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We develop a systematic theory of symmetry fractionalization for fermionic topological phases of matter in
(2 + 1)D with a general fermionic symmetry group Gy. In general, Gy is a central extension of the bosonic sym-
metry group G, by fermion parity, (—1)7, characterized by a nontrivial cohomology class [w,] € H*(Gy, 7).
We show how the presence of local fermions places a number of constraints on the algebraic data that defines
the action of the symmetry on the supermodular tensor category that characterizes the anyon content. We find
two separate obstructions to defining symmetry fractionalization, which we refer to as the bosonic and fermionic
symmetry localization obstructions. The former is valued in H3(G,, K(C)), while the latter is valued in either
H3(Gy, A/{1, %)) or Z*(Gy, Z») depending on additional details of the theory. K(C) is the Abelian group of
functions from anyons to U(1) phases obeying the fusion rules, A is the Abelian group defined by fusion
of Abelian anyons, and v is the fermion. When these obstructions vanish, we show that distinct symmetry
fractionalization patterns form a torsor over H2(Gj, A/{1, ¥}). We study a number of examples in detail; in
particular, we provide a characterization of fermionic Kramers degeneracy arising in symmetry class DIII within
this general framework, and we discuss fractional quantum Hall and Z, quantum spin liquid states of electrons.

DOLI: 10.1103/PhysRevB.105.125114

I. INTRODUCTION

A fundamental property of topological phases of matter is
the possibility of quasiparticles carrying fractional quantum
numbers. Well-known examples of this include the fractional
electric charge carried by anyons in fractional quantum Hall
(FQH) states or spinons with spin 1/2 in quantum spin liquids
with global SO(3) spin rotational symmetry [1]. In the past
several years, it has been understood how to mathematically
characterize symmetry fractionalization in (2 + 1)D bosonic
topological phases of matter in complete generality [2]. This
includes topological states with arbitrary global symmetry
groups including both unitary and antiunitary symmetry ac-
tions, Abelian or non-Abelian topological phases of matter,
and cases where global symmetries can permute the anyons.
These results have led to significant progress in developing
a comprehensive characterization and classification of (2 +
1)D bosonic symmetry-enriched topological phases of matter
(SETs). In particular the systematic understanding of sym-
metry fractionalization has allowed predictions of novel frac-
tional quantum numbers in the presence of space group
symmetries for quantum spin liquids and FQH states [3-7],
methods to strengthen the Lieb-Schulz-Mattis theorem for
(2+ 1)D topological phases [8], and general methods to
compute anomalies in (2 4 1)D topological phases of matter
[9-12].

In this paper, we generalize the systematic mathemati-
cal framework of symmetry fractionalization to the case of
general fermionic topological phases of matter in (2 + 1)D.
Fermionic systems possess a special “symmetry” operation,’

'Symmetry is in quotes because fermion parity, in contrast with all
other symmetries, can never be spontaneously broken.
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fermion parity, which is denoted (=1)F, and we denote the
corresponding order-2 group as Z{ . The complete symmetry
group that acts on both fermionic and bosonic operators is
denoted G, while the quotient group that only acts on bosonic

operators is G, = G/ Z; . The possibility of fermions that can
be created by local fermionic operators imposes a number of
nontrivial constraints in the mathematical description of the
SET, which we systematically study.

A. Summary of results

Itis generally believed that in the absence of any symmetry,
a general (2 + 1)D topological phase of matter can be fully
characterized by two mathematical objects (C, c_), where C
is a unitary modular tensor category (UMTC) in the case of
bosonic systems and a unitary supermodular tensor category
for fermionic systems [13—15]. c_ is the chiral central charge
of the (1 + 1)D edge theory. C determines ¢ modulo 8 for
bosonic systems and modulo 1/2 for fermionic systems. In
both the bosonic and fermionic cases, C is a unitary braided
fusion category (UBFC), which keeps track of the braiding
and fusion properties of the anyons.

Since UMTCs and supermodular tensor categories are both
special cases of UBFCs, one might naively attempt to immedi-
ately extend the known symmetry fractionalization framework
for bosonic topological phases to the fermionic case. How-
ever, fermionic topological phases are different from bosonic
topological phases in two crucial ways, both of which must be
accounted for in the theory of symmetry fractionalization.

One difference arises from the fact that the fermionic topo-
logical phase contains a local fermion; although the fermion
directly appears in the UBFC data, its locality does not.

©2022 American Physical Society


https://orcid.org/0000-0001-8978-4531
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.125114&domain=pdf&date_stamp=2022-03-11
https://doi.org/10.1103/PhysRevB.105.125114

DANIEL BULMASH AND MAISSAM BARKESHLI

PHYSICAL REVIEW B 105, 125114 (2022)

Carefully tracking the locality of the fermion leads to sig-
nificant consequences due to reduced gauge freedom in data
involved in the symmetry action. In particular, autoequiva-
lences of the supermodular tensor category are only equivalent
up to what we term “locality-respecting natural isomor-
phisms.” The first step in defining how a symmetry acts on a
bosonic topological phase is to define a group homomorphism

[p]: G — Aut(C), €))

where Aut(C) is, roughly stated, a group formed by the set
of (braided tensor) autoequivalences of the UMTC C modulo
a set of “trivial” transformations called natural isomorphisms
[2] (see Sec. III for a brief review).

In fermionic topological phases, the set of natural isomor-
phisms can be distinguished by whether they are “locality-
respecting” or “locality-violating” with respect to the local
fermion. We may then define two groups, Aut(C) and
Aut; z(C), depending on whether we mod out by all natural
isomorphisms or only the locality-respecting ones. Depending
on C, these groups may or may not be isomorphic, but in either
case, we find that the first step towards defining how symmetry
acts on a fermionic topological phase is to specify a map

[p] : Gy — Autrr(C). (2)

Here any representative pg of the equivalence class [pg] satis-
fies pgh = kg h © Pg © Pn, Where kg 1, is a natural isomorphism,
as reviewed in Sec. III.

One consequence of Eq. (2) is that if Aut;z(C) and Aut(C)
are not isomorphic, then simply keeping track of how anyons
are permuted under the symmetries is not enough to fully
determine an element in Aut;g(C). [By contrast, the permu-
tation action often, but not always,”> does uniquely determine
an element of Aut(C).] In a large class of examples where
elements of Aut;x(C) are not uniquely determined by the way
they permute anyons, we provide in Eq. (86) a gauge-invariant
quantity which distinguishes classes with the same permuta-
tion action.

A second important difference in the fermionic case arises
from the presence of the fermionic symmetry group Gy,
which includes an additional piece of data [w,] € H2(Gy, Z)
specifying G in terms of a central extension of G; by Z{ .
Our formalism accounts for w, by viewing it as endowing
the fermion with fractional quantum numbers under Gy. This
leads us to a constrained theory of G;, symmetry fractional-
ization, where the constraint directly encodes the way that G,
is embedded in the full symmetry group Gy.

To briefly summarize the constraints, we note that [o,] and
symmetry fractionalization pattern in general corresponds to a
set of data {pg, Ug(a, b; c), 14,(g, h)}. Here Ug(a, b; ¢) is a set
of NY, x NS, matrices, where N¢, are the fusion coefficients,

2For examples of UMTCs with nonpermuting but nontrivial au-
toequivalences, see Ref. [16], Sec. 3. One such an example is the
Drinfeld center of the group G, where G is an order-64 group with
the presentation

(a,bc|a* =0 =1, ?=]la,cl, I[c bl=Ilcal,al,
[[b,a]l,Gl =1, [G,[G,[G,Glll=1).

that specify the action of a representative autoequivalence pq
on the fusion and splitting spaces of C. 1,(g, h) is aU(1) phase
for each anyon a. These data are subject to a set of consistency
conditions and gauge transformations. In particular, we have
a set of so-called symmetry-action gauge transformations,
which correspond to changing the representative map pg, and
which transform the data as

Va(gh)

[ye ()17 ®yu(g)
1@7(®)
Ve(g)
where y,(g) is a U(1) phase. Here o(g) =1 or % is a Z,
grading on G, which determines whether g is a unitary or

antiunitary symmetry. The constraints alluded to above then
take the form [17]

na(g, h) — na(g, h),

Ug(a, b;c) — Uq(a, b; c), 3)

My (g9 h) = wZ(g’ h)»
Ug(W, ;1) =1,
ry(g) =1 “4)

Here v is the local fermion, which is treated as a nontrivial
object in the supermodular tensor category. We note that a
microscopic specification of a quantum many-body system
and the representation of the symmetries also specifies a rep-
resentative 2-cocycle w, which enters the above constraints.

After accounting for all of these constraints, we take [pog]
as defined by Eq. (2) as given, and then we determine the
obstructions to defining a consistent theory of symmetry frac-
tionalization. We find two distinct such obstructions.

We find that there is a “bosonic” obstruction,

[Q] € H(Gy, K(C)), ®)

where K(C) is the Abelian group of functions €2, from anyon
labels to U(1) which obey the fusion rules in the sense
2,8, = Q. when Nj, > 0. If there does not exist an element
of K(C) with Qy = —1, then K(C) >~ A/{1, ¥}, otherwise
K(C) is an extension of Z, by A/{1,v¥}. Here A is the
Abelian group formed by fusion of the Abelian anyons in
C. The equivalence by {1, ¢} means different elements in
A that differ by fusion with ¢ are regarded as equivalent.
[€2] is a symmetry localization obstruction as discussed in
Refs. [2,18,19], and can be viewed as an obstruction to finding
any consistent pattern of symmetry fractionalization for the
G symmetry, ignoring Gy.

In attempting to extend the symmetry fractionalization to
the full Gy symmetry, we find that once the bosonic obstruc-
tion vanishes, there is the possibility of a second “fermionic”
obstruction [®],

H Gy, AL YD)
[©/] € {Zz(Gb’ AR (©)

Here Z? is the group of 2-cocycles on Gj,. Whether [® r]1is val-
ued in H3(G,, A/{1,¥}) or Z*(Gy, Z>) depends on whether
there exists a set of phases ¢, which satisfy the fusion rules
with ¢, = —1. Moreover, depending on whether we fix w, or
just its cohomology class [w»], Z%(Gy, 7») may be replaced
with Hz(Gb, 7).
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The fermionic obstruction [@] is essentially an obstruc-
tion to finding a symmetry fractionalization class that is
consistent with the choice of w, that defines G;. Alternatively,
it can be viewed as an obstruction to “lifting” the fractional
quantum numbers of ¢ under Gj to the full supermodular
tensor category C.

In the case where Aut(C) and Aut;x(C) are not isomor-
phic, then given a G;, and [pg], we find that there is at most
one group extension G, for which the fermionic obstruction
vanishes. In particular, this implies that for any continuous
symmetry group, such as U(1) or SO(3), a nontrivial [w;]
is incompatible with any supermodular category for which
Aut(C) and Aut;x(C) are not isomorphic.

If the above obstructions vanish, then it is possible to
define symmetry fractionalization in a way consistent with
Gy and locality of the fermion. We then show that the set
of possible symmetry fractionalization classes for the anyons
form a torsor over H2(Gy, A/{1, ¥}), which thus provides
a classification of symmetry fractionalization for anyons in
fermionic topological phases [17]. Note that this analysis does
not include symmetry fractionalization for the fermion parity
vortices.

Once our formalism is established, we consider several
example symmetry groups, providing and physically inter-
preting gauge-invariant quantities that characterize patterns of
symmetry fractionalization in fermionic topological phases.
As an example, our results allow us to precisely understand
the notion of “fermionic Kramers degeneracy” presented in
Refs. [20,21] within this systematic formalism (this result
was announced previously in Ref. [12]). When G, = Z; and

G =17y (e, T* = (=1)F), we have a quantity
0y = no(T, TUr(a, ¥;a x YI)FVY =i, (7)

which is gauge invariant when Ta = a x . For such anyons,
nY can be viewed as the “local T? eigenvalue” of that anyon.
We also generalize this notion of fermionic Kramers de-
generacy to Gy = Zg’f and investigate fermionic fractional
quantum Hall and quantum spin liquid states of electrons in
our framework. .

In the special case where Gy = G;, x Zg, Ref. [22] pro-
posed the possibility of an H?(G,, A/{1, ¥}) structure in the
classification of symmetry fractionalization, however, a com-
plete derivation and a specification of how to treat the braided
autoequivalences were not provided. For general G, some of
our results correspond to results on categorical fermionic ac-
tions in the mathematical literature [23]. However, the results
of Ref. [23] do not account for the locality of the fermion,
which ultimately leads to a different classification. Where
there is overlap, our work provides a physical understanding
of the mathematical results in Ref. [23] and a formulation
in terms of the “skeletonization” of the supermodular tensor
category.

The rest of this paper is organized as follows. In Sec. II,
we discuss some basic definitions and facts regarding super-
modular tensor categories and their use in modeling fermionic
topological phases. In Sec. III, we review the symmetry frac-
tionalization formalism for bosonic topological phases. In
Sec. IV, we develop a theory of fermionic symmetry frac-
tionalization by constraining a theory of bosonic symmetry

fractionalization and develop the concept of a “locality-
respecting natural isomorphism.” In Sec. V, we compute the
obstructions to fermionic symmetry localization and, if the
obstructions vanish, classify fermionic symmetry fractional-
ization patterns. Section VI consists of a number of examples
of the use of our formalism for different symmetry groups,
and we conclude with some general discussion in Sec. VII.

II. SUPERMODULAR AND SPIN MODULAR CATEGORIES
AND FERMIONIC TOPOLOGICAL PHASES OF MATTER

In this paper, we will assume familiarity with unitary
braided fusion categories (UBFCs). These are specified by
a list of anyon labels {a, b, c, ...}, fusion spaces V and
their dual splitting spaces VC"”, non-negative integer fusion

coefficients N, = dim Vy,, F symbols F;e”f“ which specify

the associativity of fusion, and R symbols R?’ which specify
braiding data, all subject to the well-known pentagon and
hexagon consistency conditions. See, e.g., Refs. [2,24] for
a review of UBFCs and conventions; our conventions are
essentially identical to those of Sec. II of Ref. [2]. We will
for simplicity often restrict our attention to the case where all
fusion coefficients N, < 1; the generalization is straightfor-
ward.
We will use the scalar monodromy

M,y = S*S11
a

= , (8)
S1aS16

where S, is the topological S matrix, extensively in this paper.
M, is always a phase if a or b is Abelian, in which case it
has a physical interpretation as a phase arising from a double
braid, but M, may or may not be a phase if both a and b are
non-Abelian.

A supermodular tensor category [13—15] C can be defined
as a UBFC with a single nontrivial invisible particle, v, such
that v is a fermion, i.e., its topological twist 8, = —1, and
satisfies Z, fusion rules, ¥ x ¥ = 1. “Invisible” means that
Y braids trivially with all particles in C, that is, its double
braid M,y = +1 foralla € C.

The existence of a single invisible fermion  with Z,
fusion rules implies that the set of anyon labels of a super-
modular tensor category decomposes as C = B x {1, ¥}, but
the fusion rules need not respect this decomposition. On the
other hand, the topological S-matrix of C does respect this
decomposition:

s=5o (! ! ©)
B 2\ )
where § is unitary.

Physically, the supermodular tensor category keeps track
of the topologically nontrivial quasiparticle content in a
fermionic topological phase of matter. The theory explicitly
keeps track of the fermion as well, which is topologically
trivial in the sense that it can be created or annihilated by a
local fermion operator.

