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Statistically-Robust Clustering Techniques for Mapping

Spatial Hotspots: A Survey
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Mapping of spatial hotspots, i.e., regions with significantly higher rates of generating cases of certain events
(e.g., disease or crime cases), is an important task in diverse societal domains, including public health, pub-
lic safety, transportation, agriculture, environmental science, and so on. Clustering techniques required by
these domains differ from traditional clustering methods due to the high economic and social costs of spu-
rious results (e.g., false alarms of crime clusters). As a result, statistical rigor is needed explicitly to control
the rate of spurious detections. To address this challenge, techniques for statistically-robust clustering (e.g.,
scan statistics) have been extensively studied by the data mining and statistics communities. In this survey,
we present an up-to-date and detailed review of the models and algorithms developed by this field. We first
present a general taxonomy for statistically-robust clustering, covering key steps of data and statistical mod-
eling, region enumeration and maximization, and significance testing. We further discuss different paradigms
and methods within each of the key steps. Finally, we highlight research gaps and potential future directions,
which may serve as a stepping stone in generating new ideas and thoughts in this growing field and beyond.
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1 INTRODUCTION

Identification of spatial hotspots, i.e., geographic regions with significantly higher rates of generat-
ing cases for certain types of events (e.g., disease, crime, and pollution), has become an important
task and standard research methodology in a diverse range of applications (e.g., public health,
public safety, transportation, and agriculture). In public health, for example, epidemiologists use
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spatial hotspots to find outbreaks of diseases and make timely interventions to reduce health risks
to the public [78]. Similarly, in public safety, hotspots reveal areas with abnormally high-rates of
crimes (e.g., theft, assault), which can help narrow the search space for serial criminals (e.g., arson-
ists) or other underlying factors [130]. Broad applications of hotspot mapping will be detailed in
Section 2.
While spatial hotspots are naturally clusters of events, mapping of hotspots poses many unique

challenges. Here, we summarize these challenges in four different aspects. First, spurious results
often have very high social and economic costs in the application domains of hotspot mapping
[16, 182]. For example, if a city falsely claims a neighborhood as a crime cluster, there can be many
unnecessary negative impacts such as reducing property values in that region, hurting local small
businesses, increasing mental pressure on residents, and potentially pushing them to move. Un-
fortunately, spurious clusters are very common in real-world datasets and can easily happen as
a consequence of natural randomness. Thus, decision makers in important application domains
require statistical rigor as a necessary component to robustly control of the rate of spurious pat-
terns. Second, needs explicit consideration of underlying risk or known contributing factors, which
are typically not considered in traditional clustering approaches [102, 133]. For example, having
a hundred crime cases in a densely-populated urban area is different from having the same in a
rural area of the same size. Third, hotspots are geographically contiguous regions and should not
be fragmented pieces in space [191, 194]. As a result, spatial attributes cannot be simply mixed
with other non-spatial attributes during the clustering process and need specific modeling. Finally,
while a hotspot is often a geographically contiguous region, the observed events inside it may not
necessarily form a continuous or smooth distribution of density, especially when the total number
of observations is small (i.e., higher variance across locations). This undermines basic assumptions
on contiguous density used in many traditional clustering approaches [29, 66].

Clustering has long been a core topic in data mining and machine learning, providing a vast set
of techniques in various families. Partitioning-based clustering methods (e.g., k-means and Gauss-
ian mixture models, CLARANS [153]) split input data into k groups to minimize dissimilarities
within clusters. Density-based approaches (e.g., DBSCAN [66], OPTICS [14], and HDBSCAN [29])
apply local or global density criteria to separate out clusters from noises. These approaches do not
rely on pre-defined number of clusters and can be made flexible for different shapes and varying
densities. Many techniques also utilize the hierarchical structure of clusters, e.g., by first splitting
data into small units and then sequentially merging them into final clusters based on similarity
and adjacency, or in the opposite direction (e.g., Chameleon [99], BIRCH [224], CURE [80], and
HDBSCAN [29]). These families of approaches are not necessarily mutually exclusive (e.g.,
HDBSCAN leverages both density and hierarchy).Moving further, there have also beenmany other
types such as grid-based (e.g., STING [205], CLIQUE [9]), graph-spectrum-based (e.g., spectral clus-
tering [202]), kernel-based (e.g., kernel k-means [177], SVC [20]), and so on. Given that these tech-
niques have beenwell summarized in other surveys on general clustering (e.g., [217, 218]), here, we
skip the details and concentrate on the topic of statistically-robust clustering for hotspot mapping.
Traditional clustering techniques are not sufficient in responding to the unique challenges posed

by hotspot mapping. These techniques, for example, often do not consider the high costs of spu-
rious results and are prone to return many clusters formed by natural randomness (e.g., k-means
always returns k partitions, DBSCAN and its variations have difficulty in avoiding spurious high-
density regions in random point distributions [29, 133, 211, 213, 214]). In addition, these methods
normally do not consider underlying risk factors (e.g., population at risk as control), geographic-
contiguity of outputs, and non-contiguous within-cluster density.
To address these challenges, in the last decades there have been a blossom of research focus-

ing on statistically-robust clustering techniques with explicit consideration and modeling of these
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various needs of hotspot mapping. As many of the methods are based on formulations from scan
statistics, which was first developed by the statistics community, statistically-robust clustering is
also known as scan statistics. Since both clustering and scan statistics have been widely used in
literature, we use “clustering” in the rest of the survey to better connect to intended audience from
data mining. First, statistical significance of cluster candidates was modeled and incorporated into
the detection process to provide robust control of the rate of spurious results. New algorithms
were also developed to reduce the computational cost of significance testing, which often requires
Monte-Carlo-based estimation due to the complexity of test statistics. Second, underlying risk fac-
tors were explicitly modeled into the test statistics used for candidate evaluation, allowing the
scores to reflect differences in statistical processes rather than directly observed densities of events.
Third, statistically-robust clustering techniques can also guarantee that the output clusters are con-
tiguous in the geographic space by modeling the problem as a region-maximization problem. In
this paradigm, the enumeration space of region-candidates are clearly-defined (e.g., circles, rings,
or linear paths formed by subsets of data) and a wide variety of efficient region-maximization al-
gorithms have been developed. This enumeration scheme also addresses the fourth challenge that
within-cluster density may not be smooth or continuous due to the effect of natural randomness.
By directly enumerating regions instead of forming them by local or hierarchical density criteria,
regions can be evaluated regardless of their inner-density distribution.
There are several related surveys on traditional and statistically-robust clustering. For tradi-

