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Spatial variability is a prominent feature of various geographic phenomena such as climatic zones, USDA
plant hardiness zones, and terrestrial habitat types (e.g., forest, grasslands, wetlands, and deserts). However,
current deep learning methods follow a spatial-one-size-fits-all (OSFA) approach to train single deep neural
network models that do not account for spatial variability. Quantification of spatial variability can be challeng-
ing due to the influence of many geophysical factors. In preliminary work, we proposed a spatial variability
aware neural network (SVANN-I, formerly called SVANN) approach where weights are a function of location
but the neural network architecture is location independent. In this work, we explore a more flexible SVANN-
E approach where neural network architecture varies across geographic locations. In addition, we provide
a taxonomy of SVANN types and a physics inspired interpretation model. Experiments with aerial imagery
based wetland mapping show that SVANN-I outperforms OSFA and SVANN-E performs the best of all.
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1 INTRODUCTION

Deep learning techniques have resulted in significant accuracy improvements in image-based ob-
ject recognition [18, 36] and semantic segmentation [16] tasks. The use of multiple layers in these
techniques allows approximate modeling of all continuous functions [4]. Unlike traditional ma-
chine learning, which requires manual feature engineering, deep learning models interpret the
data and automatically generate features [6]. The current deep learning literature [10, 24, 42] fol-
lows a spatial one-size-fits-all (OSFA) approach in which deep neural networks are trained with
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Fig. 1. Spatial variability in houses and their surroundings.
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Fig. 2. Location knowledge provides context to distinguish between otherwise visually similar features.

no consideration of spatial variability. However, geographic properties differ across different areas
giving rise to varied geophysical and cultural phenomena. Failure to account for this variability
results in inconsistent models (e.g., object detection, segmentation) across geographic areas.

Knowledge of spatial variability is necessary to understand the spatial patterns of events and
objects over an area [38]. Machine learning models can be affected by two types of spatial vari-
ability: variability in the objects of interest themselves, which may differ in shape, size, or both,
and variability in the surroundings of an object of interest. For example, a computational model
that is trained to find residential housing in the United States may have difficulty with the task of
finding houses in other countries where housing construction is adapted to different local climates
or other conditions (cave houses in Petra, igloos in polar regions, etc.), and where the neighboring
surroundings may differ as well. Figure 1 shows examples of spatial variability in houses and their
surroundings across the globe.

Location knowledge provides relevant context that is necessary to distinguish between visually
similar imagery features. For example, the scenic views in Figure 2 appear almost identical. Once
the geographic location of each image is known, however, they are easily differentiated. Similarly,
knowledge of spatial neighborhood such as spatial co-location of a dense tree canopy with a river
can help highlight mangrove forests.

Spatial variability is a prominent feature of many geographic phenomena, including climate
zones, USDA plant hardiness zones [26], and terrestrial habitat types (e.g., forest, grasslands, wet-
lands, and deserts). Differences in climate zones affect the plant and animal life of a region. Simi-
larly, knowledge of plant hardiness zones helps gardeners and growers assess appropriate plants
for a region. Furthermore, laws, policies, and culture differ across countries and even states within
some countries. Spatial variability is considered as the second law of geography [22] and has been
adopted in regression models (e.g., geographically weighted regression (GWR) [8]) to quantify
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Table 1. Application Domain and Use Case of Spatial Variability

Application Domain Example Use Cases

Wetland mapping Wetlands in Florida (e.g., mangrove forest) are different from those in
Minnesota (e.g., marsh), which affects their water filtration, habitat
suitability, and carbon sequestration.

Cancer cell Cancer cells in pathology tissue samples are known to be spatially

identification heterogeneous [12].

Vehicle detection Vehicle types differ across India (e.g., auto-rickshaw) and the United
States (SUVs).

Residence detection House types and design (e.g., igloos, huts, flat-roof) differ across ge-
ographic areas.

Urban agriculture Detection of urban gardens: Urban gardens designs may vary across

rural (large ones), suburban (small backyard gardens), and urban (e.g.,
container gardens, community gardens) areas due to differing space
availability and risks (e.g., deer, rabbit).

Precision agriculture Soil properties may vary from one location to another due to various
factors.

the relationships among variables across a study area. In this work, we assess the effect of spatial
variability on pixel-level image segmentation built using deep learning techniques. Spatial vari-
ability is challenging to quantify due to many geophysical factors that influence it. For example,
soil scientists are often interested in understanding soil characteristics (e.g., carbon content) at a
location to determine yield. They have observed that soil samples (which are) collected in an area
of 100 m? can vary significantly depending on factors such as tillage, soil composition, vegetation,
land management practices, and topography [2].

This article examines the effect of spatial variability on different neural network architectures
and their weights. Previously, we proposed a spatial variability aware neural network (SVANN-I,
formerly called SVANN) approach where weights are a function of location, but the neural network
architecture is location independent [11]. We also described two types of training and prediction
methods and evaluated them using the aerial imagery from two geographic areas for mapping
urban gardens. In this work, we explore SVANN-E where the neural network architecture varies
across geographic locations. We evaluate SVANN-E with aerial imagery-based wetland mapping.
Broadly, the idea of SVANN-I is similar to interpolation and the idea of SVANN-E is similar to
extrapolation.

We also provide a taxonomy of SVANN types and an analogous interpretation using physics-
inspired models. For example, we can find an analogy between partial differential equations and
neural network models, where the set of (partial) derivatives is analogous to neural network archi-
tecture and the coefficients are analogous to the weights in the neural network. This analogy can
be extended to the training of models using spatial data from two locations and modeling the dif-
ferent phenomena using differential equations. An appropriate modeling of the variability across
the two locations (or two phenomena) will help improve the efficiency of models to understand,
interpret, and make predictions.

