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Spatial variability is a prominent feature of various geographic phenomena such as climatic zones, USDA

plant hardiness zones, and terrestrial habitat types (e.g., forest, grasslands, wetlands, and deserts). However,

current deep learning methods follow a spatial-one-size-fits-all (OSFA) approach to train single deep neural

networkmodels that do not account for spatial variability. Quantification of spatial variability can be challeng-

ing due to the influence of many geophysical factors. In preliminary work, we proposed a spatial variability

aware neural network (SVANN-I, formerly called SVANN ) approach where weights are a function of location

but the neural network architecture is location independent. In this work, we explore a more flexible SVANN-

E approach where neural network architecture varies across geographic locations. In addition, we provide

a taxonomy of SVANN types and a physics inspired interpretation model. Experiments with aerial imagery

based wetland mapping show that SVANN-I outperforms OSFA and SVANN-E performs the best of all.
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1 INTRODUCTION

Deep learning techniques have resulted in significant accuracy improvements in image-based ob-

ject recognition [18, 36] and semantic segmentation [16] tasks. The use of multiple layers in these

techniques allows approximate modeling of all continuous functions [4]. Unlike traditional ma-

chine learning, which requires manual feature engineering, deep learning models interpret the

data and automatically generate features [6]. The current deep learning literature [10, 24, 42] fol-

lows a spatial one-size-fits-all (OSFA) approach in which deep neural networks are trained with
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Fig. 1. Spatial variability in houses and their surroundings.

Fig. 2. Location knowledge provides context to distinguish between otherwise visually similar features.

no consideration of spatial variability. However, geographic properties differ across different areas

giving rise to varied geophysical and cultural phenomena. Failure to account for this variability

results in inconsistent models (e.g., object detection, segmentation) across geographic areas.

Knowledge of spatial variability is necessary to understand the spatial patterns of events and

objects over an area [38]. Machine learning models can be affected by two types of spatial vari-

ability: variability in the objects of interest themselves, which may differ in shape, size, or both,

and variability in the surroundings of an object of interest. For example, a computational model

that is trained to find residential housing in the United States may have difficulty with the task of

finding houses in other countries where housing construction is adapted to different local climates

or other conditions (cave houses in Petra, igloos in polar regions, etc.), and where the neighboring

surroundings may differ as well. Figure 1 shows examples of spatial variability in houses and their

surroundings across the globe.

Location knowledge provides relevant context that is necessary to distinguish between visually

similar imagery features. For example, the scenic views in Figure 2 appear almost identical. Once

the geographic location of each image is known, however, they are easily differentiated. Similarly,

knowledge of spatial neighborhood such as spatial co-location of a dense tree canopy with a river

can help highlight mangrove forests.

Spatial variability is a prominent feature of many geographic phenomena, including climate

zones, USDA plant hardiness zones [26], and terrestrial habitat types (e.g., forest, grasslands, wet-

lands, and deserts). Differences in climate zones affect the plant and animal life of a region. Simi-

larly, knowledge of plant hardiness zones helps gardeners and growers assess appropriate plants

for a region. Furthermore, laws, policies, and culture differ across countries and even states within

some countries. Spatial variability is considered as the second law of geography [22] and has been

adopted in regression models (e.g., geographically weighted regression (GWR) [8]) to quantify
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Table 1. Application Domain and Use Case of Spatial Variability

Application Domain Example Use Cases

Wetland mapping Wetlands in Florida (e.g., mangrove forest) are different from those in

Minnesota (e.g., marsh), which affects their water filtration, habitat

suitability, and carbon sequestration.

Cancer cell

identification

Cancer cells in pathology tissue samples are known to be spatially

heterogeneous [12].

Vehicle detection Vehicle types differ across India (e.g., auto-rickshaw) and the United

States (SUVs).

Residence detection House types and design (e.g., igloos, huts, flat-roof) differ across ge-

ographic areas.

Urban agriculture Detection of urban gardens: Urban gardens designs may vary across

rural (large ones), suburban (small backyard gardens), and urban (e.g.,

container gardens, community gardens) areas due to differing space

availability and risks (e.g., deer, rabbit).

Precision agriculture Soil properties may vary from one location to another due to various

factors.

the relationships among variables across a study area. In this work, we assess the effect of spatial

variability on pixel-level image segmentation built using deep learning techniques. Spatial vari-

ability is challenging to quantify due to many geophysical factors that influence it. For example,

soil scientists are often interested in understanding soil characteristics (e.g., carbon content) at a

location to determine yield. They have observed that soil samples (which are) collected in an area

of 100 m2 can vary significantly depending on factors such as tillage, soil composition, vegetation,

land management practices, and topography [2].

This article examines the effect of spatial variability on different neural network architectures

and their weights. Previously, we proposed a spatial variability aware neural network (SVANN-I,

formerly called SVANN ) approachwhere weights are a function of location, but the neural network

architecture is location independent [11]. We also described two types of training and prediction

methods and evaluated them using the aerial imagery from two geographic areas for mapping

urban gardens. In this work, we explore SVANN-E where the neural network architecture varies

across geographic locations. We evaluate SVANN-E with aerial imagery-based wetland mapping.

Broadly, the idea of SVANN-I is similar to interpolation and the idea of SVANN-E is similar to

extrapolation.

We also provide a taxonomy of SVANN types and an analogous interpretation using physics-

inspired models. For example, we can find an analogy between partial differential equations and

neural network models, where the set of (partial) derivatives is analogous to neural network archi-

tecture and the coefficients are analogous to the weights in the neural network. This analogy can

be extended to the training of models using spatial data from two locations and modeling the dif-

ferent phenomena using differential equations. An appropriate modeling of the variability across

the two locations (or two phenomena) will help improve the efficiency of models to understand,

interpret, and make predictions.