tional clustering, multiple taxonomies are provided in [22, 124, 160, 217, 218] to summarize a
broad spectrum of techniques, including partition-based, density-based, hierarchy-based, graph
spectrum based, kernel based, spatial and non-spatial, and so on. These surveys do not cover the
models and techniques developed for statistically-robust clustering. A few surveys also exist on sta-
tistically robust clustering from different perspectives. Kulldorff [1999] [103] provides a summary
of earlymethods and applications of spatial scan statistics, as well as basic enumeration algorithms;
an overview of earlier domain applications was also discussed later in [46]. Neill and Moore [2006]
[147] describe a few extensions of spatial scan statistic, including efficient computational strategies
for rectangular-shaped clusters and an expectation-based approach to improve space-time cluster
detection. Later, two sequential handbooks on scan statistics were developed mainly by the sta-
tistics community [73, 75], covering both new and existing theoretical results on distribution es-
timation (e.g., closed-form solutions, approximations), extreme values, sequences, and so on. The
handbooks also included a few chapters that are related to data mining, including summaries on
Bayesian scan statistics [139] and irregular-shaped cluster detection [59]. The topic of statistically-
robust clustering (a.k.a. hotspot detection) has also been briefly discussed (e.g., as a paragraph or
section) in broad spatio-temporal data mining and data science surveys [16, 182, 209]. It is worth-
mentioning that hotspot is also related to another common pattern—spatial anomaly/outlier—in
literature [10, 16, 35, 182, 209]. One key difference between the two patterns is that anomaly or
outlier is often used to describe rare observations, e.g., as defined in existing surveys such as “in-
teresting but rare phenomena” [16], “rare occurrences” [10], “rare patterns” [182], and so on. In
contrast, significant clusters or hotspots often represent a substantial/large portion or sometimes
the majority of observations.
Given the richness of application contexts and the large variety of techniques developed along

different dimensions of statistically-robust clustering, there is a need for developing a taxonomy
from the computer science or data mining perspective to decompose the complex modeling and
detection process into a set of key steps, highlight their roles and mutual relationships, and discuss
the advances in each key step by extracting corresponding contributions from the vast (and often
versatile) literature. This can promote cross-pollination and synergistic integration of ideas across
various research communities, especially considering that the developments of general clustering
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and statistically-robust clustering have largely run on siloed tracks. This can also help engage the
broader data mining community in addressing the challenges and fostering future directions in
statistically-robust clustering.
This survey aims at fulfilling this need as follows. First, we develop a set of taxonomies to

highlight the key components of statistically-robust clustering and its sub-areas (e.g., data models,
spatial point processes (SPP), test statistics, enumeration space, computational algorithms, and
test paradigms). As research papers in the field often touch on multiple aspects of the overall
taxonomy, we further decompose a broad set of the papers into contributions to each component
of the taxonomy, which are otherwise difficult to distill and hinder cross-discipline dissemination
of the research advances. This process also helps extract ideas that are applicable, and potentially
valuable, to general studies in the field beyond their original scopes. Finally, based on the identified
research landscape, we expose several open questions and future research directions to harness
emerging sources of spatial big data and promote synergistic integration of ideas across multiple
domains.
Scope and outline: This review article surveys the research progresses from a data mining per-

spective for computer science audience, and does not intend to provide a comprehensive survey on
related statistics literature, which is another important line of research that often focuses more on
statistical theories (e.g., distribution approximation) and has been well summarized in [73, 75]. The
rest of the survey is outlined as follows: Section 2 introduces the application domains of hotspot
mapping; Section 3 summarizes techniques for statistically-robust clustering, with Section 3.1 pro-
viding general key concepts, Section 3.2 providing an overview of building blocks, Section 3.3
providing a taxonomy of data models, Section 3.4 providing a taxonomy on various statistical pro-
cesses and test statistics, Section 3.5 providing a taxonomy on different region definitions as well
as their enumeration and maximization algorithms, Section 3.6 summarizing different paradigms
and methods for significance testing, and Section 3.7 discussing evaluation methods and metrics.
Finally, Sections 4 and 5 discuss challenges and opportunities for future research, and conclude
the article with highlights.

2 APPLICATIONS OF SPATIAL HOTSPOT MAPPING

Statistically significant clustering for hotspot mapping has been widely used with an ever-growing
variety of spatiotemporal data sources from different domains. In this section, we highlight ex-
ample applications from several domains where statistically interpretable outputs and robust-
ness against spurious results are especially important for both research investigation and policy
making.
Public health: The wide adoption of hotspot mapping started from public health with the

popularity of the spatial scan statistic [102]. The most typical use is to identify the outbreaks of
diseases, including cancer (e.g., childhood leukemia [84], cervical cancer [41]), infectious diseases
(e.g., malaria [129], dengue [78, 188], COVID-19 [44, 85, 109]), and many others [63, 78, 116]. With
the awareness of both diseases cases and population at risk, detected hotspots of diseases reveal
abnormal underlying factors that are otherwise hidden from public health researchers and policy
makers. Many of these applications have been considered as standard practices in public health
studies (e.g., National Cancer Institute [1]). In addition to case data, other sources of related disease
information, including symptoms (e.g., diarrhoea and fever [106]) and increase in pharmacy visits
[140], have been used to improve the timeliness of outbreak alarms. With the growing variety of
spatiotemporal datasets, recent applications have also explored the incorporation of proxy data
from social networks (e.g., geotagged tweets about dengue fever [187]) and trajectories.