In the rest of this paper, the symbol C will always refer to a
supermodular tensor category. We denote the unitary braided
fusion subcategory of Abelian anyons as A C C. In gen-
eral in an Abelian supermodular tensor category, the fermion
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decouples [25]:
A~ AR{1, ¥}, (10

Here the symbol X is the Deligne product and physically
means stacking two decoupled topological orders, and {1, ¥}
denotes the UBFC with just two particles, {1, {}.

We will also use the symbol A to refer to the Abelian
group defined by fusion of Abelian anyons. The above implies
that as an Abelian group A ~ A x Z,, where Z, = {1, ¥} is
associated with the invisible fermion.

It is a mathematical theorem [26] that every supermodular
tensor category admits a minimal modular extension C.ie,a
UMTC C that contains C as a subcategory and which has the
minimal possible total quantum dimension of

D% =2D. (11

The “16-fold way” theorem states that there are precisely
16 distinct minimal modular extensions, with chiral central
charges differing by v/2 forv =0, ..., 15 [13].

A minimal modular extension C is an example of a spin
modular category. A spin modular category is defined to be
a UMTC, Cv, together with a preferred choice of fermion
¥, which has topological twist 6, = —1 and such that
Y xy=1.

The spin modular category C which gives a minimal mod-
ular extension of C possesses a natural Z, grading determined
by braiding with the fermion :

C= CYo 6951,
Co ~C. (12)

That is, M,y = +1ifa € 50 and M,y =—1iface 51, and
fusion respects this grading. The anyons in Cvo ~ C corre-
spond to the original particles in the supermodular theory. The
anyons in C, are physically interpreted as fermion parity vor-
tices, which can be understood as symmetry defects associated
with the fermion parity symmetry Z;

Note that D(zf = Dé) + Dévl = 2D} implies that

Dél = Dgo = D2 (13)

Cvl can be decomposed according to whether the anyons can
absorb the fermion:

~ ~

¢ =C aC. (14)
such that
ax ¥ #aifacC,
axy=aifaeC,. (15)

In general, this decomposition is not in any sense respected by
the fusion rules; for example, fusing a (non-Abelian) anyon
with a o-type vortex can produce v-type fusion products,
while fusing two o-type vortices produces anyons (which
automatically do not absorb ).

We note that supermodular tensor categories allow a canon-
ical gauge fixing

FWV =F¥a=1 (16)

for all @ € C. In the standard BFC diagrammatic calculus, this
gauge-fixing allows fermion lines to be “bent” freely.

One technical issue which will play a key role in the rest of
this paper is to characterize sets of phases ¢, € U(1) fora € C
such that

Calp = L iE NG, > 0. a7

Strictly speaking these are functions from the set of anyon
labels to U(1); mathematically, d,¢, defines a character of the
Verlinde ring for the supermodular category. Such functions
form an Abelian group which we call K(C), following similar
notation in Ref. [23]. Clearly ¢, = &1, which gives a Z,
grading on K(C). The set of such functions with ¢y = +1
form a subgroup K, (C) C K(C).

One important property of K(C) is the following, proven in
Appendix A: if ¢, € K(C), then

Ca = Ma,x (18)

for some x € CV, where C is any minimal modular extension
of C. In particular, if ¢, € K (C), then x € A. Since M, , =
M, xxy, we conclude that K (C) ~ A/{1, ¢}.

There are several possibilities for the full group K(C),
which we briefly overview now and discuss further in
Sec. IV B. It may be that K(C) = K (C), that is, there simply
does not exist a set of phases which obey the fusion rules
with ¢, = —1. Alternatively, such phases may indeed exist,
in which case K(C) is a group extension of Z, given by the
short exact sequence

1= Ko(C) > KOS 7, > 1, (19)

where i is the inclusion map and ry restricts ¢, to a =
Y. This group extension is given by an element [A] €
H*(Zy, K4 (C)) = H*(Zo, A/{1, Yr}); although the cohomol-
ogy group is quite simple, we do not know a general method
to compute the particular element [A] from the fusion rules.
In the special case where C splits, i.e., can be written C =
BX {1, ¢} for some modular B, then K(C) = K, (C) x Z,
that is, [A] = 0.

A. Fermionic topological phases

Consider a (2 + 1)D system with a Hilbert space which is
a tensor product of local Hilbert spaces containing fermions
governed by a local Hamiltonian. (We will refer to this as a
“microscopic system.”) We assume that the Hamiltonian has a
gap in the thermodynamic limit. Any such systems which can
be continuously connected without closing the gap (allowing
the addition of fermionic degrees of freedom with a trivial
Hamiltonian) are said to be in the same fermionic topologi-
cal phase. As stated above, fermionic topological phases are
believed to be fully characterized by a supermodular tensor
category C together with a chiral central charge c_. Equiva-
lently, a fermionic topological phase can be characterized by
a spin modular category CV, together with a choice of chiral
central charge c_. The spin modular category determines the
chiral central charge modulo 8, while the supermodular tensor
category only determines the chiral central charge modulo
1/2.

We see that C describes the anyon content of the fermionic
topological phase while c¢_ mod 8 specifies the minimal
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modular extension. The spin modular category C determines
the fusion and braiding of fermion parity vortices which is
a crucial part of data that specifies the full fermionic topo-
logical phase. In particular, to define the fermionic system
on nontrivial surfaces and with arbitrary spin structures (i.e.,
arbitrary boundary conditions), we need the full spin modular
theory, since this requires different patterns of fermion parity
flux through noncontractible cycles (see, e.g., Ref. [27]).

In the present paper, we restrict our attention to symmetry
fractionalization for C, i.e., we do not characterize how sym-
metries act on the minimal modular extension C. Attempting
to lift the SET data from C to C leads to a cascade of obstruc-
tions which characterize the 't Hooft anomaly of the fermionic
SET and will be studied in upcoming work [28]. Some, but not
all, of these obstructions have been understood previously in
the UBFC framework [22].

In using supermodular categories to model fermionic topo-
logical phases, the following technical issue arises. In general
in a fusion category there are vertex basis gauge transforma-
tions, ng, which are basis transformations in the splitting
space VC“", ie., I g” : Vc‘”’ — VC’”’. We will assume that the
vertex basis gauge transformations must always satisfy

iy =1, (20)

We do not have a completely satisfactory microscopic justifi-
cation for this assumption, although we note allowing F;”"" #
1 leads to consequences that contradict a number of known re-
sults. For example, one can show that this gauge freedom may
be used to identify the two fermionic symmetry fractional-
ization patterns of the semion-fermion topological order with
Gy = ZI’f . These two symmetry fractionalization patterns
respectively appear on the surfaces of the v =2 and v = -2
elements of the (3 4+ 1)D DIII topological superconductors;
considering them to be gauge-equivalent would collapse the
known Z ¢ classification down to Z4. We note that the re-
quirement of Eq. (20) is always compatible with the gauge
fixing in Eq. (16).

III. REVIEW OF SYMMETRY FRACTIONALIZATION
IN BOSONIC SYSTEMS

In this section, we review the formalism of Ref. [2] de-
scribing symmetry fractionalization in bosonic systems. The
starting point is a UMTC B and a symmetry group G.

A. Topological symmetries

A unitary topological symmetry, or braided autoequiva-
lence, of B is an invertible map

p:B— B, (21)

which preserves all topological data. In particular, gauge-
invariant quantities are left invariant, while gauge-dependent
quantities are left invariant up to a gauge transformation.
One can also define antiunitary topological symmetries, which
complex conjugate the data, up to gauge transformations.
Certain unitary braided autoequivalences are “trivial” in
that they leave all of the basic data of the theory completely
unchanged. These autoequivalences are called natural isomor-

phisms, and their action is written

Y(la, bic)) = L2

la, b; c) (22)

with y, € U(1) for all a € 5. In bosonic systems, modifying
a braided autoequivalence by a natural isomorphism is a form
of gauge freedom. We therefore define the group Aut(13) to
be the group of braided autoequivalences of B modulo natural
isomorphisms.

Natural isomorphisms themselves have redundancy, in that
modifying

Ya = Vala (23)

for phases ¢, which obey the fusion rules, that is, {,{ = ¢,
whenever N, > 0, does not change the action of the natural
isomorphism on any fusion space. This redundancy will be
particularly important when we consider the fermionic case.
The first step towards specifying how a symmetry acts on
a bosonic topological phase is to choose a group homomor-
phism
[pg] : G — Aut(B). 24)
Choosing a representative pg of the class [pg] specifies data
Ug(a, b; ) via the equation
pg(la, b;c)) = Ug(®a, Bb; Bc) | Ba, Bb; 3c),  (25)

where |a, b; c) € V, is a state in a splitting space of B. These
data are subject to the consistency conditions that the F and R
symbols are preserved:
2q,8h, 8
Ug(%a, Bb; Be)Uy(®c, Be; Bd)F o'y, o

x Ug_l(gb, &c; gf)Ug_l(ga, gf: 87) = (Fdae;}g)ﬂ(g)’ 26)

Ug(®b, Ba; SR U, (Ba, #b; Bc) = (R®)7®. (27)
Here
|1 g unitary
o) = {* g antiunitary (28)

Modifying the representative pg by a g-dependent natural iso-
morphism, pg — Yy 0 pg, is a form of gauge freedom which
changes

Ug(a, bic) — Mug(a, b:c). (29)
Ye(8)
Since [pg] is a group homomorphism, the map
Kgh = Pgn © P ' © Py (30)

is a natural isomorphism. Translated into the action on fusion
spaces, this means

Ba(g, h)By(g, h)
Bc(g, h)
= Uy N(a, b, )(Uy " (%a, #b; 26))” P Ugn(a, b )
(€29)
for some phases £,(g, h). We use the compact notation g =
g~!. Thanks to the redundancies in natural isomorphisms

discussed above, if v,(g, h) are phases that obey the fusion
rules for each g, h, then the data 8,(g, h) and B,(g, h)v,(g, h)

kgn(a, b;c) =
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should be considered gauge equivalent. Modifying p, by a
natural isomorphism also modifies

Ya(gh)
Ya(8)ye,(h)*®

so these B, should also be considered gauge equivalent. We
use the canonical gauge-fixing Ug(1, a,a) = Ug(a, 1,a) =1
for all a € B, where the identity anyon in B is denoted 1.
Maintaining this gauge fixing requires y;(g) = 1 in all gauge
transformations.

Ba(g. h) — Ba(g. h), (32)

B. Symmetry localization and fractionalization

Now suppose that we have a bosonic quantum many-body
Hilbert space with a local Hamiltonian such that the system is
in the phase given by the topological order B. Let R, be the
representation of g € G on the quantum many-body Hilbert
space. We assume that R, is generated onsite, that is,

Ry = [ [ROK®, (33)

where the R{" are local (that is, supported on a region with
length on the order of the correlation length or smaller) unitary
operators on disjoint patches i of space, g(g) = 0 if R has a
unitary action, and g(g) = 1 if Ry has an antiunitary action.
Let |W¥y,,;) be a state of the many-body system with anyons
a; localized at well-separated positions i. Then, at least in
principle, one may determine the map [pg] : G — Aut(B),
where the autoequivalences are defined modulo natural
transformations.

Upon defining [pg], we may ask if the symmetry can be
localized. That is, we ask if the global symmetry operator
R, acting on |W,,,;) can be decomposed, up to exponentially
small corrections in the ratio of the correlation length and the
separation between anyons, according to the following ansatz:

R |Wiay) ~ 1_[ Uy pg|Wiay), (34)

where pg is an operator which acts only on the topological data
of the state |Wy,,) and whose action is given by the element
[og] of Aut(B), and Ug(i) is a local operator near the anyon at
position i.

One can show [2] that localizing the symmetry amounts
to choosing a set of phases 1,(g, h). These phases define the
symmetry fractionalization data and which characterize the
extent to which the local operators Ug(i) fail to obey the group
law:

Na, (8 UG [Wiay) = U Uy 0 [Wiay). (35)
The n, obey consistency conditions. One arises from enforc-

ing associativity of the Ug(j ),

Na(g, Wna(gh, k) = 2% (h, K)n.(g, hk). (36

gq
The other consistency condition enforces the consistency be-
tween the local data and the global part of the symmetry pg:

1c(g, h) o(® (8, B RS P
m = Uh (ga, gb, gc)Ug(a, b, C)Ugh (a, b, C)

= K;ﬁ(a, b;c). 37)

Using the explicit form of x, we find that

Pa(g. M)Br(g. h) _ na(g, Mny(g, h)
Be(g. h) n.(g, h)

so we may re-encode the symmetry fractionalization data into
a set of phases

(38)

Bulg. h)
«(g, h) = .
o) =5 e

These w, need not be 1, but they do have the convenient
property that they obey the fusion rules. We emphasize that,
given pq, the phases w, and 7, are equivalent encodings of the
symmetry fractionalization data, and we may choose to work
with either one depending on convenience. By an argument
which we review and generalize in Appendix A, the fact that
the w, obey the fusion rules means that, since 3 is modular,

wa(g, h) = M, g n) (40)

where w € A, with A the set of Abelian anyons of B, and M,
is the scalar monodromy between the anyons a, b.

There is an obstruction to the symmetry localization ansatz
of Eq. (34) being consistent with associativity of Rg, which
precludes defining any consistent symmetry fractionalization
pattern. This obstruction, called the symmetry localization
obstruction, is an element [®] € H>(G, A). One finds this
obstruction by constructing the following phase factors:

Bast (h, k)Ba(g, hk)

gq

ﬂa(g’ h)ﬂa(ghs k) .
One can show that these phases obey the fusion rules. Accord-
ingly,

(39)

Q. (g. h. k) =

(41)

Q. (g, h, k) =M, ¢ nx» 42)

where O(g, h, k) € A. If the symmetry can be localized, we
can use Egs. (36) and (39) to write an equivalent expression
for €2,, namely,

»7® (h, K)w,(g, hk)

Q,(g,h, k) = , 43
(@)=, e o (gh. k) @)

which translates into the equation
(g, h, k) = (dw)(g, h, k), (44)

where d is the differential in the group cohomology. That
is, the existence of a consistent symmetry fractionalization
pattern requires that [@] be trivial as an element of H3(G, A).
Equivalently, if [®] is not trivial in #3(G, A), then the sym-
metry localization ansatz Eq. (34) is inconsistent and thus
we have an obstruction to obtaining any consistent symmetry
fractionalization pattern.

Another perspective on the symmetry localization obstruc-
tion is that the TQFT defined by B is only compatible with a
2-group symmetry, where G and A are the O-form and 1-form
symmetries, respectively, and [®] € H3(G, A) characterizes
the 2-group [2,29].

Symmetry fractionalization data are subject to a set of
gauge transformations that arise from ambiguities in the
ansatz of Eq. (34). One may freely modify the local operators
Us" to act on states via

Ug(j) ’\Ij{ai}> — VYa, (g)_lUg(j)}\Ij[”fﬁ 45)
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for any U(1) phases y,,;(g); this will not change the action
of R, as long as there is a compensating modification of the
operator pg by the natural isomorphism given by y,(g). This
transformation of the local operators, when inserted into the
symmetry fractionalization ansatz, effectively modifies pg by
the natural isomorphism given by y,(g). This transformation
modifies U and n according to Eq. (3) while also redefining S,
according to Eq. (32), but it leaves w, invariant. On the other
hand, redefining 8, — B,v, using the redundancy of natural
isomorphisms redefines w, — w,v, while leaving 1, and Uy
invariant.

