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We develop a systematic theory of symmetry fractionalization for fermionic topological phases of matter in
(2 + 1)D with a general fermionic symmetry group Gf . In general, Gf is a central extension of the bosonic sym-
metry group Gb by fermion parity, (−1)F , characterized by a nontrivial cohomology class [ω2] ∈ H2(Gb,Z2).
We show how the presence of local fermions places a number of constraints on the algebraic data that defines
the action of the symmetry on the supermodular tensor category that characterizes the anyon content. We find
two separate obstructions to defining symmetry fractionalization, which we refer to as the bosonic and fermionic
symmetry localization obstructions. The former is valued in H3(Gb,K (C)), while the latter is valued in either
H3(Gb,A/{1, ψ}) or Z2(Gb,Z2) depending on additional details of the theory. K (C) is the Abelian group of
functions from anyons to U(1) phases obeying the fusion rules, A is the Abelian group defined by fusion
of Abelian anyons, and ψ is the fermion. When these obstructions vanish, we show that distinct symmetry
fractionalization patterns form a torsor over H2(Gb,A/{1, ψ}). We study a number of examples in detail; in
particular, we provide a characterization of fermionic Kramers degeneracy arising in symmetry class DIII within
this general framework, and we discuss fractional quantum Hall and Z2 quantum spin liquid states of electrons.
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I. INTRODUCTION

A fundamental property of topological phases of matter is
the possibility of quasiparticles carrying fractional quantum
numbers. Well-known examples of this include the fractional
electric charge carried by anyons in fractional quantum Hall
(FQH) states or spinons with spin 1/2 in quantum spin liquids
with global SO(3) spin rotational symmetry [1]. In the past
several years, it has been understood how to mathematically
characterize symmetry fractionalization in (2 + 1)D bosonic
topological phases of matter in complete generality [2]. This
includes topological states with arbitrary global symmetry
groups including both unitary and antiunitary symmetry ac-
tions, Abelian or non-Abelian topological phases of matter,
and cases where global symmetries can permute the anyons.
These results have led to significant progress in developing
a comprehensive characterization and classification of (2 +
1)D bosonic symmetry-enriched topological phases of matter
(SETs). In particular the systematic understanding of sym-
metry fractionalization has allowed predictions of novel frac-
tional quantum numbers in the presence of space group
symmetries for quantum spin liquids and FQH states [3–7],
methods to strengthen the Lieb-Schulz-Mattis theorem for
(2 + 1)D topological phases [8], and general methods to
compute anomalies in (2 + 1)D topological phases of matter
[9–12].

In this paper, we generalize the systematic mathemati-
cal framework of symmetry fractionalization to the case of
general fermionic topological phases of matter in (2 + 1)D.
Fermionic systems possess a special “symmetry” operation,1

1Symmetry is in quotes because fermion parity, in contrast with all
other symmetries, can never be spontaneously broken.

fermion parity, which is denoted (−1)F , and we denote the
corresponding order-2 group as Z f

2 . The complete symmetry
group that acts on both fermionic and bosonic operators is
denotedGf , while the quotient group that only acts on bosonic
operators isGb = Gf /Z

f
2 . The possibility of fermions that can

be created by local fermionic operators imposes a number of
nontrivial constraints in the mathematical description of the
SET, which we systematically study.

A. Summary of results

It is generally believed that in the absence of any symmetry,
a general (2 + 1)D topological phase of matter can be fully
characterized by two mathematical objects (C, c−), where C
is a unitary modular tensor category (UMTC) in the case of
bosonic systems and a unitary supermodular tensor category
for fermionic systems [13–15]. c− is the chiral central charge
of the (1 + 1)D edge theory. C determines c− modulo 8 for
bosonic systems and modulo 1/2 for fermionic systems. In
both the bosonic and fermionic cases, C is a unitary braided
fusion category (UBFC), which keeps track of the braiding
and fusion properties of the anyons.

Since UMTCs and supermodular tensor categories are both
special cases of UBFCs, one might naively attempt to immedi-
ately extend the known symmetry fractionalization framework
for bosonic topological phases to the fermionic case. How-
ever, fermionic topological phases are different from bosonic
topological phases in two crucial ways, both of which must be
accounted for in the theory of symmetry fractionalization.

One difference arises from the fact that the fermionic topo-
logical phase contains a local fermion; although the fermion
directly appears in the UBFC data, its locality does not.
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Carefully tracking the locality of the fermion leads to sig-
nificant consequences due to reduced gauge freedom in data
involved in the symmetry action. In particular, autoequiva-
lences of the supermodular tensor category are only equivalent
up to what we term “locality-respecting natural isomor-
phisms.” The first step in defining how a symmetry acts on a
bosonic topological phase is to define a group homomorphism

[ρ] : G → Aut(C), (1)

where Aut(C) is, roughly stated, a group formed by the set
of (braided tensor) autoequivalences of the UMTC C modulo
a set of “trivial” transformations called natural isomorphisms
[2] (see Sec. III for a brief review).

In fermionic topological phases, the set of natural isomor-
phisms can be distinguished by whether they are “locality-
respecting” or “locality-violating” with respect to the local
fermion. We may then define two groups, Aut(C) and
AutLR(C), depending on whether we mod out by all natural
isomorphisms or only the locality-respecting ones. Depending
on C, these groups may or may not be isomorphic, but in either
case, we find that the first step towards defining how symmetry
acts on a fermionic topological phase is to specify a map

[ρ] : Gb → AutLR(C). (2)

Here any representative ρg of the equivalence class [ρg] satis-
fies ρgh = κg,h ◦ ρg ◦ ρh, where κg,h is a natural isomorphism,
as reviewed in Sec. III.

One consequence of Eq. (2) is that if AutLR(C) and Aut(C)
are not isomorphic, then simply keeping track of how anyons
are permuted under the symmetries is not enough to fully
determine an element in AutLR(C). [By contrast, the permu-
tation action often, but not always,2 does uniquely determine
an element of Aut(C).] In a large class of examples where
elements of AutLR(C) are not uniquely determined by the way
they permute anyons, we provide in Eq. (86) a gauge-invariant
quantity which distinguishes classes with the same permuta-
tion action.

A second important difference in the fermionic case arises
from the presence of the fermionic symmetry group Gf ,
which includes an additional piece of data [ω2] ∈ H2(Gb,Z2)
specifying Gf in terms of a central extension of Gb by Z f

2 .
Our formalism accounts for ω2 by viewing it as endowing
the fermion with fractional quantum numbers under Gb. This
leads us to a constrained theory of Gb symmetry fractional-
ization, where the constraint directly encodes the way that Gb

is embedded in the full symmetry group Gf .
To briefly summarize the constraints, we note that [ρg] and

symmetry fractionalization pattern in general corresponds to a
set of data {ρg,Ug(a, b; c), ηa(g,h)}. Here Ug(a, b; c) is a set
of Nc

ab × Nc
ab matrices, where Nc

ab are the fusion coefficients,

2For examples of UMTCs with nonpermuting but nontrivial au-
toequivalences, see Ref. [16], Sec. 3. One such an example is the
Drinfeld center of the group G, where G is an order-64 group with
the presentation

〈a, b, c | a2 = b2 = 1, c2 = [a, c], [c, b] = [[c, a], a],

[[b, a],G] = 1, [G, [G, [G,G]]] = 1〉.

that specify the action of a representative autoequivalence ρg
on the fusion and splitting spaces of C. ηa(g,h) is a U(1) phase
for each anyon a. These data are subject to a set of consistency
conditions and gauge transformations. In particular, we have
a set of so-called symmetry-action gauge transformations,
which correspond to changing the representative map ρg, and
which transform the data as

ηa(g,h) → γa(gh)
[γ ga(h)]σ (g)γa(g)

ηa(g,h),

Ug(a, b; c) → γa(g)γb(g)
γc(g)

Ug(a, b; c), (3)

where γa(g) is a U(1) phase. Here σ (g) = 1 or ∗ is a Z2

grading on Gb which determines whether g is a unitary or
antiunitary symmetry. The constraints alluded to above then
take the form [17]

ηψ (g,h) = ω2(g,h),

Ug(ψ,ψ ; 1) = 1,

γψ (g) = 1. (4)

Here ψ is the local fermion, which is treated as a nontrivial
object in the supermodular tensor category. We note that a
microscopic specification of a quantum many-body system
and the representation of the symmetries also specifies a rep-
resentative 2-cocycle ω2 which enters the above constraints.

After accounting for all of these constraints, we take [ρg]
as defined by Eq. (2) as given, and then we determine the
obstructions to defining a consistent theory of symmetry frac-
tionalization. We find two distinct such obstructions.

We find that there is a “bosonic” obstruction,

[	] ∈ H3(Gb,K (C)), (5)

where K (C) is the Abelian group of functions 	a from anyon
labels to U(1) which obey the fusion rules in the sense
	a	b = 	c when Nc

ab > 0. If there does not exist an element
of K (C) with 	ψ = −1, then K (C) � A/{1, ψ}, otherwise
K (C) is an extension of Z2 by A/{1, ψ}. Here A is the
Abelian group formed by fusion of the Abelian anyons in
C. The equivalence by {1, ψ} means different elements in
A that differ by fusion with ψ are regarded as equivalent.
[	] is a symmetry localization obstruction as discussed in
Refs. [2,18,19], and can be viewed as an obstruction to finding
any consistent pattern of symmetry fractionalization for the
Gb symmetry, ignoring Gf .

In attempting to extend the symmetry fractionalization to
the full Gf symmetry, we find that once the bosonic obstruc-
tion vanishes, there is the possibility of a second “fermionic”
obstruction [O f ],

[O f ] ∈
{
H3(Gb,A/{1, ψ})
Z2(Gb,Z2)

. (6)

Here Z2 is the group of 2-cocycles onGb. Whether [O f ] is val-
ued in H3(Gb,A/{1, ψ}) or Z2(Gb,Z2) depends on whether
there exists a set of phases ζa which satisfy the fusion rules
with ζψ = −1. Moreover, depending on whether we fix ω2 or
just its cohomology class [ω2], Z2(Gb,Z2) may be replaced
withH2(Gb,Z2).
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The fermionic obstruction [O f ] is essentially an obstruc-
tion to finding a symmetry fractionalization class that is
consistent with the choice of ω2 that definesGf . Alternatively,
it can be viewed as an obstruction to “lifting” the fractional
quantum numbers of ψ under Gb to the full supermodular
tensor category C.

In the case where Aut(C) and AutLR(C) are not isomor-
phic, then given a Gb and [ρg], we find that there is at most
one group extension Gf for which the fermionic obstruction
vanishes. In particular, this implies that for any continuous
symmetry group, such as U(1) or SO(3), a nontrivial [ω2]
is incompatible with any supermodular category for which
Aut(C) and AutLR(C) are not isomorphic.

If the above obstructions vanish, then it is possible to
define symmetry fractionalization in a way consistent with
Gf and locality of the fermion. We then show that the set
of possible symmetry fractionalization classes for the anyons
form a torsor over H2(Gb,A/{1, ψ}), which thus provides
a classification of symmetry fractionalization for anyons in
fermionic topological phases [17]. Note that this analysis does
not include symmetry fractionalization for the fermion parity
vortices.

Once our formalism is established, we consider several
example symmetry groups, providing and physically inter-
preting gauge-invariant quantities that characterize patterns of
symmetry fractionalization in fermionic topological phases.
As an example, our results allow us to precisely understand
the notion of “fermionic Kramers degeneracy” presented in
Refs. [20,21] within this systematic formalism (this result
was announced previously in Ref. [12]). When Gb = ZT

2 and
Gf = ZT, f

4 (i.e., T2 = (−1)F ), we have a quantity

ηT
a := ηa(T,T)UT(a, ψ ; a × ψ )Fa,ψ,ψ = ±i, (7)

which is gauge invariant when Ta = a × ψ . For such anyons,
ηT
a can be viewed as the “local T2 eigenvalue” of that anyon.

We also generalize this notion of fermionic Kramers de-
generacy to Gf = ZT, f

8 and investigate fermionic fractional
quantum Hall and quantum spin liquid states of electrons in
our framework.

In the special case where Gf = Gb × Z f
2 , Ref. [22] pro-

posed the possibility of an H2(Gb,A/{1, ψ}) structure in the
classification of symmetry fractionalization, however, a com-
plete derivation and a specification of how to treat the braided
autoequivalences were not provided. For general Gf , some of
our results correspond to results on categorical fermionic ac-
tions in the mathematical literature [23]. However, the results
of Ref. [23] do not account for the locality of the fermion,
which ultimately leads to a different classification. Where
there is overlap, our work provides a physical understanding
of the mathematical results in Ref. [23] and a formulation
in terms of the “skeletonization” of the supermodular tensor
category.

The rest of this paper is organized as follows. In Sec. II,
we discuss some basic definitions and facts regarding super-
modular tensor categories and their use in modeling fermionic
topological phases. In Sec. III, we review the symmetry frac-
tionalization formalism for bosonic topological phases. In
Sec. IV, we develop a theory of fermionic symmetry frac-
tionalization by constraining a theory of bosonic symmetry

fractionalization and develop the concept of a “locality-
respecting natural isomorphism.” In Sec. V, we compute the
obstructions to fermionic symmetry localization and, if the
obstructions vanish, classify fermionic symmetry fractional-
ization patterns. Section VI consists of a number of examples
of the use of our formalism for different symmetry groups,
and we conclude with some general discussion in Sec. VII.

II. SUPERMODULAR AND SPIN MODULAR CATEGORIES
AND FERMIONIC TOPOLOGICAL PHASES OF MATTER

In this paper, we will assume familiarity with unitary
braided fusion categories (UBFCs). These are specified by
a list of anyon labels {a, b, c, . . .}, fusion spaces V c

ab and
their dual splitting spaces V ab

c , non-negative integer fusion
coefficients Nc

ab = dim V c
ab, F symbols Fabc

de f which specify
the associativity of fusion, and R symbols Rab

c which specify
braiding data, all subject to the well-known pentagon and
hexagon consistency conditions. See, e.g., Refs. [2,24] for
a review of UBFCs and conventions; our conventions are
essentially identical to those of Sec. II of Ref. [2]. We will
for simplicity often restrict our attention to the case where all
fusion coefficients Nc

ab � 1; the generalization is straightfor-
ward.

We will use the scalar monodromy

Mab = S∗
abS11
S1aS1b

, (8)

where Sab is the topological S matrix, extensively in this paper.
Mab is always a phase if a or b is Abelian, in which case it
has a physical interpretation as a phase arising from a double
braid, but Mab may or may not be a phase if both a and b are
non-Abelian.

A supermodular tensor category [13–15] C can be defined
as a UBFC with a single nontrivial invisible particle, ψ , such
that ψ is a fermion, i.e., its topological twist θψ = −1, and
satisfies Z2 fusion rules, ψ × ψ = 1. “Invisible” means that
ψ braids trivially with all particles in C, that is, its double
braid Ma,ψ = +1 for all a ∈ C.

The existence of a single invisible fermion ψ with Z2

fusion rules implies that the set of anyon labels of a super-
modular tensor category decomposes as C = B × {1, ψ}, but
the fusion rules need not respect this decomposition. On the
other hand, the topological S-matrix of C does respect this
decomposition:

S = S̃ ⊗ 1√
2

(
1 1
1 1

)
, (9)

where S̃ is unitary.
Physically, the supermodular tensor category keeps track

of the topologically nontrivial quasiparticle content in a
fermionic topological phase of matter. The theory explicitly
keeps track of the fermion as well, which is topologically
trivial in the sense that it can be created or annihilated by a
local fermion operator.

In the rest of this paper, the symbol C will always refer to a
supermodular tensor category. We denote the unitary braided
fusion subcategory of Abelian anyons as A ⊂ C. In gen-
eral in an Abelian supermodular tensor category, the fermion
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decouples [25]:

A � Ã� {1, ψ}. (10)

Here the symbol � is the Deligne product and physically
means stacking two decoupled topological orders, and {1, ψ}
denotes the UBFC with just two particles, {1, ψ}.

We will also use the symbol A to refer to the Abelian
group defined by fusion of Abelian anyons. The above implies
that as an Abelian group A � Ã × Z2, where Z2 = {1, ψ} is
associated with the invisible fermion.

It is a mathematical theorem [26] that every supermodular
tensor category admits a minimal modular extension qC, i.e., a
UMTC qC that contains C as a subcategory and which has the
minimal possible total quantum dimension of

D2
qC = 2D2

C . (11)

The “16-fold way” theorem states that there are precisely
16 distinct minimal modular extensions, with chiral central
charges differing by ν/2 for ν = 0, . . . , 15 [13].

A minimal modular extension qC is an example of a spin
modular category. A spin modular category is defined to be
a UMTC, qC, together with a preferred choice of fermion
ψ , which has topological twist θψ = −1 and such that
ψ ×ψ = 1.

