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Cluster detection is important and widely used in a variety of applications, including public health, pub-

lic safety, transportation, and so on. Given a collection of data points, we aim to detect density-connected

spatial clusters with varying geometric shapes and densities, under the constraint that the clusters are sta-

tistically significant. The problem is challenging, because many societal applications and domain science

studies have low tolerance for spurious results, and clusters may have arbitrary shapes and varying densi-

ties. As a classical topic in data mining and learning, a myriad of techniques have been developed to detect

clusters with both varying shapes and densities (e.g., density-based, hierarchical, spectral, or deep clustering

methods). However, the vast majority of these techniques do not consider statistical rigor and are susceptible

to detecting spurious clusters formed as a result of natural randomness. On the other hand, scan statistic

approaches explicitly control the rate of spurious results, but they typically assume a single “hotspot” of

over-density and many rely on further assumptions such as a tessellated input space. To unite the strengths

of both lines of work, we propose a statistically robust formulation of a multi-scale DBSCAN, namely Sig-

nificant DBSCAN+, to identify significant clusters that are density connected. As we will show, incorpora-

tion of statistical rigor is a powerful mechanism that allows the new Significant DBSCAN+ to outperform

state-of-the-art clustering techniques in various scenarios. We also propose computational enhancements to

speed-up the proposed approach. Experiment results show that Significant DBSCAN+ can simultaneously

improve the success rate of true cluster detection (e.g., 10–20% increases in absolute F1 scores) and substan-

tially reduce the rate of spurious results (e.g., from thousands/hundreds of spurious detections to none or just

a few across 100 datasets), and the acceleration methods can improve the efficiency for both clustered and

non-clustered data.
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1 INTRODUCTION

Detection of significant clusters are of great value to a variety of domain applications, including
public health, public safety, transportation, economics, and so on. In public health, for example, epi-
demiologists have used significant clusters (a.k.a, hotspots) to monitor and alert the public about
disease outbreaks (e.g., legionnaires’ disease, leukemia) [17, 22]. The Research Surveillance Pro-
gram at the National Cancer Institute has included significant clustering (e.g., SaTScan) as an
important methodology and tool [2]. In public safety, police officers use clusters of crime cases
to identify neighborhoods with abnormally high crime rates or locate serial criminals [12]. In
transportation, many local governments (e.g., U.S. states) have launched “Zero Death” initiatives
to save lives from traffic-related accidents. Clustering helps planners find roads with significantly
high concentration of car accidents or pedestrian fatality, which are indicators of potentially un-
safe driving conditions (e.g., damaged side walks, pot holes). In the COVID-19 pandemic, there
is also an opportunity of using clustering to group local communities with similar characteris-
tics (e.g., portfolios of COVID-19 cases, economic status, demographics) to effectively gather and
share management experience and improve the policy making process for members in each group.
Significant clustering in general is also an important topic in spatial data mining [6, 35, 36].

In many of these societal use cases or applications, there is often a high cost associated with
spurious patterns. For example, identifying a region as a crime cluster by mistake can greatly re-
duce the number of people visiting the region, lower property values and hurt local businesses.
Similarly, in domain science studies (e.g., Earth science, mechanical engineering), clustering tech-
niques can assist researchers in generating interesting and non-trivial hypotheses for further field
or laboratory investigation. Spurious results in such exploratory analyses may lead to a huge waste
of resources and time, defeating the purpose of assisting or accelerating science discovery. For this
reason, robust control of the rate of spurious results can be invaluable for further improving the
value of clustering in these broad applications.

Given a collection of points in a domain (e.g., a confined geographic space, a bounded multi-
dimensional space), we aim to detect clusters of arbitrary shapes and varying densities, where
the points in each cluster are density-connected by a density level θ , and the output clusters are
statistically significant under a specified significance level α .
Data mining and learning communities have developed a vast literature on clustering, including

partition-based methods (e.g., k-means, CLARANS), local density-based methods (e.g., DBSCAN
and DENCLUE), spectral graph theory based methods (e.g., normalized-cut, spectral clustering),
hierarchical methods (e.g., OPTICS, CURE, Chameleon [16], and HDBSCAN [8]), local similarity
methods [25, 29], two-dimensional spatial projection methods [27, 28], unsupervised feature selec-
tion [31, 47], deep clustering [15, 30, 40], and many more [45, 46]. A majority of these methods, at a
high level, formulate a cluster as a spatially contiguous point set of high-density, and high-density
sets disconnected by a low-density gap are considered as individual clusters. Arbitrary shapes of
clusters and variations of densities across clusters are major challenges that have attracted con-
tinued and common interest in the literature. For example, hierarchical density-based clustering
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(HDBSCAN [1, 7, 8, 23]) is a recent state-of-the-art developed by the original authors of DBSCAN
and OPTICS to address both of these challenges, with reduced need of parameter selection. How-
ever, most clustering techniques still have not incorporated statistical robustness, and thus are
more likely to yield many spurious clusters in the output [8, 20, 42, 44]. On the other hand, scan
statistic approaches are commonly studied in statistics communities [3, 14, 17, 22, 34], which also
aim to identify sub-regions with over-density or intensification of events. Scan statistic methods
explicitly model randomness embedded in real-world datasets and incorporate significance test-
ing to eliminate spurious clusters. However, a common assumption in scan statistics is that there
exists a single over-density region in the data, and test statistics (e.g., likelihood ratios [17]) are
mostly defined based on it, limiting the use of scan statistic methods in data with many clusters
of varying densities (e.g., detecting multiple clusters as a single piece [18, 21]). Also unlike most
clustering techniques in data mining, scan statistic approaches typically do not consider the con-
tiguity of density within a cluster. In addition, majority of developments in scan statistics are for
predefined-shape-based clusters (e.g., circular [3, 17], rectangular [22], ring [12], and linear [37])
due to extensive computational cost, and the irregular-shape extensions often rely on tessellated
input spaces (e.g., county maps) and aggregated data [9–11, 26].

To unite the strengths of these two tracks of research in data mining and statistics communities,
our preliminary work proposed a Significant DBSCAN approach [42], which incorporates statis-
tical rigor into the density-based DBSCAN clustering to robustly remove spurious detections. We
also developed a dual-convergence algorithm to improve the efficiency of the approach. However,
Significant DBSCANwasmainly designed for single-density scenarios (i.e., one-pair of (ϵ,minPts )).
When it comes to clusters with varying densities, a pre-specified density list based on uniform sam-
pling was employed, but we found the solution quality may suffer if the rigidly chosen list does
not match well with the true densities. In addition, the method under-performs when moderate
overlaps exist between local-density-distributions of clusters (detailed in Section 3.3).
In this extension, we propose a Significant DBSCAN+ with three contributions to address the

limitations of the preliminary work. First, we propose a one-at-a-time (OaaT) density selection
strategy to better separate and approximate the various true densities of clusters. Second, we de-
velop a multi-scale DBSCAN sub-routine to improve the ability of Significant DBSCAN+ in cor-
rectly capturing a cluster with a wider range of input densities (i.e., reduced sensitivity). Finally,
we propose a Virtual sequence visit (VISIT) approach to select a stable set of clusters for signif-
icance testing to reduce scattered cluster results caused by overlaps in cluster densities. Computa-
tional enhancements are also presented to improve the efficiency of Significant DBSCAN+.
Experiment results show that the proposed Significant DBSCAN+ can greatly reduce the

number of spurious clusters, and meanwhile, improve the success rate of true cluster detec-
tion compared to existing clustering techniques as well as our preliminary work. In addition,
the algorithmic acceleration can greatly reduce computational cost. We also create and share a
new benchmark dataset containing 5,400 individual datasets under a large variety of scenarios
(e.g., with and without clusters; different effect sizes of clusters) to help future evaluation and
comparison.
Scope and outline: The scope of the present study is to improve the statistical robustness

of clustering techniques, and to encourage the use of statistically robust extensions and formu-
lations of clustering in the data mining community. Significant DBSCAN+ is not directly ap-
plicable to many scan statistic problems where control data (e.g., underlying population in dis-
ease surveillance) is needed. In addition, Significant DBSCAN+ favors clusters that are density-
connected or density-contiguous at a density-level θ (Section 2). In other words, low-density gaps
are considered as separations between clusters (same as most clustering techniques in data min-
ing), which differs from top-down region-enumeration based approaches. The rest of the article is
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organized as follows: Section 2 describes the problem definition, Section 3 summarizes our prelim-
inary work on Significant DBSCAN, Section 4 shows the extended version Significant DBSCAN+,
Section 5 presents experiment results, and finally, Section 6 concludes the article with future
directions.

2 PROBLEM DEFINITION

2.1 Basic Concepts

Definition 2.1 (Density-connected Cluster Cθ ). Given a density criterion θ for a local neighbor-
hood around a point, a clusterCθ is density-connected if any two points inCθ are mutually reach-
able through a sequence of in-cluster points that satisfy θ . This implies that any point inCθ either
directly satisfies θ or is part of the local neighborhood of a point satisfying θ . In DBSCAN, a crite-
rion θ is determined by a (ϵ ,minPts) pair, where ϵ is the radius of a local neighborhood andminPts
is the minimum number of points required.

Definition 2.2 (Base Clustering AlgorithmALGbase ). A clustering algorithm (e.g., DBSCAN or its
variation in this article) that is used as the base for the incorporation of statistical robustness.