Application domains and example use cases where spatial variability is relevant and needs to be
considered include mapping human residences from satellite imagery (Figure 1), wetland mapping,
cancer diagnosis, and many others. Additional examples are listed in Table 1.
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Table 2. Table of Notations

Symbol Description

f Network architecture

K Number of layers in the network

locps Model location

wliow Weight of the i‘" layer at locy,

locs Sampling location

x(locs) Sample located at locg

y(locar) Output of model located at locyy

d Distance threshold

n Learning rate

d(locpg, locs) | Euclidean distance between locy; and locs

Ay (locs) Back-propagation error at layer i for sample at locs

iy Location-dependent network architecture
Contributions:

(1) We propose a taxonomy of spatial variability aware deep neural networks (SVANNSs)
that classifies networks by the level of spatial variability in their architectures and weights.

(2) We propose a SVANN-E approach where neural network architecture varies across geo-
graphic locations.

(3) We evaluate the SVANN-E approach using a new two-step extrapolation method, where step
1 is architecture selection and step 2 is weight calibration.

Scope: This article focuses on geographic and other low-dimensional space. Generalization of
the proposed approaches to model variability in high-dimensional spaces is outside the scope of
this work. We use convolutional neural networks (CNNs) for the experimental evaluation and
case studies. The evaluation dataset in this work is limited to high spatial resolution RGB imagery.
We do not evaluate SVANN against other types of neural networks. Detailed discussion of the
subtypes of SVANN-I and SVANN-E is also beyond the scope of this work.

Organization: The article is organized as follows. Section 2 reviews the details of SVANN-I
along with different training and prediction procedures and previous results. Section 3 describes
the SVANN-E approach and provides a formal result. Section 4 describes the evaluation frame-
work, giving details on the experiment design, evaluation task, evaluation metric, architecture,
and dataset. In Section 5, we present the results and a discussion of the effects of spatial variability.
Section 6 provides a SVANN taxonomy, a physics-inspired interpretation of the taxonomy, other
observations, and a brief review of the relationship of the ideas to the broader literature. Finally,
Section 7 concludes the article with future directions.

2 SVANN-I

To keep this article self-contained (for our readers), we summarize previous results [11] on SVANN-
I (formerly called SVANN) training and prediction procedures. We also provide a table of notations
(Table 2) that lists relevant symbols in the order of their use.

Spatial OSFA. Figure 3 shows the OSFA approach using a CNN with three layers: a convolution
layer, a spatial pooling layer, and a fully connected layer. The initial two layers perform feature
engineering and selection, whereas the fully connected layer is responsible for output prediction.
As can be seen, the approach does not account for the geographic location of training samples.
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Fig. 3. Spatial OSFA approach using a CNN with Fig. 4. SVANN-I using fixed-partition-based neigh-

three layers: convolution, spatial pooling, and a bors. Four distinct models are trained using train-
fully connected layer. ing samples from each zone.

In previous work, we showed that an OSFA approach underperforms on an object detection task
compared to SVANN-L.

SVANN-I. SVANN-I is a spatially explicit model where each neural network parameter (e.g.,
weight) is a function of the model’s location locys. The architecture f is composed of a sequence

of K weight functions or layers (w!(locyy), .. ., wK(locy)) that map a geographic location based
training sample x(locs) to a geographic location dependent output y(locyr) as follows:
y(locyr) = f(x(locs); w' (locyy), . .., wX (locyy)), (1)

where wi(locyy) is the weight vector for the i** layer. In this approach, we assume that the archi-
tecture is location invariant (i.e., K is constant for all the models). Figure 4 shows the SVANN-I
approach where the geographic space has four zones and deep learning models are trained for
each zone separately. For prediction, each zonal model predicts the test samples in its zone. We
classified SVANN-I by the choice of training and prediction procedures. Here, we describe those
procedures.

2.1 Training

There are at least two possible training procedures for SVANN-I, namely model-location-
dependent sampling for learning and distance-weighted model-location-dependent sampling for
learning.

2.1.1  Model-Location-Dependent Sampling for Learning. Model parameters for a location are
derived by training the model using labeled samples from nearby locations. There are three types
of nearest neighbor techniques that can be considered:

(a) Fixed-partition-based neighbors: Partitions (also known as zones) are used when policies and
laws vary by jurisdiction, such as countries, U.S. states, counties, cities, and climatic zones.
We use administrative, zonal partitions of geographic space to build individual models. This
approach is simple but relatively rigid as partitions are usually disjoint and seldom change.
Figure 4 illustrates SVANN-I model training using zone-based neighbors, where a sample
from each zone is used to train a model for that particular zone. Partitioning the data based
on zones can break up natural partitions (e.g., Zone 3 and Zone 4 in Figure 4.).

(b) Distance-bound nearest neighbors: In this training regime, a model at location (locyy) is trained
using nearby training samples within distance d. This model assumes that there are sufficient
training samples in the vicinity of the model locations. This approach may be more flexible
than a fixed-partition-based approach as the training samples can overlap across models and
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Fig. 5. Model-location-dependent sampling for learning.

the model locations can adapt to the spatial distribution (e.g., hotspots) of learning samples.
Figure 5(a) shows training of different models using training samples within distance d.

(c) K-nearest neighbors: In this training regime, a model at location (locyy) is trained using k-
nearest training samples in the geographic space. This model does not assume that there are
sufficient training samples in the geographic vicinity of model locations. Thus, this approach
may be more flexible than distance-bound nearest neighbors. Figure 5(b) shows training of
different models using k-nearest training samples.

All the samples selected for learning samples are treated equally in the training phase for model-
location-dependent sampling for learning.