The spin modular category qC which gives a minimal mod-
ular extension of C possesses a natural Z2 grading determined
by braiding with the fermion ψ :

qC = qC0 ⊕ qC1,
qC0 � C. (12)

That is, Ma,ψ = +1 if a ∈ qC0 and Ma,ψ = −1 if a ∈ qC1, and
fusion respects this grading. The anyons in qC0 � C corre-
spond to the original particles in the supermodular theory. The
anyons in qC1 are physically interpreted as fermion parity vor-
tices, which can be understood as symmetry defects associated
with the fermion parity symmetry Z f

2 .
Note that D2

qC = D2
qC0

+ D2
qC1

= 2D2
C implies that

D2
qC1

= D2
qC0

= D2
C . (13)

qC1 can be decomposed according to whether the anyons can
absorb the fermion:

qC1 = qCv ⊕ qCσ , (14)

such that

a × ψ 
= a if a ∈ qCv,

a × ψ = a if a ∈ qCσ . (15)

In general, this decomposition is not in any sense respected by
the fusion rules; for example, fusing a (non-Abelian) anyon
with a σ -type vortex can produce v-type fusion products,
while fusing two σ -type vortices produces anyons (which
automatically do not absorb ψ).

We note that supermodular tensor categories allow a canon-
ical gauge fixing

Faψψ = Fψψa = 1 (16)

for all a ∈ C. In the standard BFC diagrammatic calculus, this
gauge-fixing allows fermion lines to be “bent” freely.

One technical issue which will play a key role in the rest of
this paper is to characterize sets of phases ζa ∈ U(1) for a ∈ C
such that

ζaζb = ζc if N
c
ab > 0. (17)

Strictly speaking these are functions from the set of anyon
labels to U(1); mathematically, daζa defines a character of the
Verlinde ring for the supermodular category. Such functions
form an Abelian group which we call K (C), following similar
notation in Ref. [23]. Clearly ζψ = ±1, which gives a Z2

grading on K (C). The set of such functions with ζψ = +1
form a subgroup K+(C) ⊂ K (C).

One important property of K (C) is the following, proven in
Appendix A: if ζa ∈ K (C), then

ζa = Ma,x (18)

for some x ∈ qC, where qC is any minimal modular extension
of C. In particular, if ζa ∈ K+(C), then x ∈ A. Since Ma,x =
Ma,x×ψ , we conclude that K+(C) � A/{1, ψ}.

There are several possibilities for the full group K (C),
which we briefly overview now and discuss further in
Sec. IVB. It may be that K (C) = K+(C), that is, there simply
does not exist a set of phases which obey the fusion rules
with ζψ = −1. Alternatively, such phases may indeed exist,
in which case K (C) is a group extension of Z2 given by the
short exact sequence

1 → K+(C)
i→ K (C) rψ→ Z2 → 1, (19)

where i is the inclusion map and rψ restricts ζa to a =
ψ . This group extension is given by an element [λ] ∈
H2(Z2,K+(C)) � H2(Z2,A/{1, ψ}); although the cohomol-
ogy group is quite simple, we do not know a general method
to compute the particular element [λ] from the fusion rules.
In the special case where C splits, i.e., can be written C =
B � {1, ψ} for some modular B, then K (C) = K+(C) × Z2,
that is, [λ] = 0.

A. Fermionic topological phases

Consider a (2 + 1)D system with a Hilbert space which is
a tensor product of local Hilbert spaces containing fermions
governed by a local Hamiltonian. (We will refer to this as a
“microscopic system.”) We assume that the Hamiltonian has a
gap in the thermodynamic limit. Any such systems which can
be continuously connected without closing the gap (allowing
the addition of fermionic degrees of freedom with a trivial
Hamiltonian) are said to be in the same fermionic topologi-
cal phase. As stated above, fermionic topological phases are
believed to be fully characterized by a supermodular tensor
category C together with a chiral central charge c−. Equiva-
lently, a fermionic topological phase can be characterized by
a spin modular category qC, together with a choice of chiral
central charge c−. The spin modular category determines the
chiral central charge modulo 8, while the supermodular tensor
category only determines the chiral central charge modulo
1/2.

We see that C describes the anyon content of the fermionic
topological phase while c− mod 8 specifies the minimal
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modular extension. The spin modular category qC determines
the fusion and braiding of fermion parity vortices which is
a crucial part of data that specifies the full fermionic topo-
logical phase. In particular, to define the fermionic system
on nontrivial surfaces and with arbitrary spin structures (i.e.,
arbitrary boundary conditions), we need the full spin modular
theory, since this requires different patterns of fermion parity
flux through noncontractible cycles (see, e.g., Ref. [27]).

In the present paper, we restrict our attention to symmetry
fractionalization for C, i.e., we do not characterize how sym-
metries act on the minimal modular extension qC. Attempting
to lift the SET data from C to qC leads to a cascade of obstruc-
tions which characterize the ’t Hooft anomaly of the fermionic
SET and will be studied in upcoming work [28]. Some, but not
all, of these obstructions have been understood previously in
the UBFC framework [22].

In using supermodular categories to model fermionic topo-
logical phases, the following technical issue arises. In general
in a fusion category there are vertex basis gauge transforma-
tions, �ab

c , which are basis transformations in the splitting
space V ab

c , i.e., �ab
c : V ab

c → V ab
c . We will assume that the

vertex basis gauge transformations must always satisfy

�
ψ,ψ

1 = 1. (20)

We do not have a completely satisfactory microscopic justifi-
cation for this assumption, although we note allowing �

ψ,ψ

1 
=
1 leads to consequences that contradict a number of known re-
sults. For example, one can show that this gauge freedom may
be used to identify the two fermionic symmetry fractional-
ization patterns of the semion-fermion topological order with
Gf = ZT, f

4 . These two symmetry fractionalization patterns
respectively appear on the surfaces of the ν = 2 and ν = −2
elements of the (3 + 1)D DIII topological superconductors;
considering them to be gauge-equivalent would collapse the
known Z16 classification down to Z4. We note that the re-
quirement of Eq. (20) is always compatible with the gauge
fixing in Eq. (16).

III. REVIEW OF SYMMETRY FRACTIONALIZATION
IN BOSONIC SYSTEMS

In this section, we review the formalism of Ref. [2] de-
scribing symmetry fractionalization in bosonic systems. The
starting point is a UMTC B and a symmetry group G.

A. Topological symmetries

A unitary topological symmetry, or braided autoequiva-
lence, of B is an invertible map

ρ : B → B, (21)

which preserves all topological data. In particular, gauge-
invariant quantities are left invariant, while gauge-dependent
quantities are left invariant up to a gauge transformation.
One can also define antiunitary topological symmetries, which
complex conjugate the data, up to gauge transformations.

Certain unitary braided autoequivalences are “trivial” in
that they leave all of the basic data of the theory completely
unchanged. These autoequivalences are called natural isomor-

phisms, and their action is written

ϒ (|a, b; c〉) = γaγb

γc
|a, b; c〉 (22)

with γa ∈ U(1) for all a ∈ B. In bosonic systems, modifying
a braided autoequivalence by a natural isomorphism is a form
of gauge freedom. We therefore define the group Aut(B) to
be the group of braided autoequivalences of B modulo natural
isomorphisms.

Natural isomorphisms themselves have redundancy, in that
modifying

γa → γaζa (23)

for phases ζa which obey the fusion rules, that is, ζaζb = ζc
whenever Nc

ab > 0, does not change the action of the natural
isomorphism on any fusion space. This redundancy will be
particularly important when we consider the fermionic case.

The first step towards specifying how a symmetry acts on
a bosonic topological phase is to choose a group homomor-
phism

[ρg] : G → Aut(B). (24)

Choosing a representative ρg of the class [ρg] specifies data
Ug(a, b; c) via the equation

ρg(|a, b; c〉) = Ug(
ga, gb; gc) | ga, gb; gc〉 , (25)

where |a, b; c〉 ∈ V c
ab is a state in a splitting space of B. These

data are subject to the consistency conditions that the F and R
symbols are preserved:

Ug(
ga, gb; ge)Ug(

gc, ge; gd )F
ga, gb, gc
gd, ge, g f

× U−1
g ( gb, gc; g f )U−1

g ( ga, g f ; gd ) = (
Fabc
de f

)σ (g)
, (26)

Ug(
gb, ga; gc)R

ga, gb
gc U−1

g ( ga, gb; gc) = (
Rab
c

)σ (g)
. (27)

Here

σ (g) =
{
1 g unitary
∗ g antiunitary . (28)

Modifying the representative ρg by a g-dependent natural iso-
morphism, ρg → ϒg ◦ ρg, is a form of gauge freedom which
changes

Ug(a, b; c) → γa(g)γb(g)
γc(g)

Ug(a, b; c). (29)

Since [ρg] is a group homomorphism, the map

κg,h = ρgh ◦ ρ−1
h ◦ ρ−1

g (30)

is a natural isomorphism. Translated into the action on fusion
spaces, this means

κg,h(a, b; c) = βa(g,h)βb(g,h)
βc(g,h)

= U−1
g (a, b, c)

(
U−1
h ( ga, gb; gc)

)σ (g)
Ugh(a, b; c)

(31)

for some phases βa(g,h). We use the compact notation g =
g−1. Thanks to the redundancies in natural isomorphisms
discussed above, if νa(g,h) are phases that obey the fusion
rules for each g,h, then the data βa(g,h) and βa(g,h)νa(g,h)
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should be considered gauge equivalent. Modifying ρg by a
natural isomorphism also modifies

βa(g,h) → γa(gh)
γa(g)γ ga(h)σ (g)

βa(g,h), (32)

so these βa should also be considered gauge equivalent. We
use the canonical gauge-fixing Ug(1, a, a) = Ug(a, 1, a) = 1
for all a ∈ B, where the identity anyon in B is denoted 1.
Maintaining this gauge fixing requires γ1(g) = 1 in all gauge
transformations.

B. Symmetry localization and fractionalization

Now suppose that we have a bosonic quantum many-body
Hilbert space with a local Hamiltonian such that the system is
in the phase given by the topological order B. Let Rg be the
representation of g ∈ G on the quantum many-body Hilbert
space. We assume that Rg is generated onsite, that is,

Rg =
∏
i

R(i)
g Kq(g), (33)

where the R(i)
g are local (that is, supported on a region with

length on the order of the correlation length or smaller) unitary
operators on disjoint patches i of space, q(g) = 0 if Rg has a
unitary action, and q(g) = 1 if Rg has an antiunitary action.
Let |�{ai}〉 be a state of the many-body system with anyons
ai localized at well-separated positions i. Then, at least in
principle, one may determine the map [ρg] : G → Aut(B),
where the autoequivalences are defined modulo natural
transformations.

Upon defining [ρg], we may ask if the symmetry can be
localized. That is, we ask if the global symmetry operator
Rg acting on |�{ai}〉 can be decomposed, up to exponentially
small corrections in the ratio of the correlation length and the
separation between anyons, according to the following ansatz:

Rg
∣∣�{ai}

〉 ≈
∏
i

U (i)
g ρg

∣∣�{ai}
〉
, (34)

where ρg is an operator which acts only on the topological data
of the state |�{ai}〉 and whose action is given by the element
[ρg] of Aut(B), and U (i)

g is a local operator near the anyon at
position i.

One can show [2] that localizing the symmetry amounts
to choosing a set of phases ηa(g,h). These phases define the
symmetry fractionalization data and which characterize the
extent to which the local operators U (i)

g fail to obey the group
law:

ηa j (g,h)U
( j)
gh

∣∣�{ai}
〉 = U ( j)

g ρgU
( j)
h ρ−1

g

∣∣�{ai}
〉
. (35)

The ηa obey consistency conditions. One arises from enforc-
ing associativity of theU ( j)

g :

ηa(g,h)ηa(gh,k) = η
σ (g)
ga

(h,k)ηa(g,hk). (36)

The other consistency condition enforces the consistency be-
tween the local data and the global part of the symmetry ρg:

ηc(g,h)
ηa(g,h)ηb(g,h)

= U σ (g)
h ( ga, gb; gc)Ug(a, b; c)U

−1
gh (a, b; c)

= κ−1
g,h(a, b; c). (37)

Using the explicit form of κ , we find that

βa(g,h)βb(g,h)
βc(g,h)

= ηa(g,h)ηb(g,h)
ηc(g,h)

(38)

so we may re-encode the symmetry fractionalization data into
a set of phases

ωa(g,h) = βa(g,h)
ηa(g,h)

. (39)

These ωa need not be 1, but they do have the convenient
property that they obey the fusion rules. We emphasize that,
given ρg, the phases ωa and ηa are equivalent encodings of the
symmetry fractionalization data, and we may choose to work
with either one depending on convenience. By an argument
which we review and generalize in Appendix A, the fact that
the ωa obey the fusion rules means that, since B is modular,

ωa(g,h) = Ma,w(g,h), (40)

where w ∈ A, withA the set of Abelian anyons of B, andMab

is the scalar monodromy between the anyons a, b.
There is an obstruction to the symmetry localization ansatz

of Eq. (34) being consistent with associativity of Rg, which
precludes defining any consistent symmetry fractionalization
pattern. This obstruction, called the symmetry localization
obstruction, is an element [O] ∈ H3(G,A). One finds this
obstruction by constructing the following phase factors:

	a(g,h,k) = β
σ (g)
ga

(h,k)βa(g,hk)

βa(g,h)βa(gh,k)
. (41)

One can show that these phases obey the fusion rules. Accord-
ingly,

	a(g,h,k) = Ma,O(g,h,k), (42)

where O(g,h,k) ∈ A. If the symmetry can be localized, we
can use Eqs. (36) and (39) to write an equivalent expression
for 	a, namely,

	a(g,h,k) = ω
σ (g)
ga

(h,k)ωa(g,hk)

ωa(g,h)ωa(gh,k)
, (43)

which translates into the equation

O(g,h,k) = (dw)(g,h,k), (44)

where d is the differential in the group cohomology. That
is, the existence of a consistent symmetry fractionalization
pattern requires that [O] be trivial as an element ofH3(G,A).
Equivalently, if [O] is not trivial in H3(G,A), then the sym-
metry localization ansatz Eq. (34) is inconsistent and thus
we have an obstruction to obtaining any consistent symmetry
fractionalization pattern.

Another perspective on the symmetry localization obstruc-
tion is that the TQFT defined by B is only compatible with a
2-group symmetry, where G and A are the 0-form and 1-form
symmetries, respectively, and [O] ∈ H3(G,A) characterizes
the 2-group [2,29].

Symmetry fractionalization data are subject to a set of
gauge transformations that arise from ambiguities in the
ansatz of Eq. (34). One may freely modify the local operators
U (i)
g to act on states via

U ( j)
g

∣∣�{ai}
〉 → γa j (g)

−1U ( j)
g

∣∣�{ai}
〉

(45)
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for any U(1) phases γa j (g); this will not change the action
of Rg as long as there is a compensating modification of the
operator ρg by the natural isomorphism given by γa(g). This
transformation of the local operators, when inserted into the
symmetry fractionalization ansatz, effectively modifies ρg by
the natural isomorphism given by γa(g). This transformation
modifiesU and η according to Eq. (3) while also redefining βa

according to Eq. (32), but it leaves ωa invariant. On the other
hand, redefining βa → βaνa using the redundancy of natural
isomorphisms redefines ωa → ωaνa while leaving ηa and Ug
invariant.

Finally, symmetry fractionalization patterns in bosonic sys-
tems form an H2(G,A) torsor. To see this, we note that
different solutions w and w′ of Eq. (44) are related by

w′(g,h) = t(g,h) × w(g,h) (46)

for some choice of t ∈ Z2(G,A). Tracing through the defini-
tions, one finds that t transforms by a coboundary if the U (i)

g
are modified by a natural isomorphism which is equivalent
to the identity natural isomorphism, that is, if we choose
a natural isomorphism for which the γa(g) obey the fusion
rules. Hence only different [t] ∈ H2(G,A) produce different
symmetry fractionalization patterns.

IV. SYMMETRY LOCALIZATION IN FERMIONIC
SYSTEMS

We will build our theory of symmetry fractionalization in
fermionic systems by applying the basic formalism of Sec. III
to a supermodular tensor category and then demanding that
the symmetry localization ansatz be compatible with the full
fermionic symmetry group Gf and the locality of the fermion.
In this section, we assume that the symmetry can be localized
in the sense of Sec. III and determine the constraints required
for this compatibility. In the subsequent section we will then
study the fundamental obstructions to symmetry localization.

