweeping’. The
algorithm we present here, called XenoSweep,
predicts sweep collisions and is particularly sim-
ple.

The central goal of the present manuscript
is method development. We first implement
Newtonian event-chain Monte Carlo of polyhe-
dral particles utilizing XenoSweep in an open
source software package and test it extensively.
We then confirm that the algorithm indeed has
the expected efficiency advantages. An advan-
tage of Newtonian event-chain Monte Carlo is
that the partially stochastic trajectories gen-
erated resemble Newtonian dynamics signifi-
cantly better than the fully stochastic trajec-
tories of Monte Carlo with local moves only.

2 Monte Carlo Simulation

We consider a system of anisotropic particles.
The system is fully specified by the position
vectors {xi} and orientation quaternions {qi}
of all particles i = 1, . . . , N and their shape.
The most commonly employed strategy to sim-
ulate anisotropic particles is Monte Carlo with
local updates of the positions and orientations.
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2.1 Local Updates

Local-update Monte Carlo (LMC) applies a se-
quence of trial moves to update the configu-
ration. A randomly selected particle is either
translated by a random vector of length up to
dtrans or rotated by addition of a random quater-
nion29 of norm up to drot and subsequent re-
normalization.

We denote the probability to execute a trans-
lation move as

ptrans =
] translation trials

] translation trials + ] rotation trials
,

(1)
where the character ‘]’ means ‘number of’. The
new configuration is accepted with a Boltzmann
factor. The Boltzmann factor collapses to an
overlap check when simulating hard particles.

2.2 Newtonian Event Chains

Event-chain Monte Carlo (ECMC)23 applies a
sequence of collective moves in the form of
chains to update the configuration. Each chain
consists of a random start followed by a series of
deterministic collision events. A randomly se-
lected particle is translated in a random chain
direction up to its first collision. The collision
partner then takes over and continues the trans-
lation in the chain direction up to its first colli-
sion. At this point the third particle takes over
and so on. ECMC terminates the chain after a
predefined chain length.

ECMC only translates particles and has been
applied to disks and spheres.23 It was recently
extended to particles with three- and many-
particle interaction.30 Soft anisotropy can be
reached by creating compound particles.31 A
hard point-edge interaction allows simulation of
nearly-hard needles.32 To treat hard anisotropic
particles, we mix event-chain translations with
LMC rotation trial moves as illustrated in
Fig. 1. The probability to execute an event
chain is

pchain =
] event chains

] event chains + ] rotation trials
. (2)

We recently introduced Newtonian event-
chain Monte Carlo (NEC) as a variant of ECMC

Figure 1: Flowchart of Monte Carlo simulation
for anisotropic particles. The algorithm com-
bines event chains for translation moves and
random trial rotation moves as in local Monte
Carlo. The type of move is chosen randomly.
pchain is the probability to execute an event
chain.

that is more efficient but still follows the cor-
rect statistics, which is guaranteed by the fact
that it obeys the balance condition.17 NEC as-
sociates each particle with a velocity vector. A
randomly selected particle is translated in the
direction of its velocity vector up to the first col-
lision. During this translation, time advances
by ∆ti = ∆xi/vi, where ∆xi is the transla-
tion distance and vi the velocity of the trans-
lated particle. The velocities of both particles
involved in the collision are updated at the col-
lision according to the rules of elastic collisions.
The chain then continues with the collision
partner as in ECMC. NEC terminates the chain
after a predefined chain time tchain =

∑
i ∆ti.

2.3 Parameters

LMC and NEC both have three dimensionless
parameters, which must be tuned for maximal
efficiency of the simulation algorithms:

(1) The NEC chain time is naturally ex-
pressed in units of the mean free time tmf =
〈∆ti〉NEC. The average is conveniently com-
puted in NEC after equilibration. In LMC,
the translation trial move distance is naturally
expressed in units of the mean free path dmf.
We approximate the mean free path using the
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mean free time and the root mean square veloc-
ity measured in NEC, dmf ≈ tmf

√
〈v2〉. We call

the joint parameter the translation parameter.
It is given by

τ =


dtrans
dmf

for LMC,

tchain
tmf

for NEC.
(3)

The translation parameter τ behaves differently
in LMC and NEC and will be treated separately
below.