Definition 2.3 (Bounded DomainD). A bounded sub-space of a d-dimensional space. A boundD
can be defined by a set of closed intervals along each dimension, hyperplane or hypersphere.D de-
termines the range of values allowed for points inRd . Examples ofD include a two-dimensional in-
terval specified by [xmin ,xmax ,ymin ,ymax ], a city boundary, or sub-spaces within a city-boundary
where certain events can be located (e.g., a traffic accident).

Definition 2.4 (Point Process). A statistical process that governs the generation of a point distri-
bution inD. It determines the probability or probability density of having a point at each location
loc ∈ D. A homogeneous point process (e.g., complete spatial randomness) has identical probabil-
ity or probability density across all locations (i.e., no true cluster). In contrast, a biased/clustered
point process has higher probabilities for locations inside the clusters and lower outside.

Definition 2.5 (Hypotheses H0 and H1). For clustering, the null hypothesis H0 states that a point
distribution in D is generated by a homogeneous point process (i.e., no true cluster), whereas the
alternative hypothesis H1 states that data in D follows a clustered point process, and there exist
sub-spaces of D where probabilities or probability densities are higher.

Definition 2.6 (Test StatisticT ). A random variable used to summarize a set of sample data points
(e.g., a set of points in a clusterCθ ) and test the hypotheses. In this context, it can be considered as
a score calculated from the data (e.g., density of a cluster). The significance of the score determines
whether to reject the null hypothesis.

2.2 Formal Problem Formulation

The problem is formally defined as follows:
Inputs:

• A distribution of N points in D;
• A set of parameters Spara—including those related to local density criteria θ—for a base
clustering algorithm ALGbase (e.g., DBSCAN or its variation in this article);
• A test statistic T ;
• A significance level α .

Output:

• Statistically significant clusters of arbitrary shapes and varying densities.
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Goals:

• Solution quality (e.g., measured by precision, recall and number of spurious clusters);
• Computational efficiency.

Constraints:

• Output clusters satisfy significance level α . Equivalently, spurious clusters generated by H0

are only detected in less than αM ofM datasets;
• Output clusters are density-connected under criteria θ ∈ Spara (i.e., no low-density gaps);
• Output clusters are not altered by computational enhancements.

The problem definition shows themain scope of the article, which is to enable statistically robust
clustering for a base algorithmALGbase (e.g., DBSCAN). Note thatALGbase is only a sub-routine of
a statistically robust formulation, whose final output is not necessarily (and often not) a subset of
clusters (that are significant) from a typical ALGbase execution. As we will show in Sections 3 and
4, incorporation of statistical rigor enables more flexible design for the overall clustering process,
and thus may serve as a potentially powerful mechanism to improve the results of a broader set of
clustering techniques. For example, using the single-density based DBSCAN as ALGbase , the sig-
nificant version is flexible in detecting clusters with varying densities while being able to remove
spurious detections (Section 3.2).

3 PRELIMINARY RESULTS AND LIMITATIONS

Our preliminary work [42] explores a Significant DBSCAN to make the clustering algorithm ro-
bust against spurious patterns. In this section, we will summarize the general formulation, com-
putational enhancements as well as limitations.

3.1 Significant DBSCAN: The General Formulation

Here we introduce the statistical modeling (e.g., test statistic) of Significant DBSCAN and show
the testing procedure for DBSCAN with a single density criterion (ϵ,minPts ). The multi-density
version will be discussed next in Section 3.2.

3.1.1 Modeling of Statistical Significance. To model the statistical significance of clustering re-
sults, it is necessary to know how the clusters are searched and selected during the detection
process. Thus, a base clustering algorithm is needed before statistical significance can be modeled.
Our preliminary work [42] uses DBSCAN as the base clustering algorithm mainly due to its wide
adoption and large user community.1

In Reference [42], we explore several types of test statistics for hypothesis testing as shown
in Table 1. For a given cluster from a point distribution, its test statistic value will be used to
determine if it can be generated by the null hypothesis under significance level α . According to
Table 1, both density and likelihood ratio based designs require calculation of the cluster’s volume
in the input domain D (e.g., geometric area in two-dimensional Euclidean space). In top-down
based enumeration frameworks (e.g., the spatial scan statistic where all candidate regions of a
pre-defined parametric shape are exhausted), it is trivial to calculate the volumes or areas (e.g.,
πr 2 for circular shaped candidates). However, area calculation is not well-defined in the DBSCAN
framework, whose output clusters are represented by “maximal point sets”.
Furthermore, each test statistic relies on certain normalization to make different clusters compa-

rable [41]. For example, density uses the cluster area as a normalization. Onemajor disadvantage of
density is its strong bias toward small clusters [22, 41] (e.g., a cluster of highest density will always

1The technique received the Test-of-Time Award at ACM SIGKDD in 2014 due to its impact.
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Table 1. Example Candidates of Test Statistics for DBSCAN

Test statistic Area of

cluster

Normalization Bias toward

small

clusters

Computation

Density d Required Area Yes [22, 41] Area dependent

Likelihood ratio
lr

Required Area + Null hypothesis Yes (less)
[34, 39, 41]

Area dependent

Cluster size n N/A Search context dependent,
e.g., fixed radius (or scale),
(ϵ,minPts ) in DBSCAN

No O (1) for a given
cluster

Fig. 1. A 2,000-point realization of the null hypothesis H0. The parameters in parenthesis are DBSCAN
(ϵ,minPts) and HDBSCAN (minSize).

have the smallest area). To reduce the effect, likelihood ratio additionally incorporates hypothesis-
based likelihoods into the normalization. However, as shown by many studies, the design is still
biased toward clusters of smallest scales [33, 34, 41, 43], which can be especially problematic for
bottom-up style (i.e., local-density-based) clustering algorithms such as DBSCAN.
Cluster size n (i.e., cardinality of a point-set) is another measure used in scan statistic type

of methods [41] that does not require the area. To make clusters comparable, it does require
some normalizing or constraining conditions to be enforced into the cluster search process;
otherwise a bigger set of points is always superior, resulting in non-meaningful outputs. For
DBSCAN, the constraining conditions come naturally through the local density criterion θ defined
by (ϵ,minPts ). The search radius ϵ and minimum number of points minPts clearly define the
conditions that valid cluster points must satisfy, constraining the size of valid clusters (point sets)
n = |Cθ |.

In addition, in References [7, 8, 23], one issue discussed is the existence of “small” clusters in
the output, which are likely results of natural randomness rather than meaningful clusters. Our
preliminary work Significant DBSCAN extends this good start by formalizing the definition of
“small” using statistical significance. Previously, to mitigate the “small” cluster issue, a remedy
used is to enforce a hard-threshold on minimum cluster size (e.g., default “5” in Reference [1]).
While intuitively small clusters (e.g., with only 2 points) are likely to be spurious patterns, spurious
patterns are not necessarily small. Figure 1 shows the results of DBSCAN and HDBSCAN on a
random point distribution generated by a homogeneous point process. In this point distribution,
all clusters detected are chance patterns. Although the chance patterns are indeed small in a few
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ALGORITHM 1: Monte Carlo estimation of nα

Require:

• Total number of points N and spatial domain D
• DBSCAN parameters (ϵ,minPts )
• Significance level α and number of Monte Carlo trials M

1: nList = new List(M )

2: for i = 1 to M do

3: datar = getRandomPointDistribution(N , D)

4: cluster s = DBSCAN(datar , ϵ ,minPts )

5: nList (i ) = max(cluster s .getSizes())

6: end for

7: nlist = nlist .sort(’DESC’)

8: return nα = nList (ceil (α ·M ))

results (e.g., Figure 1(b), (d), and (e)), they turn out to be quite large (e.g., thousands of points) in
others. Thus, the exact definition of “small” has to depend on many factors, such as the input data,
the DBSCAN (or HDBSCAN) criterion θ , the desired significance level and the null hypothesis.
Thus, Significant DBSCAN uses cluster size n = |Cθ | as the test statistic, and uses significance

testing to identify the exact threshold of “small” (i.e., minimum cluster size nmin ) under all these
factors to remove spurious patterns (Figure 1).

3.1.2 Significance Testing for a Single (ϵ,minPts ) Pair. Here we discuss significance testing for
a given pair of (ϵ,minPts ) in DBSCAN (the multi-density version is discussed next in Section 3.2).
Denote the significance level as α (e.g., 0.01 and 0.05), the size of a detected cluster C as nC , the
total number of points in the point distribution as N , and the domain of the point distribution as
D. Further, denote pnull (nC ,N ,D, ϵ,minPts ) as the probability of having a cluster of size nC or
greater in a N -point distribution in domain D generated by a homogeneous point process (i.e., p
value). We have the following definition:

Definition 3.1. Cluster C is statistically significant if its p-value pnull (nC ,N ,D, ϵ,minPts ) < α .

Currently there still does not exist a known statistical model that can calculate the probability
pnull in a closed-form, as this requires considering the search and expansion process of DBSCAN
as well as the randomness associated with distributing N points in an input domainD, which can
have irregular boundaries. Thus, we use a Monte Carlo method to estimate pnull .