A. Fermionic symmetries

Consider a microscopic fermionic system in the sense de-
scribed in Sec. IVA, that is, we have a many-body Hilbert
space which is a tensor product of local fermionic Hilbert
spaces. We assume there is a local Hamiltonian with a gap
such that the system is in a fermionic topological phase asso-
ciated to the supermodular tensor category C with transparent
fermion ψ . Such a system has a symmetry group Gf , which is
the group of transformations of fermionic operators that keep
the Hamiltonian and (by assumption) ground state invariant.
The fermion parity operator (−1)F is defined from the Hilbert
space and determines the Z f

2 subgroup of the full fermionic
symmetry group Gf . Then the group Gb = Gf /Z

f
2 describes

the set of transformations of all bosonic operators that keep
the Hamiltonian and ground state invariant.

To each element g ∈ Gb we have an operator Rg on the
full Hilbert space which implements the symmetry. For the
discussion below, we assume the Rg are locally generated in

the sense of Eq. (33). Nevertheless we expect that the final
results basically hold for spatial symmetries as well.3

The operators Rg and (−1)FRg are physically distinct (for
example, if the fermions carry spin, a global spin flip is dis-
tinct from a spin flip times fermion parity) and are fixed from
the outset; this fact will play an important role later.

In general, the Rg operators do not form a linear represen-
tation of Gb; instead, they multiply projectively on states of
the many-body quantum system with odd fermion parity, that
is,

RgRh = (ω2(g,h))FRgh, (47)

where F is the fermion parity operator, with eigenvalues 0 and
1, and ω2(g,h) ∈ {±1} � Z2.

Since both the local fermion operators and Rg are defined
in the microscopic Hilbert space, the local fermion operators
have fixed transformation rules. That is, let fi,α be a basis of
(Majorana) fermionic local operators localized near position
i. Then, since Rg is locally generated,

Rg fi,αR
−1
g = (

Ũ (i)
g

)
αβ

fi,β , (48)

where i labels the position of the local fermion operator f ,
α, β label local degrees of freedom, and Ũ (i)

g is some matrix
acting only on local degrees of freedom. We include i depen-
dence on Ũ (i)

g for full generality; this dependence disappears
only if the local fermion Hilbert space and the symmetry
action on it are translation invariant.

Demanding that the Rg operators multiply associatively
enforces that ω2 ∈ Z2(Gb,Z2). As such, Gf is a central ex-
tension of Gb by Z

f
2 , described by the short exact sequence

1 → Z f
2 → Gf → Gb → 1 (49)

and characterized by the cohomology class [ω2] ∈
H2(Gb,Z2). When [ω2] is trivial, then Gf = Z f

2 × Gb.
When [ω2] is nontrivial, then it follows that the fermions
carry fractional quantum numbers of Gb which cannot be
screened by any bosons.

With these definitions in hand, our starting point to de-
scribe the localization of Gf on the fermionic topological
order described by C is to simply write down a theory of
Gb symmetry localization on C in the sense of Eq. (34).
Assuming the symmetry can be localized, we will obtain
symmetry fractionalization data ηa(g,h) in the usual way via
Eq. (35). However, we must modify the theory to account
for two things. First, ψ is a local excitation, not simply an
emergent one. Second, we must account for the presence of
the group extension ω2. We will find that if our symmetry
fractionalization pattern for Gb is to describe a theory with a
localψ andGf symmetry, then the symmetry fractionalization
pattern is constrained in a few ways.

Consider a basis of states |�α
ψ0;(ai ;c)

〉 on a closed manifold
for the topological sector containing a set of anyons ai at po-
sitions i = 1, 2, . . . , n that have a definite total fusion channel
c and which also contains a fermion at position 0. The label α

3See, e.g., Ref. [7] for a recent discussion on the applicability of
applying the G-crossed braided tensor category formalism to spatial
symmetries.
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labels local degrees of freedom near position 0, in the sense
that given the basis of (Majorana) fermionic operators f0,α
near position 0, we define∣∣�α

ψ0;(ai;c)

〉 = f0,α
∣∣�(ai;c)

〉
, (50)

for every topological sector (ai; c), where |�(ai;c)〉 is a state
which is locally in the vacuum state at position 0 (we suppress
indices for local degrees of freedom away from position 0).
For this state to be realizable microscopically, we require

c ∈ {1, ψ}. (51)

We can evaluate the action of Rg on the state in two ways.
First, we can pull out a local fermion operator before applying
the symmetry transformation:

Rg
∣∣�α

ψ0;(ai ;c)

〉 = Rg f0,α
∣∣�(ai;c)

〉
(52)

=
∑

β

(
Ũ (0)
g

)
αβ

f0,βRg
∣∣�(ai ;c)

〉
(53)

=
∑

β

(
Ũ (0)
g

)
αβ

f0,β
∏
i

U (i)
g Ug

({ gai
}
; c

)
× ∣∣�( gai ;c)

〉
, (54)

where β runs over the local basis of fermion operators. Alter-
natively, we can apply the symmetry transformation first:

Rg
∣∣�α

ψ0;(ai ;c)

〉 =
∏
k=0,i

U (k)
g Ug

(
ψ0;

({ gai
}
; c

)) ∣∣�α
ψ0;( ga;c)

〉
(55)

=
∏
k=0,i

U (i)
g Ug(ψ, c; c × ψ )

×Ug
({ gai

}
; c

)
f0,α

∣∣�( gai ;c)
〉

(56)

= U (0)
g f0,α

∏
i

U (i)
g Ug(ψ, c; c × ψ )

×Ug
({ gai

}
; c

) ∣∣�( gai ;c)
〉
. (57)

The symbol Ug({ gai}; c) is shorthand for the U symbol for
the entire fusion tree of anyons away from position 0, and
likewise Ug(ψ0; ({ gai}; c)) is the U symbol for the entire
fusion tree of the whole state. The fact that the same label
α appears in both cases arises from the fact that we are using
the same basis of local operators near position 0 to define the
basis of states in each topological sector, which defines the
U (0)
g operators. Comparing Eqs. (54) and (57), we obtain an

important equation∑
β

(
Ũ (0)
g

)
αβ

f0,β
∣∣�( gai;c)

〉
= U (0)

g f0,αUg(ψ, c; c×ψ )
∣∣�( gai ;c)

〉
(58)

for all α. The first thing to observe from this equation is
that the left-hand side consists of a local operator acting on
a state, and the right-hand side is a local operator acting on
the same state multiplied by the phaseUg(ψ, c; c × ψ ), which
depends on the nonlocal overall fusion channel c of the state
in question. In order for this to be true, we must have that
Ug(ψ, c; c × ψ ) is independent of c. Since c ∈ {1, ψ}, this
implies

Ug(ψ,ψ ; 1) = Ug(ψ, 1;ψ ) = 1. (59)

This is one of the primary constraints on the SET data and is
needed to enforce the locality of ψ . This turns Eq. (58) into∑

β

(
Ũ (0)
g

)
αβ

f0,β
∣∣�( gai ;c)

〉 = U (0)
g f0,α

∣∣�( gai ;c)
〉
if c ∈ {1, ψ}.

(60)
The next observation is that the action of U (0)

g on states
with an anyon ψ at position 0 is determined entirely by its
action on the basis of local fermion operators, that is, by
Ũ (0)
g . Normally we can modify the local operators U (i)

g by a
phase γai (g), which would transform the right-hand side of
Eq. (60) by γψ (g). However, the left-hand side of Eq. (60)
is unambiguously determined by the microscopic action of
the symmetry on local operators. Correspondingly, we have
no freedom in the right-hand side and thus we obtain the
important constraint

γψ (g) = 1 (61)

in all gauge transformations. Physically speaking, the local
action U (0)

g of the symmetry on states with a fermion at po-
sition 0 is completely fixed by the symmetry action on the
microscopic Hilbert space as determined by Eq. (48).

To further understand the constraint Eq. (61), we comment
that a transformation γψ (g) = −1 amounts to a redefinition
of the microscopic Gb symmetry operators by a g-dependent
factor of fermion parity, that is, relabeling

Rg → Rg(γψ (g))F . (62)

For a familiar example, if Gb = ZT
2 , then this redefinition

interchanges the operators T ↔ T(−1)F . As discussed at the
beginning of this section, these operators are physically dis-
tinct thanks to the locality of the fermion. We should therefore
consider this to be a different theory rather than a gauge-
equivalent one. As we saw at the beginning of this section,
a microscopic set of symmetry operators defines ω2 at the
cocycle level, not just at the level of cohomology.

Also note that the above transformation, Eq. (62), imple-
ments an automorphism of Gf which changes the decomposi-
tion of Gf into Gb × Z f

2 as a set, and if γψ (g) is not closed as
a 1-cochain, this will also change the representative cocycle
ω2 for the group extension.

Finally, we can use the above to constrain ηψ . Suppose
that we can define consistent symmetry fractionalization. The
symmetries cannot permute ψ , so ηψ (g,h) is constrained to
be a U(1)-valued 2-cocycle. Inserting Eq. (59) into the con-
sistency condition Eq. (37) forces

ηψ (g,h)2 = 1, (63)

that is, ηψ (g,h) ∈ Z2(Gb,Z2).
Next, observe that

RgRh fi,αR
−1
h R−1

g = ω2(g,h)Rgh fi,αR
−1
gh

=
∑

β

ω2(g,h)
(
Ũ (i)
gh

)
αβ

fi,β (64)

=
∑

β

Rg
(
Ũ (i)
h

)
αβ

fi,βR
−1
g

=
∑

δ

( gŨ (i)
h Ũ (i)

g

)
αδ
fi,δ. (65)
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Applying both far-right-hand-side expressions to a parity-odd
state |�(a j ;ψ )〉, we obtain∑

β

ω2(g,h)
(
Ũ (i)
gh

)
αβ

fi,β
∣∣�(a j ;ψ )

〉

=
∑

δ

( gŨ (i)
h Ũ (i)

g

)
αδ
fi,δ

∣∣�(a j ;ψ )
〉
. (66)

We can now use Eq. (60) to exchange the Ũ (i) matrices for
the operators U (i) which appear in the symmetry localization
ansatz, then absorb the fermion operators into the state:

ω2(g,h)U
(i)
gh fi,α

∣∣�(a j ;ψ )
〉 = gU (i)

h U (i)
g fi,α

∣∣�(a j ;ψ )
〉

(67)

⇒ ω2(g,h)
∣∣�α

ψi;(a j ;ψ )

〉 = (
U (i)
gh

)−1 gU (i)
h U (i)

g

∣∣�α
ψi;(a j ;ψ )

〉
(68)

= β−1
ψ (g,h)W (i)

g,h

∣∣�α
ψi;(a j ;ψ )

〉
(69)

= ωψ (g,h)
βψ (g,h)

∣∣�α
ψi;(a j ;ψ )

〉
(70)

= η−1
ψ (g,h)

∣∣�α
ψi;(a j ;ψ )

〉
. (71)

The last line follows from the definition Eq. (39), and here
W (i)

g,h is the operator

W (i)
g,h = (

U (i)
gh

)−1 gU (i)
h U (i)

g (72)

defined in Ref. [2] whose action on states with an anyon ai at
position i is

W (i)
g,h |�ai〉 = ωa(g,h) |�ai〉 . (73)

Note that ωa, which is a U(1) phase that obeys the fusion rules
in the sense

ωa(g,h)ωb(g,h) = ωc(g,h) whenever Nc
ab > 0, (74)

and is used to characterize the symmetry fractionalization,
should not be confused with ω2 ∈ {±1}, which specifies Gf

as a Z f
2 extension of Gb.

We also comment that in the bosonic case we would pro-
ceed by writing Eq. (40). This step becomes more subtle in
the fermionic case; we will discuss it in Sec. V.

Since the group extension cocycle ω2 is Z2-valued, we
conclude that

ηψ (g,h) = ω2(g,h), (75)

so as claimed, we should incorporate the group extension as
symmetry fractionalization data ηψ .

To summarize, we have found that locality of fermion
operators requires that

Ug(ψ,ψ ; 1) = 1, (76)

ηψ (g,h) = ω2(g,h), (77)

γψ (g) = 1. (78)

B. Locality-respecting natural isomorphisms

In bosonic topological phases given by a UMTC B, we
define a group homomorphism [ρ] : G → Aut(B), where el-
ements of Aut(B) are defined modulo natural isomorphisms.
In the fermionic case, we first need to enforce Eq. (59). Every

element of Aut(C) has a representative with Ug(ψ,ψ ; 1) =
+1; given any choice of representative, if this constraint is
not respected, then modify the autoequivalence by a natural
isomorphism with γψ (g) = Ug(ψ,ψ ; 1)−1/2 (either sign of
the square root will work) to obtain a representative which
respects the constraint. Hence the group of autoequivalences
which respect the constraintUg(ψ,ψ ; 1) = 1 is isomorphic to
Aut(C); we will therefore refer to the former as Aut(C) as well,
but we implicitly are disallowing any representatives which
violate the constraint.

Once we have accounted for the above constraint, as we
saw above, natural isomorphisms with γψ (g) 
= +1 do not
in general respect the locality of the fermion. As such, we
should only consider symmetries to be equivalent if they
differ by a natural isomorphism which respects the locality
of the fermion. We define the group of equivalence classes
of braided autoequivalences under this restricted equivalence
to be the group AutLR(C), where LR stands for “locality-
respecting.”

Accordingly, in a fermionic system we must specify a map

[ρg] : Gb → AutLR(C), (79)

such that

κg,h ◦ ρg ◦ ρh = ρgh, (80)

where κg,h is a natural isomorphism. In general κg,h need not
be a locality-respecting natural isomorphism. When κg,h does
respect locality, then [κg,h] is trivial and [ρg] is a faithful
group homomorphism; otherwise the multiplication law for
[ρg] holds up to a factor [κg,h].4

The definition of AutLR(C) is more subtle than one might
naively expect. Given a microscopic realization of the sym-
metry, natural isomorphisms are obtained by modifying the
local operators U (k)

g that appear in the symmetry localization
ansatz by anyon-dependent factors γa(g); from this starting
point, only natural isomorphisms with γψ = +1 are allowed.
However, if the starting point is only UBFC data, natural
isomorphisms are defined by their action on fusion vertices,
i.e., they are autoequivalences ϒ of the form

ϒ(|a, b; c〉) = γaγb

γc
|a, b, c〉 . (81)

At this level, natural isomorphisms have a redundancy upon
redefining

γ̃a = ζaγa, (82)

where the ζa are phases such that ζaζb = ζc whenever Nc
ab > 0.

Such a redefinition does not change the action of the symme-
try on any fusion vertices. Therefore if a natural isomorphism
is equivalent under this redundancy to one with γψ = +1, then
it also respects locality, although at the level of microscopics,

4An earlier version of this paper referred to [ρg] as a group homo-
morphism, implicitly assuming that [κg,h] is always trivial. However,
when ϒψ violates locality, [κg,h] may indeed be nontrivial, in which
case the multiplication law for [ρg] need only hold projectively;
an example is the unobstructed fractionalization of Gf = ZT, f

4 on
C = SO(3)3 in Sec. VI F. The corrected discussion agrees with the
discussion contained in Ref. [30].
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we must implement the natural isomorphism of the BFC using
the equivalent γψ = +1 realization.

All phases ζa which respect the fusion rules have ζψ = ±1,
so locality-respecting natural isomorphisms are required to
have γψ = ±1; note that this condition also preserves the con-
straint Eq. (59) that U(ψ,ψ ; 1) = +1. There may or may not
exist phases ζa which obey the fusion rules and have ζψ = −1.
If such phases ζa do not exist, (in the language of Sec. II
this means K (C) = K+(C)), then the naive expectation holds:
only natural isomorphisms with γψ = +1 respect locality, and
Aut(C) 
= AutLR(C). However, if such phases ζa do exist (in
which caseK (C)/K+(C) = Z2), then all natural isomorphisms
with γψ ∈ Z2 are equivalent to one with γψ = +1 and thus
respect locality. In this case, Aut(C) = AutLR(C).

In the former case where these phases ζa do not exist, there
is a rather unfamiliar consequence that equivalence classes in
Aut(C) are not uniquely determined by the permutation action
on the anyons. To see this, define

ϒψ (|a, b; c〉) = γaγb

γc
|a, b, c〉 (83)

with γa = +1 for all a 
= ψ and γψ = −1. By construction,
ϒψ has a trivial permutation action on the anyons, but if the
aforementioned ζa do not exist, i.e., if K (C) = K+(C), then
ϒψ is not a locality-respecting natural isomorphism and its
equivalence class in AutLR(C) is therefore distinct from the
class of the transformation which acts exactly as the identity.

The map ϒψ has a natural interpretation as the action of
fermion parity, since it inserts a factor of (−1) for every local
fermion in a state.

For a general BFC B, in many cases of physical in-
terest, equivalence classes in Aut(B) modulo all (possibly
locality-violating) natural isomorphisms are uniquely deter-
mined by the way they permute the anyons. This property
was proven explicitly in Ref. [29] for theories with Nc

ab � 1
for all a, b, c ∈ B and where all F symbols allowed by the
fusion rules are nonzero. Some theories which do not have
this property can be found in Ref. [16].