2.1.2  Distance-Weighted Model-Location-Dependent Sampling for Learning. In this approach, all
training samples can be used to train models at different locations. To address spatial variability,
nearby samples are considered more important than further away samples by adapting the learning
rate. To update the neural network weights, the learning rate is multiplied by a back-propagation
error and a function of the distance between the selected learning sample and the location of the
model. This is equivalent to the learning rate being dependent on the distance between the labeled
sample and the location for which the model is being trained. The distance function can be thought
of as the inverse of the distance squared as follows:

Ui
- d?(locyy, locs)

where 7 is the learning rate, d is the distance between the location of learning sample (locs) and the
location of model (locyy), x* (locs) is the input to the i*" layer, and Ay’ (locs) is the back-propagated
error at layer i. This approach is similar to boosting techniques [9] where weak learners or hypothe-
ses are assigned weights based on their accuracy. It is also similar to GWR [8] where regression
coefficients and error are location dependent.

In the context of object detection or semantic segmentation in imagery via CNN, we note that
CNN may favor nearby pixels over distant pixels (by using convolutional and pooling layers)
within a single labeled sample (e.g., a 512 X 512 image), whereas the proposed method favors
nearby labeled samples over a set of distant labeled samples.

w'(locar) = w(locay) s x!(locg) * Ayi(locs), (2)

2.2 Prediction

Since multiple models are trained at different locations and a new sample may not be at those
locations, we developed two prediction methods, zonal and distance weighted, to combine the
predictions from multiple models for the new sample.
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Fig. 6. Prediction methods in SVANN-I.

2.2.1 Zonal Prediction. Given a fixed partitioning of the geographic space (e.g., counties), pre-
diction results from the model within the same partition will be used for prediction. If there are
multiple models within a partition, voting (e.g., majority, mean) can be used for prediction. Here
the votes from all models within the partition are treated equally. In addition, samples located at
zone boundaries are disjoint and are assigned to a single zone. Zonal prediction is suitable for mod-
els trained on model-location-dependent learning samples. Figure 6(a) shows an example with five
test samples (T} through T5) and four partitions, where each model in a partition is a binary clas-
sifier representing classes as (0, 1). The Zone 1 model is used to make predictions for test samples
T1 and T2. The Zone 2 model makes predictions for T3 and so on.

2.2.2 Distance-Weighted Prediction. Given a test sample and distances from all models, we
weight the predictions from each model as an inverse function of the distance. The highest
weighted prediction is assigned as the class of the test sample. Distance-weighted prediction is
suitable for models trained using distance-weighted model-location-dependent learning samples.
Figure 6(b) shows an example with two test samples and four models where each model predicts
sample class (0 or 1). Assume that the adjacent (top right) table shows the predictions and distance
(D(M;,T;))) of each model from a set of test samples that are used to calculate class weights and
assign class. All models are used to make a prediction for each test sample. For T;, the nearest
models (M, Ms3) predict its class as 1, whereas for T,, the nearest models (M3, M) predict its class
as 0. Therefore, the final assigned classes (shown in bottom right table) for the two test samples
are 1 and 0, respectively.

2.3 Validation Results

We evaluated SVANN-I on an urban garden detection task. Given aerial images from different
places and an object definition (for urban garden), we built a computational model to detect the
object having high precision and recall. The problem was challenging because of spatial variability,
the large size of the geographic area (order of 1,000 km?), and ambiguous annotations due to low
distinction of the gardens from their background. We trained individual models for two disjoint
and distant geographic regions (i.e., Hennepin County, Minnesota, and Fulton County, Georgia).
Table 3 shows that SVANN-I performed better than OSFA on the task, achieving a 14.34% higher
F1-score overall.

Characteristic-based interpretation showed that Fulton County had a significantly higher pro-
portion of raised beds to flat beds compared to Hennepin County. This may suggest different gar-
dening practices in the two regions. Further, this difference may explain the higher measure values
for SVANN-I models trained in Fulton County compared to the models trained in Hennepin County,
because detection of raised beds is less challenging due to their distinct boundaries. In terms of spa-
tial variability, we found that gardens differed in their texture across the two regions. In particular,
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Table 3. Comparison Results Between SVANN-I and OSFA

Approach Training Area Test Area Precision Recall F1-Score
SVANN-I Hennepin Hennepin 0.794 0.419  0.549
OSFA All Hennepin 0.713 0.341 0.461
SVANN-I Fulton Fulton 0.924 0.674  0.779
OSFA All Fulton 0.886 0.618 0.728
SVANN-I (Two zones)  All (trained by zone) ~ Hennepin + Fulton 0.836 0.485 0.614
OSFA All Hennepin + Fulton 0.771 0.412 0.537

Flat bed Raised bed Flatbed Raised bed

(a) Sample urban gardens in (b) Sample urban gardens in
Hennepin County, MN Fulton County, GA

Fig. 7. Spatial variability in the dataset. As shown, the backyard urban gardens in Fulton County, Georgia,
have greener surroundings compared to the backyard urban gardens in Hennepin county, Minnesota.

gardens in Fulton County, Georgia, had a higher green cover as compared to Hennepin County,
Minnesota. Figure 7 shows the spatial variability in the urban gardens across the two counties.
In summary, SVANN-I was better in modeling spatial variability due to differing garden beds and
surroundings across the two regions.

3 SVANN-E: A GENERAL APPROACH

All the object models in the urban garden evaluation were built using the same neural network
architecture. Neural network architectures are highly flexible in their ability to learn object charac-
teristics; however, spatial variability may require learning location-based characteristics for better
understanding. Further, different architectures may be suitable for different learning tasks. Thus,
we propose a more general SVANN approach (SVANN-E) where the model architecture can vary
at different locations.

SVANN-E is a spatially explicit model where neural network architecture is a function of model
location locy. The architecture f,.,, is a sequence of K weight functions or layers mapping a geo-
graphic location based training sample x(locs) to a geographic location dependent output y(locys)
as follows:

y(ZOCM) = flocM (x(locs); Wl(lOCM), R WK(IOCM))’ (3)

where wi(locy) is the weight vector for the i*" layer. Further, as the architecture varies across
locations, it implies that the weights are also a function of location. Lemma 3.1 formally describes
the relationship between SVANN-I and SVANN-E.