Application domains and example use cases where spatial variability is relevant and needs to be

considered include mapping human residences from satellite imagery (Figure 1), wetland mapping,

cancer diagnosis, and many others. Additional examples are listed in Table 1.
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Table 2. Table of Notations

Symbol Description

f Network architecture

K Number of layers in the network

locM Model location

w i

locM
Weight of the ith layer at locM

locS Sampling location

x (locS ) Sample located at locS
y (locM ) Output of model located at locM
d Distance threshold

η Learning rate

d (locM , locS ) Euclidean distance between locM and locS
Δyi (locS ) Back-propagation error at layer i for sample at locS
flocM Location-dependent network architecture

Contributions:

(1) We propose a taxonomy of spatial variability aware deep neural networks (SVANNs)

that classifies networks by the level of spatial variability in their architectures and weights.

(2) We propose a SVANN-E approach where neural network architecture varies across geo-

graphic locations.

(3) We evaluate the SVANN-E approach using a new two-step extrapolation method, where step

1 is architecture selection and step 2 is weight calibration.

Scope: This article focuses on geographic and other low-dimensional space. Generalization of

the proposed approaches to model variability in high-dimensional spaces is outside the scope of

this work. We use convolutional neural networks (CNNs) for the experimental evaluation and

case studies. The evaluation dataset in this work is limited to high spatial resolution RGB imagery.

We do not evaluate SVANN against other types of neural networks. Detailed discussion of the

subtypes of SVANN-I and SVANN-E is also beyond the scope of this work.

Organization: The article is organized as follows. Section 2 reviews the details of SVANN-I

along with different training and prediction procedures and previous results. Section 3 describes

the SVANN-E approach and provides a formal result. Section 4 describes the evaluation frame-

work, giving details on the experiment design, evaluation task, evaluation metric, architecture,

and dataset. In Section 5, we present the results and a discussion of the effects of spatial variability.

Section 6 provides a SVANN taxonomy, a physics-inspired interpretation of the taxonomy, other

observations, and a brief review of the relationship of the ideas to the broader literature. Finally,

Section 7 concludes the article with future directions.

2 SVANN-I

To keep this article self-contained (for our readers), we summarize previous results [11] on SVANN-

I (formerly called SVANN ) training and prediction procedures. We also provide a table of notations

(Table 2) that lists relevant symbols in the order of their use.

Spatial OSFA. Figure 3 shows the OSFA approach using a CNN with three layers: a convolution

layer, a spatial pooling layer, and a fully connected layer. The initial two layers perform feature

engineering and selection, whereas the fully connected layer is responsible for output prediction.

As can be seen, the approach does not account for the geographic location of training samples.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 76. Publication date: November 2021.



SVANN-E: A General Approach 76:5

Fig. 3. Spatial OSFA approach using a CNN with

three layers: convolution, spatial pooling, and a

fully connected layer.

Fig. 4. SVANN-I using fixed-partition-based neigh-

bors. Four distinct models are trained using train-

ing samples from each zone.

In previous work, we showed that an OSFA approach underperforms on an object detection task

compared to SVANN-I.

SVANN-I. SVANN-I is a spatially explicit model where each neural network parameter (e.g.,

weight) is a function of the model’s location locM . The architecture f is composed of a sequence

of K weight functions or layers (w1 (locM ), . . . ,wK (locM )) that map a geographic location based

training sample x (locS ) to a geographic location dependent output y (locM ) as follows:

y (locM ) = f (x (locS );w
1 (locM ), . . . ,wK (locM )), (1)

where w i (locM ) is the weight vector for the ith layer. In this approach, we assume that the archi-

tecture is location invariant (i.e., K is constant for all the models). Figure 4 shows the SVANN-I

approach where the geographic space has four zones and deep learning models are trained for

each zone separately. For prediction, each zonal model predicts the test samples in its zone. We

classified SVANN-I by the choice of training and prediction procedures. Here, we describe those

procedures.

2.1 Training

There are at least two possible training procedures for SVANN-I, namely model-location-

dependent sampling for learning and distance-weighted model-location-dependent sampling for

learning.

2.1.1 Model-Location-Dependent Sampling for Learning. Model parameters for a location are

derived by training the model using labeled samples from nearby locations. There are three types

of nearest neighbor techniques that can be considered:

(a) Fixed-partition-based neighbors: Partitions (also known as zones) are used when policies and

laws vary by jurisdiction, such as countries, U.S. states, counties, cities, and climatic zones.

We use administrative, zonal partitions of geographic space to build individual models. This

approach is simple but relatively rigid as partitions are usually disjoint and seldom change.

Figure 4 illustrates SVANN-I model training using zone-based neighbors, where a sample

from each zone is used to train a model for that particular zone. Partitioning the data based

on zones can break up natural partitions (e.g., Zone 3 and Zone 4 in Figure 4.).

(b) Distance-bound nearest neighbors: In this training regime, amodel at location (locM ) is trained

using nearby training samples within distanced . This model assumes that there are sufficient

training samples in the vicinity of the model locations. This approach may be more flexible

than a fixed-partition-based approach as the training samples can overlap across models and
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Fig. 5. Model-location-dependent sampling for learning.

the model locations can adapt to the spatial distribution (e.g., hotspots) of learning samples.

Figure 5(a) shows training of different models using training samples within distance d .
(c) K-nearest neighbors: In this training regime, a model at location (locM ) is trained using k-

nearest training samples in the geographic space. This model does not assume that there are

sufficient training samples in the geographic vicinity of model locations. Thus, this approach

may be more flexible than distance-bound nearest neighbors. Figure 5(b) shows training of

different models using k-nearest training samples.