3.1.3 A Baseline Algorithm with Monte Carlo Estimation. In Monte Carlo estimation (Algo-
rithm 1), we generate M simulation trials to approximate the distribution of cluster size n (i.e.,
the test statistic) in point distributions generated by a homogeneous point process. In each trial,
we first generate a random N point distribution using the homogeneous point process in domain
D, and then run DBSCANwith the same input (ϵ,minPts ) to get the best or maximum cluster size
n̂ in the trial. After M trials, we will have M best n̂ values. By sorting the M values in descending
order, we can estimate the p-value pnull of a cluster C detected from the real data by checking its
rank r in the sorted list: pnull (nC ,N ,D, ϵ,minPts ) = r/M . Note that M has to be at least 1/α to
evaluate the significance.
We reject the null hypothesis and mark cluster C as significant if pnull < α (or r < αM). Equiv-

alently, we just need to find the (αM )th largest value in the sorted list and use that as a threshold
(denoted as nα ) of cluster size to filter out non-significant clusters.

3.1.4 Summary of a Dual-convergence Algorithm. To speed up the additional computation in-
troduced by the Monte Carlo estimation, we proposed a dual-convergence algorithm to reduce
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unnecessary executions of the exact DBSCAN sub-routine across Monte Carlo trials. To avoid re-
dundancy, here we will summarize the three key points of the algorithm (details in Reference [42]):

• Upper-bound for significant clusters:We use a discrete version of DBSCAN, where exact
point distribution is discretized into a grid, and original ϵ-based density criteria are projected
onto the discrete space. The upper-bounding search neighborhood (a sub-grid) is then the
union of all possible ϵ-neighborhoods with a center inside the center cell of the sub-grid.
Further, using integral image, the number of points in the sub-grid can be calculated inO (1)
time, greatly reducing the cost. If the upper bound cluster size returned by the discrete scan
is smaller than the detected cluster candidate, then the exact DBSCAN is skipped.
• Early-termination for spurious clusters: Since rejecting a spurious cluster only requires
100α% of trials with a better test statistic value, the rest of the trials can be skipped as soon
as the condition is met. Our probability analysis [42] shows that early-termination is highly
effective for reducing computational time on spurious clusters (e.g., the probability of termi-
nating at the 20th trial, of 1000, is 0.52 for α = 0.01).
• Dual-convergence coordination: Since the list of DBSCAN clusters (e.g., tens or hundreds
as shown in Figure 1) that need significance testing is a mixture of significant and spurious
clusters, neither of the two techniques discussed above works well alone. Dual-convergence
provides coordination between the two components andmanages the cluster list to gradually
improve speed-up as more trials are executed.

3.2 Finding Clusters of Varying Densities with Uniform Sampling

Using the significance testing framework, the single density criterion based DBSCAN can be easily
extended to identify clusters of varying densities. This is made possible by robust elimination of
spurious results at each density level.
Denote Sθ = {θ1,θ2, . . . ,θk } as a set of density criteria for DBSCAN. Further, denote Sall =

Strue ∪ Sspur ious as the set of all clusters detected by all criteria in Sθ , where Strue = {Sθitrue | ∀i =
1, . . . ,k } and Sspur ious = {Sθispur ious | ∀i = 1, . . . ,k } are the sets of all true clusters and spurious

clusters detected using each θi ∈ Sθ for an input dataset, respectively. Using the original DBSCAN,
even if all the clusters Sall across different densities can be obtained by separately executing DB-
SCAN with each density criterion in Sθ , it is difficult to merge all the results in Sall due to two

main reasons: (1) There can be heavy overlaps between sets of clusters Sθi
all

detected from different
density criteria θi , and it is hard to select which subset to keep, and (2) aggregating results Sall
across densities merges not only true clusters Sθitrue of each density θi but also spurious clusters

Sθispur ious , thereby substantially increasing the number of spurious patterns detected. As we will

show in the following, the significance modeling offers an effective way to greatly mitigate these
two issues. The multi-density framework in Significant DBSCAN has two key components:

• Density sampling:During the initialization, the minimum and maximum density θmin and
θmax are estimated from the input data in D. Then, uniform sampling is used to generate k
density criteria to construct a list Sθ , where θ values in Sθ are sorted in descending order.
• Sequential θ-feeding and removal:Multi-density detection in Significant DBSCAN starts
with the highest density criterion θmax in Sθ due to the one-way directionality of density
in DBSCAN, i.e., a higher density criterion is not satisfied by lower density clusters. Thus,
starting from θmax helps avoid identifying clusters at other density levels. After all clusters

Sθi
all

are detected using a criterion θi , spurious results S
θi
spur ious are filtered out through sig-

nificance testing and the rest are pushed into the final output set. To avoid these clusters
being re-detected at a lower density level, the associated points of the clusters are removed
from the data before moving into the next density criterion.
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Fig. 2. Example result on clustered data generated by H1 (noise: gray).

Fig. 3. Limitations of our previous work on Significant DBSCAN.

As we can see, Significant DBSCAN, combined with the sequential high-to-low search strategy,
can effectively mitigate the issue of overlapping clusters across different θ , and robustly remove
spurious patterns in the aggregated results (full details in Reference [42]). Finally, Figure 2 shows an
example result of Significant DBSCAN comparedwith other approaches, i.e., DBSCAN, HDBSCAN
[1, 7, 8, 23] and the spatial scan statistic (SaTScan [3, 17]). In the experiments, we varied parameters
of other approaches (e.g., DBSCAN, HDBSCAN)while the parameters for Significant DBSCAN (i.e.,
the number of density criteria k and significance level α ) are kept the same across all the datasets.

3.3 Limitations

In order for Significant DBSCAN to perform well in this multi-density framework, two conditions
need to be met. First, an estimated density (i.e., one of the k uniform samples in [θmin ,θmax ]) needs
to be from a working range (e.g., not too high so that a substantial portion of the true cluster is
missed) to approximately capture a true cluster at the closest density level. Second, the densities
of the true clusters are either very similar or very different. DenoteC1 andC2 as two true clusters
having densities θ1 and θ2, respectively. Since a point process—no matter following H0 or H1—is
a random process, the exact densities across local neighborhoods will not be identical; instead,
they follow a random distribution. Figure 3 shows several illustrative scenarios of local density
distributions of true clustersC1 andC2. The X axis represents the density of a local neighborhood,
and the Y axis represents the frequency of local neighborhoods having a density value on X. As
shown in Figure 3(a), when their density distributions (independent from spatial distributions) are
very similar, a working density criterion θ forC1 can also well captureC2, so the approach remains
working well. Similarly, in Figure 3(b), the density distributions are well separated so a working
density criterion θ for C2 will not falsely detect a significant proportion of C1. However, when
there exists a moderate overlap between the density distributions (Figure 3(c)), there is a high risk
that a lower density cluster (e.g., C1) will be shattered in the final output. Examples can also be
found in Figure 2(c) and (d).
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Fig. 4. Overall frameworks of Significant DBSCAN (previous work) and Significant DBSCAN+ (extension).

4 SIGNIFICANT DBSCAN+

4.1 Overall Framework

Figure 4(b) shows the overall framework of Significant DBSCAN+, which is an extension of our
previous work to address its limitations. Comparing the architectures in Figure 4(a) and Figure 4(b),
there are three major changes in Significant DBSCAN+:

• First, we propose two strategies that work collaboratively to improve the chance of selecting
a working density criterion θ to capture the true clusters:

(1) Instead of the rigid uniform-sampling based density selection, we employ a One-at-a-

Time (OaaT) density selection approach to recursively identify peak-densities in an input
dataset, reducing the confusion caused by overlapping densities;

(2) We propose a multi-scale DBSCAN sub-routine to expand the range of density criteria θ
that can be used by the sub-routine to correctly capture the true clusters at each density
level.

• Second, we propose a VISIT algorithm to improve the separation among clustered point sets
belonging to different density levels, and thus further mitigate the shattered-cluster problem
when the density-distribution of clusters has moderate overlaps (Figure 3(c)).

4.2 One-at-a-time Density Selection

Density selection is an important step in density-based clustering frameworks such as DBSCAN.
Given a neighborhood size ϵ , Figure 5 shows the distribution of densities (i.e., number of points in
ϵ) of a 10,000-point dataset generated using a clustered point processH1. The distribution contains
four true clusters C1 to C4. Denote x as the background probability density (i.e., outside the four
clusters inD). The inner-space of clustersC1 andC2 (the rectangle and ring) both have a probability
density of 10x , and the inner-space of C3 and C4 (the circle and ellipse) have 3x . The expected
density values of the clusters and the background are represented by the vertical lines in Figure 5(c).
As discussed in Section 3, our preliminary Significant DBSCAN uses a uniform sampling ap-

proach to select k densities from [θmax ,θmin ), which has limited flexibility and may cause clusters
to shatter into statistically-significant pieces. There are two main challenges in directly estimating
the true expected densities from data. First, the number of distinct probability densities (e.g., 10x ,
3x and 1x in this case) is unknown, making it difficult to robustly extract all the expected true den-
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Fig. 5. Illustrative example of distribution of densities. For visualization purposes, true densities θ1 to θ3
are calculated directly using the probability densities and corresponding volumes shown in (a), which are
unknown in practice (i.e., can only observe realizations). Dashed in (c) lines are hand-drawn approximations.