LEMMA 3.1. SVANN-I is a special case of SVANN-E.

Proor. When fj,,, in SVANN-E is location invariant, the approach reduces to SVANN-I. O
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Fig. 8. Experiment design used in the evaluation.

COROLLARY 3.1. Classification accuracy of SVANN-I can never be greater than the classification
accuracy of SVANN-E.

Proor SKETCH. The corollary follows from the fact that SVANN-I is a special case of SVANN-E.

4 EVALUATION FRAMEWORK

This section details the evaluation framework for the proposed SVANN-E approach. We explain the
experiment design, evaluation task, evaluation metric, and network architectures used to build the
models. We then describe the dataset and pre-processing steps including the computing resources
used for experiments.

4.1 Experiment Design

Since our goal here was a proof of concept, we limited our experiments to the special case of
training approaches. We trained individual models for two disjoint and distant geographic regions
(i.e., located in Hennepin County, Minnesota, and Miami-Dade County, Florida). Since counties
have rigid boundaries, this is a base case of fixed-partition-based neighbors where the number of
partitions is 2. Overall, we trained and compared six models categorized by their architecture and
training region. Model 1 and Model 2 were composed of the U-Net architecture and were trained
separately on the data from Hennepin County and Miami-Dade County. Model 3 and Model 4 were
composed of the SegNet architecture and were trained separately for each region. Model 5 (built
on the U-Net architecture) and Model 6 (built on the SegNet architecture) were based on a spatial
OSFA approach and were trained on imagery data from both areas together. Figure 8 shows the
experiment design used in the evaluation.

To evaluate the SVANN-I approach, Model 1, Model 3, Model 5, and Model 6 were evaluated on
the Hennepin County imagery. Model 2, Model 4, Model 5, and Model 6 (OSFA) were evaluated on
the Miami-Dade County imagery. The best-performing SVANN-I model for each region (Model 1
or Model 3 for Hennepin; Model 2 or 4 for Miami-Dade) were selected based on their validation
accuracy. These models then became the testing models used to evaluate the SVANN-E approach
against OSFA on the same datasets. We also evaluated combined models 1 and 2, combined mod-
els 3 and 4, and OSFA (i.e., models 5 and 6) on the complete dataset. Table 4 shows the set of
comparisons to assess spatial variability. Further detail on the architectures is provided in later
sections (Section 4.4).

4.2 Evaluation Task Definition

For evaluation, we built neural network models for wetland mapping using aerial data from two
different locations. A wetland refers to a flooded area of land having a distinct ecosystem based
on hydrology, hydric soils, and vegetation adapted for life in water-saturated soils [15]. Wetland
inventory maps are essential for their management, protection, and restoration. However, develop-
ment of highly accurate wetland inventories can be expensive and technically challenging. Further,
they require periodic updates due to seasonal changes, land use change, and climate change. De-
creases in funding to programs such as the National Wetlands Inventory (NWI) have led to
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Table 4. Assessment of Spatial Variability
Training Area Test Area p .
n n — Comparison 1
Model 1 Hennepin, MN Hennepin, MN ] Comparison 2
R - .. parison
SVANN-I Model 2 Miami-Dade, FL Miami-Dade, FL .
(U-Net) Model 1, Model 2 Hennepin, MN + Miami-Dade, FL- T C omparison 3

Model 3 Hennepin, MN Hennepin, MN ]
SVANN-I Model 4 Miami-Dade, FL Miami-Dade, FL i
(SegNet) Model 3, Model 4 Hennepin, MN + Miami-Dade, FL-{+ ﬁ
Model 1 or Model 3 | Hennepin, MN Hennepin, MN —| i
SVANN-E{ | Model 2 or Model 4 | Miami-Dade, FL Miami-Dade, FL
Model 1 or Model 3, Hennepin, MN + ]
Model 2 or Model 4 Miami-Dade, FL
. Hennepin, MN — |
(I(J)_ SNF;‘S{ Model 5 ﬁel:r’;ipg‘adﬂz Miami-Dade, FL | |
> Hennepin, MN + Miami-Dade, FL =177
. Hennepin, MN —
aneg]|  Models | R [ MmbueFL |
> Hennepin, MN + Miami-Dade, FL---}----'

/
TR
T TR
IWK'1 loc ‘
T R

Wi(loc) is the weight for the i layer
at geographical location loc.
K is the number of layers.

)

Aerial imagery Binary mask

~

Input Output

Fig. 9. Example input and output for the SVANN-E evaluation task.

changes in the procedure of wetland mapping from costly manual photo-interpretation [37] to
multi-fusion semi-automated approaches [17]. In semi-automated approaches [17], the maps are
produced through a combination of image segmentation and random forest classification along
with aerial photo interpretation. In this work, we are not evaluating the accuracy of wetland maps
constructed with a semi-automated approach; instead, we leverage the wetland maps from previ-
ous work to evaluate our approach.

We defined the task of wetland mapping as a pixel-level image segmentation process where we
label the pixels of an image as a class. Similar adjacent pixels are then grouped together into larger
image objects. In this work, we build binary classifiers useful for classifying a pixel as a wetland
or not. Figure 9 shows the input and output of the system, where the input data is RGB aerial
imagery along with a corresponding binary mask. The white region in the binary mask represents
the pixels that belong to the class. Both the imagery and mask are used to train the final semantic
segmentation models.

4.3 Evaluation Metrics

We used the F-1 metric and accuracy [23] to evaluate the results of the pixel-level image segmenta-
tion. The F-1 metric is a function of precision and recall, where precision is the ratio of true pixels
detected to the total number of pixels predicted by the classifier, and recall is the ratio of true pixels
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detected to the total number of pixels in the dataset. Overall, precision, recall, and accuracy can
be written as a function of true positives, true negatives, false positives, and false negatives.