Suppose we have a theory in which given an autoe-
quivalence ρ, all autoequivalences which have the same
permutation action as ρ are related to it by a possibly
locality-violating natural isomorphism. Assuming ρ satisfies
the restriction U(ψ,ψ ; 1) = +1, the only (possibly) locality-
violating natural isomorphisms that maintain U(ψ,ψ ; 1) =
+1 have γψ = −1, that is, they are related to ϒψ by a locality-
respecting natural isomorphism. Therefore, if ϒψ respects
locality, then locality-respecting equivalence classes in Aut(C)
are uniquely determined by their permutation action. If ϒψ

does not respect locality, then there are exactly two locality-
respecting equivalence classes in Aut(C) for each permutation
action; if ρ is a representative of one such class, then ϒψ ◦ ρ

is a representative of the other class. In this case,

Aut(C) = AutLR(C)/Z2, (84)

where Z2 is the subgroup of AutLR(C) generated by [ϒψ ].
We note that we have not proven that the constraints that

we have found are exhaustive. Since the fermion ψ is con-
sidered to be local, one could imagine a constraint of the sort
Ug(a, ψ ; a × ψ ) = +1 for all a, not just a ∈ {1, ψ}, however
we have not found any evidence that such a constraint should

be required. If we did have such a more general constraint,
then only one of ρg and ϒψ ◦ ρg would be allowed, in which
case we would always have AutLR(C) � Aut(C). In this case,
then [ρ] would again be a homomorphism into Aut(C).

1. Examples

We presently explain some examples and special cases
where it can be determined whether or not ϒψ respects
locality.

If any minimal modular extension qC of C contains an
Abelian fermion parity vortex v, then ϒψ respects locality.
Specifically, we can define ζa = Ma,v , asMa,v ∈ U(1) respects
the fusion rules of qC and therefore also respects the fusion
rules of C. Since v is a fermion parity vortex, ζψ = −1.
Clearly this case includes all C of the form C = {1, ψ} � B
for modular B.

We prove in Appendix C that the converse of the above
statement is true as well, so that ϒψ respects locality if and
only if some minimal modular extension qC of C contains an
Abelian fermion parity vortex v.

One physical situation where ϒψ does not respect locality
is whenever C contains a fusion of the form a × b = c + (c ×
ψ ) + · · · , that is, Nc

ab = Nc×ψ

ab > 0. We do not know whether
or not this condition is necessary forϒψ to violate locality, but
the proof that it is sufficient is straightforward. Assume such
a fusion rule exists; then any phase ζa which obeys the fusion
rules must obey

ζc = ζaζb = ζc×ψ = ζcζψ (85)

Therefore ζψ = +1. An example where this occurs is the
theory describing the anyon content of SO(3)3 Chern-Simons
theory, which we shall simply call5 C = SO(3)3 (see, e.g.,
Ref. [20] for the explicit BFC data) which has a fusion rule
s × s = 1 + s + s̃ with s̃ = s × ψ .

In the case where C contains a fusion rule where Nc
ab =

Nc×ψ

ab > 0, then the quantity

�c
ab = U (c, ψ ; c × ψ )U (a, b; c)U−1(a, b; c × ψ ) (86)

is nonzero and gauge-invariant within AutLR(C). It is straight-
forward to check that if the autoequivalence is changed from
ρ to ϒψ ◦ ρ, then �c

ab changes to −�c
ab; �c

ab is therefore an
invariant that distinguishes two elements of AutLR(C) with the
same permutation action.

2. Summary

To summarize, the following are equivalent for a super-
modular category C:

(1) ϒψ respects locality;
(2) some minimal modular extension qC of C contains an

Abelian fermion parity vortex;
(3) Aut(C) � AutLR(C);

5In some references in the condensed matter literature, e.g.,
Ref. [20], this BFC is named SO(3)6 because it is the integer spin
sector of the anyons in SU(2)6 Chern-Simons theory.
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(4) if elements of Aut(C) are uniquely determined by their
permutation action on the anyons, then so are elements of
AutLR(C);

(5) K (C)/K+(C) � Z2; and (6) there exists a set of phases
ζa which obey the fusion rules and have ζψ = −1.

Conversely, the following are also equivalent.
(1) ϒψ violates locality;
(2) AutLR(C)/Z2 � Aut(C);
(3) if elements of Aut(C) are uniquely determined by their

permutation action on the anyons, exactly two elements of
AutLR(C) have the same permutation action on the anyons;

(4) K (C) � K+(C).
(5) Any set of phases ζa which obey the fusion rules must

have ζψ = +1.

V. OBSTRUCTIONS AND CLASSIFICATION OF
SYMMETRY FRACTIONALIZATION

We now consider the obstructions to fractionalizing Gf on
C. There are two such obstructions. The first is an obstruction
to defining any symmetry fractionalization of Gb as a bosonic
symmetry group on the supermodular tensor category; this ob-
struction [	] ∈ H3(Gb,K (C)). We will call this the “bosonic
obstruction” since it is independent of the extension Gf of
Gb. One can think of this as an obstruction to the symmetry
localization ansatz of Eq. (34), while ignoring the locality
of the fermion (that is, ignoring the constraints discussed in
Sec. IV).

Assuming that the bosonic obstruction vanishes, the second
obstruction, which we will call the fermionic obstruction, is to
finding a symmetry fractionalization pattern which obeys the
constraint ηψ = ω2. Ifϒψ respects locality, then the fermionic
obstruction [O f ] ∈ H3(Gb,A/{1, ψ}). If ϒψ does not respect
locality, then the fermionic obstruction is O f ∈ Z2(Gb,Z2).

The fermionic obstruction has appeared in the math
literature in Ref. [23]; we explicitly incorporate the local-
ity restrictions and give a physical understanding of these
obstructions.

If both the bosonic and fermionic symmetry localization
obstructions vanish, the symmetry localization ansatz is well-
defined and is compatible with the locality of the fermion,
which implies that there exists some well-defined symmetry
fractionalization pattern. We can then classify distinct symme-
try fractionalization patterns; we find that these patterns form
a torsor over H2(Gb,A/{1, ψ}), i.e., that different patterns
are related to each other by an element of H2(Gb,A/{1, ψ})
but there is not in general a canonical identification
of symmetry fractionalization patterns with cohomology
classes.

Before proceeding, recall from the previous subsection that
ϒψ respects locality if and only if there are phases ζa ∈ U(1)
which respect the fusion rules and for which ζψ = −1, that is,
if K (C)/K+(C) = Z2. In what follows, we will only directly
use the (non)existence of such phases rather than explicitly
using ϒψ .

A. Defining the cohomology class of the bosonic obstruction

In this section, we will show how the map

[ρ] : Gb → AutLR(C) (87)

determines an element [	] ∈ H3(Gb,K (C)). We will provide
the interpretation of [	] as an obstruction to symmetry local-
ization in Sec. VB.

Choose a representative ρg of [ρg]. Recall that the natural
isomorphisms κg,h are defined by Eq. (80) and can be decom-
posed

κg,h(a, b; c) = βa(g,h)βb(g,h)
βc(g,h)

(88)

for phases β, where κg,h(a, b; c) is the action of κg,h on an
|a, b; c〉 fusion vertex.

Demanding that the two ways to decompose ρghk are con-
sistent leads to the condition

κg,hkρgκh,kρ
−1
g = κgh,kκg,h. (89)

Define

	a(g,h,k) = β
σ (g)
ga

(h,k)βa(g,hk)

βa(g,h)βa(gh,k)
. (90)

By definition 	a is a U(1) valued 3-cochain: 	a ∈
C3(Gb,U(1)). Applying Eq. (89) to a state |a, b; c〉, we im-
mediately find

	a	b = 	c, (91)

whenever Nc
ab 
= 0 (so that |a, b; c〉 is a nonzero state). Letting

a vary, then, we have 	 ∈ C3(Gb,K (C)), with a group action6
which takes 	a → 	 ga. By direct computation,

	
σ (g)
ga

(h,k, l)	a(g,hk, l)	a(g,h,k)

	a(gh,k, l)	a(g,h,kl)
= 1. (92)

Hence 	 ∈ Z3(Gb,K (C)). It is straightforward to check that
	 is invariant under symmetry gauge transformations Eq. (32)
and is therefore independent of the choice of representative ρg.

There is additional gauge freedom in 	 which arises
from the gauge freedom in β; we may redefine βa(g,h) →
βa(g,h)νa(g,h) for any phases νa(g,h) which obey the fusion
rules, that is, for ν ∈ C2(Gb,K (C)). Inserting into Eq. (90), we
find that this modifies 	 → 	dν, that is, 	 is ambiguous by
an element of B3(Gb,K (C)). Hence [	] ∈ H3(Gb,K (C)) is a
well-defined cohomology class.

We can go a bit further if ϒψ violates locality. Then
K (C) = K+(C) � A/{1, ψ}; in this case, we know that 	ψ =
+1 and thus we can write

	a(g,h,k) = Ma,Ob(g,h,k) (93)

for some Ob ∈ C3(Gb,A/{1, ψ}). Inserting Eq. (93) into
Eq. (92),

1 = Mσ (g)
ga,Ob(h,k,l)Ma,Ob(g,hk,l)Ma,Ob(g,h,k)M

∗
a,Ob(gh,k,l)M

∗
a,Ob(g,h,kl)

(94)

= Ma, gOb(h,k,l)Ma,Ob(g,hk,l)Ma,Ob(g,h,k)Ma,Ob(gh,k,l)Ma,Ob(g,h,kl)

(95)

= Ma, gOb(h,k,l)×Ob(g,hk,l)×Ob(g,h,k)×Ob(gh,k,l)×Ob(g,h,kl) (96)

= Ma,dOb(g,h,k,l), (97)

6Thanks to the presence of g rather than g, this is actually a right
group action of Gb on K (C) rather than a more conventional left
group action.
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for all a ∈ C. Here we have used the symmetry properties of
the S matrix and the fact that if Mab is always a phase, then
MabMac = Mad whenever Nd

bc 
= 0. Because we are only con-
sidering braiding of Ob with elements of C and not a modular
extension, at every step in this process, we could have freely
inserted a fermion into any of the Ob or into the overall fusion
product. Hence dOb is completely ambiguous by a fermion.

Supermodularity converts Eq. (97) into

dOb(g,h,k, l) ∈ {1, ψ}. (98)

Hence dOb = 1 as an element of A/{1, ψ}; that is,
Ob ∈ Z3(Gb,A/{1, ψ}). A similar calculation shows that the
coboundary ambiguity in 	 leads to a coboundary ambi-
guity in Ob. The conclusion is that if ϒψ violates locality,
then [Ob] ∈ H3(Gb,A/{1, ψ}) is a well-defined cohomology
class.

If ϒψ respects locality, then in general we cannot say
anything further than the above. We will show in Sec. VB
that it is possible to choose a cocycle representative 	 such
that 	 ∈ Z3(Gb,K+(C)), but as we will see, the class [	] ∈
H3(Gb,K+(C)) can in general be nontrivial even if there is
no symmetry localization obstruction; the actual obstruction
is the class [	] ∈ H3(Gb,K (C)).

B. Symmetry localization obstructions

Now we determine the obstructions to symmetry localiza-
tion on C.

As reviewed in Sec. III, localizing the symmetry on C
amounts to choosing a set of phases ωa(g,h) which obey the
fusion rules and

	a(g,h,k) = ω ga(h,k)ωa(gh,k)−1ωa(g,hk)ωa(g,h)−1.

(99)
Recall that the symmetry fractionalization data η are defined
using Eq. (39), and that fermionic symmetry fractionalization
means we require ηψ (g,h) = ω2(g,h).

The bosonic symmetry localization obstruction is the ob-
struction to finding any solution of Eq. (99), which we may
reinterpret as the condition

	 = dω (100)

for 	 ∈ Z3(Gb,K (C)) and ω ∈ C2(Gb,K (C)). That is, [	] ∈
H3(Gb,K (C)) is the bosonic symmetry localization obstruc-
tion. To characterize this obstruction further and to understand
the fermionic symmetry localization obstruction, we proceed
in two cases, depending on the locality of ϒψ .

1. Case: ϒψ does not respect locality

If ϒψ does not respect locality, we have K (C) = K+(C)
and, accordingly,

	ψ = +1. (101)

If a solution ωa to Eq. (99) exists, then we must have ωψ =
+1 as well because ωa obeys the fusion rules. Hence we may
write

ωa(g,h) = Ma,w(g,h) (102)

for all a ∈ C for some w ∈ A, where again w is ambiguous
by a fermion. Substituting into Eq. (99), we find the usual

requirement

Ma,Ob = Ma,dw. (103)

Hence, Ob = dw, modulo a fermion, that is, we must have
[Ob] = 0 ∈ H3(Gb,A/{1, ψ}) in order to have symmetry
fractionalization. If [Ob] = 0, then by definition there exists
such a w, so there is no additional bosonic obstruction.

To understand the fermionic symmetry localization ob-
struction, we must attempt to enforce the condition ηψ = ω2.
Recall from Sec. VA that βψ ∈ Z2 is gauge-invariant when
ϒψ does not respect locality. Suppose that some solution ωa

of Eq. (99) exists, that is, the bosonic obstruction vanishes; it
automatically has ωψ = +1 as mentioned above. Then using
Eqs. (39) and (101), we have ηψ = βψ/ωψ = βψ . Hence,
since ηψ ∈ Z2(Gb,Z2),

O f = βψ/ω2 ∈ Z2(Gb,Z2) (104)

is the obstruction to imposing the fermionic symmetry frac-
tionalization condition ηψ = ω2. If βψ/ω2 = +1, then we
automatically have ηψ = ω2 and the symmetry fractionaliza-
tion pattern accounts correctly for the fermionic symmetry.

Note also that, by definition, βψ (g,h) = −1 implies
[κg,h] = [ϒψ ]. Therefore, if the fermionic obstruction van-
ishes,

[κg,h] = [ϒψ ]
(1−ω2(g,h))/2. (105)

We see that when ϒψ violates locality, [ρg] : Gb → AutLR(C)
can be a group homomorphism without a symmetry fraction-
alization obstruction only if ω2(g,h) = +1.7

Furthermore, when this fermionic obstruction vanishes, we
see that [ρg] lifts to a group homomorphism Gf → AutLR(C)
such that (−1)F maps to [ϒψ ]. Therefore, when ϒψ violates
locality, we can view O f as obstructing the existence of such
a lift.

The above fermionic obstruction was also found in the
mathematical context of categorical fermionic actions in
Ref. [23], where it was considered to be an element of
H2(Gb,Z2). The question of whether to mod out by 2-
coboundaries arises upon consideration of what data are
considered given. If one is given only [ω2] ∈ H2(Gb,Z2),
then there is freedom to simply choose a different ω2 in the co-
homology class and we should consider [O f ] ∈ H2(Gb,Z2).
As discussed in Sec. IVA, this choice amounts to a differ-
ent decomposition of Gf into Gb × Z f

2 as sets. Furthermore,
if one is only given a map [ρg] : Gb → Aut(C), then there
is freedom to modify ρg by ϒψ , which modifies O f by a
coboundary. In this case, again the obstruction is [O f ] ∈
H2(Gb,Z2). However, as we discussed in Sec. IVA, a com-
plete specification of a quantum many-body system and its

7The fact that Eq. (104) implies a constraint relating ω2 and [κg,h] in
the case where ϒψ is locality-violating, as summarized in Eq. (105),
was also noted previously in Ref. [30]. Reference [30] further ob-
served that a somewhat looser version of Eq. (105) can also be
derived when [κg,h] = [ϒψ ] for some g, h by demanding that there
exists an (unconstrained) lift of the map [ρg] : Gb → AutLR(C) to a
group homomorphism Gf → AutLR(C). We do not enforce such a
requirement explicitly, although as stated above the vanishing of O f

implies the existence of such a lift with (−1)F mapping to [ϒψ ].
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symmetries fixes both a cochain representative of ω2 and
determines [ρg] : G → AutLR(C). In this case ω2 and βψ have
no further gauge freedom. Thus there is no further freedom to
change O f by a coboundary, and so we take the obstruction
to be valued in Z2(Gb,Z2). If one instead were interested
in whether there is any physical realization of an abstract
symmetry group Gf acting on C, the obstruction would be a
cohomology-level obstruction.

An example where this fermionic obstruction occurs is in
SO(3)3 Chern-Simons theory with Gf = ZT

2 × Z f
2 . There is a

unique permutation action of the anyons under time-reversal.
One can check directly that there is only a valid symmetry
fractionalization pattern with βψ = ηψ (T,T) = −1, which
would require Gf = ZT, f

4 . We explain this in more detail in
Sec. VI F 1.