All the samples selected for learning samples are treated equally in the training phase for model-

location-dependent sampling for learning.

2.1.2 Distance-WeightedModel-Location-Dependent Sampling for Learning. In this approach, all

training samples can be used to train models at different locations. To address spatial variability,

nearby samples are consideredmore important than further away samples by adapting the learning

rate. To update the neural network weights, the learning rate is multiplied by a back-propagation

error and a function of the distance between the selected learning sample and the location of the

model. This is equivalent to the learning rate being dependent on the distance between the labeled

sample and the location for which the model is being trained. The distance function can be thought

of as the inverse of the distance squared as follows:

w i (locM ) = w i (locM ) +
η

d2 (locM , locS )
∗ x i (locS ) ∗ Δyi (locS ), (2)

where η is the learning rate,d is the distance between the location of learning sample (locS ) and the
location of model (locM ), x i (locS ) is the input to the i

th layer, and Δyi (locS ) is the back-propagated
error at layer i . This approach is similar to boosting techniques [9] whereweak learners or hypothe-

ses are assigned weights based on their accuracy. It is also similar to GWR [8] where regression

coefficients and error are location dependent.

In the context of object detection or semantic segmentation in imagery via CNN, we note that

CNN may favor nearby pixels over distant pixels (by using convolutional and pooling layers)

within a single labeled sample (e.g., a 512 × 512 image), whereas the proposed method favors

nearby labeled samples over a set of distant labeled samples.

2.2 Prediction

Since multiple models are trained at different locations and a new sample may not be at those

locations, we developed two prediction methods, zonal and distance weighted, to combine the

predictions from multiple models for the new sample.
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Fig. 6. Prediction methods in SVANN-I.

2.2.1 Zonal Prediction. Given a fixed partitioning of the geographic space (e.g., counties), pre-

diction results from the model within the same partition will be used for prediction. If there are

multiple models within a partition, voting (e.g., majority, mean) can be used for prediction. Here

the votes from all models within the partition are treated equally. In addition, samples located at

zone boundaries are disjoint and are assigned to a single zone. Zonal prediction is suitable for mod-

els trained on model-location-dependent learning samples. Figure 6(a) shows an example with five

test samples (T1 through T5) and four partitions, where each model in a partition is a binary clas-

sifier representing classes as (0, 1). The Zone 1 model is used to make predictions for test samples

T1 and T2. The Zone 2 model makes predictions for T3 and so on.

2.2.2 Distance-Weighted Prediction. Given a test sample and distances from all models, we

weight the predictions from each model as an inverse function of the distance. The highest

weighted prediction is assigned as the class of the test sample. Distance-weighted prediction is

suitable for models trained using distance-weighted model-location-dependent learning samples.

Figure 6(b) shows an example with two test samples and four models where each model predicts

sample class (0 or 1). Assume that the adjacent (top right) table shows the predictions and distance

(D (Mi ,Ti ))) of each model from a set of test samples that are used to calculate class weights and

assign class. All models are used to make a prediction for each test sample. For T1, the nearest

models (M1,M3) predict its class as 1, whereas for T2, the nearest models (M3,M4) predict its class

as 0. Therefore, the final assigned classes (shown in bottom right table) for the two test samples

are 1 and 0, respectively.

2.3 Validation Results

We evaluated SVANN-I on an urban garden detection task. Given aerial images from different

places and an object definition (for urban garden), we built a computational model to detect the

object having high precision and recall. The problemwas challenging because of spatial variability,

the large size of the geographic area (order of 1,000 km2), and ambiguous annotations due to low

distinction of the gardens from their background. We trained individual models for two disjoint

and distant geographic regions (i.e., Hennepin County, Minnesota, and Fulton County, Georgia).

Table 3 shows that SVANN-I performed better than OSFA on the task, achieving a 14.34% higher

F1-score overall.

Characteristic-based interpretation showed that Fulton County had a significantly higher pro-

portion of raised beds to flat beds compared to Hennepin County. This may suggest different gar-

dening practices in the two regions. Further, this difference may explain the higher measure values

for SVANN-Imodels trained in Fulton County compared to themodels trained inHennepin County,

because detection of raised beds is less challenging due to their distinct boundaries. In terms of spa-

tial variability, we found that gardens differed in their texture across the two regions. In particular,
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Table 3. Comparison Results Between SVANN-I and OSFA

Approach Training Area Test Area Precision Recall F1-Score

SVANN-I Hennepin Hennepin 0.794 0.419 0.549

OSFA All Hennepin 0.713 0.341 0.461

SVANN-I Fulton Fulton 0.924 0.674 0.779

OSFA All Fulton 0.886 0.618 0.728

SVANN-I (Two zones) All (trained by zone) Hennepin + Fulton 0.836 0.485 0.614

OSFA All Hennepin + Fulton 0.771 0.412 0.537

Fig. 7. Spatial variability in the dataset. As shown, the backyard urban gardens in Fulton County, Georgia,

have greener surroundings compared to the backyard urban gardens in Hennepin county, Minnesota.

gardens in Fulton County, Georgia, had a higher green cover as compared to Hennepin County,

Minnesota. Figure 7 shows the spatial variability in the urban gardens across the two counties.

In summary, SVANN-I was better in modeling spatial variability due to differing garden beds and

surroundings across the two regions.

3 SVANN-E: A GENERAL APPROACH

All the object models in the urban garden evaluation were built using the same neural network

architecture. Neural network architectures are highly flexible in their ability to learn object charac-

teristics; however, spatial variability may require learning location-based characteristics for better

understanding. Further, different architectures may be suitable for different learning tasks. Thus,

we propose a more general SVANN approach (SVANN-E) where the model architecture can vary

at different locations.