sities {Eden }. Second, there can be heavy overlaps between density distributions (e.g., lower-tail of
10x and upper-tails of 3x and x ), increasing the uncertainty and hardness of separating out true
densities being mixed in the middle. As the goal of this sub-task is not to address this classical
mixture model problem but to help improve subsequent detection of significant clusters, we pro-
pose a OaaT density selection strategy to reduce the difficulty of this sub-task by leveraging the
advantage of significance testing.
To avoid the need to know the number of distinct density groups in the mixed distribution,

the OaaT strategy only attempts to identify the expected true density Eden associated with the
highest probability density xmax in the current dataset. This leverages the fact that the general
Significant DBSCAN+ framework only needs to detect clusters belonging to one density group
at a time. Moreover, the density distribution corresponding to xmax is on the extreme side of the
overall distribution, so the peak frequency associated with its expected true density Eden is not
affected by tails of distributions from two sides, making it substantially easier to separate out.
Finally, as Significant DBSCAN+ by design removes points belonging to a significant cluster after
completing each density level, the effect of the density values associated with the current xmax

will also be taken out for the next round of OaaT density selection. This allows the OaaT strategy
to remain effective during its recursive application through the rounds.
Using the OaaT strategy, the density selection algorithm operates as follows. First, given an ϵ ,

density values—represented by the number of points in ϵ neighborhoods—are sampled and con-
verted into a density-frequency histogram (e.g., Figure 5(c)) with h bins (h is defaulted to 30, and
the sensitivity will be evaluated in Section 5). As the expected true density Eden corresponding to
the highest probability density xmax is represented by a frequency peak (i.e., vertical line on the
right in Figure 5), a typical local maximum detector (window size defaulted to 5) is used to extract
the peak and its density value on the X axis (e.g., θ1 in Figure 5).

4.3 A Multi-scale DBSCAN Sub-routine

Selecting a proper density to construct a density criterion θ is only one important step of the
problem. To capture the desired clusters, we also need to make sure that θ is effective for the
DBSCAN sub-routine, especially considering DBSCAN’s (andmany other density-based clustering
approaches’) sensitivity to the input density criterion.
Figure 6 shows an example of the sensitivity, where the dataset is a 10,000-point distribution

in a 100 × 100 area. Similarly, the rectangle and the ring have a probability density of 10x for
generating a point at each location; the circle and the ellipse have 3x ; and the background has 1x .
Using ϵ = 2, the true density (i.e., number of points in a circular neighborhood with a radius of 2)
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Fig. 6. Sensitivity of DBSCAN to density parameters. The second column is the true density directly calcu-
lated for the rectangle and ring using the point process (not observable in practice).

for the rectangle and the ring is about 42.5416. As shown in Figure 6, a DBSCAN density criterion
θ = (ϵ = 2,minPts = 42.5416) constructed using the known true density is not able to correctly
capture the corresponding true clusters. In other words, the true density is not within the working
range of the density criterion for DBSCAN, because the contiguity of the true density at ϵ is broken
by random effects inside the true clusters. In addition, by only varying theminPts parameter in
the density criterion θ by a minimum step (i.e., a single point), the clustering results become very
different as shown in Figure 6. This sensitivity of DBSCANmakes it difficult to construct a working
density criterion using the estimate selected by the OaaT strategy.
To address this sensitivity issue, we propose a multi-scale DBSCAN sub-routine to replace the

DBSCAN sub-routine used in our preliminary work. The key change in multi-scale DBSCAN is
that the validation of the local density criterion is extended from a single scale to multiple scales.
In DBSCAN, a point passes the local criterion (ϵ,minPts) if there is at leastminPts points inside its
local ϵ neighborhood. Denote ϵmin and ϵmax as the minimum and maximum neighborhood sizes,
the multi-scale DBSCAN additionally projects the original criterion θor i = (ϵor i ,minPtsor i ) onto
k scales in the range [ϵmin , ϵmax ], and the new multi-scale criterion becomes

θmulti = {θi = (ϵi ,minPtsi ) |minPtsi =minPtsor i ·
ϵ2i
ϵ2or i

, ∀i = 1, . . . ,k } ∪ θor i .

Further, denote SATθ as a Boolean variable that represents if a point satisfies the criterion θ . In
DBSCAN, a point is a core point if SATθor i = 1, and all points inside ϵor i are added to the expansion
list. In the multi-scale extension, the new rule is defined as follows.

Definition 4.1 (Multi-scale Local Rule). The rule has two components: (R1) Core point rule: A
point is a core point in multi-scale DBSCAN if SATmulti = 1, where

SATmulti = SATθ1 ∨ SATθ2 ∨ . . . SATθk ∨ SATθor i ;

and (R2) Expansion rule: All points within ϵor i are added to the expansion list if SATmulti = 1.

As shown in Definition 4.1, this multi-scale test SATmulti is only used to determine if a point is
a core point, and SATmulti = 1 as long as a criterion θi is satisfied at any scale. After the test, the
expansion rule remains the same as the single scale DBSCAN approach. This definition guarantees
that the new rule is strictly less harsh than the single-scale rule in DBSCAN. While the random
effects may break the density contiguity of true clusters at a single scale ϵ (Figure 6), the new test
across multiple scales aims to suppress such effects by sampling more local neighborhoods at each
point.
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Fig. 7. Visualizing the expansion of working density ranges with multi-scale DBSCAN.

Figure 6 (bottom row) shows the clustering results of the multi-scale DBSCAN sub-routine us-
ing the same set of density criteria. The number of scales k is defaulted to 11 and its effect will
be evaluated in Section 5. As we can see, the multi-scale extension is able to correctly capture
the corresponding true clusters using the true density (i.e., θor i = (ϵ = 2,minPts = 42.5416))
as well as the other nearby higher or lower values. Note that a side-effect of the multi-scale rule
is that some spurious results corresponding to other lower-density clusters are captured at the
same time. While these newly introduced spurious clusters will be problematic in a regular sce-
nario, the incorporation of statistical significance allows convenient elimination of these undesired
by-products. In addition, another dedicated new design—stable subset selection and testing—will
be introduced in Section 4.4 to robustly avoid inclusion of these undesired pieces. In this sec-
tion, the discussion will focus on capturing the true clusters associated with the current density
level.
To better visualize the range of working densities for capturing the true clusters in Figure 6, we

enumerated through a list of different density criteria with ϵor i = 2. The candidates forminPts are
enumerated by gradually expanding around the expected true density 42.5416. In the visualization
shown in Figure 7, a density is considered as a working density if each of the two corresponding
clusters (i.e., the rectangle and the ring) is captured by a single contiguous cluster that has no
more than 5% of missing or extra points. The working ranges of densities of DBSCAN and the
multi-scale DBSCAN are shown by the dashed blue and orange lines in Figure 7, respectively.
The solid red line represents the expected true density Eden of the two clusters associated with

the highest probability density. In contrast, the green line shows the non-cluster density EH0

den
,

which is the expected number of points in a ϵ = 2 neighborhood assuming the 10,000-point data
is generated by a homogeneous point process H0 (i.e., data are purely noise and have no true

cluster). Thus, any value below EH0

den
is no longer meaningful for cluster detection. As we can

see, the expected true density Eden is outside DBSCAN’s the working range of density, which
can also be confirmed by the clustering results shown in Figure 6. In contrast, the working range
of the multi-scale DBSCAN contains Eden and thus can correctly capture the true clusters with
it. In addition, the other important observation is that the working range of the multi-scale DB-
SCAN has greatly expanded compared to that of the DBSCAN, reducing its sensitivity to an input
density.
The same trend can be seen in Figure 7 (right), which shows the working ranges of the two

sub-routines for the next density level associated with the circle and the ellipse. As discussed in
Section 4.2, significant clusters are removed from the data after each round of the detection, which
helps remove their effects on the density distribution. As we can see, the working range of density

for DBSCAN here is not only very narrow but also very close to EH0

den
, making it difficult to capture

the true clusters. In comparison, the working range for the multi-scale DBSCAN again contains
the expected true density and is much less sensitive with the wider coverage.
From a computational perspective, however, the use of multiple scales would subsequently lead

to additional computational overhead. This will be addressed in Section 4.5.
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4.4 Stable Cluster Set Selection and Testing

Finally, to mitigate the cluster shattering problem caused by density overlaps (Section 3.3), we
aim to reduce the chance of undesired inclusion of the sub-portions of lower density clusters in
the clustering results. Specifically, denote Sθ

C
= {Cθ

1 ,C
θ
2 , . . .} as a set of clusters corresponding

to the current density level θ (i.e., highest density selected by OaaT in Section 4.2), and Sθseд =

{seдθ1 , seдθ2 , . . .} as a set of sub-segments from lower density clusters (or random noises) being
detected due to the overlap in density distributions (Figure 3(c)). As the result returned by OaaT
and multi-scale DBSCAN (e.g., Figure 6) is a combined set of both (i.e., Sθ

all
= Sθ

C
∪ Sθseд), the goal

is to identify clusters from Sθ
C
⊆ Sθ

all
and only use them for significance testing. In other words,

we need to exclude sub-segments of lower density clusters in Sθseд from the result of the current

round. We call the desired set Sθ
C
as a set of stable clusters (i.e., not sub-segments).