Remarkably, when ϒψ violates locality, given a Gb and
[ρg], there is always at most one group extension Gf of Gb

which can be unobstructed. This follows from the fact that,
given a [ρg], βψ is gauge-invariant; the only gauge freedom
in βa is to modify βa → βaνa where νa obeys the fusion
rules, and sinceϒψ violates locality, νψ = +1. Hence the only
possible unobstructed Gf has ω2 = βψ .

2. Case: ϒψ respects locality

If ϒψ respects locality, then K (C)/K+(C) = Z2, and
we cannot generically say anything further about the
bosonic symmetry localization obstruction; it is simply [	] ∈
H3(Gb,K (C)).

Suppose the bosonic obstruction vanishes so that there
exists some consistent Gb symmetry fractionalization data ηa;
we need to enforce the fermionic constraint ηψ = ω2. As in
the bosonic case, all consistent (bosonic) symmetry fraction-
alization patterns can be obtained from a given pattern η(0)

a via

ηa(g,h) = η(0)
a (g,h)τa(g,h) (106)

where τa obeys the fusion rules and additionally obeys

τ ga(h,k)τa(g,hk) = τa(g,h)τa(gh,k). (107)

Given the symmetry fractionalization pattern η(0)
a , we may

attempt to obtain one which obeys the fermionic constraint
ηψ = ω2 by simply choosing τa(g,h) to be any phase which
obeys the fusion rules and

ω2(g,h)

η
(0)
ψ (g,h)

= τψ (g,h). (108)

Such a τa will always exist, but it may not obey Eq. (107).
Define

Ta(g,h,k) = τ ga(h,k)τa(g,hk)τ−1
a (g,h)τ−1

a (gh,k) (109)

Obviously Eq. (107) is equivalent to Ta = 1, and it is also clear
that Ta is a phase which obeys the fusion rules (since the same
holds for τa). Furthermore, ω2 and η

(0)
ψ are both elements of

Z2(Gb,Z2); hence Tψ = 1, that is, T ∈ K+(C). We therefore
conclude that

Ta(g,h,k) = Ma,O f (g,h,k) (110)

for some O f ∈ C3(Gb,A/{1, ψ}). We find with a direct com-
putation that dTa = 1, which impliesO f ∈ Z3(Gb,A/{1, ψ}).

Our desired condition Ta = 1 would force O f ∈ {1, ψ};
this will not be satisfied in general. However, we could have
chosen another τa which satisfies Eq. (108); clearly all such
τa are obtained by modifying τa(g,h) → τa(g,h)λa(g,h)
where λa obeys the fusion rules and, crucially, λψ (g,h) =
+1. Hence λ ∈ C2(Gb,K+(C)). Such a λa must be of the form

λa(g,h) = Ma,v(g,h) (111)

with v(g,h) ∈ C2(Gb,A/{1, ψ}). This change to τa mod-
ifies O f → O f × dv. Therefore, as long as [O f ] = 0 ∈
H3(Gb,A/{1, ψ}), there exists some choice of v which will
trivialize Ta, that is, produce the desired τa. Hence [O f ] ∈
H3(Gb,A/{1, ψ}) is the obstruction to fractionalizing Gf

on C.
To summarize, if ϒψ respects locality, the bosonic obstruc-

tion is [	] ∈ H3(Gb,K (C)), while the fermionic obstruction
is [O f ] ∈ H3(Gb,A/{1, ψ}). We give an example of a theory
with a trivial bosonic symmetry localization obstruction but
a nontrivial fermionic symmetry localization obstruction in
Sec. VI F 2, namely, C = Sp(2)2 × {1, ψ} with a particular
action of Gf = ZT

2 × Z f
2 .

3. Technical aside on gauge-fixing when ϒψ respects locality

Suppose that ϒψ respects locality and we are given a
particular representation βa(g,h) of κg,h as a natural iso-
morphism. Since ϒψ respects locality, Aut(C) = AutLR(C)
and so there exists a gauge transformation ν ∈ C2(Gb,K (C))
such that the gauge-transformed βa obeys βψ = +1. In this
gauge, Eq. (90) immediately implies 	ψ = +1, that is, 	 ∈
Z3(Gb,K+(C)). Certainly if [	] = 0 ∈ H3(Gb,K+(C)) then it
is also true that [	] = 0 ∈ H3(Gb,K (C)). However, it may be
that [	] 
= 0 ∈ H3(Gb,K+(C)) but [	] = 0 ∈ H3(Gb,K (C)),
so the element [	] ∈ H3(Gb,K+(C)) is not the bosonic sym-
metry localization obstruction. That is, it may be that despite
the gauge-fixing 	ψ = +1, any solution of 	 = dω for
the particular representative 	 will necessarily have some
ωψ (g,h) = −1.

We can rephrase the above more precisely. If ϒψ respects
locality, then there is a short exact sequence

1 → K+(C)
i→ K (C) rψ→ Z2 → 1, (112)

where i is the inclusion map and rψ is the restriction of a set
of phases ζa to a = ψ . This leads to a long exact sequence in
cohomology, where the relevant piece is

· · · → H2(Gb,Z2)
δ→ H3(Gb,K+(C))

i∗→ H3(Gb,K (C))
r∗
ψ→ H3(Gb,Z2) → · · · , (113)

where δ is the connecting homomorphism. The locality con-
straint Eq. (59) implies βψ ∈ Z2, in particular that βψ × βψ =
βψ×ψ = β1 = +1. Inserting into the definition Eq. (90) im-
plies 	ψ = dβψ , that is, r∗

ψ ([	]) = 1. Hence [	] ∈ ker r∗
ψ =

im i∗. A particular choice of the gauge-fixing procedure above
amounts to a choice of a particular element in (i∗)−1([	]). If
ker i∗ is trivial, then we can safely conclude that (i∗)−1([	]) ∈
H3(Gb,K+(C)) ∼ H3(Gb,A/{1, ψ}) is uniquely defined and
can therefore also be regarded as the bosonic obstruction.
However, i∗ need not be injective; in fact ker i∗ = im δ. If i∗ is
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not injective, then even if [	] is trivial our gauge-fixing pro-
cedure may set (i∗)−1([	]) to a nontrivial cohomology class
in H3(Gb,K+(C)). Hence we must use [	] ∈ H3(Gb,K (C))
as the bosonic obstruction.

C. Fermionic obstruction as an obstruction to a lift

There is another perspective on the fermionic symmetry
localization obstruction which is more general and is concep-
tually closely related to the viewpoint of Ref. [23].

Consider the following general problem: let B be any
UBFC with some subcategory B′ ⊂ B. Given a homo-
morphism [ρg] : G → Aut(B) (or AutLR(B), as appropriate)
which preserves B′, we can restrict [ρg] to B′. Suppose
that there exists a symmetry fractionalization pattern for this
restricted homomorphism. Then what is the obstruction to
lifting the symmetry fractionalization pattern to all of B, i.e.,
defining a symmetry fractionalization pattern on B which
restricts to the given one on B′?

This problem was considered in Ref. [22], wherein it was
explained that taking B′ = {1} and B = C produces the usual
bosonic symmetry localization obstruction, while taking B′ =
C and B = qC produces the H3(Gb,Z2) anomaly associated to
fermionic SETs. Ref. [22] showed that if B is modular, then
the obstruction is valued in H3(G,T ) where T ⊂ B are the
Abelian anyons which braid trivially with all of B′. Those
results can be generalized straightforwardly to nonmodular
B; the primary change is that T is replaced by T/E , where E
is the set of anyons which are transparent to all of B. However,
the derivation of Ref. [22] contains an assumption, which does
not hold in general, that one must be able to write

ωb′ (g,h) = Mb′,w(g,h), (114)

for all b′ ∈ B′, with w ∈ A where A is the set of Abelian
anyons in B.

Our fermionic symmetry localization obstruction is a
special case of the above; we are specifying symmetry frac-
tionalization on B′ = {1, ψ} with ηψ = ω2 and asking if this
symmetry fractionalization can be lifted to B = C. The as-
sumption Eq. (114) fails if ωψ (g,h) is not uniformly +1.
As derived in Sec. IVB, the assumption that ϒψ respects
locality actually means that we can choose a gauge where
the assumption ωψ = +1 holds. On the other hand, if ϒψ

violates locality, there is no such gauge-fixing allowed, so
the assumption is violated in general, and accordingly the
obstruction is valued in a completely different cocycle (or
cohomology) group.

D. Classification of symmetry fractionalization

Suppose we have two valid patterns of symmetry fraction-
alization given by ωa(g,h) and ω′

a(g,h). Then we can define

τa(g,h) = ω′
a(g,h)ωa(g,h)−1. (115)

Since ωψ = ω2, we must have

τψ (g,h) = +1 (116)

and τa must obey the fusion rules. Hence we can write

τa = Ma,t(g,h) (117)

where t ∈ C2(Gb,A/{1, ψ}). Using the fact thatω andω′ both
obey Eq. (99), it is straightforward to check that dt ∈ {1, ψ},
and therefore t ∈ Z2(Gb,A/{1, ψ}).

Note that, as discussed above, if ϒψ violates locality, then
we can write

ωa(g,h) = Ma,w(g,h) (118)

for w ∈ A/{1, ψ}. If instead ϒψ respects locality, then there
exists some minimal modular extension qC such that the above
equation continues to hold, with w(g,h) ∈ qA/{1, ψ}, where
qA consists of the Abelian anyons of qC.
As in the bosonic case, there is gauge freedom; we may

redefine the local operators U (i)
g by a local unitary operator

Z (i)
g such that

n∏
j=1

Z ( j)
g = 1 (119)

on an n-quasiparticle state, provided that the constraint
Eq. (58) is maintained. This constraint forces Z (i)

g to act triv-
ially on states with topological charge ψ in region i. As in
the bosonic case [2], Eq. (119) means that each Z ( j)

g can only
modify a given state by a phase since the Z ( j)

g are local and
act on well-separated regions of space. The Z ( j)

g are local
operators, so this phase can only depend on the anyon aj

at position j, g, or other local degrees of freedom in aj .
Demanding that the action of Z ( j)

g is a phase when acting on
an arbitrary superposition of states in the same superselection
sector in fact forces Z ( j)

g to be independent of local degrees of
freedom, that is,

Z ( j)
g = ζa j (g) (120)

where the above equation is interpreted to be acting on a state
with topological charge aj in region j, ζa j (g) ∈ U(1), ζψ (g) =
1, and

n∏
j=1

ζa j (g) = 1. (121)

The above equation implies that ζ (g) obeys the fusion rules
for C, so

ζa(g) = Ma,z(g), (122)

where, in order to maintain ζψ = +1, we have z ∈ C and thus
z ∈ A. Again, z is ambiguous by a fermion and is thus valued
in A/{1, ψ}. Under this transformation,

ωa(g,h) → ωa(g,h)
ζ ga(h)ζa(h)

ζa(gh)
(123)

which corresponds to transforming w by t = dz. Hence t
related by coboundaries are gauge-equivalent, that is, t ∈
H2(Gb,A/{1, ψ}).

This means that symmetry fractionalization classes form
an H2(Gb,A/{1, ψ}) torsor. In particular, distinct symmetry
fractionalization classes with data ηa and η′

a are related by

η′
a(g,h) = ηa(g,h)Ma,t(g,h) (124)
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for cohomologically nontrivial [t] ∈ H2(Gb,A/{1, ψ}). As in
the bosonic case, there is not generally a canonical “trivial”
symmetry fractionalization class.

As in the bosonic case, changing the symmetry fraction-
alization class by an element of H2(Gb,A/{1, ψ}) may not
yield a physically distinct symmetry fractionalization class.
This is because two different sets of symmetry fractional-
ization data may be related to each other by a relabeling
of the anyons. More specifically, permuting the anyon labels
with a permutation p corresponding to some unitary braided
autoequivalence of C will yield a physically equivalent frac-
tionalization class if p commutes with the permutation action
on the anyon labels of every ρg.

VI. EXAMPLES

A. Gb = ZT
2 and fermionic Kramers degeneracy

There are two possible group extensions of Gb = ZT
2 ;

the trivial extension ηψ (T,T) = 1 and the nontrivial one
ηψ (T,T) = −1. These correspond to T2 = 1 and T2 =
(−1)F , respectively.

Consider any a ∈ C such that Ta = a. Then ηT
a ≡

ηa(T,T) ∈ Z2 is gauge-invariant, just as in the case where the
symmetry and topological order is purely bosonic. If ηT

a =
−1, then a carries Kramers degeneracy [2].

A more interesting possibility occurs when Ta = a × ψ .
Then it is easy to check that

ηT
a ≡ ηa(T,T)UT(a, ψ ; a × ψ )Fa,ψ,ψ (125)

is gauge-invariant as well and can be interpreted roughly as
the action of T2 on a. The gauge-invariance of this quantity
requires that the �

ψ,ψ

1 vertex basis transformation is disal-
lowed, as discussed in Sec. II. The quantity Fa,ψ,ψ can be
canonically fixed to 1 (again see Sec. II), so we omit it in
the future. We comment on the transformation rules for U
under vertex gauge transformations in Appendix B. Using
the symmetry fractionalization consistency conditions and the
fact that the pentagon equation forces Fa,ψ,ψ = Faψ,ψ,ψ , it is
straightforward to show that(

ηT
a

)2 = ηψ (T,T). (126)

That is, if Gf = ZT
2 × Z f

2 , then ηT
a is a sign and determines

whether or not a carries Kramers degeneracy, but if Gf =
ZT, f

4 , then ηT
a = ±i. The latter is the precise, gauge-invariant

sense in which we can have “T2 = ±i” on an anyon, as dis-
cussed, e.g., for C = SO(3)3 in Ref. [21].

1. Dimensional reduction to 1 + 1D SPTs

In order to interpret the invariants above, we review [10]
the dimensional reduction from an anyon with Ta = a to
a (1 + 1)D ZT

2 symmetry-protected topological state (SPT),
then turn to the fermionic case.

Consider a cylinder with a time reversal-invariant anyon a
on its left end, a on the right end, and vacuum in between,
fusing to the identity channel. Then in a ground state |�〉, we
have

RT |�〉 = U (L)
T U (R)

T UT(a, a; 1) |�〉 (127)

in the usual symmetry fractionalization ansatz, where U (L,R)
T

are local unitary operators. Now, if our system is bosonic, we
have

R2
T |�〉 = |�〉 = TU (L)

T
TU (R)

T U ∗
T (a, a; 1)RT |�〉 (128)

= TU (L)
T

TU (R)
T U (L)

T U (R)
T |�〉 (129)

= TU (L)
T U (L)

T
TU (R)

T U (R)
T |�〉 (130)

= ηT
a ηT

a |�〉 . (131)

Hence the local action of T2, i.e., TU (L/R)
T U (L/R)

T , on each
anyon is given by ηT

a , that is, this quantity characterizes
whether each end of the dimensionally reduced cylinder car-
ries a linear or projective representation of ZT

2 , subject to the
constraint ηT

a ηT
ā = +1 that the global representation is linear.

From the consistency conditions for η it is simple to show that
ηT
a = ±1. Therefore ηT

a = −1 means that an endpoint of the
cylinder, or equivalently a, carries Kramers degeneracy. In this
case, the dimensionally reduced system has a Kramers pair on
each end, that is, it is a nontrivial (1 + 1)D ZT

2 SPT.
In the presence of fermions, we can ask whether the

bosonic (1 + 1)D ZT
2 SPT is trivial or nontrivial in the

fermionic classification. Following Ref. [31], one can check
that in class BDI, the dimensionally reduced system is in the
ν = 4 class of theZ8 fermion SPT classification. In class DIII,
the dimensionally reduced system is a trivial SPT. This lat-
ter case is straightforward to understand physically; although
there is no local bosonic operator that removes the Kramers
pair associated with the anyon a at the end of the system, in
class DIII the local fermion ψ carries Kramers degeneracy.
Hence there is a fermionic operator which trivializes the end
of the system.

Now let us run a similar argument for an anyon awith Ta =
a × ψ . We again place a and a, fusing to the identity, on the
ends of a cylinder. This time

RT |�〉 = U (L)
T U (R)

T UT(a × ψ, a × ψ ; 1) |�〉 . (132)

Proceeding as before,

R2
T |�〉 = |�〉 = TU (L)

T
TU (R)

T U ∗
T (a × ψ, a × ψ ; 1)RT |�〉

(133)

= TU (L)
T

TU (R)
T U ∗

T (a × ψ, a × ψ ; 1)U (L)
T

×U (R)
T UT(a, a; 1) |�〉 . (134)

Using the consistency conditions, it is not hard to show that

U ∗
T (a × ψ, a × ψ ; 1)UT(a, a; 1)

= −UT(a, ψ ; a × ψ )UT(a, ψ ; a × ψ ) (135)

where the minus sign is crucial and comes from the presence
of fermions. Hence,

R2
T |�〉 = |�〉 = −ηT

a ηT
a |�〉 . (136)

Hence ηT
a ηT

a = −1.
The same argument, mutatis mutandis, on a state |� ′〉 with

a on one end of the cylinder and a × ψ on the other end, in
the ψ fusion channel, shows that

ηT
a

(
ηT
a

)∗ = −ηψ (T,T), (137)
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where we need to use R2
T |� ′〉 = ηψ (T,T) |� ′〉 by our choice

of group extension to Gf . This can be used to conclude that
(ηT

a )
2 = ηψ (T,T) as expected.