SVANN-E is a spatially explicit model where neural network architecture is a function of model

location locM . The architecture flocM is a sequence of K weight functions or layers mapping a geo-

graphic location based training sample x (locS ) to a geographic location dependent output y (locM )
as follows:

y (locM ) = flocM (x (locS );w
1 (locM ), . . . ,wK (locM )), (3)

where w i (locM ) is the weight vector for the ith layer. Further, as the architecture varies across

locations, it implies that the weights are also a function of location. Lemma 3.1 formally describes

the relationship between SVANN-I and SVANN-E.

Lemma 3.1. SVANN-I is a special case of SVANN-E.

Proof. When flocM in SVANN-E is location invariant, the approach reduces to SVANN-I. �
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Fig. 8. Experiment design used in the evaluation.

Corollary 3.1. Classification accuracy of SVANN-I can never be greater than the classification

accuracy of SVANN-E.

Proof Sketch. The corollary follows from the fact that SVANN-I is a special case of SVANN-E.

4 EVALUATION FRAMEWORK

This section details the evaluation framework for the proposed SVANN-E approach.We explain the

experiment design, evaluation task, evaluation metric, and network architectures used to build the

models. We then describe the dataset and pre-processing steps including the computing resources

used for experiments.

4.1 Experiment Design

Since our goal here was a proof of concept, we limited our experiments to the special case of

training approaches. We trained individual models for two disjoint and distant geographic regions

(i.e., located in Hennepin County, Minnesota, and Miami-Dade County, Florida). Since counties

have rigid boundaries, this is a base case of fixed-partition-based neighbors where the number of

partitions is 2. Overall, we trained and compared six models categorized by their architecture and

training region. Model 1 and Model 2 were composed of the U-Net architecture and were trained

separately on the data fromHennepin County andMiami-Dade County. Model 3 andModel 4 were

composed of the SegNet architecture and were trained separately for each region. Model 5 (built

on the U-Net architecture) and Model 6 (built on the SegNet architecture) were based on a spatial

OSFA approach and were trained on imagery data from both areas together. Figure 8 shows the

experiment design used in the evaluation.

To evaluate the SVANN-I approach, Model 1, Model 3, Model 5, and Model 6 were evaluated on

the Hennepin County imagery. Model 2, Model 4, Model 5, and Model 6 (OSFA) were evaluated on

the Miami-Dade County imagery. The best-performing SVANN-I model for each region (Model 1

or Model 3 for Hennepin; Model 2 or 4 for Miami-Dade) were selected based on their validation

accuracy. These models then became the testing models used to evaluate the SVANN-E approach

against OSFA on the same datasets. We also evaluated combined models 1 and 2, combined mod-

els 3 and 4, and OSFA (i.e., models 5 and 6) on the complete dataset. Table 4 shows the set of

comparisons to assess spatial variability. Further detail on the architectures is provided in later

sections (Section 4.4).

4.2 Evaluation Task Definition

For evaluation, we built neural network models for wetland mapping using aerial data from two

different locations. A wetland refers to a flooded area of land having a distinct ecosystem based

on hydrology, hydric soils, and vegetation adapted for life in water-saturated soils [15]. Wetland

inventory maps are essential for their management, protection, and restoration. However, develop-

ment of highly accurate wetland inventories can be expensive and technically challenging. Further,

they require periodic updates due to seasonal changes, land use change, and climate change. De-

creases in funding to programs such as the National Wetlands Inventory (NWI) have led to
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Table 4. Assessment of Spatial Variability

Fig. 9. Example input and output for the SVANN-E evaluation task.

changes in the procedure of wetland mapping from costly manual photo-interpretation [37] to

multi-fusion semi-automated approaches [17]. In semi-automated approaches [17], the maps are

produced through a combination of image segmentation and random forest classification along

with aerial photo interpretation. In this work, we are not evaluating the accuracy of wetland maps

constructed with a semi-automated approach; instead, we leverage the wetland maps from previ-

ous work to evaluate our approach.

We defined the task of wetland mapping as a pixel-level image segmentation process where we

label the pixels of an image as a class. Similar adjacent pixels are then grouped together into larger

image objects. In this work, we build binary classifiers useful for classifying a pixel as a wetland

or not. Figure 9 shows the input and output of the system, where the input data is RGB aerial

imagery along with a corresponding binary mask. The white region in the binary mask represents

the pixels that belong to the class. Both the imagery and mask are used to train the final semantic

segmentation models.

4.3 Evaluation Metrics

We used the F-1 metric and accuracy [23] to evaluate the results of the pixel-level image segmenta-

tion. The F-1 metric is a function of precision and recall, where precision is the ratio of true pixels

detected to the total number of pixels predicted by the classifier, and recall is the ratio of true pixels
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detected to the total number of pixels in the dataset. Overall, precision, recall, and accuracy can

be written as a function of true positives, true negatives, false positives, and false negatives.

Due to inherent differences in spatial variability and class imbalance between regional datasets,

as well as differences in features learned by the various CNN architectures, trained models make

predictions with varying confidence levels. To accommodate these differences, we use the ROC

(receiver operating characteristic) curve, similar to threshold moving, as an effective way to select

an optimal prediction threshold when evaluating each model [19]. The ROC curve observes the

trade-off between true-positive rate (TPR) and false-positive rate (FPR) across a complete

range of threshold values for a trained model, where the TPR is the ratio of true-positive pixels to

total number of positive pixels and the FPR is the ratio of false-positive pixels to the total number

of positive pixels. An optimal threshold maximizes the TPR and minimizes the FPR. Since there

is a trade-off between TPR and FPR, an optimal threshold is the shortest distance from a perfect

predictor that minimizes the trade-off cost [5].