(2) The rotation trial move distance drot is
identical in LMC and NEC. We call this pa-
rameter the rotation parameter,

ρ =

{
drot for LMC,

drot for NEC.
(4)

(3) The probability to execute a translation
move ptrans in LMC can be mapped to an equiv-
alent NEC parameter using pchain by observing
that the number of translation moves is given
by pchain(Nchain + 1), where Nchain is the aver-
age number of collision events per chain. We
call the fraction of translation moves the move
ratio parameter. It has the expression

µ =
] translation moves

] translation moves + ] rotation moves

=

ptrans for LMC,
pchain(Nchain + 1)

pchain(Nchain + 1) + (1− pchain)
for NEC.

(5)

2.4 Parallel Event Chains

ECMC can be parallelized with a cell decom-
position scheme.24 As cells have a large inac-
tive volume, we use domain decomposition33

to parallelize NEC. Collisions with the domain
wall and with particles outside of the cell are
treated as elastic collisions with partners of in-
finite mass. Such collisions lead to ergodic dy-
namics if the domain walls are shifted every now
and then.24

We argued that NEC is efficient because the
trajectories it generates follow Newtonian dy-
namics more closely.17 However, while collision

between particles conserve momentum, colli-
sions with domain walls or outside particles
break momentum conservation and break New-
tonian dynamics near the walls. The result is
a decrease of the advantage of NEC over LMC.
This decrease can be critical especially for small
domains.

Anisotropic particles have an additional is-
sue. The number of chains per cell be-
tween two domain wall shifts is not fixed but
Bernoulli-distributed with mean proportional
to pchainNdomain and variance proportional to
pchain(1−pchain)Ndomain. Here, Ndomain is the av-
erage number of particles in the domain. When-
ever domain walls are to be shifted, the simula-
tions for all domains must wait for the slowest
domain (with most chains). The variance can
be reduced by using shorter chains, increasing
pchain, or generally simulating longer between
shifting domain walls. Too short chains destroy
the advantage of event chains and are not effi-
cient.17

3 Sweep Collisions of Con-

vex Polyhedra

Event chains require the prediction of sweep
collisions. A sweep collision is the collision of
two particles when one of them is translated
along a given direction, the other is not trans-
lated, and neither of them is rotated. While
predicting sweep collisions of spheres is trivial,
no simple expression exists for anisotropic par-
ticles.

We develop an iterative algorithm for sweep
collision prediction of convex polyhedra. For
this purpose, we simplify and extend Snethen’s
XenoCollide algorithm.22 XenoCollide utilizes
Minkowski portal refinement. Portals are tri-
angles that hit the origin when translated (or
swept) along a normalized ray direction r. This
means the portal ray, which is the line {λr |
λ ∈ R}, intersects the triangle. Our modi-
fied XenoSweep algorithm not only returns the
sweep distance ` at collision but also the nor-
mal vector to the collision plane n. The normal
vector is not calculated by XenoCollide, but we
need it to perform elastic collisions in ECMC
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or NEC.
Let A and B be two convex particles.

Minkowski portal refinement utilizes the
Minkowski difference C = {a − b | a ∈ A,b ∈
B}. C contains the origin, if and only if the
intersection of A and B is non-empty. Sweep
collision prediction is equivalent to checking
where C hits the portal ray. A further sim-
plification is that we need to know only the
support vector SC(v) = x, which is defined as
the vector x ∈ C that maximizes x · v. The
support vector corresponds to the point in C
that is extended furthest along v.

The XenoSweep algorithm (Fig. 2) consists of
three stages, an initialization stage and two it-
erative stages. Both iteration stages terminate
for polyhedra after a finite number of iterations
bounded from above by the number of vertices.
In principle, the algorithm can be made to scale
significantly faster than linearly with the num-
ber of polyhedron vertices by implementing a
tree-like data structure for the calculation of the
support vector function. However, we do not
implement such a data structure here to keep
the algorithm simple. The first iterative stage
searches for the existence of a portal only in the
plane perpendicular to the ray direction r. The
second iterative stage gradually improves the
portal towards the collision plane. Differences
to XenoCollide are a modified initialization and
improved exit conditions.