Public Safety: Hotspot detection is popularly used in public safety applications to identify
statistically alarming clusters of criminal activities, accidents, suicides, severe disaster impacts,
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and so on. In crime analysis, such significant clusters are used to reveal patterns of homicide and
drug traffic [222], violence-related deaths [126], police deaths in the line of duty [98], and more,
with respect to many underlying factors including natural disasters, weather, new construction,
and so on. Geographic profiling of serial criminals, characterized as ring-shaped hotspots of serial
crimes (e.g., arson), is also used to help narrow down potential residence locations of criminals
[64]. Similarly, adoptions can be found in early warning of terrorism [71], minefield detection
[201], and identification of significant concentration of accidents (e.g., falls, fire injuries, shark
attacks) [13, 54, 206].
Urban Planning and Transportation: Statistically significant clustering helps urban policy

makers and designers bettermonitor, manage and plan infrastructure changes. Typical uses include
locating breakage of distribution pipes [51], mapping city areas with low accessibility to critical
infrastructures or housing difficulties [163], identifying disparities in air quality [81], revealing
regions with aging problems [219], and many others [33, 83]. Generalized hotspots can also reflect
levels of diversity (e.g., trees in urban forests, types of business services) and have been used to
detect non-resilient designs or distributions of infrastructures within cities [207]. The methods
have also been extended to cover network-based applications in transportation. In transportation-
safety related use cases, road segments—including both intersections and linear paths—have been
used to identify subspaces in road networks that have significantly higher rates of traffic accidents
(e.g., pedestrian fatalities) [156, 196]. With emerging data sources such as on-board-diagnostic data
(i.e., vehicle trajectories with hundreds of engine measurements), hotspot detection is also used
to find sub-paths along routes that cause divergent behaviors in emission or energy consumption
[115].
Others: Forestry studies use hotspot mapping to analyze forest health at large scales [171] and

detect clusters of forest fires [157], tree regeneration [68], and so on. It is also used in both plant and
animal agriculture. In plant agriculture, for example, spatial concentrations of high and low ratios
of production-to-environment-cost are used to suggest alternative plans for agricultural conserva-
tion planning [178]. Hotspots of crop diseases were also used to map disease spread across plants
[48]. On the agricultural operation safety side, the approach is used to find spatial clusters of field
accidents (e.g., tractor overturns [176]). In animal agriculture, hotspot mapping has been widely
employed to identify outbreaks of diseases in stock herds [193]. Finally, a great variety of appli-
cations exist in many other fields, including astronomy [32], medical imaging [220], environment
[101], climate change [216], fishery [192], entomology [19], and many more.

3 STATISTICALLY-ROBUST CLUSTERING: AN OVERVIEW AND TAXONOMIES

In this section, we first provide key concepts and a high-level taxonomy to illustrate the building
blocks of statistically-robust clustering. Then, we will dive deeper into each building block and
discuss the detailed taxonomy and summary of developments.

3.1 Key Concepts and a General Problem Statement

In the following, we summarize the key concepts and general problem definition for statistically-
robust clustering. Here, we keep the definitions at a high-level given the variety of formulations
when fine details are considered, which will be discussed in later sections.

Definition 3.1 (Case and Control). A case Ci is an observed incident that is related to a real-
world event or phenomenon E of interest (e.g., the spread of a disease). The number of cases is the
number of observed incidents (e.g., the number of people with positive test results for a disease).
In contrast, control represents the base population of candidates for the same event, where each
candidate Bj is subject to being a case of the event (e.g., all people being tested for a disease or at
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risk of being infected). Data on case and control can be presented at either individual (e.g., points)
or aggregated levels (e.g., polygons, each of which contains the number of case or control points
inside).

Definition 3.2 (Point Distribution and Point Process). A point distribution is a spatial distribu-
tion of cases related to an event E. A point process governs the generation of random point
distributions given a control distribution. In hotspot detection, it—for example—can determine the
probability of each control point Bj being a case Ci of E based on its location. If the spatial distri-
bution of control is not discrete but continuous, the point process can then determine probability
density across space. Here a “point” refers to a general spatial data object, which can be a real
point (location), a trajectory, and so on.

Definition 3.3 (Hotspot). A hotspot is a sub-region of a given input space, where the rate of
generating case points inside pin (or the probability of each individual control point being a case
point) is higher compared to its outside pout . The existence of a hotspot means the point process
is not homogeneous in the input space but clustered at the hotspot region.

Given case and control distributions as inputs, statistically-robust clustering aims at identifying
clusters formed by true hotspots rather than by pure random chance. The output clusters can
either be represented using sub-regions of the input space or subsets of case points. Different from
traditional clustering, output clusters are not only regions with high-intensity of case points. In
contrast, the intensity is statistically adjusted by an underlying control distribution and output
clusters must pass significance testing defined by a point process.

3.2 A High-Level Taxonomy

Figure 1 shows a high-level taxonomy of the key steps in statistically-robust clustering for hotspot
mapping. Since hotspots can be considered as one type of clusters, in the rest of the article the two
names are used in an interchangeable manner.
At the beginning of the process is the input spatial data model (Figure 1). One of the key char-

acteristics of data in hotspot mapping—case vs. control—is highlighted under the step. A variety
of commonly used data types will be discussed and categorized in detail in Section 3.3.
The second key step is the statistical modeling needed for rigorous control of spurious results.

The first essential element within the step is a spatial (or spatiotemporal) point process needed to
model the generation of a point distribution. This is often determined by assumptions in domain
applications (e.g., Poisson point processes are common choices for monitoring disease outbreaks).
Then, a hypothesis is needed to provide a clear mathematical definition of a “hotspot” (e.g., inside
probability density of generating events is higher than outside). This definition is important as it
spells out the criterion of a true hotspot, providing a mathematical ground to generate ground-
truth synthetic data during evaluation (Section 3.7). Finally, a test statistic is needed to compute
a score of each candidate cluster, which is necessary to allow comparison and ranking among a
large number of candidates.
The third key step focuses on finding “where” a hotspot is based on the statistical modeling.

This is achieved by clearly defining an enumeration space (e.g., a parameter space containing all
candidates) and searching over regions to maximize test statistic values. The definitions of enu-
meration spaces can be used to guarantee that all candidate regions are spatially contiguous and
meaningful to decision makers. Additional constraints can be applied to the enumeration space to
avoid undesired outputs.
The last step before a hotspot can be added to the output is significance testing. This is the final

guard in this process to enforce robust control of the rate of spurious clusters. The testing can be
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Fig. 1. Taxonomy based on the process of statistically-robust clustering.

performed using both the Frequentist and Bayesian views depending on the application need. The
view should be consistent with the point process modeled in the second key step. Due to the typical
need of Monte-Carlo-based estimation during the test, acceleration techniques are important to
reduce the high cost leveraging unique characteristics of the simulation process.
Finally, in Figure 1 there is an arrow connecting back to the beginning of this process, which is

data update. In this step, any detected significant hotspot is removed from the data before contin-
uing to identify the other hotspots. This is often necessary due to the shadowing effects between
hotspots in the data, which will be illustrated in Section 3.6.1.