4.4 Architecture

We built the learning models using two architectures: U-Net [29] and SegNet [1]. U-Net is an estab-

lished technique for image segmentation in biomedical images that has been adapted for aerial im-

agery [13]. SegNet was motivated by scene understanding applications and has also been used for

aerial imagery based land cover classification [21]. Both architectures follow an encoder-decoder

framework that combines local pixel information with its context. To achieve this, high-resolution

features from the contracting set of layers (i.e., context) are concatenated with the output from

the up-sampled images (i.e., localization). In the following, we first describe the two architectures

briefly and then highlight the difference between the two.

4.4.1 U-Net. U-Net has two paths: a contracting path and an expansive path. Each step in the

contracting path consists of two 3 × 3 convolutions (with padding), each followed by a rectified

linear unit (ReLU) and a 2×2 maxpooling operation with a stride of 2 for down-sampling (which

reduces each image dimension by half). Each step in the expansive path consists of up-sampling

(i.e., up-convolution), which doubles the image dimensions, followed by a 2 × 2 convolution that

reduces the number of feature channels by half. This is followed by concatenation with the corre-

sponding feature map from the contracting path, and two 3 × 3 convolutions each followed by a

ReLU. The final layer consists of a 1×1 convolution layer mapping each image pixel to the class. In

addition, we use a dropout layer between each of the convolution layers to avoid over-fitting. Over-

all, U-Net consists of nine steps: five steps in the contracting path and four steps in the expansive

path. Figure 10 shows the U-Net architecture adapted from its original work [29].

4.4.2 SegNet. In SegNet, each step in the contracting path consists of two or three 3× 3 convo-
lutions (with padding). The initial two steps have two convolutions and the later three steps have

three convolutions. This type of architecture allows SegNet to reuse weights trained on the VGG16

network [34]. However, for this work, we do not reuse any pre-trained weights (i.e., transfer learn-

ing) and leave that as an exercise for future work. After convolution, features are batch normalized,

followed by a ReLU and a 2 × 2 convolution that reduces the number of feature channels by half.

Each step in the expansive path is symmetric to its corresponding contracting path step. The final

layer consists of a softmax layer, which is a 1 × 1 convolution layer mapping each image pixel to

the class. Figure 11 shows the SegNet architecture adapted from its original work [1].

The two architectures differ as U-Net transfers the entire feature map from the contracting step

to its corresponding expansive path, whereas SegNet transfers pooling indices that are concate-

nated to the up-sampled decoder feature maps. Due to its use of feature indices over the entire

(pooled) feature map, SegNet is memory efficient but incurs a slight loss in accuracy. The two
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Fig. 10. Architecture of U-Net where arrows represent the operations (i.e., convolution, maxpool, dropout,

and copy and concatenation). Feature dimensions are shown above the features, and the number of channels

in the convolution operation are shown above the arrows.

Fig. 11. SegNet architecture where the straight arrows represent the operations (i.e., convolution, maxpool,

and copy and concatenation), and the elbow connector arrow shows pooling indices used along with up-

sampled features. Feature dimensions are shown above the features, and the number of channels in the

convolution operation are shown above the arrows.

architectures differ further in the number of convolution layers (U-Net has 18 and SegNet has 26

convolution layers), use of dropout layers, and batch normalization. Dropout layers help to reduce

over-fitting in U-Net, and batch normalization helps improve training stability during SegNet-

based model learning.

4.5 Dataset

We used high spatial resolution aerial imagery and part of a set of wetland maps developed by

the NWI for the task of wetland mapping [7]. The imagery had red, green, and blue bands and a

spatial resolution of 3 inches. The imagery in Hennepin County was acquired betweenMay 4, 2018
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Fig. 12. Location and types of wetland in the imagery.

and May 18, 2018, and the imagery in Miami-Dade County was acquired between March 22, 2019

and March 23, 2019. The wetland maps consist of more than 34 million features that represent the

extent, approximate location, wetland types, and surface water habitats in the United States and

U.S. trust territories. In this work, we limited our analysis to two study areas of 23.12 and 22.68 km2

located on the western border of Hennepin County, Minnesota, and the southern border of Miami-

Dade County, Florida, respectively. The two areas lie at a straight line distance of around 2,489 km

from each other. Figure 12(a) shows the location of study areas marked by black dots.

The initial wetland map dataset from NWI was in a shapefile format with wetlands mapped for

Southern Minnesota that have 74,018 features and Florida that have 1,037,009 features (these were

the smallest shapefiles that overlapped the area of study). All the features were classified according

to the Cowardin classification system [3]. To align and limit the analysis to the study area, the

features and imagery were first re-projected to the WGS84 reference system. Next, the shapefile

was cropped to the extent of the imagery region. Overall, the study regions had seven type of

wetlands: Estuarine and Marine Deepwater, Estuarine and Marine Wetland, Freshwater Emergent

Wetland, Freshwater Forested/Shrub Wetland, Freshwater Pond, Lake, and Riverine. Figure 12(b)

and (c) show the wetland type in the imagery for the two locations. A later section (Section 5.2)

describes the pixel distribution across different wetland types for the two regions to help assess

the effect of spatial variability.