3.1 Initialization

We initialize the algorithm with two vectors
v1,v2 ∈ C. These vectors can be chosen ar-
bitrarily, which is what we do for v1 (line 1).
We find it efficient to set v2 as the support vec-
tor in direction r× (r×v1) = r(r ·v1)−v1(r ·r)
on the opposite side of the particle as seen along
r towards the origin (line 2). The normal vec-
tor n = r × (v2 − v1) is the search direction
in the next step. We guarantee that n points
towards the origin, by swapping the initial vec-
tors if that is not yet the case by testing the
condition v1 · n < 0 (lines 3-4).

Algorithm: XenoSweep

Inputs: SC support vector function of C
r ray direction
vAB point within C

Outputs: ` sweep distance
n normal to collision plane

Variables: vi vertices of the portal

— Initialization —
1 v1 ← vAB

2 v2 ← SC(r(r · v1)− v1(r · r))
3 if v1 · (v2 × r) > 0:
4 swap(v1,v2)

— Portal Discovery —
5 while True:
6 n ← (v2 − v1)× r
7 v3 ← SC(n)
8 if n · v3 < 0:
9 return NoCollision

10 if v1 · (v3 × r) < 0:
11 v2 ← v3

12 elif v2 · (v3 × r) > 0:
13 v1 ← v3

14 else:
15 break

— Portal Refinement —
16 while True:
17 n← (v3 − v1)× (v2 − v1)
18 if v1 · n ≥ 0:
19 return Overlapping

20 v4 ← SC(n)
21 if (v4 − v1) · n ≈ 0:
22 `← −(v1 · n)/(r · n)
23 return `,n

24 x← v4 × r
25 if v1 · x > 0:
26 if v2 · x ≤ 0:
27 v3 ← v4

28 else:
29 v1 ← v4

30 else:
31 if v3 · x > 0:
32 v2 ← v4

33 else:
34 v1 ← v4

Figure 2: Python-like pseudocode of
XenoSweep that extends XenoCollide.22

The algorithm consists of the three stages:
Initialization, Portal Discovery, and Portal
Refinement.

5



3.2 Portal Discovery

The portal discovery stage searches for the
existence of a portal. A portal candidate
(v1,v2,v3) is created by including as v3 the
support vector in a direction perpendicular to r
and towards the origin (lines 6-7). By construc-
tion, we can exclude that the origin is behind
the portal in negative normal direction (‘forbid-
den’ region in Fig. 3). If n · v3 < 0, we found a
separating axis perpendicular to the ray direc-
tion r and can return ‘NoCollision’ (lines 8-9).

Otherwise, we test the intersection of the por-
tal ray with the portal candidate. Depending
on the relative location of the portal ray, por-
tal discovery continues by replacing the vector
furthest away (regions ‘replace v1 and ‘replace
v2’ in Fig. 3), or breaks and continues with the
next stage if the portal candidate is found to be
a portal (lines 10-15).

Figure 3: Sketch of the portal discovery stage.
With n = r × (v2 − v1) a third vector v3 =
SC(n) is calculated. The portal candidate
(v1,v2,v3) is shown in projection along r. The
portal ray is a point in this projection. By con-
struction, we know this point is located above
the line through v1 and v2 and falls within the
portal candidate if and only if the portal candi-
date is a portal. Portal discovery is iterated in
the algorithm until either a portal is found or
it is determined that no portal exists.

3.3 Portal Refinement

At this point in the algorithm, we successfully
discovered the existence of a portal (v1, v2, v3).
But other portals might be closer to the origin.