According to the above argument, the local action of T2 on
each end of the dimensionally reduced system is given by ηT

a ,
possibly up to local fermion parity. Therefore ηT

a diagnoses
the SPT phase of the dimensionally reduced system. This
action for anyons has been discussed as “fermionic Kramers
parity” in a rather different language in Ref. [21]. Reference
[21] also shows that a DIII (1 + 1)D SPT should have local
action ±i(−1)F at its ends. In our formalism, DIII corre-
sponds to the nontrivial group extension under which anyons
can carry ηT

a = ±i, so such anyons lead to a nontrivial DIII
SPT upon dimensional reduction. Similarly, in the ν = 2 class
of BDI, one end of the SPT should have local action +1 and
one should have local action−1. This class corresponds in our
formalism to the trivial group extension, under which anyons
carry ηT

a = ±1.
For time-reversal operations we are considering here which

change the local fermion parity, this local T2 eigenvalue is not
quite multiplicative under fusion of anyons or, in the dimen-
sionally reduced picture, layering of SPTs; there is an extra
minus sign. Specifically, if Nc

a,b > 0, Ta = aψ , Tb = bψ , and
Tc = c, then

ηT
a ηT

b = −ηT
c , (138)

independent of the group extension (i.e., in the SPT language,
this equation holds for class DIII and for class BDI). Eq. (138)
was derived in the SPT language in Ref. [21] and arises
from carefully tracking fermion minus signs. Schematically,
if the local action of T on a and b respectively consists of
fermionic operators ca and cb, where c2a,b ∼ ηT

a,b, then we can
equivalently think of the local action of T2 on the fusion of a
and b as

(cacb)
2 = −(ca)

2(cb)
2 ∼ −ηT

a ηT
b (139)

or as the local action ηT
c of T2 on c. The equality of these two

local actions motivates Eq. (138). Our symmetry fractional-
ization framework allows an alternate derivation in the UBFC
language, which we give in Appendix D; the proof is a la-
borious but straightforward use of the consistency conditions,
with the minus sign coming from an appearance of Rψψ in a
hexagon equation.

B. Gb = ZT
4

There are two group extensions Gf of ZT
4 by Z f

2 , the trivial
one ZT

4 × Z f
2 and the nontrivial one ZT, f

8 .
For anyons with Ta = a, the invariant

ηT
a = ηa(T,T2)ηa(T2,T2)

ηa(T2,T)
(140)

is gauge-invariant and detects a nontrivial ZT
4 projective rep-

resentation, just as in the bosonic case [9]. When Ta = a,
ηa(g,h) ∈ Z2(ZT

4 ,U(1)), so the above expression is simply
the cohomology invariant, equal to ±1, which detects whether
ηa(g,h) characterizes a linear or projective representation
of ZT

4 . In particular, ηT
ψ characterizes the group extension

ω2(g,h) = ηψ (g,h), and can be thought of as indicating

whether or not ψ has fractional charge under the unitary
symmetry T2. If the charge is fractional, then schematically
T4 = (−1)F , and indeed the group extension is nontrivial.

The consistency conditions demonstrate that this quantity
obeys the fusion rules in the sense that if Ta = a, Tb =
b, Tc = c, and Nc

ab > 0, then

ηT
a ηT

b = ηT
c . (141)

Notably, ηT
a = ±ηT

aψ with the upper sign for Gf = ZT
4 × Z f

2

and the lower sign for Gf = ZT, f
8 .

If, on the other hand, Ta = a × ψ , then

ηT
a = ηa(T,T2)ηa(T2,T2)

ηa(T2,T)
UT2 (a, ψ ; a × ψ ) (142)

is the appropriate gauge-invariant object. In contrast to the
case Gb = ZT

2 , we do not need any F symbols to preserve in-
variance under vertex basis transformations;UT2 (a, ψ ; a × ψ )
is invariant under such transformations because T2 is unitary.
Using the consistency conditions, one can check straightfor-
wardly that (

ηT
a

)2 = ηψ (T2,T2), (143)

where the right-hand side is the cohomology invariant deter-
mining the group extension [ω2]. This quantity also obeys the
fusion rules in the sense that if Ta = a × ψ , Tb = b× ψ ,
Tc = c, and Nc

ab > 0, then Eq. (141) holds with ηT
a interpreted

appropriately for the transformation properties of the anyons.

C. Gb = U(1)

There are two extensions of U(1) by Z f
2 , i.e.,

H2(U(1),Z2) = Z2. One extension is the trivial extension
Gf = U(1) × Z f

2 while the other is called U(1) f and is
characterized by the cocycle

ω2(g,h) = ei(ϕg+ϕh−[ϕg+ϕh])/2, (144)

where g = eiϕg , ϕg ∈ [0, 2π ) and [x] = x mod 2π .
Since Gb is continuous, the condition that ρg obeys the

group multiplication laws up to natural isomorphisms forces
ρg to either be the identity or [ϒψ ]. In particular, this implies
that [ρg] has trivial permutation action on the anyons.

Interestingly, if ϒψ does not respect locality, then any
symmetry fractionalization of U(1) f automatically has a
fermionic symmetry localization obstruction. Identify [ρg] ∈
{[Id], [ϒψ ]} � Z2, and encode whether [ρg] is the trivial or
nontrivial element of Z2 by the function φ(g) : Gb → Z2.8

Calculating [κg,h] directly from Eq. (80), we see that

βψ (g,h) = dφ(g,h). (145)

It immediately follows from Eq. (104) that O f is trivial if
and only if ω2(g,h) = dφ, which is only possible if Gf =
U(1) × Z f

2 . Therefore not all supermodular categories can be
compatible with U(1) f symmetry.

The gauge-invariant quantity characterizing symmetry
fractionalization is given as follows. For a fixed anyon a, let n

8The map φ(g) need not be continuous because [κg,h] need not be
continuous.
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be the smallest integer such that an contains the identity as a
fusion product. Choose a sequence of anyons a, a2, . . . , an =
1 such that a × ak contains ak+1 as a fusion product. Then
define

e2π iQa =
n−1∏
m=1

ηa
(
e2π i/n, e2π im/n

)
Ue2π i/n (a, a

m; am+1). (146)

One can check directly that this quantity is gauge-invariant.
We immediately see that

e2π iQψ = ω2(−1,−1), (147)

which can be checked to be a cohomology invariant charac-
terizing the group extension.

Here Qa (which is only defined modulo an integer) can be
interpreted as the fractional charge of the anyon a under U(1).
One way to understand this interpretation is by noting that
the fermion plays no role in this quantity, so we could instead
consider the same invariant for a bosonic topological order,
that is, taking C to instead be a UMTC. In that case, Ref. [7]
assumes the existence of a G-crossed MTC and defines an
invariant which is equivalent to

e2π iQa = (Ra,0gR0g,a)n
n∏

m=1

ηa(g, gm), (148)

where g = e2π i/n, a is any anyon, and 0g is any defect carrying
g flux. Reference [7] shows that Qa has the interpretation as
the fractional U(1) charge of a because this quantity can be
understood as the double braid of a with a 2π flux of the U(1)
symmetry. Combining the G-crossed heptagon equations for
clockwise and counterclockwise braids, we find

(Ra,0gR0g,a)(Ram,0gR0g,am )= (Ram+1,0gR0g,am+1
)Ug(a, a

m; am+1).
(149)

Inserting this identity into Eq. (148) shows that it is equivalent
to Eq. (146), that is, we expect that if a G-crossed theory
exists when C is supermodular, then Eq. (146) also gives the
fractional U(1) charge of the anyon a.

Note that for the nontrivial group extension ω2(−1,−1) =
−1, the fermion carries Qψ = 1/2. This must be so because
the fermion carries unit charge of the full symmetry group
U(1) f , which is a double cover of Gb = U(1). We see, then,
how the nontrivial group extension is encoded by giving the
fermion a fractional quantum number under Gb, although it
carries an integer charge under Gf . Note also that in this
context, the physical charge carried by an anyon a, which is
really the U(1) f charge, is 2Qa.

We can characterize symmetry fractionalization with Gb =
U(1) a bit further if ϒψ respects locality. In this case, there
exists a modular extension qC with an Abelian fermion parity
vortex v0 and [ρg] = [Id], where Id is the identity map.We can
thus fix a gauge (for convenience) in which ρg is the identity
(i.e.,Ug = 1), in which it is straightforward to check that

ηref
a (g,h) = Ma,vref (g,h) (150)

with

vref(g,h) =
{
v
(ϕg+ϕh−[ϕg+ϕh])/2π
0 if Gf = U(1) f

1 if Gf = U(1) × Z f
2
(151)

satisfies the consistency equations (36) and (37) and the con-
straint Eq. (75). According to the discussion in Sec. VD, all
other symmetry fractionalization classes have representatives
of the form

ηa(g,h) = ηref
a (g,h)Ma,t(g,h) (152)

with [t] ∈ H2(Gb,A/{1, ψ}). One can check that for each x ∈
A/{1, ψ}, the function

t(g,h) = x(ϕg+ϕh−[ϕg+ϕh])/2π (153)

represents a distinct class [t] ∈ H2(Gb,A/{1, ψ}).
Hence, if Gf = U(1) f , given an Abelian fermion par-

ity vortex v0 in some minimal modular extension qC of C,
symmetry fractionalization is characterized by an anyon x ∈
A/{1, ψ}. The anyon x has a physical interpretation as a
“relative vison” between the reference fractionalization class
and the class given by x, that is, inserting a 2π flux of U(1)
will insert an extra anyon x (modulo a fermion) in the state
corresponding to x compared to carrying out the same process
in the reference state. The “absolute vison,” that is, the anyon
associated with insertion of a 2π flux, is actually a fermion
parity vortex (again, modulo a fermion) and is thus valued in
the minimal modular extension corresponding to the physical
realization of the fermionic topological order; the vison is not
an object in the supermodular category.

If Gf = U(1) × Z f
2 , then we do not need to specify a

fermion parity vortex, and x is the absolute vison.
It also follows immediately from Eq. (146) that

e2π iQa =
{
Ma,v0×x if Gf = U(1) f

Ma,x if Gf = U(1) × Z f
2
. (154)

These results are very similar to the bosonic case. The key
differences are that in a bosonic theory, v0 is never present,
which means that the (absolute) vison x is always valued in
the base UMTC which defines the bosonic topological order,
and there is no fermion ambiguity in x.

1. Gf = U (1) f and 1/n Laughlin FQH states

As an application of our formalism, we can consider the
example of fermionic fractional quantum Hall states. In the
simplest case, take the 1/n Laughlin state for n odd, which
has Abelian topological order described by the supermodular
category C = Zn × {1, ψ}. This category contains a particle
with topological twist θ = π/n; denote this particle [1]. Then
the generator of the factor Ã = Zn in Eq. (10) is the parti-
cle [2]. Furthermore, [n] = ψ . After gauge-fixing U = 1, the
consistency condition Eq. (37) requires the phases ηa(g,h) to
obey the fusion rules, so

[η[1](g,h)]n = η[n](g,h) = ηψ (g,h) = ω2(g,h). (155)

Hence

η[1](g,h) = eiq(ϕg+ϕh−[ϕg+ϕh])/2n, (156)

for any odd integer q, with q ∼ q + 2n producing the same
pattern. We have simply taken the nth root of ω2, hence the q
ambiguity, and enforced η[1](1,h) = 1. This leads to

Q[1] = q

2n
= q

n
Qψ. (157)
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As expected, this fractionalization pattern assigns q/n of the
electron charge to each quasiparticle. We remind the reader
that Qa is the charge under Gb, and that the “true” U(1) charge
is the charge under Gf , i.e., 2Qa. The n distinct possible
values for Q[1] are consistent with our classification result,
which yields H2(U(1),A/{1, ψ}) = H2(U(1),Zn) = Zn. In
particular, there is a canonical reference state where

ηref
[k] = ω2(g,h)k (158)

for each integer k, i.e., ηa = 1 for a ∈ Ã but still obeys
the fermionic constraint ηψ = ω2. In this reference state,
[k] carries an electron charge for k odd and and an integer
charge under Gb (even integer charge under Gf , which can
be screened by a boson) for k even. Following the definitions
in Eqs. (152) and (153), each anyon x ∈ Ã = Zn defines a
distinct fractionalization pattern relative to the reference. The
corresponding fractionalization data isare

η[k](g,h) = ηref
[k](g,h)M[k],t(g,h) (159)

for each k. If x = [2�], then

Q[1] = 2�

n
+ 1

2
. (160)

For the case n = 3, one can easily check that the choice
� = 0 corresponds to [1] carrying integer U(1) f charge, i.e.,
the charge of an electron. The choice � = 1 corresponds to
2Q[1] = 1/3 mod 1 so that [1] is the Laughlin quasihole,
while � = 2 corresponds to 2Q[1] = −1/3 mod 1 so that [1]
is the Laughlin quasielectron. The physical difference be-
tween these cases is whether the Laughlin quasihole carries
topological twist θ = π/3 and the quasielectron carries topo-
logical twist θ = 4π/3 or vice versa.

As an aside, ϒψ respects locality in this case because
there exists an Abelian minimal modular extension of C, e.g.,
Zn × (toric code). Explicitly, the phases ζ[k] = eπ ik/n obey the
fusion rules, and ζ[n] = ζψ = −1.

D. Gf = U (1) f × [Z2
� ZM] and fractional Chern insulators

We can now also straightforwardly extend the above anal-
ysis to include lattice space group symmetries as well, which
give us a general understanding of fractional quantum num-
bers for fractional Chern insulators with charge conservation
and space group symmetries. This complements a recent com-
prehensive analysis in the bosonic case [6,7].

For simplicity, let us consider the case of the 1/n Laughlin
topological order with n odd, for which we have A = Zn ×
Z2, Ã = Zn, A/{1, ψ} = Zn, and consider the case where
symmetries do not permute anyons, so [ρ] : Gb → AutLR(C)
is the trivial map.

We haveGb = U (1) × [Z2
� ZM], so we can use the result

of Refs. [6,7]:

H2(Gb,A/{1, ψ}) = H2(U (1) × [Z2
� ZM],Zn)

= Zn × Zn × (KM ⊗ Zn) × Z(n,M ).

(161)

Here KM = Z1,Z2 × Z2,Z3,Z2,Z1 for M = 1, 2, 3, 4, 6,
respectively. ⊗ is the tensor product of finite groups;
we have KM ⊗ Zn = Z1,Z(2,n) × Z(2,n),Z(3,n),Z(2,n),Z1 for

M = 1, 2, 3, 4, 6, respectively. (a, b) refers to greatest com-
mon divisor of a and b.

Since we can pick a canonical reference state for which
ηref
a = 1 if a ∈ Ã and ηψ = ω2, we can characterize the other

symmetry fractionalization classes by a set of anyons [t] =
(x,m, [�t ], [s]) ∈ H2(Gb,A/{1, ψ}). Here x ∈ Zn is the rel-
ative vison defined in Eq. (153), m ∈ Zn is the anyon per
unit cell, �t = Z2

n is the discrete torsion vector discussed in
the bosonic case in Refs. [6,7], and s ∈ Zn is the discrete
spin vector. The square brackets imply certain equivalence
relations for �t and s, so that [s] ∈ Z(n,M ) and [�t] ∈ KM ⊗ Zn

for which we refer the reader to Refs. [6,7].
The reference state and the choice of [t] determine the

fractionalization class via

ηa(g,h) = ηref
a (g,h)Ma,t(g,h). (162)

Physically, these fractionalization classes define the frac-
tional U(1) charge of the anyons (determined by x), the
fractionalization of the translation algebra (determined by m),
the fractional orbital angular momentum (determined by [s]),
and the fractional linear momentum (determined by [�t]). The
choices of x, m, [s], and [�t] also have nontrivial consequences
for the fractional quantum numbers of lattice dislocations,
disclinations, and magnetic flux, as discussed in Refs. [6,7].