3.3 Data Types and Modeling

Mapping of hotspots covers a wide variety of data types and there are many different criteria that
can be used to classify these data types into different groups. Table 1 shows a detailed taxonomy
of various ways of classification.

3.3.1 Types of Observation. A key characteristic of data used in statistically-robust clustering
is the need of both case and control data, which is not the case in traditional clustering approaches
(i.e., no control). In many critical societal applications (Section 2), the emergence of events are
closely linked to other related distributions. In transportation, for example, a road segment with
a higher traffic volume is also more likely to have a higher density of traffic accidents, but such
“clusters” are not interesting to decision/policy makers as they are expected and often do not call
for additional investigation and intervention [115, 196].

To have a more holistic view of this process, we can consider two levels of an observed dataset:
(1) incidents of one or more events (e.g., crime cases); and (2) underlying contributing factors to
the events (i.e., control). When control is ignored, the resulting clusters are representations of an
aggregation of all the underlying contributing factors—which together make the cluster regions
have higher rates of generating the observed data samples. Having control data as an input allows
users to take out the contributions from known factors (e.g., traffic volume)—either interesting or
not—and let resulting clusters reveal unknown factors causing higher rates of the events. More
examples are provided in Table 1.

3.3.2 Types of Event Data Models. Statistically-robust clustering takes a wide variety of input
data models, ranging from points, polygons, grids, trajectories to time-series data. Examples of
data models are shown in Figure 2 as well as Table 1, and illustrated as follows:

— Point: Point is the most popular and widely used vector data model for mapping hotspots
[63, 106, 126, 129, 222]. Each point has geographic coordinates, observation type (i.e., case,
control), and event information (e.g., event type such as disease or crime, event subtype,
event value such as air pollution indices if data is continuous).

— Polygon and grid: Polygons are typically used when observations are given at aggregated
levels [30, 41, 78, 81, 84, 89, 104, 105, 219]. For example, population and demographic infor-
mation are normally only available through census tracks, which may be shared at higher
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Table 1. Taxonomy of Data Types

Classification

criteria
Categories Examples and use cases

Type of observation Case • Public health: Disease incidents (e.g., COVID), symp-

toms, tweets and pharmacy visits [85, 116, 149, 188]

• Public safety: Crime cases, signals of terrorism and po-

lice deaths in the line of duty [64, 71, 98, 215, 222]

• Transportation and urban infrastructure: Vehicle acci-

dents, pedestrian fatalities, high emissions and under-

ground pipe breakage [51, 115, 156, 184, 199]

Control • Public health: Population, population at risk, all tweets

[102, 116, 129, 146, 187, 188]

• Others: Traffic volume of Vehicles or pedestrians, for-

est volume and crop plant population [48, 68, 115, 157,

171]

Type of data models Point • Crime cases, injuries, fires, geo-tagged tweets, sam-

pling sites [13, 64, 101, 157, 187, 188, 206, 215, 222]

• Traffic accidents and vehicle tows [91, 156, 196, 199,

214]

Polygon • County or city district maps with statistics of events

(e.g., disease), shorelines [13, 41, 85, 102, 116, 140]

• Grid cells [90, 135, 145, 146, 150, 151, 216, 220]

Trajectory • Vehicle trajectories, smartphone or geo-tagged social

media trajectories [15, 90, 115, 122, 187, 188]

Time-series • Hospital visits over the past days/weeks [94, 132, 135,

136, 140, 151]

Type of spaces Euclidean • A state, city or country [41, 85, 116]

• A forest area [68, 157]

Spatial network or graph • Road or river network [91, 115, 156, 196, 199]

• Utility network or graph representation of space [28,

51]

• Social network with geo-tags [36, 187, 188]

Level of uncertainty Individual • Locations of crimes, traffic accidents or crop disease in-

cidents (e.g., point-type examples above)

• Perturbed or inaccurate locations and timestamps [90,

120, 155]

Aggregated • County maps with counts of cases and population,

where uncertainty comes from both the aggregation

and inaccuracies (e.g., [25, 52, 117])

aggregation levels (e.g., census blocks or census block groups) due to privacy concerns.
Similarly, certain types of events (e.g., cancer data) may only be available at city- or county-
levels. Such datasets are often given in the form of polygons representing boundaries of the
corresponding aggregation units. Some techniques take inputs in the grid format mainly for
computational purposes (e.g., easier to enumerate contiguous rectangular-shaped candidate
clusters) [154, 171]. In each grid cell, a count is recorded for different types of observations
and events. When the original dataset provided is not in the grid format, grid-based methods
will preprocess it into a grid format which may require additional assumptions for data
given in polygon formats (e.g., homogeneous distribution within each polygon).

— Trajectory: As trajectory data are becoming available in greater varieties and volumes,
it is also an important source of inputs for hotspot mapping. Examples of trajectory data
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Fig. 2. Example data models commonly used for hotspot mapping.

that have been used in this field include social-media (e.g., a spatiotemporal sequence of
geo-tagged tweets [187]) or smartphone trajectories of users; location traces of vehicles
and properties (e.g., taxi trajectories [90, 122]; on-board-diagnostic data with hundreds of
engine measurements [115]). Trajectory data can be used in two different ways. First, it can
be used to identify hotspots that have a linear-path shape in a network space (e.g., a path
with abnormally high energy consumption). Second, it can be used to identify hotspots
as geographic regions [122], in which case events are no longer spatially static points but
moving objects. This is especially valuable in epidemiology, in which a trace of locations
provides much richer information than a static point (e.g., where an infected individual
resides or is hospitalized) [187, 188]. One limitation of this type of data is its availability
and quality (e.g., representativeness) for different types of applications.

— Time-series: In some application scenarios such as infectious disease monitoring, decision
makers may be more interested in knowing about short-term dynamics reflected by the data
rather than long-term phenomenons. Time-series data are very helpful for such purposes
[106]. In time-series data, a point, polygon or grid cell becomes a sequence of observations
at different timestamps (e.g., numbers of visits at a hospital on a daily basis [140]). This
allows finding emerging hotspots, i.e., regions that were not but are becoming significant
hotspots based on latest observations.