The distance of the portal from the origin along
r is ` = −(n · v1)/(n · r) with the portal nor-
mal vector n = (v3− v1)× (v2− v1). Here, we
utilized that r is a normalized vector. The por-
tal refinement stage searches for the portal with
the smallest `. By construction n·r ≥ 0, and we
know ` ≤ 0 if n ·v1 ≥ 0, which means the origin
is on the back-side of the portal. At this point
we cannot distinguish between particles mov-
ing apart and intersecting particles. Because
we are not interested in negative sweeps, we re-
turn ‘Overlapping’ (lines 17-19). If n · v1 ≥ 0
first occurs in a later iteration, then the origin
is located between the previous and the current
portal. Because all portals intersect C, the ori-
gin is then also inside C and we know the par-
ticles are intersecting.

Next, we compute a new support vector v4

in direction of the normal vector (line 20). We
skip the check for a separating axis, n · v4 < 0,
that would allow an early return in case the goal
was only an overlap check instead of calculat-
ing the sweep distance. If v4 is coplanar to the
other vectors (up to numerical precision), the
portal is not moving towards the origin any-
more, and we return ` as the sweep distance
(lines 21-23). Finally, the portal is updated by
replacing one of its vertices by v4 such that the
new triangle remains a portal. We can replace
vi, i ∈ {1, 2, 3} by v4 when v(i+1) mod 3 · x > 0
and v(i+2) mod 3 · x ≤ 0, where x = v4 × r (lines
24-34). One example is illustrated in Fig. 4.
Based on the result of a first scalar product,
we can choose the second scalar product either
such that one of the replacement criterion is ful-
filled directly or such that both scalar products
have the same sign. Because the origin ray in-
tersects the portal, the set of scalar products
vi · x, i = 1, 2, 3 contain at least one positive
and one negative result, and one replacement
criterion is fulfilled implicitly.

3.4 Test and validation

To validate XenoSweep, we set up a well-defined
test configuration. Two octahedra with edge
length 1 are displaced by 1.8 in horizontal direc-
tion and 5 in vertical direction (Fig. 5(a)). The
sweep distance is calculated in vertical direc-
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Figure 4: Sketch of the portal refinement stage.
The portal (v1,v2,v3) is projected along r. We
illustrate an example, where the origin O is lo-
cated such that v4 replaces v1. x = v4 × r is a
temporary vector used in the algorithm.
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Figure 5: Comparison of collision prediction
with XenoSweep and with the Bullet library.34

(a) Geometry for collision prediction tests. Two
octahedra (shown here in projection as squares)
are placed with vertical and horizontal offset
(denoted with numbers in the figure, drawn not
to scale). (b) The sweep distance of the octa-
hedra is predicted accurately with both algo-
rithms (top). Time for the calculation of 104

collisions on an Intel Core i5-2400 CPU (bot-
tom). In this test, XenoSweep is noticeably
faster. The definition of the rotation angle θ
(x-axis) is indicated in (a).

tion as the second octahedron is rotated. For a
range of rotation angles around 45 degrees, the
sweep distance is infinite because the octahe-
dra do not collide. An advantage of this setup
is that the sweep collision can be calculated an-
alytically.

Fig. 5(b) compares the accuracy and
performance of XenoSweep with the class
LinearConvexCastDemo in the Bullet library,34

which detects collisions by employing GJK Ray
Casting.35 The Bullet library is a physics en-
gine and is used in many video games and for
visual effects in movies. Our calculations show
that the evaluated sweep distance is accurate
in both algorithms and agrees with the analytic
solution. We also evaluate the time for 104 col-
lision. In this test, XenoSweep is significantly
faster with a performance that only weakly
depends on the specific geometry. We find an
improvement of about a factor of 4 in cases with
collision, and an improvement of about a factor
of 2 if there is no collision. While this single
test cannot replace a systematic benchmark, it
already demonstrates that XenoSweep is not
only simple but also sufficiently fast for our
purposes, and that it compares well with estab-
lished collision detection libraries. A further,
more thorough validation will be presented be-
low where we utilize NEC for the reproduction
of multi-step nucleation in two thermodynamic
systems of hard polyhedra.