We propose a Virtual sequence visit (VISIT) algorithm to select the set of stable clusters. The

main idea, of the VISIT algorithm is that, when multiple stable clusters exist in Sθ
C
, each cluster

Cθ
i ∈ SθC tends to maintain its size in the detection result no matter if the other clusters in Sθ

C
are

removed from the data, whereas clusters in Sθseд tend to have major changes in their sizes after

Sθ
C
is removed. This is because clusters in Sθ

C
are at the same density level θ , so approximately the

same density will be returned by the OaaT strategy as long as one of them is still in the data. In
contrast, when all clusters in Sθ

C
are removed, a major change Δθ will result in the density selected

by OaaT and this change will subsequently cause clusters in Sθseд to grow andmerge (e.g., segments

belonging to the (θ − Δθ ) density group will grow to stable clusters).
Leveraging this characteristic, after the initial round of detection at the current density level θ ,

the VISIT algorithm keeps a sequence seq = C1,C2, . . . of all detected clusters sorted in descending
order by their test statistic values (i.e., cluster sizes as defined in Section 3.1.1). Then, VISIT creates
a virtual copy of the data, and starting from the first clusterC1 in the sequence seq, it removes the
cluster from the data and re-runs OaaT and multi-scale DBSCAN. If the best cluster returned from
the virtual data does not differ from the second clusterC2 in seq (i.e., the next best cluster afterC1)
by a small tolerance δ = 5%, then C2 will be considered as a stable cluster. The VISIT algorithm
then further removes C2 from the virtual data and repeats the same process until the tolerance δ
is violated. The removed clusters form the set of stable clusters as illustrated in Algorithm 2.
Finally, after a set of stable clusters is identified, we perform significance testing via the Dual-

Convergence algorithm described in Section 3.1.4. If there exists at least one significant cluster,
then we will remove the significant clusters from the data and start another round of the VISIT
algorithm; otherwise, Significant DBSCAN+will terminate and output existing clusters as the final
output.

4.4.1 Note onMultiple Testing. A common concern for performing significance testing onmulti-
ple patterns is the issue of multiple testing, i.e., the probability of falsely rejecting a null hypothesis
H0 (i.e., the type-I error) is amplified to be greater than the significance level α . For example, if the
tests are all performed independently on t independent patterns, then the type-I error becomes
1 − (1 − α )t > α . Although Significant DBSCAN+ often returns multiple clusters, the approach is
in fact not susceptible to the issue of multiple testing. Specifically, given a dataset generated byH0,
Significant DBSCAN+ guarantees that it returns an empty output with a probability greater than
1 − α . This is achieved by the design that only the best cluster from each Monte Carlo simulation
trial is used for p-value estimation (Algorithm 1, Section 3).2 As a result, the best cluster detected
in a dataset following H0 has strictly less than α probability of passing the significance testing

2Similar design strategies are employed in scan statistic methods to avoid multiple testing issues.
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ALGORITHM 2: The VISIT Algorithm

Require:

• Input data X in domain D
• Base parameters for OaaT and the multi-scale DBSCAN: (base neighborhood size: ϵ , scale range: [ϵmin, ϵmax ])

• A tolerance for checking the stability of a cluster: δ

1: stable = initEmptyClusterList()

{Initialization: Get a sequence of clusters}

2: den = selectDensityByOaaT(X , ϵ )

3: Θ = getParametersForMultiDBSCAN(den, ϵ , [ϵmin, ϵmax ])

4: seq = MultiDBSCAN(X , Θ)
5: seq.sort(’DESC’, size)

{Select a set of stable clusters}

6: X ′ = copy(X )

7: while TRUE do

8: if stable .isEmpty() == TRUE then

9: C = seq.pop()

10: stable .add(C )

11: X ′.remove(C )

12: else

13: den′ = selectDensityByOaaT(X ′, ϵ )
14: Θ′ = getParametersForMultiDBSCAN(den′, ϵ , [ϵmin, ϵmax ])

15: C′ = getBest(MultiDBSCAN(X ′, Θ′))
16: C = seq.pop()

17: if setDiff(C ,C′) ≤ δ then

18: stable .add(C )

19: X ′.remove(C )

20: else

21: break

22: end if

23: end if

24: end while

25: return stable

(i.e., it has to be in the top 100α% of the simulated distribution). In addition, as discussed in Sec-
tion 4.4, a significant cluster has to exist before the search can continue onto the next round of
detection. Such dependency between consecutive rounds also avoids the multiple testing issue.

4.5 Computational Consideration

In this section, we discuss the computational aspects of Significant DBSCAN+with two algorithmic
improvements to handle the additional search cost of the multi-scale DBSCAN.
Compared to Significant DBSCAN (our previous work in Section 3), the use of the new multi-

scale DBSCAN sub-routine requires extra computation as the density criteria θmulti need to be
tested on all k scales as defined in the multi-scale rule (Definition 4.1). Thus, here we develop
algorithmic improvements to reduce the extra cost. In addition, as Significant DBSCAN uses the
DBSCAN sub-routine both in exact and discrete forms (i.e., for upper bound computation in Sec-
tion 3.1.4), we present two acceleration methods, i.e., a recursive search for the exact version in
Section 4.5.1, and an equivalence-class compression approach for the discrete form in Section 4.5.3.

4.5.1 Recursive Search. To reduce the cost of checking against the multi-scale density criteria
θmulti , we use a scale-recursive structure of θmulti to gradually confine the search scope, where
the criteria in θmulti are sorted by ϵ (equivalently,minPts) in a descending order. The range query
on the original data is then only executed once at the beginning for each data point using the
maximum ϵ1 in θmulti . Then, denote NBi and NBi+1 as the returned neighborhood point sets for
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range queries using ϵi and ϵi+1, respectively. Since ϵi > ϵi+1, we always have NBi+1 ⊆ NBi . Thus,
for the range query at scale ϵi (i > 1), the scale-recursive search can inherit the previous result
NBi−1 and only perform the query on NBi−1 to obtain the same result.

4.5.2 Equivalence Class Compression. For the discrete version of DBSCAN used in the dual-
convergence algorithm (Section 4.5), the exact point distribution is no longer used or returned by
a range query. Thus, the recursive algorithm is not applicable here; in fact, it will result in a higher
cost if used (compared to integral image based calculation). To reduce the cost, we develop an
equivalence-class compression strategy to merge criteria of nearby scales into an equivalent group.
At a high level, the idea, is that the set of multi-scale criteria in the original continuous space can
be reduced to a smaller set of criteria in the discrete space due to the effect of “binning” during dis-
cretization. Similar to the previous section, denote θmulti = {θi = (ϵi ,minPtsi ) | i = 1, . . . ,k + 1)}
as the set of multi-scale criteria where ϵi > ϵi+1 (i.e., descending order). Further, denote дi as
the above-mentioned uncertainty-bounding sub-grids of ϵi ; here a sub-grid always has an odd
number of cells on each edge, and the center cell contains the point from which ϵi is measured in
the exact version. The equivalence-class compressed criteria is then defined as follows.

Definition 4.2 (Equivalence Class Compressed Criteria). An equivalence class EC refers a set of
neighboringmulti-scale criteria where different ϵi correspond to the sameд due to space discretiza-
tion. Given the original set of criteria in the discrete space θdis

multi
= {(дi ,minPtsi ) | i = 1, . . . ,k+1},

the compressed set of criteria θ ec
multi

= {(дi ,minPtsi ) | дi = дi−1 and дi ⊃ дi+1 where i ∈
[2,k]; or дi where i = k+1; or дi ⊃ дi+1 where i = 1}, where the minimumminPtsi is selected for
the criteria for each equivalence class ECj , as it must be satisfied if anyminPtsi ∈ ECj is satisfied.

4.5.3 Time Complexity. Denote N as the data size, k as the number of scales used in the Multi-
scale DBSCAN, M as the number of Monte Carlo trials, and |G | as the number of grid cells in the
discrete version of DBSCAN. Further, denote ρ as the proportion of trials that require execution of
the exact algorithm (i.e., when bounds do not work), q as the average number of points inside the
maximum ϵ-neighborhood (used as a bound for range query complexity in recursive search after
the first scale) around the N data points, and γ as the compression ratio achieved by the Equiv-
alence Class compression. For DBSCAN, as recently corrected in Reference [13], its worst-case
complexity isO (N 2) and theO (N logN ) algorithm so far only exists for data with a dimension ≤
2. Thus, here we use O (N 2) for a more general analysis. The complexity of the baseline al-
gorithm (including dual-convergence acceleration inherited from Significant DBSCAN) is then
O (ρM ·kN 2 + (1− ρ)M ·k · (N + |G |)), and the complexity of the accelerated algorithm is bounded
by O (ρM · (N 2 + (k − 1)Nq) + (1 − ρ)M · (γk ) · (N + |G |)). As the discrete version (used to create
bounds, Section 3.1.4) runs in linear time O ( |G |), O (N + |G |) just adds the O (N ) time needed to
aggregate points to grid cells. In practice, a discrete scan is used when |G | < N 2. Also, the com-
plexity results are for one density criterion selected by OaaT (so N is for the current data size in
a round), and they can be applied to each distinct density identified by the algorithm. Finally, for
non-clustered data, the algorithm often terminates very early (Section 3.1.4) after a small propor-
tion λ of trials (e.g., λ may be just slightly greater than the significance level α ). As the cluster sizes
from non-clustered data often cannot surpass the upper-bounds from discrete scan, we can ignore
ρ (e.g., ρ ≈ 1) in the results above and the complexity becomes O (λM · (N 2 + (k − 1)Nq)).