Finally, symmetry fractionalization patterns in bosonic sys-
tems form an H2(G, .A) torsor. To see this, we note that
different solutions w and w’ of Eq. (44) are related by

w'(g, h) = t(g, h) x w(g, h) (46)

for some choice of t € Z*(G, A). Tracing through the defini-
tions, one finds that t transforms by a coboundary if the U,"
are modified by a natural isomorphism which is equivalent
to the identity natural isomorphism, that is, if we choose
a natural isomorphism for which the y,(g) obey the fusion
rules. Hence only different [t] € H(G, A) produce different
symmetry fractionalization patterns.

IV. SYMMETRY LOCALIZATION IN FERMIONIC
SYSTEMS

We will build our theory of symmetry fractionalization in
fermionic systems by applying the basic formalism of Sec. III
to a supermodular tensor category and then demanding that
the symmetry localization ansatz be compatible with the full
fermionic symmetry group G, and the locality of the fermion.
In this section, we assume that the symmetry can be localized
in the sense of Sec. III and determine the constraints required
for this compatibility. In the subsequent section we will then
study the fundamental obstructions to symmetry localization.

A. Fermionic symmetries

Consider a microscopic fermionic system in the sense de-
scribed in Sec. IV A, that is, we have a many-body Hilbert
space which is a tensor product of local fermionic Hilbert
spaces. We assume there is a local Hamiltonian with a gap
such that the system is in a fermionic topological phase asso-
ciated to the supermodular tensor category C with transparent
fermion 1. Such a system has a symmetry group G, which is
the group of transformations of fermionic operators that keep
the Hamiltonian and (by assumption) ground state invariant.
The fermion parity operator (—1)7 is defined from the Hilbert
space and determines the Zg subgroup of the full fermionic
symmetry group G. Then the group G, = G/ Z; describes
the set of transformations of all bosonic operators that keep
the Hamiltonian and ground state invariant.

To each element g € G, we have an operator R; on the
full Hilbert space which implements the symmetry. For the
discussion below, we assume the Ry are locally generated in

the sense of Eq. (33). Nevertheless we expect that the final
results basically hold for spatial symmetries as well.?

The operators Ry and (—1)" Ry are physically distinct (for
example, if the fermions carry spin, a global spin flip is dis-
tinct from a spin flip times fermion parity) and are fixed from
the outset; this fact will play an important role later.

In general, the Ry operators do not form a linear represen-
tation of Gy; instead, they multiply projectively on states of
the many-body quantum system with odd fermion parity, that
is,

RgRy = (w2(g, h)" Rgn, (47)

where F is the fermion parity operator, with eigenvalues 0 and
1, and wy(g, h) € {£1} =~ Z,.

Since both the local fermion operators and R, are defined
in the microscopic Hilbert space, the local fermion operators
have fixed transformation rules. That is, let f; , be a basis of
(Majorana) fermionic local operators localized near position
i. Then, since Ry is locally generated,

—1 ~ (i
Rgfi’“Rg = (Ug(l))algfi,ﬂ’

where i labels the position of the local fermion operator f,
«, B label local degrees of freedom, and Ug(i) is some matrix
acting only on local degrees of freedom. We include i depen-
dence on ﬁg(i) for full generality; this dependence disappears
only if the local fermion Hilbert space and the symmetry
action on it are translation invariant.

Demanding that the Ry operators multiply associatively
enforces that w, € Z*(Gy, Z,). As such, Gy is a central ex-

tension of G, by Zg , described by the short exact sequence

(48)

(49)

and characterized by the cohomology class [w;] €
H2(Gp, Zy). When [wy] is trivial, then G = Z] x Gj.
When [w;] is nontrivial, then it follows that the fermions
carry fractional quantum numbers of G, which cannot be
screened by any bosons.

With these definitions in hand, our starting point to de-
scribe the localization of G, on the fermionic topological
order described by C is to simply write down a theory of
G, symmetry localization on C in the sense of Eq. (34).
Assuming the symmetry can be localized, we will obtain
symmetry fractionalization data 7,(g, h) in the usual way via
Eq. (35). However, we must modify the theory to account
for two things. First, ¢ is a local excitation, not simply an
emergent one. Second, we must account for the presence of
the group extension w,. We will find that if our symmetry
fractionalization pattern for G, is to describe a theory with a
local ¥ and Gy symmetry, then the symmetry fractionalization
pattern is constrained in a few ways.

Consider a basis of states |lll“;‘/0;( acy) ON a closed manifold
for the topological sector containing a set of anyons a; at po-
sitions i = 1, 2, ..., n that have a definite total fusion channel
¢ and which also contains a fermion at position 0. The label «

1—>Z-§—>Gf—>Gb—>l

3See, e.g., Ref. [7] for a recent discussion on the applicability of
applying the G-crossed braided tensor category formalism to spatial
symmetries.
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labels local degrees of freedom near position 0, in the sense
that given the basis of (Majorana) fermionic operators fj o
near position 0, we define

’lylolj();(ai;c» = foa |\Il(a,':c)>v (50)

for every topological sector (a;;c), where |W(,..)) is a state
which is locally in the vacuum state at position O (we suppress
indices for local degrees of freedom away from position 0).
For this state to be realizable microscopically, we require

ce{l,y}. (5D

We can evaluate the action of Ry on the state in two ways.
First, we can pull out a local fermion operator before applying
the symmetry transformation:

R |\I}1//o (a;; c)> gf(),a |\p(a,-;c)) (52)
= Z (Ug(O))aﬂfovﬂRg |\IJ(¢li§C)> (53)
= Z o), HU(’)U [2a;};c)

X [Wiaq0), (54)

where S runs over the local basis of fermion operators. Alter-
natively, we can apply the symmetry transformation first:

R [V o) = [ ] UL U (s ({Barki€)) |95 eey) (59)
k=0,i
= [ U0 cic x ¥)
k=0,i
x Ug({ ®ai}ic) foo [Wesase) (56)

= Ug(o)fo,a HUg(i)Ug(I//, c;e X y)

x Ug({®ai}; c) [Wira0) - (57)

The symbol Ug({8a;};c) is shorthand for the U symbol for
the entire fusion tree of anyons away from position 0, and
likewise Ug(ro; ({8a;};¢)) is the U symbol for the entire
fusion tree of the whole state. The fact that the same label
« appears in both cases arises from the fact that we are using
the same basis of local operators near position O to define the
basis of states in each topological sector, which defines the
U operators. Comparing Egs. (54) and (57), we obtain an
important equation

20 Oy ¥

= U fouUp (W, 3 XY [W(agye) (58)

for all «. The first thing to observe from this equation is
that the left-hand side consists of a local operator acting on
a state, and the right-hand side is a local operator acting on
the same state multiplied by the phase Uy (¥, ¢; ¢ x ), which
depends on the nonlocal overall fusion channel ¢ of the state
in question. In order for this to be true, we must have that
Uy (Y, c; ¢ x ) is independent of c. Since ¢ € {1, v}, this
implies

Ug(Wr. v 1) =Ug(¥, L) = L. (59)

This is one of the primary constraints on the SET data and is
needed to enforce the locality of 1. This turns Eq. (58) into

> (@), oo (Wiraio)) = U fo.u [Wieazer) if ¢ € {1, ).
B
(60)
The next observation is that the action of Ug(o) on states
with an anyon i at position O is determined entirely by its
action on the basis of local fermion operators, that is, by
U:”. Normally we can modify the local operators U” by a
phase y,,(g), which would transform the right-hand side of
Eq. (60) by yy(g). However, the left-hand side of Eq. (60)
is unambiguously determined by the microscopic action of
the symmetry on local operators. Correspondingly, we have
no freedom in the right-hand side and thus we obtain the
important constraint

vy(g) =1 (61)

in all gauge transformations. Physically speaking, the local
action Ug(o) of the symmetry on states with a fermion at po-
sition 0 is completely fixed by the symmetry action on the
microscopic Hilbert space as determined by Eq. (48).

To further understand the constraint Eq. (61), we comment
that a transformation y,(g) = —1 amounts to a redefinition
of the microscopic G, symmetry operators by a g-dependent
factor of fermion parity, that is, relabeling

Ry — Ry(yy (). (62)

For a familiar example, if G, = Zg, then this redefinition
interchanges the operators T <> T(—1)F. As discussed at the
beginning of this section, these operators are physically dis-
tinct thanks to the locality of the fermion. We should therefore
consider this to be a different theory rather than a gauge-
equivalent one. As we saw at the beginning of this section,
a microscopic set of symmetry operators defines w, at the
cocycle level, not just at the level of cohomology.

Also note that the above transformation, Eq. (62), imple-
ments an automorphism of G which changes the decomposi-
tion of Gy into G, x Z*g as a set, and if yy, (g) is not closed as
a 1-cochain, this will also change the representative cocycle
wy for the group extension.

Finally, we can use the above to constrain n,. Suppose
that we can define consistent symmetry fractionalization. The
symmetries cannot permute ¥, so 1 (g, h) is constrained to
be a U(1)-valued 2-cocycle. Inserting Eq. (59) into the con-
sistency condition Eq. (37) forces

ny (g, ) =1, (63)

that is, mp(g, h) e Zz(Gb, 7).
Next, observe that

ReRufioRy 'Ry = wn(g, h)Rghﬁ,aR—‘

= Zm(g, W (Oy), 5 fip (64
= ZR

- Z (gUlf’)Ug@)m3 fis- (65)
8

() 1
i a/gftﬂR
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Applying both far-right-hand-side expressions to a parity-odd
state |W(q;;y)), We obtain

sz(& h)(ﬁg(lil))aﬁﬁﬁ W)
8

=" (B0LTP), fos |y (66)

8

We can now use Eq. (60) to exchange the U” matrices for
the operators U” which appear in the symmetry localization
ansatz, then absorb the fermion operators into the state:

@28, WU fio [Wiay0) = BUL U fiw [Wiasi0)

= (g, h) |\y$,‘;(u,:¢)) = (Ug({n))il gUlEi)Ug(i) }\pgi;(aj;W)> (68)

(67)

= By @MW [V ) (©9)
a)w(g, h)

L LT (70)
ﬂll/(g’ h) | Vis( /Jﬁ))

= nlzl (g, h) |‘1I1(Z'i;(aj§‘/f)> . (71)

The last line follows from the definition Eq. (39), and here
Wg{’k)l is the operator

i in 1 iy
wh = (Ug)  fudud (72)

defined in Ref. [2] whose action on states with an anyon a; at
position i is

Wg(,il)l [Wy,) = wq(g, h) [Vy,) . (73)

Note that w,, which is a U(1) phase that obeys the fusion rules
in the sense

w4 (g, h)wy(g, h) = w.(g, h) whenever N, > 0, (74)

and is used to characterize the symmetry fractionalization,
should not be confused with w, € {31}, which specifies G

asa Z; extension of Gy.

We also comment that in the bosonic case we would pro-
ceed by writing Eq. (40). This step becomes more subtle in
the fermionic case; we will discuss it in Sec. V.

Since the group extension cocycle w, is Z,-valued, we
conclude that

so as claimed, we should incorporate the group extension as
symmetry fractionalization data .

To summarize, we have found that locality of fermion
operators requires that

U, vr;1) =1, (76)
Ny (g, h) = w(g, h), (77)
vy (g) = 1. (78)

B. Locality-respecting natural isomorphisms

In bosonic topological phases given by a UMTC B, we
define a group homomorphism [p] : G — Aut(B), where el-
ements of Aut(B) are defined modulo natural isomorphisms.
In the fermionic case, we first need to enforce Eq. (59). Every

element of Aut(C) has a representative with Ug(y/, ;1) =
+1; given any choice of representative, if this constraint is
not respected, then modify the autoequivalence by a natural
isomorphism with yy(g) = Ug(yr, ¥; 1)7!/? (either sign of
the square root will work) to obtain a representative which
respects the constraint. Hence the group of autoequivalences
which respect the constraint Ug (¥, ¥; 1) = 1 is isomorphic to
Aut(C); we will therefore refer to the former as Aut(C) as well,
but we implicitly are disallowing any representatives which
violate the constraint.

Once we have accounted for the above constraint, as we
saw above, natural isomorphisms with y, (g) # +1 do not
in general respect the locality of the fermion. As such, we
should only consider symmetries to be equivalent if they
differ by a natural isomorphism which respects the locality
of the fermion. We define the group of equivalence classes
of braided autoequivalences under this restricted equivalence
to be the group Aut;g(C), where LR stands for “locality-
respecting.”

Accordingly, in a fermionic system we must specify a map

[og] : Gy — Autzr(C), (79)
such that

Kgh © Pg © Ph = Pghs (80)

where «g p is a natural isomorphism. In general «, , need not
be a locality-respecting natural isomorphism. When «g 1, does
respect locality, then [kgy] is trivial and [pg] is a faithful
group homomorphism; otherwise the multiplication law for
[pg] holds up to a factor [k p].*

The definition of Aut;x(C) is more subtle than one might
naively expect. Given a microscopic realization of the sym-
metry, natural isomorphisms are obtained by modifying the
local operators Ug(k) that appear in the symmetry localization
ansatz by anyon-dependent factors y,(g); from this starting
point, only natural isomorphisms with y,, = +1 are allowed.
However, if the starting point is only UBFC data, natural
isomorphisms are defined by their action on fusion vertices,
i.e., they are autoequivalences Y of the form

Y(la, bic)) = L2

la, b, c). (81)

c
At this level, natural isomorphisms have a redundancy upon
redefining

(82)

where the ¢, are phases such that ¢, = {. whenever N, > 0.
Such a redefinition does not change the action of the symme-
try on any fusion vertices. Therefore if a natural isomorphism
is equivalent under this redundancy to one with y, = +1, then
it also respects locality, although at the level of microscopics,

77(1 = CaVas

4 An earlier version of this paper referred to [p,] as a group homo-
morphism, implicitly assuming that [kg ] is always trivial. However,
when Y, violates locality, [, ] may indeed be nontrivial, in which
case the multiplication law for [pg] need only hold projectively;
an example is the unobstructed fractionalization of G, = Z,"/ on
C = SO(3); in Sec. VIF. The corrected discussion agrees with the
discussion contained in Ref. [30].
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we must implement the natural isomorphism of the BFC using
the equivalent y,, = +1 realization.

All phases ¢, which respect the fusion rules have ¢, = £1,
so locality-respecting natural isomorphisms are required to
have yy = &1 note that this condition also preserves the con-
straint Eq. (59) that U(y, ¥; 1) = +1. There may or may not
exist phases £, which obey the fusion rules and have ¢y, = —1.
If such phases ¢, do not exist, (in the language of Sec. II
this means K(C) = K (C)), then the naive expectation holds:
only natural isomorphisms with y,, = +1 respect locality, and
Aut(C) # Autzg(C). However, if such phases ¢, do exist (in
which case K(C)/K . (C) = Z,), then all natural isomorphisms
with y, € Z, are equivalent to one with yy = 41 and thus
respect locality. In this case, Aut(C) = Aut g(C).