4 Implementation and Pa-

rameterization

We implemented NECs in the open source
general-purpose particle simulation toolkit
HOOMD-blue.33,36 HOOME-blue has a well-
tested and highly-efficient hard particle Monte
Carlo (HPMC) package, which we extend.
From the existing HOOMD-blue codebase,
we use axis-aligned bounding boxes (AABBs),
AABB-trees, the general management struc-
ture for memory, communication via MPI, and
file input/output. As a result of this work, the
XenoSweep algorithm and NEC for spheres17

and convex polyhedron will be included in
HOOMD-blue in version 3.0.0.37
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It remains to tune the translation parame-
ter, the rotation parameter, and the move ra-
tio parameter in both LMC and NEC for max-
imum efficiency. Three polyhedra are tested,
the tetrahedron with four vertices, the octahe-
dron with six vertices, and the icosahedron with
twelve vertices (Fig. 6). Every polyhedron is
scaled to have volume V0 = 1. The reference
systems contains 8000 particles at 45% volume
fraction. At this density all convex polyhedron
remain in the fluid phase. Particle velocities
in NEC are initialized randomly with mean ve-
locity 〈v〉 = 0 and root mean square velocity√
〈v2〉 = 1. We quantify the efficiency of the al-

gorithms by measuring the diffusion coefficient
in units of CPU time (seconds), DCPU. Sim-
ulations are performed in single-core mode on
Intel Skylake compute nodes. Unless specified
otherwise in each of the following sections, we
use: τLMC = 2 in LMC, τNEC = 30 in NEC,
µ = 0.5, ρ = 0.15 for icosahedron and octa-
hedron; ρ = 0.07 for tetrahedron. The unit of
length x in Fig. 7, 8 and 9 is the length of a
cube with the same volume for each shape.

Figure 6: The three polyhedra used for opti-
mizing the parameters of LMC and NEC. The
colors and symbols represent the key for Fig. 7,
8 and 9.

4.1 Translation parameter

We discuss the translation parameter τ sep-
arately for LMC and NEC because it affects
the efficienty of both algorithms differently. In
LMC, highest diffusion is obtained for a trans-
lation move distance of about double the mean
free path, i.e. τ = 2 (Fig. 7(a)). The acceptance

probability of translation moves is about 20%
for this choice. Diffusion eventually decreases
with increasing τ because random translations
over large distances generate many overlaps.

In NEC, chains should be sufficiently long
(τ ≥ 10) but increasing their length fur-
ther has no significantly detrimental effect
(Fig. 7(b)). This behavior agrees with NEC
of hard spheres.17 In both cases, particles that
are more spherical (icosahedron; yellow color)
diffuse faster than particles that are less spher-
ical (tetrahedron; purple) with the octahedron
(green) located in the middle. We also observe a
clear performance advantage (higher diffusion)
of NEC over LMC that is greater for the icosa-
hedron than the tetrahedron.

4.2 Rotation parameter

The rotation parameter ρ has similar behav-
ior in LMC and NEC (Fig. 8). At density
45%, particles still have ample space to rotate,
which means optimal performance is obtained
for rather large orientation changes. Just like
for the translation parameter in LMC, optimal
performance generally occurs near values of the
acceptance probability of around 20%. An over-
all vertical shift of the curves can be explained
by the role of translation updates, which dom-
inate diffusion. As before, more spherical par-
ticles diffuse faster, and NEC is generally more
efficient than LMC.

4.3 Move ratio parameter

The move ratio µ is the ratio of translation
moves among all moves in the simulation and
ranges from zero (only rotation) to one (only
translation). Simulations with parameters in
either end of the parameter range are ineffi-
cient because particles get easily stuck in their
neighbor shell (Fig. 9)). Shape plays an impor-
tant role for the optimal choice of µ. Icosahedra
prefer more translations (µ & 0), which is ex-
plained by the presence of a rotator phase prior
to crystallization.38 Tetrahedra prefer more ro-
tations (µ . 1) due to their strong preference
for face-to-face contact.39 In general, we expect
nearly spherical polyhedra to rotate easily and
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Figure 7: Effect of the translation parameter τ
on the diffusion coefficient DCPU for (a) LMC
and (b) NEC. Highest diffusion occurs near
τ = 2 with a corresponding LMC acceptance
probability of about 20%. As τ increases, diffu-
sion decreases for LMC but plateaus for NEC.
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highly anisotropic polyhedra to preferentially
align face-to-face.