Due to inherent differences in spatial variability and class imbalance between regional datasets,
as well as differences in features learned by the various CNN architectures, trained models make
predictions with varying confidence levels. To accommodate these differences, we use the ROC
(receiver operating characteristic) curve, similar to threshold moving, as an effective way to select
an optimal prediction threshold when evaluating each model [19]. The ROC curve observes the
trade-off between true-positive rate (TPR) and false-positive rate (FPR) across a complete
range of threshold values for a trained model, where the TPR is the ratio of true-positive pixels to
total number of positive pixels and the FPR is the ratio of false-positive pixels to the total number
of positive pixels. An optimal threshold maximizes the TPR and minimizes the FPR. Since there
is a trade-off between TPR and FPR, an optimal threshold is the shortest distance from a perfect
predictor that minimizes the trade-off cost [5].

4.4 Architecture

We built the learning models using two architectures: U-Net [29] and SegNet [1]. U-Net is an estab-
lished technique for image segmentation in biomedical images that has been adapted for aerial im-
agery [13]. SegNet was motivated by scene understanding applications and has also been used for
aerial imagery based land cover classification [21]. Both architectures follow an encoder-decoder
framework that combines local pixel information with its context. To achieve this, high-resolution
features from the contracting set of layers (i.e., context) are concatenated with the output from
the up-sampled images (i.e., localization). In the following, we first describe the two architectures
briefly and then highlight the difference between the two.

4.4.1 U-Net. U-Net has two paths: a contracting path and an expansive path. Each step in the
contracting path consists of two 3 X 3 convolutions (with padding), each followed by a rectified
linear unit (ReLU) and a 2 X 2 maxpooling operation with a stride of 2 for down-sampling (which
reduces each image dimension by half). Each step in the expansive path consists of up-sampling
(i-e., up-convolution), which doubles the image dimensions, followed by a 2 X 2 convolution that
reduces the number of feature channels by half. This is followed by concatenation with the corre-
sponding feature map from the contracting path, and two 3 X 3 convolutions each followed by a
ReLU. The final layer consists of a 1X 1 convolution layer mapping each image pixel to the class. In
addition, we use a dropout layer between each of the convolution layers to avoid over-fitting. Over-
all, U-Net consists of nine steps: five steps in the contracting path and four steps in the expansive
path. Figure 10 shows the U-Net architecture adapted from its original work [29].

4.4.2  SegNet. In SegNet, each step in the contracting path consists of two or three 3 X 3 convo-
lutions (with padding). The initial two steps have two convolutions and the later three steps have
three convolutions. This type of architecture allows SegNet to reuse weights trained on the VGG16
network [34]. However, for this work, we do not reuse any pre-trained weights (i.e., transfer learn-
ing) and leave that as an exercise for future work. After convolution, features are batch normalized,
followed by a ReLU and a 2 X 2 convolution that reduces the number of feature channels by half.
Each step in the expansive path is symmetric to its corresponding contracting path step. The final
layer consists of a softmax layer, which is a 1 X 1 convolution layer mapping each image pixel to
the class. Figure 11 shows the SegNet architecture adapted from its original work [1].

The two architectures differ as U-Net transfers the entire feature map from the contracting step
to its corresponding expansive path, whereas SegNet transfers pooling indices that are concate-
nated to the up-sampled decoder feature maps. Due to its use of feature indices over the entire
(pooled) feature map, SegNet is memory efficient but incurs a slight loss in accuracy. The two
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architectures differ further in the number of convolution layers (U-Net has 18 and SegNet has 26
convolution layers), use of dropout layers, and batch normalization. Dropout layers help to reduce
over-fitting in U-Net, and batch normalization helps improve training stability during SegNet-
based model learning.

4.5 Dataset

We used high spatial resolution aerial imagery and part of a set of wetland maps developed by
the NWI for the task of wetland mapping [7]. The imagery had red, green, and blue bands and a
spatial resolution of 3 inches. The imagery in Hennepin County was acquired between May 4, 2018

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 76. Publication date: November 2021.



SVANN-E: A General Approach 76:13
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Fig. 12. Location and types of wetland in the imagery.

and May 18, 2018, and the imagery in Miami-Dade County was acquired between March 22, 2019
and March 23, 2019. The wetland maps consist of more than 34 million features that represent the
extent, approximate location, wetland types, and surface water habitats in the United States and
U.S. trust territories. In this work, we limited our analysis to two study areas of 23.12 and 22.68 km?
located on the western border of Hennepin County, Minnesota, and the southern border of Miami-
Dade County, Florida, respectively. The two areas lie at a straight line distance of around 2,489 km
from each other. Figure 12(a) shows the location of study areas marked by black dots.

The initial wetland map dataset from NWI was in a shapefile format with wetlands mapped for
Southern Minnesota that have 74,018 features and Florida that have 1,037,009 features (these were
the smallest shapefiles that overlapped the area of study). All the features were classified according
to the Cowardin classification system [3]. To align and limit the analysis to the study area, the
features and imagery were first re-projected to the WGS84 reference system. Next, the shapefile
was cropped to the extent of the imagery region. Overall, the study regions had seven type of
wetlands: Estuarine and Marine Deepwater, Estuarine and Marine Wetland, Freshwater Emergent
Wetland, Freshwater Forested/Shrub Wetland, Freshwater Pond, Lake, and Riverine. Figure 12(b)
and (c) show the wetland type in the imagery for the two locations. A later section (Section 5.2)
describes the pixel distribution across different wetland types for the two regions to help assess
the effect of spatial variability.