Sometimes the input datasets are a mixture of different data models based on their availability.
For example, case data may be points of crime cases while control data may be polygons (e.g.,
census blocks) with population information.

3.3.3 Types of Spaces. Based on application contexts and characteristics of the phenomenon,
different types of spaces may be used with input data. The two most common spaces used in
hotspot mapping are Euclidean and network spaces.
Euclidean space is best suited when the goal of an application is to find geographic regions (e.g.,

a zone in a city) as hotspots or when the phenomenonmay propagate and evolvewith high-degrees
of freedom (e.g., diseases that spread by air) [102, 150].

Network space should be usedwhen the goal is to find a road segment, a path or a sub-network as
a hotspot [51, 62, 91, 156, 199]. For example, traffic accidents mostly happen only on road networks,
so a road segment or route often best represents the spatial footprint of the phenomenon. Similarly,
in crime hotspot detection, if police officers are more interested in the travel distance of a serial
criminal from a potential point (e.g., a residence location, which is unknown and needs to be
enumerated) to a crime location [62], spatial networks should be used to model input data. In
addition to road networks, other examples of networks include river networks, utility networks
(e.g., powerlines, pipes [51]), communication networks, and social-spatial networks [36].

3.3.4 Levels of Uncertainty. Uncertainty may be introduced when data points are inaccurate
either due to errors or privacy-related perturbation [90, 120, 155]. Inputs to statistically-robust
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clustering may also be provided at various aggregation levels, including no-aggregation (original
point samples), aggregated with nearby cases within a certain distance, aggregated at census-block
or county levels, and so on. Such aggregations also introduce additional uncertainty into the clus-
tering process. The effects of these uncertainties on hotspot mapping have been examined and
visualized by many [25, 52, 90, 117, 120, 155].

3.4 Statistical Modeling

Statistically-robust clustering uses a variety of spatial and spatiotemporal point processes to model
different types of hotspots and their corresponding hypotheses, and has developed various test
statistics to evaluate hotspot candidates. In the following, we first show a taxonomy of statistical
models and then discuss formulations of test statistics as well as design strategies. It is worth-
noting that while many of the formulations (e.g., test statistics) are originally proposed as a part of
a technique (e.g., together with maximization algorithms), they can be generally used for different
problems; an analogy is the modeling of loss functions in deep learning.

3.4.1 Spatial and Spatiotemporal Point Processes. Point processes have been developed based
on a variety of statistical models to fit different types of input data models and application needs
in hotspot detection. A point process mainly focuses on point distributions over space, and the
following summary includes more generalized definitions that may also consider point attributes
(e.g., related to marked point processes).

— Bernoulli and Poisson: In the Bernoulli model control data (e.g., population at risk for a
disease) is a collection of discrete points in some space (e.g., Euclidean, network), and each
point follows a Bernoulli distribution X ∼ Ber (p), where p is the probability of being an
instance of an event (e.g., disease [102], crime [64], accident [196]). Statistical hypotheses are
used to define hotspots (i.e., true clusters). The null hypothesis H0 is that all points follow
the same Bernoulli distribution (same p) in the study area, and the alternative hypothesis
H1 states that there exists a hotspot, where points inside follow Ber (p1) and outside follow
Ber (p2), and p1 > p2. Instead of assuming p on individual points, Poisson point processes
assumes expectations at regional levels [102].

—Multivariate:Thismodel takes an integrated view ofmultiple types of events that are related
to a common parent type. Examples includemultiple symptoms that relate to a single disease
[106, 144], multiple groups in a population [183], multiple actions (e.g., visiting a hospital,
purchasing OTC medications) following an infection [140], and different types of crimes
with similar motives. There are mainly two approaches to model the alternative hypotheses
(H0 still assumes a homogeneous process). The first approach considers a single H1 that
assumes there is a single parent event causing the increase of sub-event instances [106]. In
contrast, the second considers a set of H1, and each H1 relates to a different subset of sub-
events [140]. For example, both hospital and pharmacy visits are related to disease outbreak.
However, pharmacy visits can also be caused by promotional events that are not related to
an outbreak. Multiple alternative hypotheses enable such fine-grained characterization.

— Multinomial: This process also considers multiple types of events. However, these events
are typically independent unlike the multivariate case [97, 207]. Examples of such types
include races, species, unrelated diseases, and so on. This modeling is used when the goal
is to find sub-regions where proportions of different types differ significantly from the rest.
Thus, H0 states that the proportion composition is the same across the study area, whereas
H1 states otherwise. Here, control data are typically not used.

— Continuous: This differs from the other processes by having continuous attributes on geo-
located data points (e.g., air quality, house prices) rather than binary values or aggregated
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counts. To model continuous values, methods typically use normal [89, 104], exponential
[86], or other continuous distributions [49, 96]. Using normal distribution as an example,H0

states that the mean is the same across the whole study area and H1 states that points in
hotspot regions follow distributions with higher means.

— Expectation-based: All the processes above are mainly designed for mapping spatial
hotspots but can be extended to spatiotemporal use cases. In contrast, the expectation-based
model is designed to focus on emerging (i.e., spatiotemporal) hotspots [135, 151]. It considers
each location in a grid partition of space as a time-series of counts (e.g., number of visits to a
hospital) following a Poisson process. Unlike the “inside vs. outside” view typically used in
hypotheses of other processes, here it compares the most recent time period to the history
of each spatial sub-region. H0 states that the Poisson mean is the same for both the recent
time window and past history, whereas H1 says otherwise.

— Bayesian: This model also focuses on finding emerging hotspots on grid-aggregated data
[94, 132, 136, 140, 141, 203]. As an example, [132] uses the Bayes’ rule with the conjugate
Gamma-Poisson distribution to model prior and posterior, where the mean of the Poisson is
p ·W whereW is the control population at a location and p is the expected probability, and
p further follows a Gamma prior. H0 assumes that p follows the same Gamma distribution
across the entire study area where H1 states that there exists a sub-region where the prior
is different from the rest.