5 VALIDATION

Our experiments aim to answer the following questions:

• Are the candidate methods susceptible of finding spurious patterns? Is Significant DBSCAN+
robust against such spurious results?
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Fig. 8. Different base landscapes for generating point processes under various conditions specified by data
size N and effect sizes es . Hotspots in the “shape” process in (b) have relatively larger footprints, leading
to stronger signals of clusters. In contrast, hotspots in the “test” process in (c) are much smaller and more
difficult to detect. Finally, the “dense” process in (d) contains a denser distribution of small hotspots (i.e., 9)
and has a smaller noise-to-hotspot ratio compared to the “test” process.

• Does the extended version, Significant DBSCAN+, improve solution quality over Signifi-
cant DBSCAN, especially when cluster densities have moderate overlaps (Section 3.3)? More
broadly, does Significant DBSCAN+ improve solution quality over other candidate methods?
• Do the computational enhancements reduce time cost for data following both H0 and H1?
• How does the performance of Significant DBSCAN+ change with varying parameters?

5.1 SolutionQuality

5.1.1 Data Generation. To evaluate the solution quality, we use statistical definitions from Sec-
tion 2 to generate datasets where ground-truth clusters can be inserted into the point processes
and recorded to compute performance statistics [19, 22, 41]. As shown in Figure 8, datasets gener-
ated underH0 (homogeneous point processes) have identical probability densities across the whole
space, which means there is no true cluster and any detections from datasets generated by H0 are
spurious results. In contrast, true clusters (i.e., highlighted by orange-colored regions) in clustered
point processes H1 have higher probability densities of generating points than the outside.
Here we generate 5,400 datasets under a variety of conditions to quantitatively evaluate the

solution quality: (1) Varying total number of points N ∈ {2,000, 4,000, 6,000, 8,000, 10,000, 12,000};
(2) Varying hypotheses H0 and H1; and (3) For H1, varying effect size es = (esA, esB ), where each
effect size value represents how many times the probability density pdin inside a corresponding
true cluster is as high as that of the outside pdout (i.e., background colored in blue in Figure 8); esA
and esB are the effect sizes for the true clusters marked withA and B in Figure 8, respectively. The
effect size es ∈ {(2, 4), (3, 6), (4, 6), (4, 8), (6, 8), (3, 12)}. The values for N and es are defaulted to
10,000 and (4, 6) when used as controlled parameters. Each parameter setting is further combined
with the three different base landscapes (i.e., “shape,” “test,” and “dense”) shown in Figure 8(b), (c),
and (d). Finally, to account for the natural randomness in point processes, we generate 100 datasets
for each combination of parameter setting and base landscape, resulting in 5,400 different datasets
in total.

5.1.2 Candidate Methods. Based on the results from our preliminary work, k-means++ [5] and
expectation-maximization for Gaussian Mixture Models [32] could not generate reasonable results
due to the irregularly shaped clusters. Thus, we used spectral clustering [24, 38] as the partitioning-
based approach as it is less sensitive to the shapes. Similarly, since SaTScan also struggled with
irregular shapes and multiple-cluster scenarios (Figure 2), we skipped it in this comparison, and
instead, added our preliminary work, Significant DBSCAN, as a more suitable baseline for this
extension. In addition, we varied the parameters for competing methods (e.g., DBSCAN, Spectral
clustering, HDBSCAN) but kept the parameters exactly the same for Significant DBSCAN and
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Significant DBSCAN+, respectively, throughout detection across all 5,400 datasets under different
conditions. The following is a summary of the candidate methods:

• DBSCAN (two versions): We constructed two candidate methods using DBSCAN (DBA
and DBB ) whose density criteria are directly calculated using the ground-truth effect sizes
esA and esB in each dataset to help improve the methods’ solution quality.
• Spectral clustering: We directly feed in the ground-truth number of clusters to spectral
clustering [24, 38], reducing that extra layer of challenge for it (for data under H0, we fixed
the number to 4, which is the smallest number of clusters used for other datasets). The
Laplacian matrix is normalized with random walk (i.e., Lnorm = D−1L, whereD is the degree
matrix; L and Lnorm are the original and normalized Laplacian matrices, respectively).
• Deep embedding clustering: A widely adopted state-of-the-art deep clustering approach
[40]. Again, we directly feed in the ground-truth number of clusters, which is an input to
the network. We use the Keras implementation provided in Reference [4].
• HDBSCAN (three versions): A recent state-of-the-art hierarchical density-based cluster-
ing approach proposed by researchers including creators of DBSCAN and OPTICS as a pow-
erful integration of the key ideas [1, 7, 8, 23]. HDBSCAN requires a minimum cluster size
minsize as input (defaulted to 5 in the standard library) to generate the clustering hierar-
chy. Thus, we constructed three candidate methods—HDB5, HDB100, and HDB200—with the
minsize set to 5, 100, and 200, respectively (sizes of all true clusters in experiments are greater
than 100).
• Significant DBSCAN: Our preliminary work in Reference [42]. Significance level α is 0.01.
All parameters are kept exactly the same throughout experiments across all 5,400 datasets.
• Significant DBSCAN+: The extended version described in this article. Significance level α
is 0.01. All parameters are kept exactly the same throughout experiments across all 5,400
datasets.

5.1.3 Measures. For datasets followingH0, i.e., where no true cluster exists, we use the number
of spurious results κ detected to evaluate the robustness of candidate methods. The number is
measured at both cluster and data levels: (1) Cluster level: κcluster represents the total number
of detected spurious clusters across a set Sdata of input datasets, and (2) κdata is the number of
unique datasets in Sdata where one or more spurious clusters are detected.
For datasets following H1 that contain true clusters, we use F1 scores (i.e., harmonic mean of

precision and recall) to measure the solution quality. To compute precision and recall rates, we
need an additional step to determine which true clusters are successfully detected. Denote SC =

{C1,C2, . . . ,Cz } as the set of true clusters, and S ′C = {C ′1,C ′2, . . . ,C ′z′ } as the set of detected clusters.
As each cluster is essentially a point-set, we use a point-set-based Intersection-over-Union (set-
IoU) to determine the success of a detection. Specifically, a clusterCi ∈ SC is successfully detected if

∃C ′j ∈ S ′C , such that:
Ci∩C ′j
Ci∪C ′j

≥ IoUthrd , where the threshold IoUthrd is set to 0.8. In addition, we add

the traditional clusteringmeasures—unsupervised clustering accuracy (ACC) andnormalized

mutual information (NMI)—to the evaluation of candidate methods. The difference between F1
score and ACC (or NMI) is analogous to the difference between object and pixel level measures in
object detection and segmentation.

5.1.4 Comparative Analysis. For all the following results in comparative analysis, the param-
eters of Significant DBSCAN and Significant DBSCAN+ are kept the same as described in Sec-
tion 5.1.2.
Robustness against spurious results: Table 2 summarizes the results of the candidate meth-

ods on datasets following H0 where no true cluster exists. The value in each cell of the table
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Table 2. Number of Spurious Results Detected from Data Following H0 (Cell Format: κcluster (κdata ))

N DBA DBB Spectral Deep HDB5 HDB100 HDB200 SigDB SigDB+

2,000 7,881 (100) 1,371 (100) 400 (100) 396 (100) 7,518 (100) 121 (58) 0 (0) 3 (3) 1 (1)
4,000 4,765 (100) 87 (62) 400 (100) 391 (100) 15,085 (100) 247 (99) 90 (45) 2 (2) 0 (0)
6,000 3,831 (100) 6 (6) 400 (100) 362 (100) 23,116 (100) 298 (100) 174 (81) 0 (0) 1 (1)
8,000 2,027 (100) 0 (0) 400 (100) 353 (100) 29,538 (100) 341 (100) 230 (98) 1 (1) 1 (1)
10,000 1,496 (100) 0 (0) 400 (100) 345 (100) 37,754 (100) 369 (100) 252 (98) 0 (0) 2 (2)
16,000 218 (91) 0 (0) 400 (100) 364 (100) 58,637 (100) 491 (100) 324 (100) 1 (1) 0 (0)

represents the total number of spurious patterns detected, κcluster , across 100 datasets generated
using the corresponding number of points N ; the value in parentheses is the corresponding data-
level κdata , i.e., the number of datasets where one or more spurious clusters are returned (Sec-
tion 5.1.3). As we can see, all other methods (i.e., different versions of DBSCAN and HDBSCAN, as
well as spectral clustering) are susceptible to the effect of natural randomness and detected hun-
dreds to tens of thousands of spurious patterns in datasets following H0; many output spurious
patterns in all of these datasets (i.e., κcluster = 100). Although DBB and HDBSCAN with higher
minsize values have relatively fewer number of spurious detections, we will soon show that the
detection power of those versions with more strict criteria suffer greatly when true clusters do
exist. Also, for deep embedding clustering, some clusters occasionally do not receive points in the
final assignments after convergence (unlike spectral clustering, which often runs k-means as the
final step, this method runs k-means during initialization). Finally, both Significant DBSCAN and
Significant DBSCAN+ are able to robustly control the rate of spurious results, i.e., seven spuri-
ous patterns in total across 600 datasets for Significant DBSCAN and five spurious patterns for
Significant DBSCAN+.
Improvements on solution quality for data following H1:We varied both data size N and