4.5.1 Pre-Processing. The default dimensions of the image tiles provided by the counties were
10,630 X 10,280 from Hennepin County and 5,000 X 5,000 for Miami-Dade County. To train and
test the models, we partitioned the imagery (e.g., Figure 13(a) and (b)) and its mask into images
having the dimensions of 2,048 x 2,048 (Figure 13(c)), which were resized into tiles of size 1,024 X
1,024 (Figure 13(d)). Resizing the images from 2,048 x 2,048 to 1,024 x 1,024 tiles did not have
any significant impact on the model accuracy and resulted in a 4X reduction in model training
time. These steps resulted in 792 and 624 samples for the Hennepin and Miami-Dade regions,
respectively. Partitions at the edge of the imagery were removed, as a majority of the area was
empty.

The binary masks for training and testing were created in two steps. First, we used the polygons
in the shapefile to extract the wetland from the imagery for each region. We then used the extracted
wetland imagery to create the binary mask that would be used for training. Figure 13(a) shows
the initial imagery from Hennepin County, Figure 13(e) shows the extracted wetland imagery for
each image partition, and Figure 13(f) shows the corresponding binary mask where white pixels
represent wetlands. The dataset was divided into training (~80%), validation (~10%), and testing
(~10%) datasets to build, validate, and test the models, respectively.
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(c) Example input tile with
dimensions 2,048 2,048 px

(d) Input tile resized to 1,024x1,024 px (e) Extracted wetland imagery (f) Binary mask, where white represents
pixels belonging to a wetland type

Fig. 13. Pre-processing imagery and polygon-based wetland maps.

Resources. We used Python’s geopandas, rasterio, PIL, and numpy libraries for pre-processing
the imagery and shapefiles. We used Keras, a high-level deep learning interface for TensorFlow,
to implement U-Net and SegNet. Model training and evaluation was done on a 3.70-GHz Intel
Core i7-8700K CPU, NVIDIA GeForce GTX 1080Ti GPU, and 16 GB of 2,400-MHz DDR4 RAM.
Python-based implementation of SVANN can be found at the following link: https://github.com/
jayantgupta/SVANN.

Imagery for Miami-Dade County was provided by the Florida Department of Transportation'
over email correspondence, and imagery for Hennepin County was provided by the Minnesota
Geospatial Information Office that is hosted at USpatial servers® accessible over File Transfer
Protocol.

5 EXPERIMENTAL RESULTS

This section presents our spatial variability assessment results and spatial variability based
interpretation.

5.1 What Is the Effect of Spatial Variability?

To assess the effect of spatial variability on the performance of training models, we conducted
three sets of comparisons. As shown in Table 4, the SVANN-E approach that can vary in model
architecture demonstrated better performance by choosing better regional models trained using
the SVANN-I approach. For example, SVANN-E selected the U-Net model in the Hennepin region
and selected the SegNet model in the Miami-Dade region. Further, both SVANN-I approaches per-
formed better than OSFA on all the measures (precision, recall, F1-score, and accuracy) for all three
comparisons. The models tested on the Hennepin imagery had lower F1-scores and accuracy than
the models trained on the Miami-Dade imagery. Further, the accuracy values in the region for
Model 2 and Model 4 are very similar. This can be attributed to the large number of true positives
in the region (~99%). A true reflection of the performance could be estimated by observing the

https://www.fdot.gov/gis/aerialmain.shtm.
Zhttps://research.umn.edu/units/uspatial/.
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Table 5. Comparison Results Between SVANN-E, SVANN-I, and OSFA

Approach Model (M) Arch. Precision Recall F1 Test Acc. Val Acc.
Test Area: Hennepin County
SVANN-I Model 1 U-Net 0.516 0.614 0.561 65.3 66.41
SVANN-I  Model 3 SegNet 0.402 0.528  0.456 52.74 61.86
SVANN-E arg maxy,; ».(M1,M3) U-Net 0.516 0.614 0.561 65.3 66.41
OSFA Model 5 U-Net 0.503 0.48 0.491 60.6 62.7
OSFA Model 6 SegNet 0.361 0.498  0.418 50.06 37.55
Test Area: Miami-Dade County
SVANN-I  Model 2 U-Net 0.999 0.978  0.988 97.76 99.10
SVANN-I Model 4 SegNet 0.999 0.984 0.992 98.34 99.42
SVANN-E arg maxy,; x..(M2,M4) SegNet 0.999 0.984 0.992 98.34 99.42
OSFA Model 5 U-Net 0.993 0.599  0.747 59.91 67.51
OSFA Model 6 SegNet 0.994 0.708  0.827 70.7 72.1
Test Area: Hennepin County, Miami-Dade County
SVANN-I  Model 1, Model 2 U-Net 0.825 0.863 0.843 79.6 -
SVANN-I  Model 3, Model 4 SegNet 0.765 0.836  0.799 72.83 -
SVANN-E Model 1, Model 4 U-Net,SegNet 0.836 0.877 0.856 80.15 -
OSFA Model 5 U-Net 0.781 0.560  0.653 61.47 -
OSFA Model 6 SegNet 0.695 0.642  0.667 59.16 -

false negative results in the region as follows: Model 2 (1,428,316), Model 4 (1,030,699), Model 5
(26,215,973), and Model 6 (19,086,201). We can observe that OSFA (Model 5 and Model 6) has a sig-
nificantly high number of false negatives, which is also evident from the models’ F1 score. More
importantly, Model 2 has around 400,000 more false negatives than Model 4, which clearly shows
that SegNet models are performing better than U-Net models in the Miami-Dade region.

5.2 Spatial Variability Based Interpretation

The Hennepin and Miami-Dade regions have a different distribution of wetlands (Figure 12).
Table 6 shows the distribution of wetland types in the two regions by number of pixels. The study
region in Hennepin County is dominated by Freshwater Emergent Wetlands (860,403,782 pixels),
which mostly consist of perennial plants, and by Lakes (371,289,247 pixels). In contrast, the Miami-
Dade study region is dominated by Estuarine and Marine Deepwater (2,494,742,829) and Estuarine
and Marine Wetlands (1,386,268,631). Estuarine refers to deepwater tidal habitats that are adjacent
to tidal wetlands, whereas marine refers to open ocean and its associated high-energy coastline
[25]. The two regions therefore differ in the composition and density of their wetlands resulting
in high spatial variability across the two regions. The greater variability in wetland types in Hen-
nepin County likely contributed to the lower accuracy. With only two classes, the situation in
Miami is much simpler. Thus, SVANN-E is a better choice than SVANN-I due to its ability to have
location-dependent architectures, whereas OSFA’s rigid approach makes it unsuitable for use cases
showing such spatial variability.