4.5.1 Pre-Processing. The default dimensions of the image tiles provided by the counties were

10,630 × 10,280 from Hennepin County and 5,000 × 5,000 for Miami-Dade County. To train and

test the models, we partitioned the imagery (e.g., Figure 13(a) and (b)) and its mask into images

having the dimensions of 2,048 × 2,048 (Figure 13(c)), which were resized into tiles of size 1,024 ×
1,024 (Figure 13(d)). Resizing the images from 2,048 × 2,048 to 1,024 × 1,024 tiles did not have

any significant impact on the model accuracy and resulted in a 4× reduction in model training

time. These steps resulted in 792 and 624 samples for the Hennepin and Miami-Dade regions,

respectively. Partitions at the edge of the imagery were removed, as a majority of the area was

empty.

The binary masks for training and testing were created in two steps. First, we used the polygons

in the shapefile to extract thewetland from the imagery for each region.We then used the extracted

wetland imagery to create the binary mask that would be used for training. Figure 13(a) shows

the initial imagery from Hennepin County, Figure 13(e) shows the extracted wetland imagery for

each image partition, and Figure 13(f) shows the corresponding binary mask where white pixels

represent wetlands. The dataset was divided into training (∼80%), validation (∼10%), and testing

(∼10%) datasets to build, validate, and test the models, respectively.
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Fig. 13. Pre-processing imagery and polygon-based wetland maps.

Resources. We used Python’s geopandas, rasterio, PIL, and numpy libraries for pre-processing

the imagery and shapefiles. We used Keras, a high-level deep learning interface for TensorFlow,

to implement U-Net and SegNet. Model training and evaluation was done on a 3.70-GHz Intel

Core i7-8700K CPU, NVIDIA GeForce GTX 1080Ti GPU, and 16 GB of 2,400-MHz DDR4 RAM.

Python-based implementation of SVANN can be found at the following link: https://github.com/

jayantgupta/SVANN.

Imagery for Miami-Dade County was provided by the Florida Department of Transportation1

over email correspondence, and imagery for Hennepin County was provided by the Minnesota

Geospatial Information Office that is hosted at USpatial servers2 accessible over File Transfer

Protocol.

5 EXPERIMENTAL RESULTS

This section presents our spatial variability assessment results and spatial variability based

interpretation.

5.1 What Is the Effect of Spatial Variability?

To assess the effect of spatial variability on the performance of training models, we conducted

three sets of comparisons. As shown in Table 4, the SVANN-E approach that can vary in model

architecture demonstrated better performance by choosing better regional models trained using

the SVANN-I approach. For example, SVANN-E selected the U-Net model in the Hennepin region

and selected the SegNet model in the Miami-Dade region. Further, both SVANN-I approaches per-

formed better than OSFA on all the measures (precision, recall, F1-score, and accuracy) for all three

comparisons. The models tested on the Hennepin imagery had lower F1-scores and accuracy than

the models trained on the Miami-Dade imagery. Further, the accuracy values in the region for

Model 2 and Model 4 are very similar. This can be attributed to the large number of true positives

in the region (∼99%). A true reflection of the performance could be estimated by observing the

1https://www.fdot.gov/gis/aerialmain.shtm.
2https://research.umn.edu/units/uspatial/.
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Table 5. Comparison Results Between SVANN-E, SVANN-I, and OSFA

Approach Model (M) Arch. Precision Recall F1 Test Acc. Val Acc.
Test Area: Hennepin County

SVANN-I Model 1 U-Net 0.516 0.614 0.561 65.3 66.41
SVANN-I Model 3 SegNet 0.402 0.528 0.456 52.74 61.86
SVANN-E arg maxVal_Acc (M1,M3) U-Net 0.516 0.614 0.561 65.3 66.41
OSFA Model 5 U-Net 0.503 0.48 0.491 60.6 62.7
OSFA Model 6 SegNet 0.361 0.498 0.418 50.06 37.55

Test Area: Miami-Dade County
SVANN-I Model 2 U-Net 0.999 0.978 0.988 97.76 99.10
SVANN-I Model 4 SegNet 0.999 0.984 0.992 98.34 99.42
SVANN-E arg maxVal_Acc (M2,M4) SegNet 0.999 0.984 0.992 98.34 99.42
OSFA Model 5 U-Net 0.993 0.599 0.747 59.91 67.51
OSFA Model 6 SegNet 0.994 0.708 0.827 70.7 72.1

Test Area: Hennepin County, Miami-Dade County
SVANN-I Model 1, Model 2 U-Net 0.825 0.863 0.843 79.6 –
SVANN-I Model 3, Model 4 SegNet 0.765 0.836 0.799 72.83 –
SVANN-E Model 1, Model 4 U-Net,SegNet 0.836 0.877 0.856 80.15 –
OSFA Model 5 U-Net 0.781 0.560 0.653 61.47 –
OSFA Model 6 SegNet 0.695 0.642 0.667 59.16 –

false negative results in the region as follows: Model 2 (1,428,316), Model 4 (1,030,699), Model 5

(26,215,973), and Model 6 (19,086,201). We can observe that OSFA (Model 5 and Model 6) has a sig-

nificantly high number of false negatives, which is also evident from the models’ F1 score. More

importantly, Model 2 has around 400,000 more false negatives than Model 4, which clearly shows

that SegNet models are performing better than U-Net models in the Miami-Dade region.

5.2 Spatial Variability Based Interpretation

The Hennepin and Miami-Dade regions have a different distribution of wetlands (Figure 12).