Let us take as an example the case n = 3. Then, forM = 2
and 4 (e.g., rectangular and square lattices), [�t] and [s] are
automatically trivial, so the only nontrivial choices are the
choice of relative vison x ∈ Z3 and anyon per unit cell m ∈
Z3. These two are further constrained by the fractional part of
the filling fraction ν: the fractional charge per unit cell, which
sets the fractional part of ν, must be equal to the charge of the
anyon per unit cell, m.

For M = 6, e.g., the triangular lattice, [�t] is still triv-
ial, however we have a possible choice of [s] ∈ Z(3,6) = Z3.
This specifies the fractional orbital angular momentum of the
anyons, along with the fractional charge and fractional angular
momentum of disclinations [6,7].

Finally, for M = 3, e.g., the honeycomb lattice, we finally
have the possibility that both [�t] and [s] can be nontrivial. In
particular, [�t] ∈ Z3, which implies the possibility of a non-
trivial fractional linear momentum of the anyons, a nontrivial
fractional charge of lattice dislocations, and other fractional
quantized response properties [6,7].

E. Gf = U(2) f and Z2 quantum spin liquids

The case of spinful electrons forming an insulating state
that respects both charge conservation symmetry and spin ro-
tational symmetry corresponds to an on-site unitary symmetry
Gf = U(2) f , and Gb = U(1) × SO(3). Let us consider this
systematically for the case of the gapped Z2 spin liquid. In
this case, the supermodular category is described by D(Z2)�
{1, ψ}, where D(Z2) is the quantum double of Z2. Therefore
we haveA = {1, e,m, f } � {1, ψ}, with f = e × m the emer-
gent fermion. Our general classification then gives

H2(Gb,A/{1, ψ}) = H2(U (1) × SO(3),Z2 × Z2) = Z4
2.

(163)

We see that there are at most 16 distinct symmetry fraction-
alization classes. However we will see that most of these
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symmetry fractionalization class are in fact physically equiv-
alent under relabeling the anyons, and that there are actually
only three distinct symmetry fractionalization classes.

One can check that ηa(g,h) factors into a U(1) part and a
SO(3) part

ηa((e
iϕg ,Mg), (e

iϕh ,Mh)) = ηq
a (e

iϕg , eiϕh )ηs
a(Mg,Mh), (164)

where Mg,h are SO(3) matrices and q and s label the charge
and spin parts. Define functions

φk (e
iϕ1 , eiϕ2 ) = eik(ϕ1+ϕ2−[ϕ1+ϕ2]) (165)

for k = 0, 1/2 mod 1. We find that, in the gauge U = 1, a
representative ηa is

ηq
a (e

iϕg , eiϕh ) = φqa (e
iϕg , eiϕh ), (166)

ηs
a(Mg,Mh) = φsa (αg, αh)φsa (βg, βh)φsa (γg, γh) (167)

for qa, sa ∈ {0, 1/2}. The notation parameterizes Mg ∈ SO(3)
by the Euler angles (αg, βg, γg). The fermionic constraint
forces qψ = sψ = 1/2, while the U − η consistency condi-
tion Eq. (37) forces the η

q
a and ηs

a to obey the fusion rules.
Hence, independent choices of qe, se, qm, sm ∈ {0, 1/2} dis-
tinguish the different symmetry fractionalization classes. This
generates the Z4

2 classification. Following the discussion in
Sec. VI C, qa measures the charge of a under the U(1) part
of Gb, and hence 2qa measures the physical U(1) charge of
a. Similarly, sa measures the spin of a [there is no doubling
of the quantum number here since half-integer spin under
SO(3) corresponds to half-integer spin under its double cover
SU(2)].

However, many of these patterns are physically equiv-
alent up to relabeling anyons. For example, relabeling
e ↔ m swaps the quantum numbers of e and m. One
could also relabel e ↔ fψ without changing m; this is
an autoequivalence of the theory and interchanges the
classes (qe, se) ↔ (qe + 1/2, se + 1/2), where we are al-
ways taking addition modulo 1. Likewise, interchanging
m ↔ fψ without changing e is an autoequivalence and
interchanges (qm, sm) ↔ (qm + 1/2, sm + 1/2). Accounting
for all of these relabelings, we obtain only three dis-
tinct classes, with representative choices of (qe, se, qm, sm) ∈
{(0, 0, 0, 0), (1/2, 0, 0, 0), (1/2, 0, 0, 1/2)}. The first case is
trivial; all anyons’ quantum numbers can be screened by local
excitations, i.e., they either have quantum numbers allowed by
for a local boson or the quantum numbers of an electron (up
to local bosons). In the second, e (up to relabeling) carries the
electron charge but no spin, eψ carries spin-1/2 but no charge,
and m has quantum numbers which can be screened by local
excitations. In the third, e carries the electron charge but no
spin, while m carries spin-1/2 but no charge. In the latter two
cases, we can think of the local fermion as fractionalizing into
a chargeon e (up to relabeling) and spinon eψ . The difference
between the two cases is whether or not the Z2 flux m carries
quantum numbers which can be screened by local excitations.

F. Symmetry localization obstructions

1. Z2(Gb,Z2 ) fermionic obstruction, ϒψ locality-violating,
and SO(3)3

A simple example of a nontrivial Z2(Gb,Z2) fermionic
symmetry localization obstruction is the supermodular cate-
gory SO(3)3 withGf = ZT

2 × Z f
2 . The theory SO(3)3 has four

anyons 1, s, s̃, ψ with quantum dimensions 1, 1 + √
2, 1 +√

2, 1 and topological spins 1, i,−i,−1. The fusion rules are

ψ × ψ = 1,

ψ × s = s̃,

s × s = s̃ × s̃ = 1 + s + s̃,

s × s̃ = ψ + s + s̃. (168)

Time reversal must exchange s ↔ s̃. One can show that con-
sistent fermionic symmetry fractionalization data exist with
Gf = ZT, f

4 , i.e., ηψ (T,T) = −1; see Refs. [12,20].
To see that Gf = ZT

2 × Z f
2 should have a fermionic sym-

metry localization obstruction, we use the fact that on general
grounds [18], if Tb = b and there exists any anyon a such that
Nb
a Ta is odd, then

ηb(T,T) = θb. (169)

The above equation applies for b = ψ since Nψ

s Ts = 1. Hence
ηψ (T,T) = −1 for any consistent symmetry fractionaliza-
tion. However Gf = ZT

2 × Z f
2 would require ηψ (T,T) = 1,

which is therefore inconsistent.
We can state the above in the language of our present

work as follows. Since SO(3)3 contains the fusion rules
Ns
s,s = Nψ×s

s,s = 1, ϒψ must violate locality. That is, all phases
ζa which respect the fusion rules have ζψ = +1. One can
check that the action of time reversal must have βψ (T,T) =
−1 (this can be computed directly and also follows from
the knowledge that there exists consistent fractionalization
data with ηψ (T,T) = −1 and ωψ (T,T) = 1). Hence, the
fermionic obstruction for ω2(T,T) = +1 is characterized by
the cohomology invariant O f (T,T) = βψ (T,T)/ω2(T,T) =
−1. That is, O f is nontrivial in Z2(ZT

2 ,Z2) and [O f ] is also
nontrivial inH2(ZT

2 ,Z2).
We note in passing that a related phenomenon was dis-

covered in Ref. [10] for D(S3), the quantum double of
S3, the permutation group on three elements, which de-
scribes the anyon content of S3 gauge theory (see Sec. VIII
D of Ref. [10]). The anyons of D(S3) can be labeled as
A,B,C,D,E ,F,G,H , and the theory admits an action of ZT

2
such that C ↔ F and G ↔ H under time reversal T. This
permutation action forces ηT

B = −1. Thus, one can consider
the subcategory generated by {1,B}, in which case the choice
ηT
B = 1 would be obstructed when attempting to lift the action

of T to the full category.

2. H3(Gb,A/{1, ψ}) fermionic obstruction, ϒψ

locality-preserving, and Sp(2)2 � {1, ψ}
To demonstrate the bosonic symmetry localization ob-

struction and the fermionic symmetry localization obstruction
when ϒψ respects locality, we consider the supermodular
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theory C = Sp(2)2 × {1, ψ} with Gb = ZT
2 . The notation here

is Sp(2)2 = USp(4)2.
The theory Sp(2)2 was studied in detail in Ref. [18]. Here

we show that one can define a symmetry action of ZT
2 on C

that has a bosonic symmetry localization obstruction, which is
essentially identical to the symmetry localization obstruction
for Sp(2)2 as a bosonic topological order, and one with no
bosonic obstruction. For the symmetry action with no bosonic
obstruction, we show that Gf = ZT

2 × Z f
2 has a fermionic

symmetry localization obstruction, while Gf = ZT, f
4 is

unobstructed.
The anyon content of the UMTC Sp(2)2 is

{1, ε, φ1, φ2, ψ+, ψ−} (the transparent fermion ψ ,
with no subscript, is not related to ψ±), with topological
spins 1, 1, e4π i/5, e−4π i/5, i, −i, respectively. These have
quantum dimensions 1, 1, 2, 2,

√
5,

√
5, respectively. Under

time-reversal, there are two choices of actions on C:
(1) φ1 ↔ φ2, ψ+ ↔ ψ−, with ε and ψ staying invariant;
(2) φ1 ↔ φ2, ψ+ ↔ ψψ+, ψ− ↔ ψψ−, with ε and ψ

invariant.
The first choice has a bosonic H3(ZT

2 ,A/{1, ψ}) obstruc-
tion. One can directly compute the U symbols and calculate
the bosonic obstruction. One finds that Ob(T,T,T) = ε as
an element of A/{1, ψ}; this is a cohomology invariant, and
therefore the bosonic obstruction is nontrivial.

For the second choice of symmetry action, one can di-
rectly check that the bosonic obstruction vanishes, and we
can ask about the fermionic obstruction. In this theory, ϒψ

respects locality because there is a minimal modular exten-
sion of C with an Abelian fermion parity vortex [namely the
product of Sp(2)2 and any Abelian minimal modular exten-
sion of {1, ψ}). Hence the fermionic obstruction is valued in
H3(ZT

2 ,A/{1, ψ}) = H3(ZT
2 ,Z2) = Z2, characterized by the

cohomology invariant O f (T,T,T).
There is in fact a fermionic obstruction only when Gf =

ZT
2 × Z f

2 . We can again use the criterion Eq. (169) to see why.
With the second symmetry action above, taking a = ψ+, we
find

ψ+ × Tψ+ = ψ+ × ψψ+ = ψ + ψφ1 + ψφ2. (170)

Hence we can take b = ψ in Eq. (169) to see

ηψ (T,T) = θψ = −1. (171)

Therefore symmetry fractionalization with ηψ (T,T) = +1
must be inconsistent, that is, there is a fermionic symmetry
localization obstruction for Gf = ZT

2 × Z f
2 .

We may also see the obstruction at the level of cohomology
as follows. Suppose we are given a fractionalization pattern
with Gf = ZT, f

4 ; one can check with tedious calculation that
two such patterns exist and are specified by ηT

ε = −1, ηT
ψ+ =

±i, ηT
ψ− = ∓i, ηT

ψ = −1. Then we may attempt to find a new

fractionalization pattern with Gf = ZT
2 × Z f

2 by choosing a
phase τa(T,T) which obeys the fusion rules and which obeys
τψ (T,T) = −1. One such choice is τa(T,T) = (−1)F , where
(−1)F measures the ψ parity. We compute the failure of τa to

be a group cocycle [see Eq. (109)]:

Ta(T,T,T) = τ Ta(T,T)τa(T,T) =
{−1 a = ψ±, ψ±ψ

+1 else .

(172)
It is straightforward to check that

Ta(T,T,T) = Ma,ε (173)

so that O f (T,T,T) = ε, that is, [O f ] 
= 0 ∈
H3(ZT

2 ,A/{1, ψ}). Hence there is indeed a fermionic
symmetry localization obstruction for Gf = ZT

2 × Z f
2 .

In fact, one can use the same basic calculation for any the-
ory of the form C = B � {1, ψ}, where B is modular and with
Gb = ZT

2 . If the bosonic symmetry localization obstruction
vanishes, then there is some choice of ηψ (T,T) and thus a
corresponding choice of group extension Gf which gives a
consistent symmetry fractionalization pattern. Given the con-
sistent pattern, one can try to see if a fractionalization pattern
exists for the other group extension. One can always calculate
the obstruction by choosing τa(T,T) = (−1)F , in which case
one finds

Ta(T,T,T)=
{+1 a and Ta have the same fermion parity
−1 a and Ta have opposite fermion parity

(174)
in which case the cohomology invariant O f (T,T,T) ∈
A/{1, ψ} must be nontrivial if any a and its time-reverse have
opposite fermion parity. Therefore, for this form of C with
trivial bosonic symmetry localization obstruction, both group
extensions for Gb = ZT

2 are unobstructed if and only if a and
Ta have the same fermion parity for all a.

VII. DISCUSSION

We have provided a systematic analysis of symmetry
fractionalization in (2 + 1)D fermionic symmetry-enriched
topological phases of matter. We saw that much of the for-
malism in the bosonic case goes through, with important
modifications arising from the locality of fermions. We find
that symmetry fractionalization depends on a choice [ρ] :
Gb → AutLR(C), where AutLR(C) is the group of locality-
respecting autoequivalences.

Furthermore, the choice [ρ] and ω2 may lead to bosonic
or fermionic localization obstructions. The bosonic one is an
obstruction to having any symmetry fractionalization class for
Gb, regardless of Gf . The fermionic one is an obstruction to
having any symmetry fractionalization class for Gf , assuming
the bosonic obstruction vanishes.

If these obstructions both vanish, then the symmetry frac-
tionalization data are specified by a set of phases ηa(g,h),
which form a torsor over H2(Gb,A/{1, ψ}).

The presence of local fermions leads to several conse-
quences which are uncommon in the usual bosonic case, in
particular that there can be more than one physically distinct
class of symmetry action, [ρ], with the same permutation
action on the anyons. It would be interesting to find any micro-
scopic model where a nonpermuting but nontrivial symmetry
action ϒψ occurs.

We note that in using supermodular categories to model
fermionic topological phases of matter, we required that the
vertex basis gauge transformation �

ψ,ψ

1 = 1. It would be

125114-20



FERMIONIC SYMMETRY FRACTIONALIZATION IN (2 + 1) … PHYSICAL REVIEW B 105, 125114 (2022)

useful to develop a first principles derivation of such a con-
straint, which is so far lacking in our current understanding.

Having established this framework for symmetry fraction-
alization, it is an important issue to use it to understand the
’t Hooft anomalies of fermionic SETs, which provide ob-
structions to gauging the full Gf symmetry. Reference [12]
provided a general method to compute ’t Hooft anomalies, but
understanding in more detail the categorical origin of these
anomalies in general is a nontrivial problem. There has been
some progress in special cases [22,27]. A general understand-
ing has recently been provided in Refs. [28,30].

The formalism that we have developed here provides a
partial understanding of fermionic SETs in (2 + 1)D by devel-
oping the theory of symmetry fractionalization for the anyons
of a fermionic topological phase. A complete analysis requires
also developing a theory ofGf symmetry defects applicable to
fermionic topological phases, to mirror the G-crossed braided
tensor category approach for bosonic topological phases. In
particular, such an analysis would incorporate symmetry frac-
tionalization for the fermion parity vortices as well. Once
symmetry fractionalization for the anyons is fixed, we expect
that distinct Gf defect classes can be obtained by stacking in-
vertible fermionic topological phases. Recently, Refs. [30,32]
has developed a comprehensive understanding of invertible
fermionic topological phases with symmetry by augmenting
the formalism of G-crossed braided tensor categories. The
results of Ref. [32] suggest that the more general case of
fermionic SETs may proceed by gauging fermion parity and
classifying the resulting possible Gb-crossed braided tensor
categories, while keeping track of additional flux labels that
determine how Gb defects arise from Gf defects.