In the former case where these phases ¢, do not exist, there
is a rather unfamiliar consequence that equivalence classes in
Aut(C) are not uniquely determined by the permutation action
on the anyons. To see this, define

YaVb

c

Ty (la, bic)) = la, b, c) (83)
with y, = +1 for all a # ¢ and y;, = —1. By construction,
Ty has a trivial permutation action on the anyons, but if the
aforementioned ¢, do not exist, i.e., if K(C) = K, (C), then
Ty is not a locality-respecting natural isomorphism and its
equivalence class in Aut;z(C) is therefore distinct from the
class of the transformation which acts exactly as the identity.

The map Y, has a natural interpretation as the action of
fermion parity, since it inserts a factor of (—1) for every local
fermion in a state.

For a general BFC B, in many cases of physical in-
terest, equivalence classes in Aut(8) modulo all (possibly
locality-violating) natural isomorphisms are uniquely deter-
mined by the way they permute the anyons. This property
was proven explicitly in Ref. [29] for theories with Nj, < 1
for all a, b, c € B and where all F symbols allowed by the
fusion rules are nonzero. Some theories which do not have
this property can be found in Ref. [16].

Suppose we have a theory in which given an autoe-
quivalence p, all autoequivalences which have the same
permutation action as p are related to it by a possibly
locality-violating natural isomorphism. Assuming p satisfies
the restriction U(yr, ¥; 1) = +1, the only (possibly) locality-
violating natural isomorphisms that maintain U(yr, ¥; 1) =
+1 have y,, = —1, thatis, they are related to Y, by a locality-
respecting natural isomorphism. Therefore, if Y respects
locality, then locality-respecting equivalence classes in Aut(C)
are uniquely determined by their permutation action. If Y
does not respect locality, then there are exactly two locality-
respecting equivalence classes in Aut(C) for each permutation
action; if p is a representative of one such class, then Yy, o p
is a representative of the other class. In this case,

Aut(C) = AutLR(C)/Zz, (84)

where Z, is the subgroup of Aut;z(C) generated by [Ty ].
We note that we have not proven that the constraints that
we have found are exhaustive. Since the fermion i is con-
sidered to be local, one could imagine a constraint of the sort
Ug(a, r;a x ) = +1 for all a, not just a € {1, ¥}, however
we have not found any evidence that such a constraint should

be required. If we did have such a more general constraint,
then only one of py and Yy, o pg would be allowed, in which
case we would always have Aut;g(C) >~ Aut(C). In this case,
then [p] would again be a homomorphism into Aut(C).

1. Examples

We presently explain some examples and special cases
where it can be determined whether or not Y respects
locality.

If any minimal modular extension C of C contains an
Abelian fermion parity vortex v, then Y respects locality.
Specifically, we can define ¢, = M, ,, as M, , € U(1) respects
the fusion rules of C and therefore also respects the fusion
rules of C. Since v is a fermion parity vortex, ¢y = —1.
Clearly this case includes all C of the form C = {1, ¥} X B
for modular B.

We prove in Appendix C that the converse of the above
statement is true as well, so that Y, respects locality if and

only if some minimal modular extension C of C contains an
Abelian fermion parity vortex v.

One physical situation where T, does not respect locality
is whenever C contains a fusion of the forma x b = ¢ + (¢ X
¥)+ -, thatis, NS, = N;;"’ > 0. We do not know whether
or not this condition is necessary for Y, to violate locality, but
the proof that it is sufficient is straightforward. Assume such
a fusion rule exists; then any phase ¢, which obeys the fusion
rules must obey

Ce = 8alp = gcxx// = §c§¢ (85)

Therefore ¢y = +1. An example where this occurs is the
theory describing the anyon content of SO(3); Chern-Simons
theory, which we shall simply call® C = SO(3); (see, e.g.,
Ref. [20] for the explicit BFC data) which has a fusion rule
sxs=14+s+35withs§ =15 x .

In the case where C contains a fusion rule where N¢, =
NV > 0, then the quantity

AS =Ule,¥ic x Y)U(a, b;e)U " (a, bye x ) (86)

is nonzero and gauge-invariant within Aut; x(C). It is straight-
forward to check that if the autoequivalence is changed from
p to Ty o p, then A¢, changes to —A¢,; A¢, is therefore an
invariant that distinguishes two elements of Aut;z(C) with the
same permutation action.

2. Summary

To summarize, the following are equivalent for a super-
modular category C:

(1) Ty respects locality;

(2) some minimal modular extension C of C contains an
Abelian fermion parity vortex;

(3) Aut(C) >~ Autz(C);

SIn some references in the condensed matter literature, e.g.,
Ref. [20], this BFC is named SO(3)s because it is the integer spin
sector of the anyons in SU(2)s Chern-Simons theory.
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(4) if elements of Aut(C) are uniquely determined by their
permutation action on the anyons, then so are elements of
Autzr(0);

(5) K(C)/K,(C) ~ Z,; and (6) there exists a set of phases
¢, which obey the fusion rules and have ¢, = —1.

Conversely, the following are also equivalent.

(1) Yy violates locality;

(2) Aut;r(C)/Z, ~ Aut(C);

(3) if elements of Aut(C) are uniquely determined by their
permutation action on the anyons, exactly two elements of
Autzg(C) have the same permutation action on the anyons;

4) K(C) ~ K. (C).

(5) Any set of phases ¢, which obey the fusion rules must
have ¢y, = +1.

V. OBSTRUCTIONS AND CLASSIFICATION OF
SYMMETRY FRACTIONALIZATION

We now consider the obstructions to fractionalizing Gy on
C. There are two such obstructions. The first is an obstruction
to defining any symmetry fractionalization of G}, as a bosonic
symmetry group on the supermodular tensor category; this ob-
struction [Q2] € H3(G,, K(C)). We will call this the “bosonic
obstruction” since it is independent of the extension Gy of
Gp. One can think of this as an obstruction to the symmetry
localization ansatz of Eq. (34), while ignoring the locality
of the fermion (that is, ignoring the constraints discussed in
Sec. IV).

Assuming that the bosonic obstruction vanishes, the second
obstruction, which we will call the fermionic obstruction, is to
finding a symmetry fractionalization pattern which obeys the
constraint 7y, = w,. If YT, respects locality, then the fermionic
obstruction [®f] € H3(Gy, AJ{1, ¥r)). If Ty does not respect
locality, then the fermionic obstruction is Oy € Z%(Gy, Z»).

The fermionic obstruction has appeared in the math
literature in Ref. [23]; we explicitly incorporate the local-
ity restrictions and give a physical understanding of these
obstructions.

If both the bosonic and fermionic symmetry localization
obstructions vanish, the symmetry localization ansatz is well-
defined and is compatible with the locality of the fermion,
which implies that there exists some well-defined symmetry
fractionalization pattern. We can then classify distinct symme-
try fractionalization patterns; we find that these patterns form
a torsor over H2(Gp, A/{1, ¥}), i.e., that different patterns
are related to each other by an element of H*(Gy,, A/{1, ¥})
but there is not in general a canonical identification
of symmetry fractionalization patterns with cohomology
classes.

Before proceeding, recall from the previous subsection that
Ty respects locality if and only if there are phases ¢, € U(1)
which respect the fusion rules and for which ¢y, = —1, that is,
if K(C)/K,(C) = Z,. In what follows, we will only directly
use the (non)existence of such phases rather than explicitly
using Yy

A. Defining the cohomology class of the bosonic obstruction
In this section, we will show how the map

[o] : Gy — Aut;r(C) (87)

determines an element [Q] € H3(Gy, K(C)). We will provide
the interpretation of [€2] as an obstruction to symmetry local-
ization in Sec. V B.

Choose a representative pg of [pg]. Recall that the natural
isomorphisms «, , are defined by Eq. (80) and can be decom-
posed

ﬂa(g’ h)IBb(gv h)
Bc(g, h)

for phases B, where kgn(a, b;c) is the action of kg on an
|a, b; c¢) fusion vertex.

Demanding that the two ways to decompose pghk are con-
sistent leads to the condition

kgn(a, byc) = (88)

Kg,hkpgKh,kpg_] = KghkKgh- (89)
Define
7® (h, k)B.(g, hk
Qg bk = L ORI )
Ba(g, h)B.(gh, k)
By definition €, is a U(l) valued 3-cochain: €, €

C3(Gp, U(1)). Applying Eq. (89) to a state |a, b;c), we im-
mediately find

Q. = Q,, oD

whenever N}, # 0 (so that |a, b; c) is a nonzero state). Letting
a vary, then, we have Q € C3(Gyp, K(C)), with a group action®
which takes 2, — Qg,. By direct computation,

Q7®(h, k, )2, (g, hk, D2, (g, h. k) | 0
Q.(gh, K, 1)2,(g, h, KI) =L o

Hence Q € Z*(Gy, K(C)). It is straightforward to check that
Q2 is invariant under symmetry gauge transformations Eq. (32)
and is therefore independent of the choice of representative pg.

There is additional gauge freedom in 2 which arises
from the gauge freedom in 8; we may redefine S,(g,h) —
Ba(g, h)v,(g, h) for any phases v,(g, h) which obey the fusion
rules, that is, for v € C*(G,, K(C)). Inserting into Eq. (90), we
find that this modifies 2 — Qdv, that is, 2 is ambiguous by
an element of B3(G,,, K(C)). Hence [Q2] € H3(Gp, K(C)) is a
well-defined cohomology class.

We can go a bit further if Yy violates locality. Then
K(C) = K4 (C) =~ A/{1, }; in this case, we know that 2, =
+1 and thus we can write

Q,(g,h,K) =M, ¢,(e.h.k) (93)

for some ®, € C3(Gy, A/{1, ¥}). Inserting Eq. (93) into
Eq. (92),

1= Mg:gq))b(h,ky])Mav‘bb(gvhk,l)Man)b(g,h,k)M:,Q),,(gh,k,l)M;k,Q)b(gﬁh,kl)
94

= Mo, 20,m.k HMa,0, .0k ) Ma,0, 8.0 ) Ma.0,eh k DM, 5, @)
95)

= Mu, 2Q,(h,k,1)x (g, hk,1) x Oy (g,h, k) x O, (gh, Kk, 1) x Oy (g,h k) (96)
= My 40,@nkl) 7

Thanks to the presence of g rather than g, this is actually a right
group action of G, on K(C) rather than a more conventional left
group action.
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for all a € C. Here we have used the symmetry properties of
the S matrix and the fact that if M, is always a phase, then
MM, = M,,; whenever N,;ic # 0. Because we are only con-
sidering braiding of ®; with elements of C and not a modular
extension, at every step in this process, we could have freely
inserted a fermion into any of the ®,, or into the overall fusion
product. Hence d®),, is completely ambiguous by a fermion.
Supermodularity converts Eq. (97) into

do,(g,h, k1) € {1, y}. (98)

Hence d®, =1 as an element of A/{1,y}; that is,
O, € Z3(Gy, A/{1,¥}). A similar calculation shows that the
coboundary ambiguity in 2 leads to a coboundary ambi-
guity in ®,. The conclusion is that if Y violates locality,
then [®] € H3(Gy, A/{1, ¥}) is a well-defined cohomology
class.

If Yy respects locality, then in general we cannot say
anything further than the above. We will show in Sec. VB
that it is possible to choose a cocycle representative 2 such
that Q € Z3(Gy, K, (C)), but as we will see, the class [2] €
H3(Gy, K(C)) can in general be nontrivial even if there is
no symmetry localization obstruction; the actual obstruction
is the class [Q2] € H3(G,, K(C)).

B. Symmetry localization obstructions

Now we determine the obstructions to symmetry localiza-
tion on C.

As reviewed in Sec. III, localizing the symmetry on C
amounts to choosing a set of phases w,(g, h) which obey the
fusion rules and

Qu(g. h. k) = wz,(h, K)o, (gh, K) ™' w,(g, hk)w,(g, h) ™.
(99)
Recall that the symmetry fractionalization data n are defined
using Eq. (39), and that fermionic symmetry fractionalization
means we require 71y (g, h) = w2 (g, h).
The bosonic symmetry localization obstruction is the ob-
struction to finding any solution of Eq. (99), which we may
reinterpret as the condition

Q=do (100)

for Q@ € Z3(Gy, K(C)) and w € C*(Gy, K(C)). That is, [Q] €
H3(G,, K(C)) is the bosonic symmetry localization obstruc-
tion. To characterize this obstruction further and to understand
the fermionic symmetry localization obstruction, we proceed
in two cases, depending on the locality of .

1. Case: Y does not respect locality

If T, does not respect locality, we have K(C) = K, (C)
and, accordingly,

Qy = +1. (101)

If a solution w, to Eq. (99) exists, then we must have wy =
+1 as well because w, obeys the fusion rules. Hence we may
write

wa(g, h) =M, g n) (102)

for all a € C for some tv € A, where again tv is ambiguous
by a fermion. Substituting into Eq. (99), we find the usual

requirement

Ma,(Dh = Ma,dw' (103)

Hence, O, = dw, modulo a fermion, that is, we must have
[®,] =0 € H3(Gp, A/{1,v}) in order to have symmetry
fractionalization. If [®,] = 0, then by definition there exists
such a w, so there is no additional bosonic obstruction.

To understand the fermionic symmetry localization ob-
struction, we must attempt to enforce the condition 1y = ;.
Recall from Sec. V A that 8, € Z, is gauge-invariant when
T, does not respect locality. Suppose that some solution w,
of Eq. (99) exists, that is, the bosonic obstruction vanishes; it
automatically has wy, = +1 as mentioned above. Then using
Egs. (39) and (101), we have ny = By /wy = By. Hence,
since ny € ZX(Gy, Z»),

Of = By/wr € Z2(Gy, L) (104)

is the obstruction to imposing the fermionic symmetry frac-
tionalization condition 1y = w;. If By /w, = +1, then we
automatically have ny = w, and the symmetry fractionaliza-
tion pattern accounts correctly for the fermionic symmetry.

Note also that, by definition, By (g, h) = —1 implies
[kgn] = [Ty ]. Therefore, if the fermionic obstruction van-
ishes,

[Kg,h] — [ij](l—wz(g,h))/z‘ (105)

We see that when Y, violates locality, [og] : G, — Autzg(C)
can be a group homomorphism without a symmetry fraction-
alization obstruction only if w,(g, h) = +1.7

Furthermore, when this fermionic obstruction vanishes, we
see that [pg] lifts to a group homomorphism Gy — Aut;z(C)
such that (—1)" maps to [ Yy ]. Therefore, when Yy, violates
locality, we can view @y as obstructing the existence of such
a lift.