3.4.2 Test Statistics and Measures. In the context of statistically-robust clustering, test statistics
are used to assign a score to each candidate cluster for the purpose of comparison and ranking.
Early non-probabilistic test statistics are often used to find clusters of a fixed size (e.g., s × s

squares) without underlying control distribution. With these simplifying assumptions, the pure
cardinality of data points in a candidate is often sufficient as a test statistic. For more general cases
with variable candidate sizes and underlying control distribution, simple extensions such as density
or density ratio are used for normalization [91, 156, 196]. However, both density and density ratio
are well-known to be strongly biased toward small candidates due to their monotonicity (e.g., any
partitioning of a sub-region will yield a partition with a density greater than or equal to that of
the sub-region). As a result, techniques based on these statistics lose detection power quickly as
the size of a true hotspot increases [146, 213].

To mitigate the bias issues, most commonly-used test statistics in the frequentist framework
adopted the likelihood ratio formulation (examples shown in Table 2) [63, 65, 102, 105, 146]. With
data generation processes being defined by a parametric distribution, the general form of the

likelihood ratio for a region S is F (S ) = Pr (Data |H1 (S ))
Pr (Data |H0 )

, where Pr (Data |H1 (S )) and Pr (Data |H0) are

the likelihoods of data being generated by the alternative hypothesis H1 and null hypothesis H0,
respectively. A larger likelihood ratio indicates that an observation is more likely to exist under
the alternative hypothesis. Different parametric distributions are used for different application
scenarios (e.g., examples from Section 3.4.1), resulting in various forms of likelihood ratios. For
example, Poisson based likelihood ratios can be used to identify outbreaks of diseases or hotspots
of crime activities [63]; continuous versions can be used to find regions with high pollution; and
expectation-based extensions are more sensitive to temporal changes [135]. Various studies have
also explored integration of prior knowledge using regularizers in test statistics. For example,
penalty terms are added to favor higher spatial resolution [70], discourage irregularly shaped and
disconnected clusters [30], and promote dynamic clusters that change smoothly over time [191].
Methods were also developed to reduce the bias of test statistics across scales (cluster sizes) and
improve detection power (e.g., average likelihood ratio [34, 69], spatial mixture index [207], non-
deterministic normalization index [213]). For computational efficiency, simpler formulations of
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Table 2. Examples of Test Statistics Using Point-Process Based Likelihood Ratios

Process types Example test statistics Interpretation

Poisson model

log

(
n

N · a
A

)n
·
(

N − n
N · A−a

A

)N−n
· 1
(
n > N · a

A

)

where n and a are counts of case and control in a candi-

date cluster, respectively; N and A are the total counts of

case and control of the study area; and the indicator func-

tion 1( ·) guarantees the candidate is dense rather than

sparse.

A log likelihood ratio (LR) using

the Poisson point process. The de-

nominators represent the expected

number of cases inside and out-

side the candidate underH0 (i.e., no

hotspot) (e.g., [102, 146]).

Continuous

value model N logσ +
n∑
i=1

(xi − μ )2

2σ 2
− N /2 − N logσ ′

where n and N are the number of samples of a candidate

cluster and the study area, respectively; xi is the value

of a sample in the candidate; μ and σ are the mean and

standard deviation of all N samples; σ ′ is a standard de-

viation estimated assuming samples inside and outside a

cluster follow different means (i.e., H1).

A log LR using the continuous nor-

mal model, whereH0 states all sam-

ples follow the same mean-value

and H1 states that there exists a

candidate region following a pro-

cess with a higher mean (e.g., [89,

104]).

Multinomial

model log

∏
k

i=1 p
ni

i
q
Ni−ni
i∏

k

i=1 (p
′
i
)ni · (q′

i
)Ni−ni

wherek is the number of types (e.g., disease types),ni and

Ni are number of type-i samples of a candidate cluster

and the study area, respectively;pi =
ni

n
andqi =

Ni−ni
N−n

are the probability of a point being of type-i inside and

outside the candidate; and p′
i
= q′

i
= Ni /N is the proba-

bility of a point being of type-i in the whole data.

A log LR using the multinomial

model, where H0 states pi =

qi , ∀i = 1, . . . , k across the whole

space whereas H1 states some re-

gions have different complexions

(e.g., [97, 207]).

Expectation

based model logmax

((n
b

)n · eb−n, 1
)

where n is the number of cases observed in a candidate

cluster at current timestamp t , b is the baseline learned

from historical data, and the max( ·, ·) function is used to

filter out scenarios where n < b .

Compared to the Poisson model

shown above, this log LR compares

the concentration of samples in a

candidate cluster at t to its histor-

ical expectation b from t ′ < t

rather than the concentration out-

side the candidate (e.g., [135, 151]).

test statistics are used, such as the elevated mean scan statistic [167]. All the above-mentioned test
statistics assume the underlying probability distribution obeys a parametric model. In scenarios
where prior knowledge on underlying distributions does not exist, nonparametric model based
test statistics are introduced, such as Berk Jones [21], nonparametric scan statistics [36, 142],
and Higher Criticism [56]. Without assumptions on statistical distributions, nonparametric test
statistics often rely on empirical p-values for significance testing. There are also works that use a
proxy to represent the underlying distributions. For example, for the continuous-value model, the
Mann–Whitney statistic is used to measure the distribution of the rankings of point values instead
of the actual values [49]. Finally, these test statistics can also be applied to identify significant
sub-graphs (e.g., based on Steiner-connectivity) in network or graph data as summarized in [25].

Many Bayesian approaches have also been developed to complement the frequentist view for sig-
nificant clustering [139]. Advantages of Bayesian measures include the capacity of incorporating
informative prior information, when available; the flexibility of considering multiple hypotheses;
and direct calculation of posterior probabilities. In general, Bayesian based methods do not rely
on test statistics; rather, they directly calculate posterior probabilities using the Bayes’ rule (e.g.,
univariate [132, 148], multivariate [140, 149], and PANDA-CDCA Bayesian network [43, 95]). With
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that being said, the Bayesian posterior probability can also be considered as a test statistic, and
empirical thresholds can be applied as an approximation of significance levels in the frequentist
setup. There are also frequentist methods that use the Bayesian modeling to design test statistics,
such as the Bayes factor [226] and anomalous group detection [50].