6 DISCUSSION
6.1 SVANN Taxonomy

The degree of spatial variability can change depending on the underlying phenomenon. For exam-
ple, soil samples collected in a 100 X 100-m grid to assess their organic carbon content can vary
significantly depending on factors such as tillage, soil composition, vegetation, and land manage-
ment practices [2]. Table 7 shows a taxonomy of SVANNSs classified by the spatial variability in
their neural network architecture and weights. Since weights from one architecture cannot be
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Table 6. Distribution of Pixels Based on Wetland Type

Wetland Type No. of Pixels
Study Area: Hennepin County
Freshwater Forested/Shrub Wetland 89,888,186
Freshwater Emergent Wetland 860,403,782
Freshwater Pond 78,883,844
Riverine 4,283,724
Lake 371,289,247
Non-Wetland 2,447,959,167
Total Wetland 1,404,748,783
Study Area: Miami-Dade County
Estuarine and Marine Wetland 2,494,742.,829
Estuarine and Marine Deepwater 1,386,268,631
Non-Wetland 38,935,167
Total Wetland 3,881,011,460

Table 7. A SVANN Taxonomy by Spatial Variability in Neural Network
Architectures and Weights

@ Weights

g No Spatial Variability Spatial Variability
% No spatial variability OSFA SVANN-I

< Spatial variability SVANN-E

used for another architecture, one out of the four categories in the taxonomy is not relevant (i.e.,
cases with spatial variability in architecture and no spatial variability in weights). Here we discuss
the SVANN taxonomy and provide examples based on the modeling of streamflow in rice fields
(Figure 14).

OSFA represents cases with no spatial variability in weights and architecture across geographic
region(s), and thus cases where a single model can be used to represent all the region(s). An ex-
ample is a single streamflow model built using flat rice fields (e.g., rice fields in Texas) but used
globally. OSFA assumes that similar factors affect the streamflow across all the regions and can-
not address the challenges of spatial variability. However, OSFA models can serve as a common
baseline to compare different modeling techniques. In addition, model accuracy can be improved
by using richer features and using data and methods for pre-processing and post-processing.

The second category, SVANN-I, represents cases where the architecture does not have spatial
variability but the weights do vary spatially. Such cases require the use of separate weights cali-
brated for each spatially varying region (i.e., SVANN-I). The approach is analogous to interpolation
(I) of data within each spatially varying region. It is assumed that the phenomenon, function, or
object of interest (being modeled) is governed by similar factors across the regions. An example
is building separate streamflow models for flat rice fields in Texas, USA, and stepped rice fields in
Chiang Mai, Thailand (shown as the dashed green box in Figure 14). The models assume that sim-
ilar factors (represented by the architecture) affect the streamflow to varying degrees. Additional
examples can include the analysis of soil samples at a study area by building different models with
similar structure, number of parameters depending on the type (e.g., sand, clay), or the composition
of soil.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 76. Publication date: November 2021.



SVANN-E: A General Approach 76:17

e

M=

(a) Flat rice fields in Texas, USA. (b) Step field in Chiang Mai, Thailand.

i
1| DN for SVANN-I
1| streamflow
1

DNN for

i| Evapotranspiration
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Different SVANN-I training (Section 2.1) and prediction (Section 2.2) procedures can be adapted
to different levels of variability within the data. For example, a K-nearest neighbor based approach
can be used for the study area with smooth transition between two spatially distinct regions. In
contrast, fixed-partition-based neighbors and distance-based nearest neighbors can be used for
regions that show a sharp transition across the regions. Neural networks with a distance-weighted
learning rate utilize the flexibility of neural networks to address different levels of spatial variability
(low to high) across the regions.

Finally, SVANN-E represents cases where both the architecture and weights vary spatially. These
cases require selection of architecture suitable for each spatially distinct location. SVANN-E is
analogous to extrapolation (E) of data outside each spatially varying region. It is a highly flexible
approach that can model a phenomenon governed by different factors at different locations. For
example, a streamflow model for flat rice fields may consider factors such as evapotranspiration
and soil absorption, whereas a streamflow model for stepped rice fields may consider additional
factors such as surface water run-off.

As is evident from the preceding discussion, SVANN-E is the most flexible approach to model
spatially varying phenomena, functions, or objects of interest compared to SVANN-I and OSFA.
The flexibility comes at a higher cost in terms of computational complexity, time, and storage
resources. However, with the advances in cost-efficient computing and memory and time-efficient
software libraries, SVANN-based approaches can be the preferred option over OSFA approach.

6.2 Physics-Inspired Interpretation

We also provide a physical science based interpretation of the SVANN taxonomy to help relate
different types of SVANN techniques with existing physical science techniques. Instead of refer-
ring to neural network architecture and weights, we use the analogy of model and parameters and
classify the methods used under varying uncertainty. Table 8 shows a classification of physical sci-
ence methods based on the model-parameter levels of uncertainty. The table shows three relevant
categories based on the level of uncertainty in the model and parameters.