effect sizes es during data generation for each base landscape shown in Figure 8, i.e., “Shape,” “Test,”
and “Dense.” Tables 3 and 4 show the F1 scores for the three base landscapes with varyingN and es ,
and Tables 5 and 6 show the ACC and NMI scores. The value in each cell is averaged over results
from 100 datasets of the corresponding combination of parameter setting and base landscape. The
highest score in each row is highlighted in bold. For F1 scores, a general trend we can observe is
that Significant DBSCAN+ achieved the best solution quality in most of the scenarios (27 of 36
rows overall; 32 of 36 if we include Significant DBSCAN), including many big margins such as
10–20% increases in absolute F1 scores. Similar to k-means and expectation-maximization results
from our preliminarywork, spectral clustering and deep embedding clustering do not performwell
here in the experiment as they are more of the partitioning-type of approaches, and their F1 scores
drop quickly as the proportion of noise increases (e.g., results for “Shape” vs. “Test” and “Dense”
base landscapes). Note that one advantage of deep embedding clustering is that it can more easily
handle high-dimensional data such as images, which is outside the scope for this article. In the
future we will explore an integration of deep embedding and Significant DBSCAN+ (Section 6). In
addition, although the strict criteria in several versions of DBSCAN and HDBSCAN (i.e., DBB and
HDB200) helped them to suppress the number of spurious results (Table 2), those criteria also cause
them to miss lots of true clusters, leading to low F1 scores as shown in Tables 3 and 4. In contrast,
Significant DBSCAN+ is able to simultaneously control the number of spurious detections and
greatly improve the F1 scores. For ACC and NMI, we can observe similar trends where SigDB+
achieved the best ACC performance in 32 of 36 settings, and the best NMI performance in 31 of 36
settings (we selected the best-performing method in the five groups {DBA,DBB }, {Spectral}, {Deep},
{HDB5, HDB100, HDB200}, and {SigDB, SigDB+} to show in Tables 5 and 6 for these two additional
comparisons). As mentioned earlier in Section 5.1.3, “F1 score vs. ACC (or NMI)” is analogous to
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Table 3. F1 Scores of Candidate Methods on Data with Varying N

N DBA DBB Spectral Deep HDB5 HDB100 HDB200 SigDB SigDB+

Sh
ap
e

2,000 0.093 0.001 0.003 0.043 0.244 0.272 0.010 0.520 0.272
4,000 0.251 0.005 0.072 0.025 0.157 0.700 0.242 0.457 0.745

6,000 0.405 0.009 0.163 0.015 0.097 0.850 0.567 0.568 0.886

8,000 0.409 0.012 0.065 0.040 0.077 0.842 0.745 0.663 0.796
10,000 0.509 0.026 0.072 0.025 0.055 0.818 0.818 0.743 0.989

16,000 0.568 0.073 0.089 0.079 0.027 0.842 0.853 0.909 0.992

T
es
t

2,000 0.106 0.000 0.000 0.000 0.042 0.006 0.000 0.232 0.240

4,000 0.211 0.006 0.000 0.000 0.043 0.530 0.003 0.289 0.482
6,000 0.268 0.004 0.000 0.000 0.030 0.588 0.248 0.413 0.574
8,000 0.275 0.010 0.000 0.000 0.024 0.394 0.621 0.480 0.677

10,000 0.277 0.004 0.000 0.000 0.020 0.325 0.604 0.565 0.784

16,000 0.296 0.004 0.000 0.000 0.011 0.195 0.367 0.766 0.873

D
en
se

2,000 0.273 0.054 0.008 0.000 0.187 0.000 0.000 0.261 0.455

4,000 0.410 0.083 0.013 0.000 0.159 0.113 0.000 0.235 0.681

6,000 0.443 0.149 0.009 0.001 0.127 0.381 0.001 0.434 0.731

8,000 0.448 0.182 0.001 0.000 0.096 0.517 0.112 0.537 0.814

10,000 0.497 0.159 0.001 0.000 0.081 0.577 0.251 0.640 0.865

16,000 0.535 0.179 0.000 0.000 0.047 0.689 0.546 0.852 0.898

Table 4. F1 Scores of Candidate Methods on Data with Varying es

es DBA DBB Spectral Deep HDB5 HDB100 HDB200 SigDB SigDB+

Sh
ap
e

(2,4) 0.301 0.023 0.000 0.003 0.006 0.599 0.373 0.408 0.631

(3,6) 0.414 0.055 0.009 0.010 0.029 0.797 0.677 0.742 0.978

(4,6) 0.523 0.022 0.062 0.014 0.053 0.872 0.820 0.746 0.986

(6,8) 0.462 0.016 0.174 0.024 0.112 0.901 0.963 0.824 0.994

(3,10) 0.420 0.059 0.118 0.069 0.043 0.788 0.608 0.859 0.804
(4,8) 0.431 0.031 0.083 0.034 0.065 0.936 0.799 0.805 0.987

T
es
t

(2,4) 0.024 0.009 0.000 0.000 0.004 0.009 0.114 0.058 0.519

(3,6) 0.285 0.002 0.000 0.000 0.013 0.192 0.416 0.392 0.521

(4,6) 0.283 0.004 0.000 0.000 0.019 0.296 0.647 0.534 0.771

(6,8) 0.279 0.002 0.000 0.000 0.039 0.593 0.817 0.892 0.958

(3,10) 0.280 0.006 0.003 0.000 0.018 0.372 0.401 0.614 0.516
(4,8) 0.283 0.011 0.000 0.000 0.023 0.411 0.563 0.649 0.773

D
en
se

(2,4) 0.225 0.177 0.000 0.000 0.024 0.339 0.095 0.593 0.608

(3,6) 0.426 0.179 0.002 0.000 0.057 0.467 0.281 0.754 0.628
(4,6) 0.501 0.154 0.003 0.000 0.081 0.580 0.309 0.715 0.840

(6,8) 0.536 0.153 0.038 0.000 0.155 0.655 0.404 0.534 0.934

(3,10) 0.302 0.187 0.134 0.003 0.073 0.443 0.350 0.708 0.679
(4,8) 0.446 0.185 0.040 0.000 0.093 0.589 0.348 0.940 0.870

“object vs. pixel” level measures in object detection, so different score distributions are expected.
For example, in a dataset with four clusters of similar sizes, an incorrect clustering that puts all
points into a single cluster might still get an ACC of 0.25 due to the overlap, but will get a zero F1
score. Overall, similar rankings are maintained among the measures.
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Table 5. ACC and NMI of Candidate Methods on Data with Varying N

Unsupervised clustering accuracy Normalized mutual information

N DBA Spectral Deep HDB100 SigDB+ DBA Spectral Deep HDB100 SigDB+

Sh
ap
e

2,000 0.702 0.373 0.530 0.727 0.723 0.690 0.263 0.419 0.592 0.713

4,000 0.824 0.606 0.535 0.850 0.892 0.762 0.574 0.425 0.748 0.818

6,000 0.865 0.719 0.529 0.882 0.920 0.800 0.668 0.416 0.790 0.839

8,000 0.867 0.617 0.537 0.878 0.814 0.801 0.622 0.435 0.793 0.698
10,000 0.891 0.536 0.526 0.884 0.945 0.820 0.595 0.418 0.801 0.867

16,000 0.899 0.450 0.479 0.898 0.946 0.830 0.546 0.397 0.813 0.871

T
es
t

2,000 0.793 0.457 0.446 0.758 0.824 0.675 0.208 0.277 0.455 0.682

4,000 0.835 0.443 0.447 0.898 0.890 0.704 0.406 0.287 0.708 0.750

6,000 0.853 0.493 0.438 0.891 0.905 0.725 0.471 0.279 0.734 0.768

8,000 0.853 0.490 0.441 0.855 0.913 0.723 0.483 0.285 0.712 0.775

10,000 0.856 0.463 0.452 0.841 0.924 0.722 0.471 0.258 0.691 0.793

16,000 0.861 0.436 0.483 0.828 0.929 0.729 0.462 0.236 0.677 0.800

D
en
se

2,000 0.783 0.377 0.366 0.491 0.799 0.752 0.331 0.385 0.435 0.742
4,000 0.845 0.469 0.404 0.612 0.868 0.791 0.537 0.434 0.600 0.798

6,000 0.856 0.559 0.407 0.741 0.867 0.799 0.603 0.424 0.718 0.797
8,000 0.855 0.590 0.416 0.773 0.893 0.799 0.617 0.419 0.749 0.821

10,000 0.869 0.610 0.392 0.791 0.906 0.808 0.621 0.374 0.759 0.832

16,000 0.875 0.553 0.375 0.832 0.907 0.811 0.591 0.342 0.786 0.834

Table 6. ACC and NMI of Candidate Methods on Data with Varying es

Unsupervised clustering accuracy Normalized mutual information

es DBA Spectral Deep HDB100 SigDB+ DBA Spectral Deep HDB100 SigDB+

Sh
ap
e

(2,4) 0.815 0.499 0.369 0.765 0.791 0.712 0.513 0.232 0.692 0.682
(3,6) 0.858 0.582 0.334 0.796 0.877 0.786 0.594 0.263 0.755 0.802