Generally, the location of the diffusion maxi-
mum shifts towards lower µ in NEC compared
to LMC. This confirms once more that trans-
lation moves are more efficient in NEC. We do
not see a clear choice for µ that would allow us
to select a particular optimal parameter value.
For this reason, we set µ = 0.5 in line with
common practice.

5 Performance

After extending the NEC algorithm to convex
polyhedra and implementing it in HOOMD-
blue, we now quantify the speed-up of NEC
over LMC. For this purpose, we analyze the
ratio of the diffusion coefficients, DNEC

CPU/D
LMC
CPU .

The simulation parameters of the algorithms
are chosen as τLMC = 2, τNEC = 30, µ = 0.5.
The rotation parameter is chosen depending on
particle shape to account for variations in the
importance of rotations as ρ = 0.07 for the
tetrahedron, ρ = 0.10 for the triangular prism,
ρ = 0.15 for the truncated tetrahedron, the
cube, and the octahedron, ρ = 0.3 for the elon-
gated dodecahedron, and ρ = 1.0 for all others
polyhedra investigated.

We put a particular focus on the role of par-
ticle shape, which we describe by the sphericity
(or isoperimetric quotient) of the polyhedron.
Sphericity is defined for a convex particle as
Q = 36πV 2A−3 with surface area A and volume
V . Besides single-core performance, we also in-
vestigate the scaling behavior for parallel LMC
and parallel NEC.

5.1 Single-Core Performance

We analyze the speed-up of NEC over LMC for
different polyhedra in serial (single-core) mode
of HOOMD-blue. As Fig. 10 shows, NEC is sig-
nificantly more efficient than LMC for all tested
convex polyhedra. The speed-up is always at
least a factor of 2 and can be up to a factor of
10, with the minimum taken for tetrahedra and
the maximum for icosahedra.

We observe the trend that higher sphericity

generally results in higher speed-up (Fig. 10).
This makes sense because, as we have seen in
Fig. 9, translations are less critical for equili-
brating polyhedra with low sphericity. After all,
translations benefit directly from NEC whereas
rotations are not or only indirectly affected by
the efficiency boost. The relationship between
sphericity and speed-up is nearly linear.

The number of vertices also plays a role, but a
minor one. For example the pentakis dodecahe-
dron (sphericity 0.939, 32 vertices) is sped up by
a factor of 10 and the truncated pentakis dodec-
ahedron (sphericity 0.958, 120 vertices) is sped
up by a factor of 8. The speed-up is smaller
for the truncated pentakis dodecahedron, which
has similar sphericity but more vertices than
the pentakis dodecahedron. This behavior can
be explained by details of the XenoSweep algo-
rithm. While an overlap check with XenoCol-
lide (implemented in LMC) only finds a sepa-
rating axis or a shared point, the distance mea-
surement with XenoSweep searches for the col-
liding surface elements. The letter task costs
more compute time and, in comparison, slows
down faster with the number of polyhedron ver-
tices. Interestingly, the NEC speed-up for the
sphere17 falls right on top of the polyhedron
data despite the use of conceptually different
algorithms for overlap and collision checks in
both cases.

5.2 Parallel Performance

To test parallel performance of NEC, we simu-
late octahedra varying the system size and the
number of CPU cores. Parallel performance is
analyzed by the particle update frequency (i.e.,
how fast the algorithm generates and executed
translations and rotations) and the diffusion co-
efficient (i.e., the efficiency of the algorithm to
propagate through configuration space). We
normalized the measurements to the values for
a single-core simulation and divide them by the
number of cores.