Note added. Recently, a number of other closely related
papers, Refs. [28,30,32], appeared on the arXiv. In particular,
Ref. [28] provides a comprehensive account of obstructions to
gauging Gf , leading to a systematic understanding of anoma-
lies in (2 + 1)D fermionic topological phases. Reference
[32] develops a systematic characterization and classification
of invertible (2 + 1)D fermionic topological phases using
the framework of G-crossed BTCs. Reference [30] indepen-
dently develops a comprehensive characterization of (2 + 1)D
fermion SETs, containing many of the results of this paper
and of Refs. [28,32]. Reference [30] additionally also de-
velops the theory of symmetry fractionalization for fermion
parity vortices and symmetry defects in fermionic SETs. Sev-
eral changes in this revision, namely, the discussion around
Eq. (80) and the addition of Eq. (105) have overlap with the
discussion of Ref. [30], as noted in the main text.
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APPENDIX A: CHARACTERS OF THE FUSION ALGEBRA
OF SUPERMODULAR TENSOR CATEGORIES

Given a BFC C, we say that a function χ (a) is a character
of the fusion algebra of C if

χ (a)χ (b) =
∑
c∈C

Nc
abχ (c), (A1)

for all a, b ∈ C.
In this Appendix, we will prove the following [33].
Theorem A.1. Let C be a supermodular category and qC be

any minimal modular extension qC. Then any character χ (a) of
the fusion algebra of C is of the form

χ (a) = daMa,x (A2)

for some x ∈ qC which is unique up to fusion with ψ .
This is particularly useful to us because of the following

corollary:
Corollary A.2. Suppose that eiφa ∈ K (C), that is, eiφa is a

phase obeying

eiφa eiφb = eiφc (A3)

whenever Nc
ab 
= 0 for a, b, c ∈ C. Then

eiφa = Ma,x (A4)

for some x ∈ qC, and if eiφψ = +1, then x ∈ A.
Proof. (Corollary) Given such an eiφa , we see that daeiφa is

a character of the fusion algebra since

dadb =
∑
c∈C

Nc
abdc,

dae
iφadbe

iφb =
∑
c∈C

Nc
abdce

iφa eiφb =
∑
c∈C

Nc
abdce

iφc . (A5)

Equation (A2) would then imply that eiφa = Ma,x for some x ∈
qC. If eiφψ = 1, then x ∈ C and therefore x ∈ A. �

Proof. (Theorem) By modularity, all characters of qC are
of the form qχx(a) = daMa,x for each x ∈ qC. Their restrictions
χx(a) to a ∈ qC0 = C are clearly characters of C.

The supermodular tensor category C has at most |C| distinct
characters.9 Therefore, if we show that the collection {χx}
define |C| distinct characters of C, then every character must
be of the form χx for some x.

The χx define at most | qC| distinct characters, one for each
x. However, certainly χx = χx×ψ . We are therefore overcount-
ing; if x ∈ qC0 or x ∈ qCv , then there we should only count one
of x or x × ψ as defining a possibly distinct character. Hence
the χx define at most n = | qC0|/2 + | qCv|/2 + | qCσ | distinct char-
acters. By a theorem of [14], n = |C|, so we need to show that
these χx(a) are indeed all distinct on C. We show the contra-
positive, i.e., that if x and y ∈ qC define the same character of
C, then y = x or y = x × ψ . Equivalently, we wish to show
that χx(a) = χy(a) for all a ∈ C implies Ny

x1 + Ny
xψ > 0. We

use the Verlinde formula in the modular category qC:

9Characters of the fusion algebra are given by the eigenvalues of
the fusion matrices, which are all simultaneously diagonalizable,
and thus the number of distinct characters is at most the number of
eigenvalues.
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Ny
x1 + Ny

xψ =
∑
z∈ qC

SxzS1zS∗
yz

S1z
+

∑
z∈ qC

SxzSψzS∗
yz

S1z
(A6)

= 2
∑
z∈ qC0

SxzS
∗
yz, (A7)

where we have used Sψz = ±S1z with the upper sign for z ∈ qC0
and the lower sign for z ∈ qC1. Now we insert factors of the
identity and use the definition of scalar monodromy:

Ny
x1 + Ny

xψ = 2
∑
z∈ qC0

S21zS1xS
∗
1y

S211

SxzS11
S1xS1z

(
SyzS11
S1yS1z

)∗
(A8)

= 2dxdyD2
∑
z∈ qC0

d2
z MxzM

∗
yz (A9)

= 2dxdyD2
∑
z∈ qC0

χx(z)χy(z)
∗

= 2dxdyD2
∑
z∈ qC0

|χx(z)|2 > 0, (A10)

which is what we wanted to show. �

APPENDIX B: COMMENTS ON GAUGE
TRANSFORMATIONS OFU

In order for Eq. (125) to be gauge-invariant, we require

qUg(a, b; c) = (
�

ga, gb
gc

)σ (g)
Ug(a, b; c)

(
�a,b
c

)−1
(B1)

where the check denotes the gauge-transformed quantity (in
this Appendix we will never be discussing modular exten-
sions, so checks will always refer to gauge transformations).

The origin of this transformation law is somewhat subtle,
so we discuss it presently from two points of view. First, in
the usual formalism, for g antiunitary, we should pick a basis
|a, b; c〉 for the fusion space V a,b

c and define the antilinear
operator ρg by

ρg(|a, b; c〉) = Ug(
ga, gb; gc) | ga, gb; gc〉 (B2)

on the basis states (we suppress the internal indices if Nc
ab >

1). We then extend the definition of ρg to the rest of the space
by antilinearity. Making a vertex basis transformation means
defining a new basis

­|a, b; c〉 = �a,b
c |a, b; c〉 (B3)

and then defining the gauge-transformedU by

ρg( ­|a, b; c〉) = qUg(
ga, gb; gc) ­| ga, gb; gc〉 . (B4)

We can now compute qU directly:

ρg( ­|a, b; c〉) = ρg
(
�a,b
c |a, b; c〉) (B5)

= (
�a,b
c

)σ (g)
ρg(|a, b; c〉) (B6)

= (
�a,b
c

)σ (g)
Ug(

ga, gb; gc) | ga, gb; gc〉 (B7)

= (
�a,b
c

)σ (g)
Ug(

ga, gb; gc)
(
�

ga, gb
gc

)−1
­| ga, gb; gc〉

(B8)

= qUg(
ga, gb; gc) ­| ga, gb; gc〉. (B9)

Comparing the last two lines leads directly to
Eq. (B1).

One must be careful in treating ρg as antilinear. Naively
writing

“ρg |a, b; c〉 = Ug(
ga, gb; gc)K |a, b; c〉 ” (B10)

(we have put quotes around this equation to emphasize that it
can be misleading) and attempting to derive, for example, the
consistency equation Eq. (26) leads to an incorrect result with
incorrect complex conjugations.

For another perspective on the vertex basis transformations
of U , consider the higher-category point of view on antiuni-
tary symmetry in Ref. [11]. Here, fusion vertices live in vector
spaces |a, b; c; g〉 ∈ Ṽ ab

c (g) which carry a g label, which can
be roughly interpreted as a local spacetime orientation. The
theory comes equipped with maps

αh : Ṽ ab
c (g) → Ṽ ab

c (gh) (B11)

which are linear if the action of h is unitary and antilinear
if the action of h is antiunitary. The data of the theory are
equivariant under these αh maps, e.g.,

F̃ abc
de f (h) = (

F̃ abc
de f (hg)

)σ (g)
, (B12)

where the tildes are present as a reminder that we are in the
higher category formalism. The “tilded” data are related to the
usual “untilded” data by simply setting g = 1, e.g.,

Fabc
de f = F̃ abc

de f (1). (B13)

In this formalism, antiunitary transformations act via a unitary
map

ρ̃g |a, b; c; h〉 = Ũ ( ga, gb; gc; gh,h) | ga, gb; gc; gh〉 .

(B14)
Since ρ̃g is always unitary, it is easy to check its transfor-

mation law under gauge transformations

­|a, b; c; h〉 = �̃a,b
c (h) |a, b; c; h〉 (B15)

as follows:

ρ̃g( ­|a, b; c; h〉) = ρ̃g
(
�a,b
c (h) |a, b; c; h〉) (B16)

= �̃a,b
c (h)Ũ ( ga, gb; gc; gh,h)

× | ga, gb; gc; gh〉 (B17)

= �̃a,b
c (h)Ũ ( ga, gb; gc; gh,h)

× (
�̃

ga, gb
gc (gh)

)−1
­| ga, gb; gc; gh〉 (B18)

= qŨ ( ga, gb; gc; gh,h) ­| ga, gb; gc; gh〉 .

(B19)

Hence

qŨ ( ga, gb; gc; gh,h)

= �̃a,b
c (h)Ũ ( ga, gb; gc; gh,h)

(
�̃

ga, gb
gc (gh)

)−1
. (B20)

Equivariance of the F symbols Eq. (B12) forces equivariance
of the gauge transformations

�̃ab
c (h) = (

�̃ab
c (hg

)σ (g)
. (B21)
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Hence, using equivariance to remove tildes from Eq. (B20)
leads directly to Eq. (B1).

Yet another way to see how U transforms using the tilded
language is using the maps αg. The “untilded” map ρg is the
composition

ρg = αg ◦ ρ̃g|V , (B22)

where the restriction means that ρg is only defined on the
“untilded” vector spaces V ab

c = Ṽ ab
c (1). We can now directly

compute the transformation rules forU :

ρg( ­|a, b; c; 1〉) = αg ◦ ρ̃g
(
�̃a,b
c (1) |a, b; c; 1〉) (B23)

= (
�̃a,b
c (1)

)σ (g)
αg

(
Ũ ( ga, gb; gc; g, 1)

× | ga, gb; gc; g〉 )
(B24)

= (
�̃a,b
c (1)

)σ (g)
Ũ ( ga, gb; gc; g, 1)σ (g)

× | ga, gb; gc; 1〉 (B25)

= (
�̃a,b
c (1)

)σ (g)
Ũ ( ga, gb; gc; g, 1)σ (g)

× (
�̃

ga, gb
gc (1)

)−1
­| ga, gb; gc; 1〉 . (B26)

Using the relation

Ug(a, b; c) = Ũ σ (g)
g (a, b; c; g, 1), (B27)

we indeed obtain Eq. (B1).

APPENDIX C: PROOF OF WHEN ϒψ RESPECTS
LOCALITY

In Sec. IVB, we showed that ϒψ respects locality if and
only if there exists some ζa which is a phase for all a ∈ C,
respects the fusion rules, and has ζψ = −1. We will prove in
this Appendix that such a ζa exists if and only if some minimal
modular extension qC of C contains an Abelian fermion parity
vortex. If some qC contains an Abelian fermion parity vortex,
then we further claim that no minimal modular extension of C
contains both v-type and σ -type vortices. Our main tools are
explicit results about boson condensation proven in Ref. [27],
Appendix A; we state their results here without proof. We
prove the (simpler) second statement first to introduce some
techniques used in the proof of the first.

Proposition C.1. If some minimal modular extension qC of
C contains an Abelian fermion parity vortex, then no mini-
mal modular extension of C contains both v-type and σ -type
vortices.

Proof. First suppose that qC contains an Abelian parity vor-
tex v. Suppose by way of contradiction that qC also contains a
σ -type parity vortex σ . Then σ × v = a for a unique anyon
a ∈ C. Fuse ψ into both sides of the above equation; by
associativity of the fusion rules we obtain

ψ × (σ × v) = ψ × a = (ψ × σ ) × v = σ × v = a. (C1)

Hence a = ψ × a for some a ∈ C, which is impossible.
Therefore qC contains only v-type parity vortices. Next, sup-
pose qC has chiral central charge c−, and consider the minimal
modular extension qC ′ of C with chiral central charge c− + 1/2.
This is obtained by condensing the bosonic (ψ,ψ ) pair in
qC � Ising. Using the notation (x, y) ∈ qC � Ising, it is clear that

deconfined parity vortices in qC ′ descend from bound states
(x, σ ) where x ∈ qC1. Applying the results of Ref. [27], if x
is a v-type parity vortex, then every (x, σ ) is a deconfined
simple parity vortex in qC ′, while if x is a σ -type parity vortex,
then (x, σ ) splits into a pair of simple v-type parity vortices
(x, σ )±. Since qC contains only v-type vortices, qC ′ contains
only σ -type vortices. We can repeat this process to obtain
all minimal modular extensions, alternating between minimal
modular extensions containing only σ -type and only v-type
vortices, as desired. �

Theorem C.2. There exists a set of phases ζa which obey
the fusion rules and have ζψ = −1 if and only if someminimal
modular extension contains an Abelian fermion parity vortex.

Proof. The “if” direction was already proven in Sec. IVB.
Now suppose such a ζa exists. Then using the results of Ap-
pendix A, there exists some minimal modular extension qC of
C containing some parity vortex x such that Mx,a ∈ U(1) for
all a ∈ C. Then

1 =
∑
y∈ qC

|Sx,y|2 =
∑
y∈ qC0

|Mx,yS1xS1y/S11|2 +
∑
y∈ qC1

|Sx,y|2 (C2)

=
∑
y∈ qC0

d2
x d

2
y

D2
qC

+
∑
y∈ qC1

|Sx,y|2 (C3)

= d2
x

D2
C

D2
qC

+
∑
y∈ qC1

|Sx,y|2 (C4)

= d2
x

2
+

∑
y∈ qC1

|Sx,y|2 � d2
x

2
. (C5)

Hence

dx �
√
2. (C6)

Now change minimal modular extensions to qC ′ by stacking
with a copy of the Ising theory and condensing the bound state
of the preferred fermions. If x is v-type, then (x, σ ) ∈ qC ′

1,σ .
Using the results of Ref. [27], we can obtain the S matrix of
the condensed theory; in the present case, we have

d(x,σ ) = S(x,σ ),(1,1)S(1,1),(1,1) = dxdσ =
√
2dx. (C7)

However, using the same formula, we can also compute that
for a ∈ qC0,

M(x,σ ),(a,1) = Mx,a ∈ U(1). (C8)

Hence Eq. (C6) applies to (x, σ ) as well, so d(x,σ ) = √
2dx �√

2. Thus dx = 1, i.e., x is Abelian, as desired.
Suppose instead that x is σ -type. Then (x, σ ) splits into

(x, σ )± ∈ qC ′
1,v and Ref. [27] tells us instead

d(x,σ )± = S(x,σ )±,(1,1)S(1,1),(1,1) = 1

2
dxdσ = dx√

2
(C9)

However, since dx �
√
2 and d(x,σ )± � 1 we must have dx =√

2 and thus (x, σ )± is Abelian, as desired.
Note that we can use this argument to show that if some qC

contains an Abelian parity vortex v, then all minimal modular
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extensions containing v-type parity vortices do as well. Ac-
cording to the above, qC ′ contains only σ -type vortices, and in
particular contains a particle (v, σ ) with quantum dimension√
2. Layering Ising with qC ′ and condensing, we obtain another

minimal modular extension qC ′′ with v-type vortices. In this

case, according to the above argument, ((v, σ ), σ )± is a v-
type vortex in qC ′′ with quantum dimension 1, i.e., it is Abelian.
This process can then be repeated to generate Abelian parity
vortices in all eight minimal modular extensions of qC which
have v-type parity vortices. �

APPENDIX D: PROOF OF EQ. (138)

Equation (138) reads

ηa(T,T)ηb(T,T)UT(a, ψ ; a × ψ )UT(b, ψ ; b× ψ )Fa,ψ,ψFb,ψ,ψ

ηc(T,T)
= −1 (D1)

for Ta = a × ψ , Tb = b× ψ , Tc = c, and Nc
ab = 1. The factors of η on the left-hand side can be replaced using the η −U

consistency condition Eq. (37)

ηa(T,T)ηb(T,T)
ηc(T,T)

= UT(
Ta, Tb; Tc)U ∗

T (a, b; c). (D2)

The consistency condition Eq. (26) betweenU and F implies

UT(
Ta, Tb; Tc)U ∗

T (a, b; c) = Fa,ψ, Tb
c, Ta,b F

Ta,ψ,b
c,a, Tb UT(a × ψ,ψ ; a)U ∗

T (ψ, b; b× ψ ). (D3)

Using the pentagon equation for the anyons a, ψ,ψ, b, we obtain

Fa,ψ, Tb
c, Ta,b F

Ta,ψ,b
c,a, Tb = Fa,ψ,ψFψ,ψ,b. (D4)

Inserting Eqs. (D2)–(D4) into Eq. (D1), we find

ηT
a ηT

b

ηT
c

= (Faψψ )2FbψψFψψbUT(a × ψ,ψ ; a)UT(a, ψ ; a × ψ )UT(b, ψ ; b× ψ )U ∗
T (ψ, b;ψ × b). (D5)

From the pentagon equation for the anyons a, ψ,ψ,ψ , one finds

Fa,ψ,ψ = Fa×ψ,ψ,ψ . (D6)

Hence, again using theU − F consistency Eq. (37),

(Fa,ψ,ψ )2 = Fa,ψ,ψF
Ta,ψ,ψ = U ∗

T (a, ψ ; a × ψ )U ∗
T (a × ψ,ψ, a). (D7)

Next, using theU -R consistency Eq. (27), we find

U ∗
T (ψ, b;ψ × b)UT(b, ψ ; b× ψ ) = Rb,ψRb×ψ,ψ . (D8)

Inserting Eq. (D7) into Eq. (D5) shows that all of the factors involving a cancel. Further inserting (D8) and applying the hexagon
equation twice,

ηT
a ηT

b

ηT
c

= Fψ,ψbFb,ψ,ψRb,ψRb×ψ,ψ (D9)

= Fψ,b,ψ (Rb,ψ )∗Rb×ψ,ψ (D10)

= Rψψ = −1 (D11)

as claimed.
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