The above fermionic obstruction was also found in the
mathematical context of categorical fermionic actions in
Ref. [23], where it was considered to be an element of
H*(Gy, Z,). The question of whether to mod out by 2-
coboundaries arises upon consideration of what data are
considered given. If one is given only [w;] € H2(Gy, Z),
then there is freedom to simply choose a different w, in the co-
homology class and we should consider [®] € H2(Gy, 7).
As discussed in Sec. IV A, this choice amounts to a differ-
ent decomposition of Gy into Gj x Zg as sets. Furthermore,
if one is only given a map [pg] : G, — Aut(C), then there
is freedom to modify pg by Yy, which modifies @, by a
coboundary. In this case, again the obstruction is [Of] €
H2(Gy, Z»). However, as we discussed in Sec. IV A, a com-
plete specification of a quantum many-body system and its

"The fact that Eq. (104) implies a constraint relating w, and [y n] in
the case where Y, is locality-violating, as summarized in Eq. (105),
was also noted previously in Ref. [30]. Reference [30] further ob-
served that a somewhat looser version of Eq. (105) can also be
derived when [kgn] = [Ty ] for some g, h by demanding that there
exists an (unconstrained) lift of the map [pg] : G, — Aut;x(C) to a
group homomorphism Gy — Aut z(C). We do not enforce such a
requirement explicitly, although as stated above the vanishing of O
implies the existence of such a lift with (—1)" mapping to [T ].
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symmetries fixes both a cochain representative of w, and
determines [pg] : G — Aut;z(C). In this case w, and By, have
no further gauge freedom. Thus there is no further freedom to
change @ by a coboundary, and so we take the obstruction
to be valued in Z%(Gp, Z,). If one instead were interested
in whether there is any physical realization of an abstract
symmetry group G acting on C, the obstruction would be a
cohomology-level obstruction.

An example where this fermionic obstruction occurs is in
SO(3); Chern-Simons theory with G; = Z¥ x Z1. There is a
unique permutation action of the anyons under time-reversal.
One can check directly that there is only a valid symmetry
fractionalization pattern with B, = ny (T, T) = —1, which
would require Gy = Z}‘f . We explain this in more detail in
Sec. VIF 1.

Remarkably, when Y, violates locality, given a G, and
[pg], there is always at most one group extension G, of G,
which can be unobstructed. This follows from the fact that,
given a [pg], By is gauge-invariant; the only gauge freedom
in B, is to modify B, — B.,v, where v, obeys the fusion
rules, and since Y, violates locality, v, = +1. Hence the only
possible unobstructed G has w, = By

2. Case: Y respects locality

If Yy respects locality, then K(C)/K,(C)= Z,, and
we cannot generically say anything further about the
bosonic symmetry localization obstruction; it is simply [2] €
H3(Gp, K(C)).

Suppose the bosonic obstruction vanishes so that there
exists some consistent G, symmetry fractionalization data 7,;
we need to enforce the fermionic constraint 7y = w>. As in
the bosonic case, all consistent (bosonic) symmetry fraction-
alization patterns can be obtained from a given pattern 7'? via

na(g, h) = 0y (g, h)ta(g. h) (106)
where 1, obeys the fusion rules and additionally obeys
Tz, (h, K)7,(g, hk) = 7,(g, h)7.(gh, k). (107)

Given the symmetry fractionalization pattern nflo), we may
attempt to obtain one which obeys the fermionic constraint
ny = wy by simply choosing 7,(g, h) to be any phase which
obeys the fusion rules and

w) (gv h)

0, . = .

(108)
Ny (g, h)

Such a 7, will always exist, but it may not obey Eq. (107).
Define

T.(g. h, k) = 7¢,(h, k)7,(g, hk)7, '(g, h)z, '(gh, k) (109)

Obviously Eq. (107) is equivalent to 7, = 1, and it is also clear
that 7, is a phase which obeys the fusion rules (since the same
holds for 7,). Furthermore, w, and nf/?) are both elements of
Z*(Gyp, Z»); hence T, = 1, that is, T € K(C). We therefore
conclude that

T;J(ga h7 k) = Ma,Q)f(g,h,k) (110)

for some Oy € C3(Gy, A/{1,¥}). We find with a direct com-
putation that d7;, = 1, which implies @y € Z3(Gy, AJ{1,Y}).

Our desired condition 7, =1 would force O € {1, ¥};
this will not be satisfied in general. However, we could have
chosen another t, which satisfies Eq. (108); clearly all such
7, are obtained by modifying t,(g, h) — 7,(g, h)A.(g, h)
where A, obeys the fusion rules and, crucially, A, (g, h) =
+1. Hence A € C*(Gy, K4 (C)). Such a A, must be of the form

ra(g, h) = M vign) (111)

with v(g, h) € C%(Gy, A/{1, ¥}). This change to 7, mod-
ifies Of — Of x dv. Therefore, as long as [Of] =0¢€
H3(Gp, A/{1, ¥}), there exists some choice of » which will
trivialize 7, that is, produce the desired 7,. Hence [®f] €
H3(Gp, A/{1,4}) is the obstruction to fractionalizing G
onC.

To summarize, if Y, respects locality, the bosonic obstruc-
tion is [Q2] € H3(G,, K(C)), while the fermionic obstruction
is [Of] € H3(Gy, A/{1,}). We give an example of a theory
with a trivial bosonic symmetry localization obstruction but
a nontrivial fermionic symmetry localization obstruction in
Sec. VIF2, namely, C = Sp(2), x {1, ¥} with a particular
action of Gy = Zg X Zg.

3. Technical aside on gauge-fixing when Y, respects locality

Suppose that Yy respects locality and we are given a
particular representation B,(g,h) of kg as a natural iso-
morphism. Since Y, respects locality, Aut(C) = Aut;(C)
and so there exists a gauge transformation v € C%(Gy, K(C))
such that the gauge-transformed B, obeys By = +1. In this
gauge, Eq. (90) immediately implies €2, = +1, that is, Q €
Z3(Gy, K. (C)). Certainly if [Q2] = 0 € H3(Gy, K+(C)) then it
is also true that [Q] = 0 € H3(Gy, K(C)). However, it may be
that [Q] # 0 € H?(Gp, K (C)) but [Q] = 0 € H3(G,, K(C)),
so the element [Q] € H3(Gy, K. (C)) is not the bosonic sym-
metry localization obstruction. That is, it may be that despite
the gauge-fixing Q, = +1, any solution of Q =dw for
the particular representative 2 will necessarily have some
wy (g, h) = —1.

We can rephrase the above more precisely. If T, respects
locality, then there is a short exact sequence

1= K (C) 5 KO 2 7, — 1, (112)

where i is the inclusion map and ry, is the restriction of a set
of phases ¢, to a = . This leads to a long exact sequence in
cohomology, where the relevant piece is

cos = H(G Tn) > HA(Gy, K4 (C)) > HA(Gy, K(C))

X 1Gy. Zy) = - (113)

where § is the connecting homomorphism. The locality con-
straint Eq. (59) implies By € Z,, in particular that 8y, x By =
Byxy = B = +1. Inserting into the definition Eq. (90) im-
plies Q2 = dfy, that is, er([Q]) = 1. Hence [Q2] € ker rjz =
im i*. A particular choice of the gauge-fixing procedure above
amounts to a choice of a particular element in (i*)~'([Q]). If
ker i* is trivial, then we can safely conclude that @)D e
H3(Gp, K+(C)) ~ H(Gy, A/{1, ¥}) is uniquely defined and
can therefore also be regarded as the bosonic obstruction.
However, i* need not be injective; in fact ker i* = im §. If i* is
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not injective, then even if [€2] is trivial our gauge-fixing pro-
cedure may set @*)~"([L]) to a nontrivial cohomology class
in H3(Gy,, K, (C)). Hence we must use [Q] € H3(G, K(C))
as the bosonic obstruction.

C. Fermionic obstruction as an obstruction to a lift

There is another perspective on the fermionic symmetry
localization obstruction which is more general and is concep-
tually closely related to the viewpoint of Ref. [23].

Consider the following general problem: let B be any
UBFC with some subcategory B’ C B. Given a homo-
morphism [pg] : G — Aut(B) (or Autzz(B), as appropriate)
which preserves B’, we can restrict [p,] to B’. Suppose
that there exists a symmetry fractionalization pattern for this
restricted homomorphism. Then what is the obstruction to
lifting the symmetry fractionalization pattern to all of B, i.e.,
defining a symmetry fractionalization pattern on B which
restricts to the given one on 5?

This problem was considered in Ref. [22], wherein it was
explained that taking B’ = {1} and B = C produces the usual
bosonic symmetry localization obstruction, while taking B’ =
CandB=C produces the H3(Gy, Z,) anomaly associated to
fermionic SETs. Ref. [22] showed that if 5 is modular, then
the obstruction is valued in H*(G, T) where T C B are the
Abelian anyons which braid trivially with all of 5. Those
results can be generalized straightforwardly to nonmodular
B; the primary change is that T is replaced by 7'/€, where £
is the set of anyons which are transparent to all of 5. However,
the derivation of Ref. [22] contains an assumption, which does
not hold in general, that one must be able to write

wp (8, h) = My wgn), (114)

for all ¥’ € B', with w € A where A is the set of Abelian
anyons in B.

Our fermionic symmetry localization obstruction is a
special case of the above; we are specifying symmetry frac-
tionalization on B’ = {1, v/} with 1y = w, and asking if this
symmetry fractionalization can be lifted to B = C. The as-
sumption Eq. (114) fails if wy (g, h) is not uniformly +1.
As derived in Sec. IV B, the assumption that Y respects
locality actually means that we can choose a gauge where
the assumption wy = +1 holds. On the other hand, if T,
violates locality, there is no such gauge-fixing allowed, so
the assumption is violated in general, and accordingly the
obstruction is valued in a completely different cocycle (or
cohomology) group.

D. Classification of symmetry fractionalization

Suppose we have two valid patterns of symmetry fraction-
alization given by w,(g, h) and )/ (g, h). Then we can define

7,(g, h) = w,(g, h)w,(g, )" (115)
Since wy, = w,, we must have
7y(g h) = +1 (116)
and 7, must obey the fusion rules. Hence we can write
To = My tgn) (117)

where t € C*(G,, A/{1, ¥}). Using the fact that w and o’ both
obey Eq. (99), it is straightforward to check that dt € {1, ¥},
and therefore t € Z%(Gy, A/{1, ¥'}).

Note that, as discussed above, if Ty, violates locality, then
we can write

@4(g, h) = M, g n) (118)

for w e A/{1, ¥}. If instead Y, respects locality, then there
exists some minimal modular extension C such that the above
equation continues to hold, with w(g, h) € A/{1, v}, where
A consists of the Abelian anyons of C.

As in the bosonic case, there is gauge freedom; we may
redefine the local operators U{” by a local unitary operator
Z{ such that

n
]_[zgfﬂ =1 (119)
J=1

on an n-quasiparticle state, provided that the constraint
Eq. (58) is maintained. This constraint forces Z{" to act triv-
ially on states with topological charge v in region i. As in
the bosonic case [2], Eq. (119) means that each Zéj ) can only
modify a given state by a phase since the Zé’ ) are local and
act on well-separated regions of space. The Zé] ) are local
operators, so this phase can only depend on the anyon a;
at position j, g, or other local degrees of freedom in a;.
Demanding that the action of Zg(j )isa phase when acting on
an arbitrary superposition of states in the same superselection
sector in fact forces Zé’ ) to be independent of local degrees of
freedom, that is,

ZY =¢,,(8)

where the above equation is interpreted to be acting on a state
with topological charge a; in region j, &, (g) € U(1), {y(g) =
1, and

(120)

[1¢ @ =1 (121)
j=1

The above equation implies that ¢ (g) obeys the fusion rules
for C, so

ga(g) = Ma,g(g)a (122)

where, in order to maintain ¢, = +1, we have 3 € C and thus
5 € A. Again, 5 is ambiguous by a fermion and is thus valued
in A/{1, ¥}. Under this transformation,

$ea(h)Za(h)
Za(gh)

which corresponds to transforming tv by t = ds. Hence t
related by coboundaries are gauge-equivalent, that is, t €
H(Gy, A/{1, ).

This means that symmetry fractionalization classes form
an H*(Gy, A/{1, ¥}) torsor. In particular, distinct symmetry
fractionalization classes with data 7, and 7/, are related by

wa(8, h) — w,(g, h) (123)

1,(8 h) = 148, WMo, m) (124)
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for cohomologically nontrivial [t] € H?(G,, A/{1, ¥}). As in
the bosonic case, there is not generally a canonical “trivial”
symmetry fractionalization class.

As in the bosonic case, changing the symmetry fraction-
alization class by an element of H*(G,, A/{1, ¥}) may not
yield a physically distinct symmetry fractionalization class.
This is because two different sets of symmetry fractional-
ization data may be related to each other by a relabeling
of the anyons. More specifically, permuting the anyon labels
with a permutation p corresponding to some unitary braided
autoequivalence of C will yield a physically equivalent frac-
tionalization class if p commutes with the permutation action
on the anyon labels of every pg.

VI. EXAMPLES

A. G, = Z] and fermionic Kramers degeneracy

There are two possible group extensions of G, = Z3;
the trivial extension 7y (T, T) =1 and the nontrivial one
ny(T,T) = —1. These correspond to T2=1 and T? =
(—1)F, respectively.

Consider any a €C such that Ta=a. Then nl =
n4(T, T) € Z, is gauge-invariant, just as in the case where the
symmetry and topological order is purely bosonic. If 5l =
—1, then a carries Kramers degeneracy [2].

A more interesting possibility occurs when Ta = a x .
Then it is easy to check that

s = 1a(T, Ur(a, y3a x YI)F-VY (125)

is gauge-invariant as well and can be interpreted roughly as
the action of T? on a. The gauge-invariance of this quantity
requires that the F;Nf vertex basis transformation is disal-
lowed, as discussed in Sec. II. The quantity F*¥*¥ can be
canonically fixed to 1 (again see Sec. II), so we omit it in
the future. We comment on the transformation rules for U
under vertex gauge transformations in Appendix B. Using
the symmetry fractionalization consistency conditions and the
fact that the pentagon equation forces F¢V-¥ = F@V- V-V it is
straightforward to show that

(1)’ = ny(T. T). (126)

That is, if Gy = Zg X Zg, then n;r is a sign and determines
whether or not a carries Kramers degeneracy, but if Gy =
ZZ’f , then r;g = =i. The latter is the precise, gauge-invariant
sense in which we can have “T? = +i” on an anyon, as dis-
cussed, e.g., for C = SO(3); in Ref. [21].

1. Dimensional reduction to 1 + 1D SPTs

In order to interpret the invariants above, we review [10]
the dimensional reduction from an anyon with Ta =a to
a(l+1)D Zg symmetry-protected topological state (SPT),
then turn to the fermionic case.

Consider a cylinder with a time reversal-invariant anyon a
on its left end, @ on the right end, and vacuum in between,
fusing to the identity channel. Then in a ground state |\W), we
have

Ry |W) = U"U"Ur(a, @ 1) | W) (127)

. . o LR
in the usual symmetry fractionalization ansatz, where U% R)
are local unitary operators. Now, if our system is bosonic, we
have

Re W) = W) = TUPTUOUS (a, @ DRy W) (128)
=TuPTyPuPUR v (129)
="TuPuPTUPUR v (130)
= 1lang |¥). (131)

Hence the local action of T?, i.e., TU%L/ R)UT(L/ B on each

anyon is given by 5T, that is, this quantity characterizes
whether each end of the dimensionally reduced cylinder car-
ries a linear or projective representation of ZZY, subject to the
constraint 77T = +1 that the global representation is linear.
From the consistency conditions for 7 it is simple to show that
nY = 41. Therefore nT = —1 means that an endpoint of the
cylinder, or equivalently a, carries Kramers degeneracy. In this
case, the dimensionally reduced system has a Kramers pair on
each end, that is, it is a nontrivial (1 + 1)D Z; SPT.