Results are shown in Fig. 11. NEC slows
down as the number of cores increases, and
scales better in the particle update frequency
than the diffusion coefficient. This means do-
main decomposition has a negative influence
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Figure 10: Speed-up of NEC over LMC as quantified by the ratio of diffusion coefficients. Twelve
convex polyhedra and the sphere (labelled ‘Sph’) are tested. The polyhedra are, from bottom left
(number of vertices): tetrahedron (4), triangular prism (6), truncated tetrahedron (12), cube (8),
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dron (12), truncated icosahedron (60), pentakis dodecahedron; all vertices of same distance from
the origin (32), and truncated pentakis dodecahedron (120).

on the parallel performance of chains, an effect
that we find to be particularly strong for small
systems. Our observation is in line with previ-
ous research.24 NEC requires correlated trans-
lations in chains over significantly larger dis-
tances than translation trial moves in LMC.
This can become problematic. For good paral-
lel efficiency of NEC beyond a small number of
cores, the system should be rather large, likely
contain millions of particles. Massively parallel
simulations on GPUs as performed with LMC40

are not advisable with NEC, though chains with
local times41 may be an alternative.

6 Pathways of multi-step

nucleation

It remains to apply the polyhedron NEC code
to a current research problem. We focus on
systems of truncated tetrahedra (TTs) and tri-
angular bipyramids (TBPs). Both of these sys-
tems show interesting phase behavior and un-

usual phase transformation pathways.42 TTs
forms a high-density fluid consisting of shared
dodecahedron motifs that nucleate a cF432
crystal. TBPs form a high-density fluid in form
of an amorphous network and crystallize into
a Clathrate I crystal. Importantly, when sim-
ulated at intermediate volume fraction, both
systems exhibit two-step crystallization. This
finding was unexpected and the systems are
currently the only known examples of multi-
step phase transitions in a hard particle system.
Our aim here is to test whether NEC can re-
produce the findings previously made with the
LMC implementation in the HPMC package of
HOOMD-blue. This is a good test, because
such phase behavior is highly sensitive to mis-
takes in the collision prediction (i.e. problems
in the XenoSweep algorithm) and to violations
of the balance condition (i.e. incorrect statistics
in the NEC implementation). Our analysis uti-
lizes the same order parameters as in previous
work.42

Indeed, TTs (Fig. 12) and TBPs (Fig. 13)
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both reproduce all details of the reported
two-step crystallization pathways. This find-
ing demonstrates that our NEC algorithm fol-
lows the correct thermodynamics. Further-
more, NEC simulations of 4000 particles reach
initial crystal formation after 430 core-hours
(0.11 h/particle) for TTs and 292 core-hours
(0.07 h/particle) for TBPs. In contrast, pre-
vious LMC simulations required 1725 core-
hours (TT) for a system of 8000 TT particles
(0.22 h/particle) and 1800 core-hours for a sys-
tem of 20,000 TBP particles (0.09 h/particle)
for crystallization to start.42 This means our
observation is a first indication that it is possi-
ble to convert the speed-up derived from brief
trajectories and diffusion measurements into an
efficient equilibration of highly complex parti-
cle systems with a noticeable (factor 2.0) speed
advantage of NEC over LMC for TTs a slight
(factor 1.2) speed advantage for the highly as-
pherical TBPs. Still, given the difference in sys-
tem sizes, these numbers are difficult to com-
pare. Furthermore, because crystallization is a
stochastic process that becomes more probable
with larger system size, these speed advantages
might in fact be underestimations. Clearly,
more simulation work is necessary for a rigorous
comparison.

As an added benefit, our simulations directly
address a concern related to the way how Monte
Carlo trajectories approach equilibrium. By
design, Monte Carlo and molecular dynamics
methods must always reach the same equilib-
rium given sufficient equilibration time. This
equivalence of algorithms is, however, not nec-
essarily the case for trajectories: Monte Carlo
trajectories are distinct from trajectories pro-
duced by molecular dynamics at the micro-
scopic level. Molecular dynamics trajectories
are preferred, in principle, because they resem-
ble the dynamics of experiments more closely.
But molecular dynamics is not easily achievable
for polyhedra, because the equations that need
to be solved are highly non-linear. Event-driven
hard particle simulations work only for spheres
or with numerical approximations19 that might
again affect the trajectories. In contrast, Monte
Carlo is much simpler and therefore currently
preferentially applied to anisotropic particles.
A priori there is no guarantee that LMC reaches
equilibrium in the same way as integrating
Newton’s equations of motions. Is the use of
Monte Carlo as a replacement for molecular dy-
namics problematic when analyzing details of
phase transformations trajectories?