Table 6 shows the distribution of wetland types in the two regions by number of pixels. The study

region in Hennepin County is dominated by Freshwater Emergent Wetlands (860,403,782 pixels),

which mostly consist of perennial plants, and by Lakes (371,289,247 pixels). In contrast, the Miami-

Dade study region is dominated by Estuarine and Marine Deepwater (2,494,742,829) and Estuarine

and Marine Wetlands (1,386,268,631). Estuarine refers to deepwater tidal habitats that are adjacent

to tidal wetlands, whereas marine refers to open ocean and its associated high-energy coastline

[25]. The two regions therefore differ in the composition and density of their wetlands resulting

in high spatial variability across the two regions. The greater variability in wetland types in Hen-

nepin County likely contributed to the lower accuracy. With only two classes, the situation in

Miami is much simpler. Thus, SVANN-E is a better choice than SVANN-I due to its ability to have

location-dependent architectures, whereas OSFA’s rigid approachmakes it unsuitable for use cases

showing such spatial variability.

6 DISCUSSION

6.1 SVANN Taxonomy

The degree of spatial variability can change depending on the underlying phenomenon. For exam-

ple, soil samples collected in a 100 × 100-m grid to assess their organic carbon content can vary

significantly depending on factors such as tillage, soil composition, vegetation, and land manage-

ment practices [2]. Table 7 shows a taxonomy of SVANNs classified by the spatial variability in

their neural network architecture and weights. Since weights from one architecture cannot be
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Table 6. Distribution of Pixels Based on Wetland Type

Wetland Type No. of Pixels

Study Area: Hennepin County

Freshwater Forested/Shrub Wetland 89,888,186

Freshwater Emergent Wetland 860,403,782

Freshwater Pond 78,883,844

Riverine 4,283,724

Lake 371,289,247

Non-Wetland 2,447,959,167

Total Wetland 1,404,748,783

Study Area: Miami-Dade County

Estuarine and Marine Wetland 2,494,742,829

Estuarine and Marine Deepwater 1,386,268,631

Non-Wetland 38,935,167

Total Wetland 3,881,011,460

Table 7. A SVANN Taxonomy by Spatial Variability in Neural Network

Architectures and Weights

used for another architecture, one out of the four categories in the taxonomy is not relevant (i.e.,

cases with spatial variability in architecture and no spatial variability in weights). Here we discuss

the SVANN taxonomy and provide examples based on the modeling of streamflow in rice fields

(Figure 14).

OSFA represents cases with no spatial variability in weights and architecture across geographic

region(s), and thus cases where a single model can be used to represent all the region(s). An ex-

ample is a single streamflow model built using flat rice fields (e.g., rice fields in Texas) but used

globally. OSFA assumes that similar factors affect the streamflow across all the regions and can-

not address the challenges of spatial variability. However, OSFA models can serve as a common

baseline to compare different modeling techniques. In addition, model accuracy can be improved

by using richer features and using data and methods for pre-processing and post-processing.

The second category, SVANN-I, represents cases where the architecture does not have spatial

variability but the weights do vary spatially. Such cases require the use of separate weights cali-

brated for each spatially varying region (i.e., SVANN-I). The approach is analogous to interpolation

(I) of data within each spatially varying region. It is assumed that the phenomenon, function, or

object of interest (being modeled) is governed by similar factors across the regions. An example

is building separate streamflow models for flat rice fields in Texas, USA, and stepped rice fields in

Chiang Mai, Thailand (shown as the dashed green box in Figure 14). The models assume that sim-

ilar factors (represented by the architecture) affect the streamflow to varying degrees. Additional

examples can include the analysis of soil samples at a study area by building different models with

similar structure, number of parameters depending on the type (e.g., sand, clay), or the composition

of soil.
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Fig. 14. Pre-processing imagery and polygon-based wetland maps.

Different SVANN-I training (Section 2.1) and prediction (Section 2.2) procedures can be adapted

to different levels of variability within the data. For example, a K-nearest neighbor based approach

can be used for the study area with smooth transition between two spatially distinct regions. In

contrast, fixed-partition-based neighbors and distance-based nearest neighbors can be used for

regions that show a sharp transition across the regions. Neural networks with a distance-weighted

learning rate utilize the flexibility of neural networks to address different levels of spatial variability

(low to high) across the regions.

Finally, SVANN-E represents caseswhere both the architecture andweights vary spatially. These

cases require selection of architecture suitable for each spatially distinct location. SVANN-E is

analogous to extrapolation (E) of data outside each spatially varying region. It is a highly flexible

approach that can model a phenomenon governed by different factors at different locations. For

example, a streamflow model for flat rice fields may consider factors such as evapotranspiration

and soil absorption, whereas a streamflow model for stepped rice fields may consider additional

factors such as surface water run-off.

As is evident from the preceding discussion, SVANN-E is the most flexible approach to model

spatially varying phenomena, functions, or objects of interest compared to SVANN-I and OSFA.

The flexibility comes at a higher cost in terms of computational complexity, time, and storage

resources. However, with the advances in cost-efficient computing and memory and time-efficient

software libraries, SVANN-based approaches can be the preferred option over OSFA approach.

6.2 Physics-Inspired Interpretation

We also provide a physical science based interpretation of the SVANN taxonomy to help relate

different types of SVANN techniques with existing physical science techniques. Instead of refer-

ring to neural network architecture and weights, we use the analogy of model and parameters and

classify the methods used under varying uncertainty. Table 8 shows a classification of physical sci-

ence methods based on the model-parameter levels of uncertainty. The table shows three relevant

categories based on the level of uncertainty in the model and parameters.

When there is no uncertainty in a model or parameter, the result is location-independent models

such as gravity, or Newton’s laws assuming that the model relates to processes on Earth at greater

than microscopic scale. Other examples include wind tunnel experiments and scaling techniques

used in aircraft design. From spatial statistics, spatial auto-regression (SAR) is also an example

where regression-based analysis is performed using a linear combination of weights.
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Table 8. Model-Parameter Uncertainty Based Classification of Physical

Science Methods

Interpolation methods are used to model processes when there is no model uncertainty and low

or high parameter uncertainty. For example, kriging-based methods assume uniform sampling

and a Gaussian process, and thus are suitable where a parameter has low uncertainty, whereas

nearest neighbor methods are useful where parameters have high uncertainty. In the case of

low uncertainty for both model and parameter, we can partition or cluster the data where each

partition represents a similar process and then interpolate or recalibrate the model within each

cluster.