When there is no uncertainty in a model or parameter, the result is location-independent models
such as gravity, or Newton’s laws assuming that the model relates to processes on Earth at greater
than microscopic scale. Other examples include wind tunnel experiments and scaling techniques
used in aircraft design. From spatial statistics, spatial auto-regression (SAR) is also an example
where regression-based analysis is performed using a linear combination of weights.
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Table 8. Model-Parameter Uncertainty Based Classification of Physical
Science Methods

Parameter
— No Spatial Variability Spatial Variability
9
B | No spatial variability Location independent Interpolation
= Spatial variability Extrapolation
No two places on Earth
are alike

Interpolation methods are used to model processes when there is no model uncertainty and low
or high parameter uncertainty. For example, kriging-based methods assume uniform sampling
and a Gaussian process, and thus are suitable where a parameter has low uncertainty, whereas
nearest neighbor methods are useful where parameters have high uncertainty. In the case of
low uncertainty for both model and parameter, we can partition or cluster the data where each
partition represents a similar process and then interpolate or recalibrate the model within each
cluster.

Estimation of cases with high uncertainty in both the model and parameter require the use of
extrapolation methods. Examples are computation of RO in the SEIR model or inverse problems to
find the coefficients of the Navier Stokes equation for estimating wind drag for a new vehicle. In
spatial statistics, one example is GWR. More extreme forms of extrapolation would require revision
of the set of processes. For example, genetic modification of seeds would require transfer of a trait
from one species to another.

6.3 Other Observations

The OSFA model vs. SVANN. Given sufficient training samples and computational resources, SVANN
can provide better accuracy over spatial OSFA models. Indeed, extreme cases of training a singular
model may exhibit Simpson’s paradox [39], where global behavior may differ from local behavior.

SVANN and the number of training samples. SVANNs need more training samples than OSFA models
to capture location-specific features. However, spatial big data technologies [32] provide a wealth
of spatial data with opportunities to develop SVANN. Furthermore, citizen science [33] provides
ways where broader participation from scientists and volunteers can help generate relevant train-
ing data.

Computational challenges. The number of weights in a SVANN depends on the size of the network,
number of locations, and the number of samples. This adds to the existing high computational cost
of deep learning frameworks.

Parametric vs. nonparametric. A learning model that summarizes data with a set of parameters
of fixed size (independent of the number of training examples) is called a parametric model. In
contrast, the number of parameters in non-parametric models is dependent on the dataset [30]. In
general, a SVANN can be a non-parametric model if the number of locations is not constrained.
However, in special cases, locations may be constrained to a fixed number of zones (e.g., U.S. states,
countries) to create parametric SVANN models.

Using SVANN to assess spatial variability in a phenomenon. If OSFA and SVANN have similar per-
formance on a task, then this implies that the phenomenon does not exhibit spatial variability.
However, if SVANN outperforms OSFA, then the results support a spatial variability hypothesis in
the phenomenon.
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Spatial partitioning. The proposed training procedures do not require partitioning of input training
samples. In fixed-partition-based neighbors training (Section 2.1.1(a)), partitions are given as input
or are part of the application domain. For example, COVID-19 models are built based on political
boundaries (e.g., countries). In other situations, the application domain may be willing to explore
data-driven (e.g., spatial characteristics) partitioning, or the need to partition may depend on the
underlying task. These topics can be explored in future work.

Transfer learning. Transfer learning is the improvement of learning on a new task (target task)
through the transfer of knowledge from a related task (source task) that has been learned previ-
ously [27]. Transfer learning is used to address the data limitations in training deep neural net-
works. For example, transfer learning was used to improve land cover classification results, where
the weights trained using one dataset were used to improve the results on a well-known UC Merced
dataset [31]. Traditional transfer learning methods assume the data from two related tasks are in-
dependent and identically distributed. This is particularly relevant to spatial datasets where the
independent and identically distributed assumption does not hold due to spatial auto-correlation.

6.4 Relationship to the Broader Literature

Spatial variability has also been discussed as a challenge for detecting other geospatial objects
such as trees [41] and buildings [40] using remote sensing datasets. The SVANN-I approach (Sec-
tion 2.1.2) is similar to GWR [8] where regression coefficients and error are location dependent.
However, GWR relies on manual features to calculate model weights. In contrast, we use a multi-
layer CNN [20], such as YOLO [28] and U-Net [29], where initial layers perform feature engineering
and later layers are responsible for prediction.

The SVANN-E approach is also related to a common practice in data mining where we first
partition the data, and then develop a separate prediction model for each partition. The partitions
are formed in a high-dimensional space, which may mute geographic variability. In contrast, here
we use partitions in low-dimension geographic space (Section 2.1.1(a)). A similar approach was
followed in the work of Jiang et al. [14], where a spatial ensemble framework was proposed that
explicitly partitions input data in geographic space and uses a neighborhood effect to build models
within each zone.

The taxonomy proposed in this article aligns with the organization of the spatial structures in
the rainfall-run-off model [35]. For example, the Lumped structure is similar to OSFA, whereas
Semi-distributed and Distributed are similar to the SVANN approach.

7 CONCLUSION AND FUTURE WORK

In this work, we investigated a spatial variability aware neural network approach (SVANN-E) that
is more flexible than our previously proposed SVANN-I approach. Further, we show that SVANN-I
is a special case of SVANN-E. We also provide both a SVANN taxonomy based on the spatial vari-
ability in the weights and architecture as well as an analogous physical science based interpretation
of the taxonomy. We chose high spatial resolution imagery for the task of wetland mapping using
an established pixel-based image segmentation technique. We evaluated the SVANN approach us-
ing imagery from two geographic areas. The experimental results show that SVANN-I outperforms
OSFA and SVANN-E performs the best of all.

In the future, we plan to explore SVANNs with richer datasets (e.g., multi-spectral imagery, lidar
imagery). In addition, we will evaluate the use of various indices (e.g., NDVI, NDWI) to reduce the
effect of spatial variability on different models. Future work will also investigate the effect of spa-
tial variability on multi-class classifiers. Variants of U-Net and semantic segmentation techniques
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using other frameworks will be explored. Finally, for simplicity of the taxonomy, we divided the
cases of uncertainty into low and high. In addition, the taxonomy will be further formalized by
linguistic variables in fuzzy set theory.
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