NEC does not fully reproduce Newtonian
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Figure 12: Analysis of a long NEC trajectory for tetrahedra with truncated tips and edges (TTs)
at volume fraction 61%. The system is known to crystallize in two steps via a prenucleation motif
with clusters.42 Views along the (111) direction depicting (a) the polyhedra and (b) spheres at the
centers of the polyhedra. Particles are colored for better visibility of the crystal, with fluid particles
translucent. A high-density fluid phase (orange, left) features a dodecahedron motif with particles
shared across dodecahedron (SD). The crystal phase (red, right) features dodecahedron that do not
share particles (NSD). (c) Characterization of the trajectory with order parameters. See Ref. 42
for a detailed description of the phases and order parameters.
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50%. The system is known to crystallize in two steps via a prenucleation motif with a dense
network.42 Views along the (100) direction depicting (a) the polyhedra and (b) spheres at the
centers of the polyhedra tetramers. Particles are colored for better visibility of the crystal, with
fluid particles translucent. A high-density fluid phase (blue) features tetrahedral coordination. The
crystal phase (red) is of type clathrate I. (c) Characterization of the trajectory with two order
parameters. See Ref. 42 for a detailed description of the phases and order parameters.
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dynamics but resembles it significantly better
than Monte Carlo.17 In fact, NEC can reason-
ably be considered intermediate to Monte Carlo
and molecular dynamics. Our results in Fig. 12
and 13 demonstrate that the phenomenon of
two-step crystallization remain present in NEC.
This indicates that the choice of simulation al-
gorithm is, after all, less crucial. We note that
these results are only a preliminary evaluation
of the phenomenon. More in-depth analysis will
be required in future to settle the issue more
conclusively.

7 Conclusion

We developed, implemented, and tested NEC
for convex hard polyhedra. The new simulation
method is an improvement over existing polyhe-
dron simulation codes. It is multiple times more
efficient. As an added benefit, NEC returns
particle trajectories that are closer to molecular
dynamics than conventional Monte Carlo sim-
ulation. Another advantage is that the virial
expression for pressure, often a helpful observ-
able to identify phase transformations, drops
out as a side product of using event chains with-
out additional effort.17,43–45 In LMC, pressure
must be computed separately and requires addi-
tional effort. Our method is a first step towards
more general and more versatile simulation al-
gorithms for anisotropic particles.

At the core of NEC lies the sweep collision
prediction algorithm XenoSweep. This algo-
rithm heavily builds on prior work in the com-
puter graphics community.22 XenoSweep solves
the classic problem of polyhedron collision pre-
diction and overlap detection46,47 in only 34
lines of pseudocode. The problem of collision
prediction is of interest to researchers work-
ing on a broad range of problems in computer
graphics, robotics, and granular dynamics.

Future extensions should advance our work in
two directions: improved handling of rotations
and generalization to anisotropic particles with
extended interaction, i.e. particles that are not
purely hard. Concerning the first point: While
we sped up the effect of translation moves by
about one order of magnitude, rotations remain

a bottleneck. This is apparent from Fig. 10. Ef-
ficiency reduces as the importance of rotations
increases, which is the case towards more as-
pherical particles. Future work could develop
collective rotations moves that resemble con-
ceptually the idea of event chains for transla-
tions. Such an improved algorithm has the po-
tential to reach a speed-up of up to one order
of magnitude across all convex polyhedra. Sec-
ond, the hard particle condition employed ex-
clusively in this work is a simplification and
limits comparison to experiments. Whereas
nanoparticle shape is often of central impor-
tance, interactions such as van der Waals forces,
electrostatic forces, or the effect of ligands can
typically not be entirely ignored. Developing a
general simulation method for anisotropic con-
vex or concave polyhedra with arbitrary inter-
actions remains a challenging open problem.
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