Estimation of cases with high uncertainty in both the model and parameter require the use of

extrapolation methods. Examples are computation of R0 in the SEIR model or inverse problems to

find the coefficients of the Navier Stokes equation for estimating wind drag for a new vehicle. In

spatial statistics, one example is GWR.More extreme forms of extrapolationwould require revision

of the set of processes. For example, genetic modification of seeds would require transfer of a trait

from one species to another.

6.3 Other Observations

TheOSFAmodel vs. SVANN. Given sufficient training samples and computational resources, SVANN

can provide better accuracy over spatial OSFAmodels. Indeed, extreme cases of training a singular

model may exhibit Simpson’s paradox [39], where global behavior may differ from local behavior.

SVANNand the number of training samples. SVANNs needmore training samples thanOSFAmodels

to capture location-specific features. However, spatial big data technologies [32] provide a wealth

of spatial data with opportunities to develop SVANN. Furthermore, citizen science [33] provides

ways where broader participation from scientists and volunteers can help generate relevant train-

ing data.

Computational challenges. The number of weights in a SVANN depends on the size of the network,

number of locations, and the number of samples. This adds to the existing high computational cost

of deep learning frameworks.

Parametric vs. nonparametric. A learning model that summarizes data with a set of parameters

of fixed size (independent of the number of training examples) is called a parametric model. In

contrast, the number of parameters in non-parametric models is dependent on the dataset [30]. In

general, a SVANN can be a non-parametric model if the number of locations is not constrained.

However, in special cases, locations may be constrained to a fixed number of zones (e.g., U.S. states,

countries) to create parametric SVANN models.

Using SVANN to assess spatial variability in a phenomenon. If OSFA and SVANN have similar per-

formance on a task, then this implies that the phenomenon does not exhibit spatial variability.

However, if SVANN outperforms OSFA, then the results support a spatial variability hypothesis in

the phenomenon.
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Spatial partitioning. The proposed training procedures do not require partitioning of input training

samples. In fixed-partition-based neighbors training (Section 2.1.1(a)), partitions are given as input

or are part of the application domain. For example, COVID-19 models are built based on political

boundaries (e.g., countries). In other situations, the application domain may be willing to explore

data-driven (e.g., spatial characteristics) partitioning, or the need to partition may depend on the

underlying task. These topics can be explored in future work.

Transfer learning. Transfer learning is the improvement of learning on a new task (target task)

through the transfer of knowledge from a related task (source task) that has been learned previ-

ously [27]. Transfer learning is used to address the data limitations in training deep neural net-

works. For example, transfer learning was used to improve land cover classification results, where

theweights trained using one dataset were used to improve the results on awell-knownUCMerced

dataset [31]. Traditional transfer learning methods assume the data from two related tasks are in-

dependent and identically distributed. This is particularly relevant to spatial datasets where the

independent and identically distributed assumption does not hold due to spatial auto-correlation.

6.4 Relationship to the Broader Literature

Spatial variability has also been discussed as a challenge for detecting other geospatial objects

such as trees [41] and buildings [40] using remote sensing datasets. The SVANN-I approach (Sec-

tion 2.1.2) is similar to GWR [8] where regression coefficients and error are location dependent.

However, GWR relies on manual features to calculate model weights. In contrast, we use a multi-

layer CNN [20], such as YOLO [28] andU-Net [29], where initial layers perform feature engineering

and later layers are responsible for prediction.

The SVANN-E approach is also related to a common practice in data mining where we first

partition the data, and then develop a separate prediction model for each partition. The partitions

are formed in a high-dimensional space, which may mute geographic variability. In contrast, here

we use partitions in low-dimension geographic space (Section 2.1.1(a)). A similar approach was

followed in the work of Jiang et al. [14], where a spatial ensemble framework was proposed that

explicitly partitions input data in geographic space and uses a neighborhood effect to build models

within each zone.

The taxonomy proposed in this article aligns with the organization of the spatial structures in

the rainfall–run-off model [35]. For example, the Lumped structure is similar to OSFA, whereas

Semi-distributed and Distributed are similar to the SVANN approach.

7 CONCLUSION AND FUTURE WORK

In this work, we investigated a spatial variability aware neural network approach (SVANN-E) that

is more flexible than our previously proposed SVANN-I approach. Further, we show that SVANN-I

is a special case of SVANN-E. We also provide both a SVANN taxonomy based on the spatial vari-

ability in theweights and architecture aswell as an analogous physical science based interpretation

of the taxonomy. We chose high spatial resolution imagery for the task of wetland mapping using

an established pixel-based image segmentation technique. We evaluated the SVANN approach us-

ing imagery from two geographic areas. The experimental results show that SVANN-I outperforms

OSFA and SVANN-E performs the best of all.

In the future, we plan to explore SVANNs with richer datasets (e.g., multi-spectral imagery, lidar

imagery). In addition, we will evaluate the use of various indices (e.g., NDVI, NDWI) to reduce the

effect of spatial variability on different models. Future work will also investigate the effect of spa-

tial variability on multi-class classifiers. Variants of U-Net and semantic segmentation techniques
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using other frameworks will be explored. Finally, for simplicity of the taxonomy, we divided the

cases of uncertainty into low and high. In addition, the taxonomy will be further formalized by

linguistic variables in fuzzy set theory.
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