(4,6) 0.870 0.606 0.325 0.798 0.903 0.809 0.618 0.257 0.768 0.830

(6,8) 0.876 0.661 0.300 0.810 0.925 0.833 0.679 0.294 0.795 0.867

(3,10) 0.845 0.648 0.323 0.832 0.900 0.794 0.660 0.268 0.796 0.844

(4,8) 0.864 0.637 0.312 0.824 0.918 0.811 0.652 0.267 0.793 0.853

T
es
t

(2,4) 0.844 0.419 0.432 0.844 0.835 0.735 0.488 0.263 0.726 0.737

(3,6) 0.875 0.493 0.426 0.884 0.934 0.793 0.567 0.271 0.787 0.846

(4,6) 0.889 0.540 0.407 0.894 0.943 0.820 0.596 0.270 0.812 0.865

(6,8) 0.879 0.658 0.426 0.898 0.959 0.830 0.673 0.309 0.831 0.896

(3,10) 0.900 0.609 0.527 0.900 0.902 0.820 0.633 0.355 0.800 0.840

(4,8) 0.885 0.595 0.455 0.906 0.951 0.816 0.630 0.308 0.819 0.878

D
en
se

(2,4) 0.864 0.374 0.468 0.822 0.866 0.655 0.374 0.157 0.596 0.628
(3,6) 0.867 0.447 0.453 0.849 0.901 0.714 0.453 0.167 0.685 0.752

(4,6) 0.856 0.470 0.460 0.842 0.923 0.724 0.475 0.190 0.693 0.793

(6,8) 0.837 0.535 0.417 0.868 0.937 0.742 0.534 0.205 0.751 0.835

(3,10) 0.877 0.482 0.468 0.863 0.918 0.746 0.502 0.183 0.718 0.795

(4,8) 0.859 0.488 0.439 0.858 0.929 0.734 0.497 0.184 0.718 0.812
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Fig. 9. Visualization of results on three sample realizations of point processes (data size N = 10,000). Results
in Tables 3 and 6 are summarized from 3,600 realizations under 36 different combinations of N and es .

Fig. 10. Challenging scenarios with diminishing clustering signals. With a combination of low effect sizes
and small number of points, it becomes difficult to confirm the significance, or to observe, true clusters by
both Significant DBSCAN and Significant DBSCAN+.

Significant DBSCAN vs. Significant DBSCAN+: Compared to our preliminary work—
Significant DBSCAN [42]—we can see that the new extensions in Significant DBSCAN+ can im-
prove the solution quality (Tables 3 and 4) especially in scenarios where the effect sizes of clusters
in es are relatively close. As illustrated in Section 3.3, Significant DBSCAN has difficulty in sepa-
rating out clusters with moderate overlaps in their density distributions and generates shattered
clusters in outputs. However, it performs fine for settings where the effect sizes of clusters are very
different (e.g., es = (3, 10) in Table 4). Significant DBSCAN+ maintains good performances overall
by addressing this limitation.
Qualitative evaluation: Figure 9 shows the visual comparisons of the results generated by the

candidate methods on one example realization of the point process (statistics in Tables 3 and 4 are
based on 3,600 realizations under 36 different scenarios). Particularly, we can see that the cluster
shattering issues in Significant DBSCAN caused by overlaps in cluster density distributions are
reduced with the proposed extensions in Significant DBSCAN+. Spectral clustering is given the
correct number of clusters as input, which is often unknown in practice (for the third row, the
ninth cluster returned by spectral clustering only has two points and is not very visible).
Finally, Figure 10 shows a challenging example where it is difficult for both Significant DBSCAN

and Significant DBSCAN+ to detect the true clusters. This happens when both the effect size and
the number of points are small (i.e., weak signals of clusters), making it statistically difficult to
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Fig. 11. Sensitivity analysis on the number of scales k (represented by step-size 3/k between ϵmax and ϵmin )
for the multi-scale DBSCAN sub-routine, and the number of bins h for OaaT density selection.

observe the signals and confirm their significance. In other words, if the cumulative probability of
a cluster is largely dominated by that of the background noise in the point process, it will require
a large number of observations to confirm its significance.

5.1.5 Sensitivity Analysis. Here we further evaluate the sensitivity of the proposed Significant
DBSCAN+ using F1 scores. First, according to the results in Tables 3 and 4, the solution quality in
general tends to increase as the data size N increases. This trend is intuitive as a greater number
of observations makes it statistically easier to capture the true clusters and confirm their signifi-
cance. Similarly, a sharper contrast between the probability densities inside and outside clusters
also makes them easier to detect. Comparing results on the three different base landscapes, the
method tends to perform better on data with clusters having relatively greater volumes (com-
pared to the background). This can be explained similarly from the statistical perspective, since a
greater volume naturally increases the number of observations (both absolutely and relatively) in
the clustered area, making the clusters easier to observe and pass the test [39, 43].
In addition, Figure 11 shows the F1 scores of Significant DBSCANwith varying hyperparameters,

i.e., the number of bins h in the histogram for OaaT-based density selection (Section 4.2), and
the number of scales k in multi-scale DBSCAN (Section 4.3). Each F1 score is computed over 100
datasets generated using the default values of N = 10,000 and es = (4, 6) for each of the three
base landscapes (Figure 8). As we can see in Figure 11 (top), the proposed approach has a stable
performance over different number of bins in the experiment. In general, the OaaT approach does
prefer the cluster size to be bigger than 1/h proportion of the entire dataset (e.g., 0.025 forh = 40) so
that it is easier to observe the local peak. Thus, the choice ofhmay be adjusted for scenarios where
such tiny clusters exist. Figure 11 (bottom) shows the F1 scores of the approach with different
number of scales k , represented by step size ∝ 1/k . The trend is that when k is relatively large (i.e.,
small step size), the performance of Significant DBSCAN remains stable, whereas if k is very small,
its F1 score decreases. The main reason is that as k reduces to 1, multi-scale DBSCAN reduces to
DBSCAN, which takes away the associated improvements.

5.2 Computational Performance

The computational enhancements in this extension is a generalization of the dual-convergence
algorithm in our preliminary work on Significant DBSCAN [42] (summary in Section 3.1.4). It
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Fig. 12. Execution time on varying data sizes N and effect sizes es for the baseline (Base), upper-bound-only
(UB), early-termination-only (ET) and the full dual-convergence algorithm.

extends the single-scale based local search and upper-bound computation to a multi-scale version.
The controlled data are generated using the same set of landscapes shown in Figure 8. Since the
trends remain consistent with our preliminary work, here we will just briefly summarize the new
results to avoid redundancy.
Figure 12 shows the execution time for four candidate approaches, i.e., baseline, baseline +

bound-pruning, baseline + early-termination, and the dual-convergence algorithm (baseline + dy-
namic coordination between bound-pruning and early-termination). The time is evaluated on
datasets with different data sizes N and effect sizes es . The default number of points and effect
sizes (when not being varied) are set to N = 10,000 and es = (3, 6).
As we can see, the dual-convergence algorithm is able to consistently reduce the computational

cost, whereas the bound-pruning based approach or the early-termination approach alone cannot
effectively speed-up the detection in general. Especially, without the coordination provided by
the dual-convergence process, the bound-based pruning itself may result in additional cost due
to the overhead in bound calculation. As shown by the first groups in Figure 12 (bottom), the
early-termination algorithm itself does perform very well when effect sizes are set to es = (1, 1).
This is because when effect size equals 1, the clustered point process reduces to the homogeneous
point process H0. Since early-termination is very efficient when no significant cluster exists, it is
able to greatly reduce the cost for this special case. However, such time reduction quickly fades
away as true clusters start to exist (i.e., effect size > 1). In contrast, the dual-convergence algorithm
maintains the speed-up across various effect sizes in the experiments.

6 CONCLUSIONS AND FUTURE WORK

We proposed a Significant DBSCAN+ to extend our preliminary work [42] on the detection of sta-
tistically significant clusters that are density-connected. Specifically, the extension strengthened
our previous work’s capacity to find significant clusters with varying densities via a newly devel-
oped OaaT density selection, multi-scale DBSCAN sub-routine and a VISIT algorithm for selecting
a stable set of candidates. Computation-wise, we also generalized the dual-convergence algorithm
in our previous work for the proposed extensions. Through controlled experiments, we showed
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that the incorporation of statistical rigor is a powerful mechanism, and Significant DBSCAN+ is
able to robustly eliminate spurious patterns and greatly improve the solution quality. In addition,
this extension also outperformed our previous work especially in scenarios where the density dis-
tributions of clusters overlap. The generalized dual-convergence algorithm also greatly reduced
the computational cost.
In future work, we plan to first explore improvements of Significant DBSCAN+ for higher-

dimensional datasets, where both new definitions of null hypotheses (e.g., H0 may not be homo-
geneous along all dimensions) and corresponding computational structures will be investigated.
Specifically, wewill exploreways to leverage embeddingmethods from deep clustering approaches
to handle features in high-dimensions. In addition, we will further explore statistically robust for-
mulations and computational techniques for other clustering or data-partitioning sub-routines
such as HDBSCAN, Chameleon, and spectral clustering, which require new modeling approaches
as clusters with different densities are returned at the same time. Finally, we will explore spatial
big data extensions in distributed environments (e.g., Apache Sedona).
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