In the presence of fermions, we can ask whether the
bosonic (1 + 1)D Zg SPT is trivial or nontrivial in the
fermionic classification. Following Ref. [31], one can check
that in class BDI, the dimensionally reduced system is in the
v = 4 class of the Zg fermion SPT classification. In class DIII,
the dimensionally reduced system is a trivial SPT. This lat-
ter case is straightforward to understand physically; although
there is no local bosonic operator that removes the Kramers
pair associated with the anyon a at the end of the system, in
class DIII the local fermion v carries Kramers degeneracy.
Hence there is a fermionic operator which trivializes the end
of the system.

Now let us run a similar argument for an anyon a with Ta =
a x ¥. We again place a and a, fusing to the identity, on the

ends of a cylinder. This time
Rr|W) = UPUPUr(a x g, a x ¢ 1) |9) . (132)

Proceeding as before,

R: W) = |¥) = TUPTUP UL (@@ x ¥, @ x ¢; 1)Ry | W)
(133)
= TP TUP UL x ¥, a x y; HUP
x USPUr(a, @ 1) | W) . (134)

Using the consistency conditions, it is not hard to show that
Uf(a x ¥, a x ¢; 1)Ur(a, a; 1)
= —Ur(a, ¥;a x y)Ur(@, ¥;a x ¥)

where the minus sign is crucial and comes from the presence
of fermions. Hence,

R W) = W) = —nTnT |w).

(135)

(136)

Hence nnT = —1.

The same argument, mutatis mutandis, on a state | ') with
a on one end of the cylinder and @ x ¥ on the other end, in
the v fusion channel, shows that

ma(n7)" = —ny (T, T), (137)
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where we need to use R% |W’) = ny (T, T) |¥') by our choice
of group extension to G. This can be used to conclude that
(n;r)2 = 1y (T, T) as expected.

According to the above argument, the local action of T2 on
each end of the dimensionally reduced system is given by 17,
possibly up to local fermion parity. Therefore 773 diagnoses
the SPT phase of the dimensionally reduced system. This
action for anyons has been discussed as “fermionic Kramers
parity” in a rather different language in Ref. [21]. Reference
[21] also shows that a DIII (1 + 1)D SPT should have local
action +i(—1)F at its ends. In our formalism, DIII corre-
sponds to the nontrivial group extension under which anyons
can carry ng = =i, so such anyons lead to a nontrivial DIII
SPT upon dimensional reduction. Similarly, in the v = 2 class
of BDI, one end of the SPT should have local action +1 and
one should have local action —1. This class corresponds in our
formalism to the trivial group extension, under which anyons
carry n! = £1.

For time-reversal operations we are considering here which
change the local fermion parity, this local T? eigenvalue is not
quite multiplicative under fusion of anyons or, in the dimen-
sionally reduced picture, layering of SPTs; there is an extra
minus sign. Specifically, ifN;’b >0, Tqg= ay, Tp = by, and
Te = ¢, then

many = —n.. (138)

independent of the group extension (i.e., in the SPT language,
this equation holds for class DIII and for class BDI). Eq. (138)
was derived in the SPT language in Ref. [21] and arises
from carefully tracking fermion minus signs. Schematically,
if the local action of T on a and b respectively consists of
fermionic operators ¢, and c;, where Ci, s n: ,» then we can
equivalently think of the local action of T2 on the fusion of a
and b as

(cacp)* = —(ca)*(cp)* ~ —nany (139)

or as the local action n¥ of T? on c. The equality of these two
local actions motivates Eq. (138). Our symmetry fractional-
ization framework allows an alternate derivation in the UBFC
language, which we give in Appendix D; the proof is a la-
borious but straightforward use of the consistency conditions,
with the minus sign coming from an appearance of RVY in a
hexagon equation.

B. G, = ZI

There are two group extensions G of Z by Z‘; , the trivial

one Z4T X Z‘g and the nontrivial one Zg‘f .
For anyons with T4 = a, the invariant

v (T, T, (T2, T2)
T = (T2 T

(140)

is gauge-invariant and detects a nontrivial Z4T projective rep-
resentation, just as in the bosonic case [9]. When Ta =a,
n.(g.h) € Z*(ZT¥, U(1)), so the above expression is simply
the cohomology invariant, equal to &1, which detects whether
n.(g, h) characterizes a linear or projective representation
of Z:{. In particular, 77£ characterizes the group extension
wy(g,h) = ny (g, h), and can be thought of as indicating

whether or not i has fractional charge under the unitary
symmetry T2. If the charge is fractional, then schematically
T* = (—1)F, and indeed the group extension is nontrivial.

The consistency conditions demonstrate that this quantity
obeys the fusion rules in the sense that if Ta =a, Th =
b, Tc = ¢, and N, > 0, then

nany =1 (141)

Notably, n! = :I:ngw with the upper sign for Gy = Z] x Zg

and the lower sign for Gy = ZST’f .
If, on the other hand, Ta = a x 1, then

v (T, T, (T2, T2)
o 7a(T2, T)

is the appropriate gauge-invariant object. In contrast to the
case G, = Zg, we do not need any F' symbols to preserve in-
variance under vertex basis transformations; Urz(a, ¥;a x ¥)
is invariant under such transformations because T? is unitary.
Using the consistency conditions, one can check straightfor-
wardly that

Up(a, ¥y;a x ) (142)

(nd)" = my (12, T2,
where the right-hand side is the cohomology invariant deter-
mining the group extension [w;]. This quantity also obeys the
fusion rules in the sense that if Ta =a x ¥, Tb=b x v,
Te = ¢, and N¢, > 0, then Eq. (141) holds with n} interpreted
appropriately for the transformation properties of the anyons.

(143)

C. G, =U(1)

There are two extensions of U(l) by 7. , l.e.,
H2(U(1), Z») = Z,. One extension is the trivial extension
Gy =U(1) x Z; while the other is called U(1)/ and is
characterized by the cocycle

wx(g, h) = e veten—logtenl)/2 (144)

where g = €%, g € [0,27) and [x] = x mod 27.

Since Gy is continuous, the condition that pg obeys the
group multiplication laws up to natural isomorphisms forces
g to either be the identity or [Ty ]. In particular, this implies
that [pg] has trivial permutation action on the anyons.

Interestingly, if Y, does not respect locality, then any
symmetry fractionalization of U(1)/ automatically has a
fermionic symmetry localization obstruction. Identify [pq] €
{Id], [Ty ]} =~ Z,, and encode whether [pg] is the trivial or
nontrivial element of Z, by the function ¢(g) : G, — Z».}
Calculating [« n] directly from Eq. (80), we see that

By (g, h) =d¢(g, h).

It immediately follows from Eq. (104) that O is trivial if
and only if w(g, h) = d¢, which is only possible if Gy =

(145)

Uu) x Zg . Therefore not all supermodular categories can be
compatible with U(1)/ symmetry.

The gauge-invariant quantity characterizing symmetry
fractionalization is given as follows. For a fixed anyon a, let n

8The map ¢(g) need not be continuous because [«gx] need not be
continuous.
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be the smallest integer such that @” contains the identity as a
fusion product. Choose a sequence of anyons a, @?, ..., a" =
1 such that a x a* contains a**! as a fusion product. Then
define
n—1
270 1_[ N (627”/”, eZﬂim/n)Ueh’_/” (a,d™, am+1). (146)

m=1

One can check directly that this quantity is gauge-invariant.
We immediately see that

T = wn(~1, —1), (147)

which can be checked to be a cohomology invariant charac-
terizing the group extension.

Here Q, (which is only defined modulo an integer) can be
interpreted as the fractional charge of the anyon a under U(1).
One way to understand this interpretation is by noting that
the fermion plays no role in this quantity, so we could instead
consider the same invariant for a bosonic topological order,
that is, taking C to instead be a UMTC. In that case, Ref. [7]
assumes the existence of a G-crossed MTC and defines an
invariant which is equivalent to

7% = (R*%R%Y ] na(e, 2",

m=1

(148)

where g = ¢?*'/" a is any anyon, and 0Og is any defect carrying

g flux. Reference [7] shows that Q, has the interpretation as
the fractional U(1) charge of a because this quantity can be
understood as the double braid of @ with a 27 flux of the U(1)
symmetry. Combining the G-crossed heptagon equations for
clockwise and counterclockwise braids, we find

(Ra,OgROg.a)(Ra’”,()gR()g,a”’ ) — (Ra ,OgROg,u"’H )Ug(a, am; am+1 )

(149)
Inserting this identity into Eq. (148) shows that it is equivalent
to Eq. (146), that is, we expect that if a G-crossed theory
exists when C is supermodular, then Eq. (146) also gives the
fractional U(1) charge of the anyon a.

Note that for the nontrivial group extension w,(—1, —1) =
—1, the fermion carries Qy = 1/2. This must be so because
the fermion carries unit charge of the full symmetry group
U(1)/, which is a double cover of G, = U(1). We see, then,
how the nontrivial group extension is encoded by giving the
fermion a fractional quantum number under G, although it
carries an integer charge under Gy. Note also that in this
context, the physical charge carried by an anyon a, which is
really the U(1)/ charge, is 2Q,.

‘We can characterize symmetry fractionalization with G, =
U(1) a bit further if Y, respects locality. In this case, there

m+1

exists a modular extension C with an Abelian fermion parity
vortex vg and [pg] = [Id], where Id is the identity map. We can
thus fix a gauge (for convenience) in which pg is the identity
(i.e., Ug = 1), in which it is straightforward to check that

(8 ) = Mo gm) (150)
with
(pg+on—l[pg+enl)/2m . _ f
if G, = U(1)
Drer(g, h) = {10 G, =vy
1 if Gy = U(1) x Z}
(151)

satisfies the consistency equations (36) and (37) and the con-
straint Eq. (75). According to the discussion in Sec. V D, all
other symmetry fractionalization classes have representatives
of the form

na(g, h) = 1" (g, WM, o m) (152)

with [t] € H2(Gp, A/{1, ¥}). One can check that for each x €
A/{1, ¥}, the function

t(g,h) = x(@aton—logten))/2m (153)

represents a distinct class [t] € H>(Gy, A/{1, ¥}).

Hence, if Gy = U1/, given an Abelian fermion par-
ity vortex vy in some minimal modular extension C of C,
symmetry fractionalization is characterized by an anyon x €
A/{1,¢}. The anyon x has a physical interpretation as a
“relative vison” between the reference fractionalization class
and the class given by x, that is, inserting a 2z flux of U(1)
will insert an extra anyon x (modulo a fermion) in the state
corresponding to x compared to carrying out the same process
in the reference state. The “absolute vison,” that is, the anyon
associated with insertion of a 27 flux, is actually a fermion
parity vortex (again, modulo a fermion) and is thus valued in
the minimal modular extension corresponding to the physical
realization of the fermionic topological order; the vison is not
an object in the supermodular category.

If Gy =U(Q1) x Zg, then we do not need to specify a
fermion parity vortex, and x is the absolute vison.

It also follows immediately from Eq. (146) that

aniQa — {Ma,vgxx if Gf = U(l)f

M, if G, =U(l) x Z}" (154)

These results are very similar to the bosonic case. The key
differences are that in a bosonic theory, vy is never present,
which means that the (absolute) vison x is always valued in
the base UMTC which defines the bosonic topological order,
and there is no fermion ambiguity in x.

1. G; =U(1) and 1/n Laughlin FQH states

As an application of our formalism, we can consider the
example of fermionic fractional quantum Hall states. In the
simplest case, take the 1/n Laughlin state for n odd, which
has Abelian topological order described by the supermodular
category C = Z, x {1, ¢}. This category contains a particle
with topological twist & = 7 /n; denote this particle [1]. Then
the generator of the factor A = Z, in Eq. (10) is the parti-
cle [2]. Furthermore, [n] = . After gauge-fixing U = 1, the
consistency condition Eq. (37) requires the phases 1,(g, h) to
obey the fusion rules, so

[n(8. WT" = g (g, h) = ny (g, h) = wa(g, h).  (155)

Hence

n[l](g’ h) = eiq(<ﬁg+¢r[wg+<ph])/2n’ (156)

for any odd integer g, with ¢ ~ g + 2n producing the same

pattern. We have simply taken the nth root of w»,, hence the g
ambiguity, and enforced np;7(1, h) = 1. This leads to

q
Oy = =—

_4
5 = 00 (157)
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As expected, this fractionalization pattern assigns g/n of the
electron charge to each quasiparticle. We remind the reader
that Q, is the charge under G, and that the “true” U(1) charge
is the charge under Gy, i.e., 2Q,. The n distinct possible
values for Qpyy are consistent with our classification result,
which yields H*(U(1), A/{1, ¢¥}) = H*(U(1), Z,) = Z,. In
particular, there is a canonical reference state where

iy = w2 (g, h)* (158)
for each integer k, ie., n, =1 for a € A but still obeys
the fermionic constraint 1y, = w,. In this reference state,
[k] carries an electron charge for k odd and and an integer
charge under G; (even integer charge under Gy, which can
be screened by a boson) for k even. Following the definitions
in Egs. (152) and (153), each anyon x € A = Z,, defines a
distinct fractionalization pattern relative to the reference. The
corresponding fractionalization data isare

N (g h) = (& WMy e (159)
for each k. If x = [2/], then
20 1
On=—++-=. (160)
n 2

For the case n =3, one can easily check that the choice
£ = 0 corresponds to [1] carrying integer U(1)/ charge, i.e.,
the charge of an electron. The choice £ = 1 corresponds to
2013 =1/3 mod 1 so that [1] is the Laughlin quasihole,
while £ = 2 corresponds to 2Q;; = —1/3 mod 1 so that [1]
is the Laughlin quasielectron. The physical difference be-
tween these cases is whether the Laughlin quasihole carries
topological twist & = 7 /3 and the quasielectron carries topo-
logical twist 8 = 4 /3 or vice versa.

As an aside, Yy respects locality in this case because
there exists an Abelian minimal modular extension of C, e.g.,
Z, x (toric code). Explicitly, the phases ¢z = €™*/" obey the
fusion rules, and &) = &y = —1.

D. G; =U(1Y x [Z* x Zy] and fractional Chern insulators

We can now also straightforwardly extend the above anal-
ysis to include lattice space group symmetries as well, which
give us a general understanding of fractional quantum num-
bers for fractional Chern insulators with charge conservation
and space group symmetries. This complements a recent com-
prehensive analysis in the bosonic case [6,7].

For simplicity, let us consider the case of the 1/n Laughlin
topological order with n odd, for which we have A = Z, x
Zr, A=17,, A/{1,¢¥} = Z,, and consider the case where
symmetries do not permute anyons, so [p] : G, — Aut;x(C)
is the trivial map.

We have G, = U (1) x [Z? x Zy], so we can use the result
of Refs. [6,7]:

HA(Gp, AJ{1, ) = HAU ) x [Z* % Zn), Zo)

=Zn X Lpn % (K ® Zy) X Lnary-
(161)

Here KM = Z], Zz X ZQ, Z3, Zz, Z] for M = 1, 2, 3, 4, 6,
respectively. ® is the tensor product of finite groups;
we have Kyy ® Z,, = 7,1, Z(z,n) X Z(g’n), Z(3qn), Z(z’n), Z, for

M =1,2,3, 4,6, respectively. (a, b) refers to greatest com-
mon divisor of a and b.