3.4.3 Design Strategies of Test Statistics and Measures. A well-designed test statistic should be
unbiased and ideally have the optimal asymptotic detection power under a significance level. Many
theoretical insights and results have been developed to reveal major issues to consider during
the design and recommend strategies to address them both statistically and computationally. For
example, most of the existing test statistics used in research and applications are based on ratios
between maximum likelihoods of hypotheses H1 and H0. Many of these standard formulations,
including Kulldorff’s likelihood ratio, have also been shown to be scale-sensitive. Specifically, these
test statistics can be strongly biased toward small candidates [34, 174, 204, 213, 215] (albeit much
better than density [145, 213]).

In significance testing, statistically-robust clustering techniques commonly estimate the
distribution of test statistics using the best candidate (i.e., the maximum score) from the H0-point-
distribution in each Monte Carlo trial, which is needed to avoid multiple testing (Section 3.6.1).
Thus, an intuitive interpretation behind the bias is that the distribution of the maximum score—as
a random variable—is scale-dependent [61, 172, 174, 204]. In other words, the mean of maximum
score of smaller candidates tends to strongly dominate that of larger candidates. As a remedy,
a penalty term was constructed to correct the bias and restore the optimal asymptotic detec-
tion power for hotspots with different sizes [61, 166, 174, 204]. A further improvement uses
square-roots of log likelihood ratios to construct the penalty term, requiring less case-specific
design [172]; the extension also provides additional computational efficiency (near linear-time).
Another approach is to correct the bias during significance testing, where a block criterion is
developed to adjust critical values (i.e., thresholds on test statistic values to remove insignificant
results) on candidates belonging to different sizes or size-groups [174, 204], guaranteeing optimal
asymptotic power of detection. Average likelihood ratio approaches have also been developed
to reduce the bias, where each score is a weighted average of those of neighboring candidates
[34, 69]. According to theoretical results in [34], the original likelihood ratio in the spatial scan
statistic has optimal detection power only for hotspots with smallest footprints whereas the
average likelihood ratio has optimal power at all scales. The analyses were carried out for the
discrete one-dimensional scenario. Another view of the average likelihood ratio approach is
that it uses marginal likelihoods instead of maximum likelihoods [139], which may better utilize
secondary cluster information as in the Bayesian test statistics [132, 148, 149]. In addition to the
pure-scale interpretation of the bias, a spatial interpretation has been developed [213, 215]. The
analysis shows that the likelihoods or probabilities used to score a candidate in many approaches
are based on a space bi-partitioning where one partition represents the candidate C and the
other for the outside. Likelihoods calculated using the bi-partition implicitly assume that the
best candidate Cran in a random dataset still locates in C’s partition, which is rarely the case.
This leads to a big underestimation especially for the likelihood of H0 since the location of the
best candidate should be nondeterministic in a purely random point process. To correct the bias,
spatial-nondeterminism-aware test statistics were proposed [207, 213], which can be computed
using dual-level Monte Carlo simulation [207]. The use of another simulation introduces ad-
ditional computation overhead but can be generally applied for different point processes (e.g.,
Bernoulli, Poisson, multinomial), test statistics (e.g., density, likelihood ratio, spatial mixture
index), candidate shapes (or enumeration spaces), maximization algorithms, and so on.
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Table 3. Region Enumeration and Maximization

Classification

criteria
Categories Examples

Definition Pre-defined shape • Euclidean: Circles [65, 78, 102, 116, 122], ellipses [105],
rectangles [145, 146], rings [63, 64]
• Network: Linear paths [51, 91, 156, 196, 199], sub-
networks with shape constraints [62, 198]

Flexible shape • Problem-specific heuristics: ULS [128, 161, 162], MST
[45], FlexScan [194, 200], trajectory [53]
• Meta-heuristics: Genetic algorithm [58, 175], simulated
annealing [57], random walk [92]
• General clustering based [211, 214]

Constraints Computation-driven • Euclidean: Finite enumeration space by data points (e.g.,
two-point circles, concentric four-point rings) [63, 64,
102, 145, 146, 204]
• Network: Finite space plus shortest paths [51, 156, 196,
198], simple paths [199], or real-world trajectories [115];
relaxed sub-graph connectivity [11]

Quality-driven • Spatial contiguity/connectivity [11, 25, 173, 189–191]
• Density contiguity [211, 214]
• Shape regularity [30, 45, 58, 60]
• Maximum population [63, 102]

Algorithms Exact • Bound based [63, 64, 145, 146, 150, 196, 197, 199, 214]
• Incremental updates [133, 140, 207]
• Linear-time subset scanning [25, 36, 137, 144, 190]
• Shortest-path-tree [156, 196], FMGT [199]

Approximation • Approximation-ratio based [7, 8, 122, 173, 228]
• Asymptotic-bound based [172, 174, 204]

Heuristic • Data sampling [121], space reduction [63, 207], meta-
heuristics [57, 58, 92]

3.5 Region Enumeration and Maximization

Region enumeration is the core computational step in statistically robust clustering, which exam-
ines a mathematically well-defined candidate space of clusters to identify the best candidate that
maximizes the test statistic for further significance testing.While this routine only returns one clus-
ter due to maximization, techniques in the literature often repetitively apply it as a sub-routine to
find arbitrary number of clusters, i.e., by removing the best cluster (if significant) from data after
each round and then starting a new round for the next (e.g., [102, 145, 207]). If the best cluster at the
current step is not significant, the algorithm terminates and returns all significant clusters. This
enumeration-and-maximization (or one-cluster-at-a-time) scheme is widely used for statistically-
robust clustering because of the fact that it reduces the mutual statistical influence (a.k.a. shadow
effects) [112, 139] between multiple clusters in the same dataset (Section 3.6.1).
In the following, we will first summarize definitions of enumeration spaces and constraints that

are popularly used in the literature, followed by maximization algorithms as well as acceleration
techniques of various types. A summary taxonomy is provided in Table 3.