Since we can pick a canonical reference state for which
nf = 1ifa € Aand n, = w,, we can characterize the other
symmetry fractionalization classes by a set of anyons [t] =
(x, m, [t], [s]) € H*(Gy, A/{1, {r}). Here x € Z,, is the rel-
ative vison defined in Eq. (153), m € Z, is the anyon per
unit cell, ¥ = Z2 is the discrete torsion vector discussed in
the bosonic case in Refs. [6,7], and s € Z,, is the discrete
spin vector. The square brackets imply certain equivalence
relations for 7 and s, so that [s] € Zn,my and [leKu®7Z,
for which we refer the reader to Refs. [6,7].

The reference state and the choice of [t] determine the
fractionalization class via

ref

Na(g, h) = 0,7 (8, WM t(g.n)- (162)

Physically, these fractionalization classes define the frac-
tional U(1) charge of the anyons (determined by x), the
fractionalization of the translation algebra (determined by m),
the fractional orbital angular momentum (determined by [s]),
and the fractional linear momentum (determined by []). The
choices of x, m, [s], and [f] also have nontrivial consequences
for the fractional quantum numbers of lattice dislocations,
disclinations, and magnetic flux, as discussed in Refs. [6,7].

Let us take as an example the case n = 3. Then, for M = 2
and 4 (e.g., rectangular and square lattices), [7] and [s] are
automatically trivial, so the only nontrivial choices are the
choice of relative vison x € Z3 and anyon per unit cell m €
Zs. These two are further constrained by the fractional part of
the filling fraction v: the fractional charge per unit cell, which
sets the fractional part of v, must be equal to the charge of the
anyon per unit cell, m.

For M =6, e.g., the triangular lattice, [7] is still triv-
ial, however we have a possible choice of [s] € Z3,6) = Z3.
This specifies the fractional orbital angular momentum of the
anyons, along with the fractional charge and fractional angular
momentum of disclinations [6,7].

Finally, for M = 3, e.g., the honeycomb lattice, we finally
have the possibility that both [f] and [s] can be nontrivial. In
particular, [f] € Z3, which implies the possibility of a non-
trivial fractional linear momentum of the anyons, a nontrivial
fractional charge of lattice dislocations, and other fractional
quantized response properties [6,7].

E. G; = U(2) and Z, quantum spin liquids

The case of spinful electrons forming an insulating state
that respects both charge conservation symmetry and spin ro-
tational symmetry corresponds to an on-site unitary symmetry
Gy = UQ2)/, and G, = U(1) x SO(3). Let us consider this
systematically for the case of the gapped Z, spin liquid. In
this case, the supermodular category is described by D(Z,) X
{1, ¥}, where D(Z,) is the quantum double of Z,. Therefore
we have A = {1, e, m, f} X {1, ¥}, with f = e x m the emer-
gent fermion. Our general classification then gives

H2(Gy, AJ{1, ¥}) = HAWU(1) x SOQB), Zy x Z,) = Z3.
(163)

We see that there are at most 16 distinct symmetry fraction-
alization classes. However we will see that most of these
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symmetry fractionalization class are in fact physically equiv-
alent under relabeling the anyons, and that there are actually
only three distinct symmetry fractionalization classes.

One can check that n,(g, h) factors into a U(1) part and a
SO(3) part

Na((e¥%, My), (v, My)) = n(e'%s, &)} (My, My), (164)

where Mg, are SO(3) matrices and g and s label the charge
and spin parts. Define functions

¢k(ei<m , el’tpz) — k@i+p—loi+e]) (165)

for k =0,1/2 mod 1. We find that, in the gauge U =1, a
representative 7, is

ni(es, &™) = @, (%, &), (166)

No(Mg, M) = &5, (g, on)ds, (Bg, Bu)ds, (Ve vn)  (167)

for g4, s, € {0, 1/2}. The notation parameterizes My € SO(3)
by the Euler angles (ag, Bg, ¥g). The fermionic constraint
forces qy = sy = 1/2, while the U — n consistency condi-
tion Eq. (37) forces the nZ and 7} to obey the fusion rules.
Hence, independent choices of q., S¢, Gm, Sm € {0, 1/2} dis-
tinguish the different symmetry fractionalization classes. This
generates the Z3 classification. Following the discussion in
Sec. VIC, g, measures the charge of a under the U(1) part
of Gy, and hence 2¢q, measures the physical U(1) charge of
a. Similarly, s, measures the spin of a [there is no doubling
of the quantum number here since half-integer spin under
SO(3) corresponds to half-integer spin under its double cover
SU®2)].

However, many of these patterns are physically equiv-
alent up to relabeling anyons. For example, relabeling
e <> m swaps the quantum numbers of e and m. One
could also relabel e «<» fy without changing m; this is
an autoequivalence of the theory and interchanges the
classes (qe, Se) <> (q. +1/2,s. 4+ 1/2), where we are al-
ways taking addition modulo 1. Likewise, interchanging
m < fy without changing e is an autoequivalence and
interchanges (g, Sm) <> (gm + 1/2, s,y + 1/2). Accounting
for all of these relabelings, we obtain only three dis-
tinct classes, with representative choices of (q., Se, Gms Sm) €
{(0,0,0,0),(1/2,0,0,0),(1/2,0,0, 1/2)}. The first case is
trivial; all anyons’ quantum numbers can be screened by local
excitations, i.e., they either have quantum numbers allowed by
for a local boson or the quantum numbers of an electron (up
to local bosons). In the second, e (up to relabeling) carries the
electron charge but no spin, ey carries spin-1,/2 but no charge,
and m has quantum numbers which can be screened by local
excitations. In the third, e carries the electron charge but no
spin, while m carries spin-1/2 but no charge. In the latter two
cases, we can think of the local fermion as fractionalizing into
a chargeon e (up to relabeling) and spinon eyr. The difference
between the two cases is whether or not the Z, flux m carries
quantum numbers which can be screened by local excitations.

F. Symmetry localization obstructions

1. Z*(Gy, Z,) fermionic obstruction, Yy locality-violating,
and SO(3)3

A simple example of a nontrivial Z>(Gy, Z,) fermionic
symmetry localization obstruction is the supermodular cate-
gory SO(3); with Gy = ZJ x Zg. The theory SO(3); has four
anyons 1, s, 5, ¥ with quantum dimensions 1, 1 + 2,1+
ﬁ, 1 and topological spins 1, i, —i, —1. The fusion rules are

SXSs=5§x5§=14+s5s4+37%,

SXS§=¢Y4+s5+3. (168)
Time reversal must exchange s <> §. One can show that con-
sistent fermionic symmetry fractionalization data exist with
Gy =717, ie., ny (T, T) = —1; see Refs. [12,20].

To see that G; = Z¥ x ZJ should have a fermionic sym-
metry localization obstruction, we use the fact that on general
grounds [18], if Th = b and there exists any anyon a such that
NP, is odd, then
The above equation applies for b = 1 since N;/’TS = 1. Hence
ny (T, T) = —1 for any consistent symmetry fractionaliza-
tion. However Gy = Z; X ZJZC would require 1y (T, T) =1,
which is therefore inconsistent.

We can state the above in the language of our present
work as follows. Since SO(3); contains the fusion rules
Ny, = Nv‘/’fvxs = 1, T, must violate locality. That is, all phases
{a which respect the fusion rules have ¢y = +1. One can
check that the action of time reversal must have 8, (T, T) =
—1 (this can be computed directly and also follows from
the knowledge that there exists consistent fractionalization
data with 7y (T,T) = —1 and wy (T, T)=1). Hence, the
fermionic obstruction for w, (T, T) = +1 is characterized by
the cohomology invariant O (T, T) = By (T, T)/w:(T, T) =
—1. That is, Oy is nontrivial in Z2(ZY, 7Z,) and [O] is also
nontrivial in H2(ZY, Z,).

We note in passing that a related phenomenon was dis-
covered in Ref. [10] for D(S3), the quantum double of
S3, the permutation group on three elements, which de-
scribes the anyon content of S3 gauge theory (see Sec. VIII
D of Ref. [10]). The anyons of D(S3) can be labeled as
A,B,C,D,E,F, G, H, and the theory admits an action of Zg
such that C < F and G <> H under time reversal T. This
permutation action forces ng = —1. Thus, one can consider
the subcategory generated by {1, B}, in which case the choice
ny = 1 would be obstructed when attempting to lift the action
of T to the full category.

2. H3(Gy, A/{1, ¥}) fermionic obstruction, Y
locality-preserving, and Sp(2), X {1, ¥}

To demonstrate the bosonic symmetry localization ob-
struction and the fermionic symmetry localization obstruction
when Y respects locality, we consider the supermodular
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theory C = Sp(2), x {1, ¥} with G, = Zg. The notation here
is Sp(2), = USp(4)s.

The theory Sp(2), was studied in detail in Ref. [18]. Here
we show that one can define a symmetry action of Z; on C
that has a bosonic symmetry localization obstruction, which is
essentially identical to the symmetry localization obstruction
for Sp(2), as a bosonic topological order, and one with no
bosonic obstruction. For the symmetry action with no bosonic
obstruction, we show that G; = Z¥ x ZJ has a fermionic
symmetry localization obstruction, while G, = Z4T’f is
unobstructed.

The anyon content of the UMTC Sp(2), is
{l,e, &1, ¢2, ¥y, Y_} (the transparent fermion v,
with no subscript, is not related to 1), with topological
spins 1, 1, ¢¥/3  ¢=#7i/5 i i respectively. These have
quantum dimensions 1, 1, 2, 2, \/5, \/5 respectively. Under
time-reversal, there are two choices of actions on C:

(1) ¢1 < ¢, ¥+ < Y_, with € and ¥ staying invariant;

@) 1< ¢, Y < Y, Y o Yy, with € and ¥
invariant.

The first choice has a bosonic H3(ZY, A/{1, ¥}) obstruc-
tion. One can directly compute the U symbols and calculate
the bosonic obstruction. One finds that ®,(T, T, T) = € as
an element of 4/{1, ¥}; this is a cohomology invariant, and
therefore the bosonic obstruction is nontrivial.

For the second choice of symmetry action, one can di-
rectly check that the bosonic obstruction vanishes, and we
can ask about the fermionic obstruction. In this theory, Yy
respects locality because there is a minimal modular exten-
sion of C with an Abelian fermion parity vortex [namely the
product of Sp(2), and any Abelian minimal modular exten-
sion of {1, ¥}). Hence the fermionic obstruction is valued in
H3ZY, AJ{(1,v}) = H}(ZY, Z,) = Z,, characterized by the
cohomology invariant ® (T, T, T).

There is in fact a fermionic obstruction only when G, =
ZY x Zﬁ. We can again use the criterion Eq. (169) to see why.

With the second symmetry action above, taking a = ¥, we
find

Vi x W =Y XYY =Y+ Yd +Yd (170)
Hence we can take b = 1 in Eq. (169) to see
Ny (T, T) =6, = —1. 171)

Therefore symmetry fractionalization with ny (T, T) = +1
must be inconsistent, that is, there is a fermionic symmetry
localization obstruction for Gy = Zg X Z‘; .

We may also see the obstruction at the level of cohomology
as follows. Suppose we are given a fractionalization pattern
with Gy = Z4T’f ; one can check with tedious calculation that
two such patterns exist and are specified by n} = —1, 77;4 =
+i, ny,_ = Fi, n,, = —1. Then we may attempt to find a new

fractionalization pattern with Gy = Z] x Zé by choosing a
phase 7,(T, T) which obeys the fusion rules and which obeys
7y (T, T) = —1. One such choice is 7,(T, T) = (—1D)F, where
(—1)F measures the v parity. We compute the failure of 7, to

be a group cocycle [see Eq. (109)]:

_ _ 7l a=ya Yy
T,(T, T, T)=11,(T, T)7,(T,T) = {—H else .
(172)
It is straightforward to check that
I(T,T,T) =M. (173)

so that O(T, T, T)=¢, that Iis, [Or]1#£0€
H3(ZY, A/{1,v¥}). Hence there is indeed a fermionic
symmetry localization obstruction for G = ZT x Zg .

In fact, one can use the same basic calculation for any the-
ory of the form C = B X {1, ¥}, where B is modular and with
Gy = Z3. If the bosonic symmetry localization obstruction
vanishes, then there is some choice of 1, (T, T) and thus a
corresponding choice of group extension G, which gives a
consistent symmetry fractionalization pattern. Given the con-
sistent pattern, one can try to see if a fractionalization pattern
exists for the other group extension. One can always calculate
the obstruction by choosing 7, (T, T) = (—1)F, in which case
one finds

+1 aand Ta have the same fermion parity
—1 aand Ta have opposite fermion parity

(174)
in which case the cohomology invariant ®/(T, T, T) €
A/{1, ¥} must be nontrivial if any a and its time-reverse have
opposite fermion parity. Therefore, for this form of C with
trivial bosonic symmetry localization obstruction, both group
extensions for G, = Z] are unobstructed if and only if @ and
Ta have the same fermion parity for all a.

T(T, T, T)={

VII. DISCUSSION

We have provided a systematic analysis of symmetry
fractionalization in (2 4+ 1)D fermionic symmetry-enriched
topological phases of matter. We saw that much of the for-
malism in the bosonic case goes through, with important
modifications arising from the locality of fermions. We find
that symmetry fractionalization depends on a choice [p] :
G, — Aut g(C), where Aut;g(C) is the group of locality-
respecting autoequivalences.

Furthermore, the choice [p] and w, may lead to bosonic
or fermionic localization obstructions. The bosonic one is an
obstruction to having any symmetry fractionalization class for
Gy, regardless of Gy. The fermionic one is an obstruction to
having any symmetry fractionalization class for G, assuming
the bosonic obstruction vanishes.

If these obstructions both vanish, then the symmetry frac-
tionalization data are specified by a set of phases 1,(g, h),
which form a torsor over H2(Gy, A/{1, ¥}).

The presence of local fermions leads to several conse-
quences which are uncommon in the usual bosonic case, in
particular that there can be more than one physically distinct
class of symmetry action, [p], with the same permutation
action on the anyons. It would be interesting to find any micro-
scopic model where a nonpermuting but nontrivial symmetry
action Yy, occurs.

We note that in using supermodular categories to model
fermionic topological phases of matter, we required that the
vertex basis gauge transformation F}b'w = 1. It would be
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useful to develop a first principles derivation of such a con-
straint, which is so far lacking in our current understanding.

Having established this framework for symmetry fraction-
alization, it is an important issue to use it to understand the
’t Hooft anomalies of fermionic SETSs, which provide ob-
structions to gauging the full Gy symmetry. Reference [12]
provided a general method to compute 't Hooft anomalies, but
understanding in more detail the categorical origin of these
anomalies in general is a nontrivial problem. There has been
some progress in special cases [22,27]. A general understand-
ing has recently been provided in Refs. [28,30].

The formalism that we have developed here provides a
partial understanding of fermionic SETs in (2 4- 1)D by devel-
oping the theory of symmetry fractionalization for the anyons
of a fermionic topological phase. A complete analysis requires
also developing a theory of G, symmetry defects applicable to
fermionic topological phases, to mirror the G-crossed braided
tensor category approach for bosonic topological phases. In
particular, such an analysis would incorporate symmetry frac-
tionalization for the fermion parity vortices as well. Once
symmetry fractionalization for the anyons is fixed, we expect
that distinct G defect classes can be obtained by stacking in-
vertible fermionic topological phases. Recently, Refs. [30,32]
has developed a comprehensive understanding of invertible
fermionic topological phases with symmetry by augmenting
the formalism of G-crossed braided tensor categories. The
results of Ref. [32] suggest that the more general case of
fermionic SETs may proceed by gauging fermion parity and
classifying the resulting possible Gj,-crossed braided tensor
categories, while keeping track of additional flux labels that
determine how G, defects arise from G defects.

Note added. Recently, a number of other closely related
papers, Refs. [28,30,32], appeared on the arXiv. In particular,
Ref. [28] provides a comprehensive account of obstructions to
gauging Gy, leading to a systematic understanding of anoma-
lies in (24 1)D fermionic topological phases. Reference
[32] develops a systematic characterization and classification
of invertible (24 1)D fermionic topological phases using
the framework of G-crossed BTCs. Reference [30] indepen-
dently develops a comprehensive characterization of (2 4 1)D
fermion SETS, containing many of the results of this paper
and of Refs. [28,32]. Reference [30] additionally also de-
velops the theory of symmetry fractionalization for fermion
parity vortices and symmetry defects in fermionic SETSs. Sev-
eral changes in this revision, namely, the discussion around
Eq. (80) and the addition of Eq. (105) have overlap with the
discussion of Ref. [30], as noted in the main text.
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APPENDIX A: CHARACTERS OF THE FUSION ALGEBRA
OF SUPERMODULAR TENSOR CATEGORIES

Given a BFC C, we say that a function y (a) is a character
of the fusion algebra of C if

x(@x(b) =Y Ngx(e),

ceC

(Al

foralla,b € C.
In this Appendix, we will prove the following [33].
Theorem A.1. Let C be a supermodular category and C be
any minimal modular extension C.Then any character y (a) of
the fusion algebra of C is of the form

x(a) = d.Mg,x (A2)

for some x € C which is unique up to fusion with .

This is particularly useful to us because of the following
corollary:

Corollary A.2. Suppose that ¢'% € K(C), that is, e/® is a
phase obeying

¢itagits — pit. (A3)
whenever N7, # 0 for a, b, c € C. Then
ei% = Ma,x (A4)

for some x € Cv and if ¢¥v = 41, thenx € A.
Proof. (Corollary) Given such an e, we see that d e/ is
a character of the fusion algebra since

dody =) " Niyd..

ceC
dee®dpe® = " Nydee®e? = Nodee®.  (AS)
ceC ceC

Equation (A2) would then imply that ¢’%« = M,  for some x €
C.1f ¢ = 1, then x € C and therefore x € A. _n

Proof. (Theorem) By modularity, all characters of C are
of the form x,(a) = d,M,, for each x € C. Their restrictions
x:(a)toa e Cvo = C are clearly characters of C.

The supermodular tensor category C has at most |C| distinct
characters.” Therefore, if we show that the collection {x.}
define |C| distinct characters of C, then every character must
be of the form ¥, for some x.

The x, define at most |5 | distinct characters, one for each
x. However, certainly x, = x.xy. We are therefore overcount-
ing; if x € 50 orx € Cvu, then there we should only count one
of x or x x ¥ as defining a possibly distinct character. Hence
the x, define at most n = |Cvo|/2 + ICVUI/Z + I(Z,I distinct char-
acters. By a theorem of [14], n = |C|, so we need to show that
these x,(a) are indeed all distinct on C. We show the contra-
positive, i.e., that if x and y € C define the same character of
C, then y = x or y = x x . Equivalently, we wish to show
that x.(a) = x,(a) for all a € C implies N7, —|—N)fw > 0. We

use the Verlinde formula in the modular category C:

Characters of the fusion algebra are given by the eigenvalues of
the fusion matrices, which are all simultaneously diagonalizable,
and thus the number of distinct characters is at most the number of
eigenvalues.
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szsle*, szSx//zSﬂ;
N +N), = — =+ —= (A6
x i Z Slz Z Slz ( )
zeC zeC
=2 S.Sh. (A7)
2eCo

where we have used Sy, = £S5, with the upper sign for z € Cvo

and the lower sign for z € C 1. Now we insert factors of the
identity and use the definition of scalar monodromy:

S]7S1X S S]] S, S]] *
N, =2 S (” ) (A8)
id Z 121 Slxslz Slyslz
= 2dxdyD2 > dPM M, (A9)
ZEé(]
=2d,d\D* ) x:(2)xy(2)"
ZEé(]
=2d,d,D* ) |x:(2)]* > 0, (A10)
ZEé/o
which is what we wanted to show. ]

APPENDIX B: COMMENTS ON GAUGE
TRANSFORMATIONS OF U

In order for Eq. (125) to be gauge-invariant, we require

Ug(a, bi0) = (T2™) Ug(a, ro)(ren) ™ B1)

where the check denotes the gauge-transformed quantity (in
this Appendix we will never be discussing modular exten-
sions, so checks will always refer to gauge transformations).
The origin of this transformation law is somewhat subtle,
so we discuss it presently from two points of view. First, in
the usual formalism, for g antiunitary, we should pick a basis
la, b;c) for the fusion space Vc“*” and define the antilinear
operator pg by
pg(la, b;c)) = Ug(®a, ®b; 2c) | ®a, #b; 8c)  (B2)
on the basis states (we suppress the internal indices if N}, >
1). We then extend the definition of pg to the rest of the space

by antilinearity. Making a vertex basis transformation means
defining a new basis

la, by ) = T%" |a, b; c) (B3)
and then defining the gauge-transformed U by
pg(la, b;c)) = Uy(®a, #b; Bc)| 2a, eb; 8c) . (B4)
We can now compute U directly:
pe(la, b;c)) = py(T2" |a, b c)) (BS)
= (1*")"® pg(la, bs c)) (B6)
= (1)) ®Uy(%a, 2b; 8c) | %a, ®b; 5c)  (BT)

(F h)"(g) (ga £p: gC)( I gb) | 8a, 8b; &c)
(B8)

= Uy(%a, &b; Bc)| 2a, &b; &c). (B9)

Comparing the last two lines leads
Eq. (B1).
One must be careful in treating p, as antilinear. Naively

writing

directly to

“pg la, b;c) = Ug(®a, 8b; 8c)K |a, b;c)” (B10)

(we have put quotes around this equation to emphasize that it
can be misleading) and attempting to derive, for example, the
consistency equation Eq. (26) leads to an incorrect result with
incorrect complex conjugations.

For another perspective on the vertex basis transformations
of U, consider the higher-category point of view on antiuni-
tary symmetry in Ref. [11]. Here, fusion vertices live in vector
spaces |a, b; c; g) € V%(g) which carry a g label, which can
be roughly interpreted as a local spacetime orientation. The

theory comes equipped with maps
an 1 VP(g) — V% (gh) (B11)

which are linear if the action of h is unitary and antilinear
if the action of h is antiunitary. The data of the theory are
equivariant under these o, maps, e.g.,

Nabe =\ (8)
(i (@)™,
where the tildes are present as a reminder that we are in the

higher category formalism. The “tilded” data are related to the
usual “untilded” data by simply setting g =1, e.g.,

= Fi ().

gk (h) = (B12)

b .
Fil% (B13)
In this formalism, antiunitary transformations act via a unitary
map

Pg la, b;c;h) = U(%a, 2b; £c;gh, h) | 8a, Bb; 8c; gh) .
(B14)
Since g is always unitary, it is easy to check its transfor-

mation law under gauge transformations

la, b; c;h) = T%*(h) |a, b; c; h) (B15)
as follows:
Be(la, b c;h)) = B (T4 (h) |a, b c; h)) (B16)
= T%b(h)U (a, ®b; ®c; gh, h)
x |®a, 8b; &c; gh) (B17)

= T“(h)U (®a, ®b; ®c; gh, h)
x (T3¢ (gh)) "' | 2a, =b; 2c; gh) (BIS)
— U(%a, ®b; Bc; gh, h)| £a, £b; &c; gh) .
(B19)
Hence
l\j(ga, b; 8c;gh, h)
= T4 (h)U (2a, Bb; Bc; gh, h)(T,* *”(gh)) (B20)

Equivariance of the F' symbols Eq. (B12) forces equivariance
of the gauge transformations

T (h) = (T (hg)"®. (B21)
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Hence, using equivariance to remove tildes from Eq. (B20)
leads directly to Eq. (B1).

Yet another way to see how U transforms using the tilded
language is using the maps og. The “untilded” map py is the
composition

Pg = 0g O Pglv, (B22)

where the restriction means that pg is only defined on the
“untilded” vector spaces V%2 = V4%(1). We can now directly
compute the transformation rules for U:

pella. bici1)) = ag o 5 (TP (M) |a. bre; 1)) (B23)
_ (f:gﬁb(l))a(g)ag([j(ga’ &p; 8c; g, 1)

x |2a, b; ¥c; g) ) (B24)
= (Fo ) T (2, #b; 2e;g, 1)@

x |2a, &b; Bc; 1) (B25)
= (T2 (1)) ®'T (%a, #b; 5c; g, 1)°®

x (Fae (1) ' [2a. b 1) (B26)
Using the relation

Ug(a, byc) = ﬁé’(g)(a, b;c;g, 1),

we indeed obtain Eq. (B1).

(B27)

APPENDIX C: PROOF OF WHEN Y, RESPECTS
LOCALITY

In Sec. IV B, we showed that Y, respects locality if and
only if there exists some ¢, which is a phase for all a € C,
respects the fusion rules, and has ¢y, = —1. We will prove in
this Appendix that such a ¢, exists if and only if some minimal
modular extension C of C contains an Abelian fermion parity
vortex. If some C contains an Abelian fermion parity vortex,
then we further claim that no minimal modular extension of C
contains both v-type and o-type vortices. Our main tools are
explicit results about boson condensation proven in Ref. [27],
Appendix A; we state their results here without proof. We
prove the (simpler) second statement first to introduce some
techniques used in the proof of the first.

Proposition C.1. If some minimal modular extension C of
C contains an Abelian fermion parity vortex, then no mini-
mal modular extension of C contains both v-type and o-type
vortices. -

Proof. First suppose that C contains an Abelian parity vor-
tex v. Suppose by way of contradiction that C also contains a
o-type parity vortex o. Then o x v = a for a unique anyon
a € C. Fuse ¥ into both sides of the above equation; by
associativity of the fusion rules we obtain

YXx(oxv)y=¢Yyxa=W xo)xv=0c xv=a. (Cl)

Hence a = x a for some a € C, which is impossible.
Therefore C contains only v-type parity vortices. Next, sup-
pose C has chiral central charge c_, and consider the minimal
modular extension C’ of C with chiral central chargec_ +1/2.
This is obtained by condensing the bosonic (v, ) pair in
(X Ising. Using the notation (x, y) € (X Ising, itis clear that

deconfined parity vortices in C’ descend from bound states
(x, o) where x € Cv]. Applying the results of Ref. [27], if x
is a v-type parity vortex, then every (x, o) is a deconfined
simple parity vortex in C', while if x is a o -type parity vortex,
then (x, o) splits into a pair of simple v-type parity vortices
(x,0)+. Since C contains only v-type vortices, C’ contains
only o-type vortices. We can repeat this process to obtain
all minimal modular extensions, alternating between minimal
modular extensions containing only o-type and only v-type

vortices, as desired. ||
Theorem C.2. There exists a set of phases ¢, which obey
the fusion rules and have ¢, = —1 if and only if some minimal

modular extension contains an Abelian fermion parity vortex.

Proof. The “if” direction was already proven in Sec. IV B.
Now suppose such a ¢, exists. Then using the results of Ap-
pendix A, there exists some minimal modular extension C of
C containing some parity vortex x such that M, , € U(1) for
all a € C. Then

L= 1S0yP = D IMeySieSiy/Sul> + ) 1Se,1> (C2)

yEé y650 y651

d2d?
=Y ot D ISyl (C3)
)‘ECVU Y )’Eél
(%
¢ .VECvl
d? d?
=+ 150> (C5)
,VGCvl
Hence
d, < V2. (C6)

Now change minimal modular extensions to % by stacking
with a copy of the Ising theory and condensing the bound state
of the preferred fermions. If x is v-type, then (x, o) € Cvj o
Using the results of Ref. [27], we can obtain the S matrix of
the condensed theory; in the present case, we have

Aoy = Steor. S0, (1.1) = dedy = /2d,. (o))

However, using the same formula, we can also compute that
for a € Cy,

M(x,a),(a,l) = Mx,a € U(l) (C8)

Hence Eq. (C6) applies to (x, o) as well, so d ) = \/de <
/2. Thus d, = 1, 1i.e., x is Abelian, as desired.

Suppose instead that x is o-type. Then (x, o) splits into
(x,0)+ € Cvi’v and Ref. [27] tells us instead

1 d,
dix,0). = Stx,o)e,(1,1501,1),(1,1) = deda = E

(C9)
However, since d, < /2 and dx,0), = 1 we must have d, =
/2 and thus (x, 0)4 is Abelian, as desired.

Note that we can use this argument to show that if some 4
contains an Abelian parity vortex v, then all minimal modular

125114-23



DANIEL BULMASH AND MAISSAM BARKESHLI

PHYSICAL REVIEW B 105, 125114 (2022)

extensions containing v-type parity vortices do as well. Ac-
cording to the above, C’ contains only o-type vortices, and in
particular contains a particle (v, o) with quantum dimension
V2. Layering Ising with ¢’ and condensing, we obtain another

case, according to the above argument, ((v,0), o)+ is a v-
type vortex in C” with quantum dimension 1, i.e., it is Abelian.
This process can then be repeated to generate Abelian parity
vortices in all eight minimal modular extensions of C which

minimal modular extension C” with v-type vortices. In this have v-type parity vortices. |

|
APPENDIX D: PROOF OF EQ. (138)

Equation (138) reads
1a(T, T)n(T, T)Ux(a, Y3 a X Y)Ur(b, Y3 b x Y )F@V-VFPV-Y
n.(T, T)

for Ta=axy, Tb=bx ¢, Tc =c, and NS, = 1. The factors of 1 on the left-hand side can be replaced using the n — U
consistency condition Eq. (37)

-1 (D1)

Na(T, T)ny(T, T)

LT Ur(Ya, Tb; Te)Uj(a, b; ©). (D2)
The consistency condition Eq. (26) between U and F implies
Ur("a, "b; To)U(a, bic) = B PR, S8 Un(a x 0,y U (0, bib x ). (D3)
Using the pentagon equation for the anyons a, ¥, ¥, b, we obtain
Ry Foty! = FEV VRV, (D4)
Inserting Egs. (D2)-(D4) into Eq. (D1), we find
”;—Zg = (FVVPFYVFYUr(a < yia)Un(a, yia x y)Un(b, b x YUY, by x b). (D5)
From the pentagon equation for the anyons a, ¥, ¥, ¥, one finds
Favy — paxvyy (D6)
Hence, again using the U — F consistency Eq. (37),
(FOV Iy = ol v avsV — Uk(a, yria x Y)Us(a x ¥, ¥, a). (D7)
Next, using the U-R consistency Eq. (27), we find
Ui (Y, b3y x D)Ur(b, ;b x ) = R"VRVY. (D8)

Inserting Eq. (D7) into Eq. (D5) shows that all of the factors involving a cancel. Further inserting (D8) and applying the hexagon
equation twice,

T,T
Nallo _ pvwbpba.w gha phxvr. v

s (DY)
— FUby (RbV Y gbxU (D10)
— RV — 1 (D1D)

as claimed.
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