3.5.1 Enumeration Spaces. Definitions of enumeration spaces often take considerations of both
application needs and computational feasibility/efficiency. These definitions can be well classified
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Fig. 3. Example shapes used to define enumeration spaces. (a) Circular-shaped hotspots and coldspots of

diversity [207]; ring-shaped hotspots for finding serial crimes and the source of a disease [63, 64]; and

arbitrarily-shaped hotspots by Significant DBSCAN, which also shows its robustness against spurious clus-

ters (top: random data without clusters; bottom: clustered data) [211, 214]. (b) Iso-distance hotspots of crimes

on road networks [65] and linear hotspots of traffic accidents (pedestrian fatalities) [156, 196].

using cluster shapes (i.e., predefined, flexible), with additional consideration of data types and data
spaces (e.g., Euclidean, network).
Predefined geometric shapes: Majority of statistically robust clustering techniques were de-

veloped for a specific type of geometric shapes (e.g., circle, ellipse, rectangle, ring, linear path) that
can represent real-world phenomenons in target application domains. The corresponding enumer-
ation space then covers all valid sub-regions of the desired shape. Circle, for example, is the most
widely used shape in epidemiology and public health research [1, 42, 65, 78, 84, 102, 116, 122] due
to natural diffusion mechanisms, which tends to make infectious disease spread to an approximate
circular shape; and due to computational convenience. Circles were extended to ellipses to better
model effects of spatial anisotropy and provide more flexibility beyond circles [105]. Rectangles
were also used as proxies for circles/ellipses because of the computational convenience they offer
on gridded inputs [145, 146]. Ring shapes were developed for applications in public safety and crim-
inology research. According to the routine activity theory, serial criminals (e.g., arsonists) tend to
commit crimes neither too close to nor too far away from their home to lower both the risk of
being recognized by neighbors and the cost of travel [64]. Thus, ring-shaped zones [62–64] were
used to depict the footprints of serial criminals. While these shapes are more natural to point data
(Section 3.3), they have also been used with polygon data (e.g., county polygons with total number
of disease cases and population). In such cases, polygon data are first preprocessed to center points
to perform region enumeration, and then in the output phase, the polygons containing points from
each significant cluster are merged to generate the final results.
In transportation or city infrastructure related applications, vast majority of techniques use

network space because data (e.g., locations of traffic accidents or pedestrian fatalities) or phe-
nomenons are based on road, water, or utility networks. Correspondingly, linear paths or intersec-
tions along network edges are used tomodel shapes of candidate clusters [51, 91, 156, 184, 196, 199].
In addition, network-space has also been used to identify “areal” clusters (e.g., a circle becomes a
sub-network where the network distances from all locations to a center are less than or equal to r ),
especially in urban areas where network-distance is a better measure of spatial connectivity than
Euclidean distance [62, 198]. For example, two locations separated by a river can be very close in
Euclidean space but far apart by network distance. Figure 3 shows several common examples of
shapes used to define the enumeration space.
From a computational perspective, further simplifying constraints (e.g., two-point circles,

shortest paths) are often needed to guarantee tractable search spaces; otherwise, a simple circular
shape in a continuous space can lead to an infinite number of candidates. This will be detailed in
Section 3.5.2.

ACM Computing Surveys, Vol. 55, No. 2, Article 36. Publication date: January 2022.



36:16 Y. Xie et al.

Flexible shapes: A variety of techniques have been developed to detect arbitrarily shaped spa-
tial hotspots to better capture the complex boundaries of real-world patterns caused by underlying
physical and social contexts. Due to the non-parametric nature of arbitrary shapes, candidate enu-
meration spaces used for this paradigm are typically not well-defined. Instead, the vast majority of
techniques define specific local search heuristics to iteratively go over a set of arbitrarily shaped
candidates until certain criteria are met. A simple and popular formulation of this type is called
an Upper Level Set (ULS) scan statistic [128, 161, 162]. ULS requires a tessellation of space (e.g.,
by geographic unit boundary; grid-partitioning), and starts by calculating a test statistic for each
cell. Then, a cell belongs to an ULS of threshold t if its test statistic value ≥t . All connected compo-
nents in an ULS form the set of candidate clusters, with potentially arbitrary shapes. A ULS tree
is constructed by applying a series of thresholds and significant clusters are merged to generate
final results. Similarly, a minimum-spanning-tree (MST) based approach enumerates connected
sub-trees that are part of an MST of a tessellated input data, where the edge weights are inferred
directly or indirectly by test statistic values [45]. There also exists a FlexScan approach that enu-
merates all possible connected subsets in a tessellation in a brute-forcemanner [194, 200]. However,
due to the exponential nature of the search space, it can only identify small clusters (e.g., <30 cells
[59, 138, 200]). A trajectory based method was developed to relax the requirement of a tessella-
tion [53], where data points are sequentially linked to form a trajectory using test statistic values;
clusters are then enumerated by going through connected segments.
Meta-heuristics have also been explored to generate irregularly shaped candidates, and most

still require a tessellated input space. A simulated annealing formulation [57] was used to enumer-
ate candidates by iteratively search over neighboring choices, each defined as another candidate
that differs by one-cell from the current candidate. As a simulated annealing approach, the prob-
ability of moving into an inferior neighboring choice gradually decreases as the iteration number
increases. Many genetic algorithm based formulations [58, 175] were also developed to generate
arbitrarily shaped candidates, where off-springs are evaluated by a choice of test statistics. In ad-
dition, random-walk based method was developed to search free-form regions using a heuristic
metric [92].
To reduce over-complicated “tree shapes” of clusters that are generated as a result of the free-

dom of arbitrary shapes but are spatially not meaningful, regularization functions were developed
to penalize such shapes based on geometric compactness defined by various criteria (e.g., ratio
between a cluster’s area to its convex hull [58, 60], sparsity [140, 179]). The regularization terms
were also used in multi-objective formulations to generate pareto sets where clustering results are
provided under different levels of shape-regularity constraints [30].
While traditional clustering techniques have provided many efficient schemes to detect irregu-

larly shaped clusters (e.g., DBSCAN [66], OPTICS [14], spectral clustering [202], Chameleon [99],
HDBSCAN [29, 152], and so on.), thesemethods, as introduced earlier, do not incorporate statistical
rigor required by domain applications of spatial hotspot detection. Recently, a statistically robust
formulation of DBSCAN—Significant DBSCAN—was developed to explicitly control the rate of
spurious clusters [211, 214], though it currently does not model the distribution of control points
described in Table 1, Section 3.3.1.

3.5.2 Constraints. There are two types of constraints widely used for spatial hotspot detection.
The first type concerns mostly about computational feasibility, i.e., to mathematically constrain
the enumeration space to a finite and tractable set of candidates (e.g., non-exponential); whereas
the second type of constraints is used to improve solution quality.
Computation-driven constraints: Given that even an enumeration space of predefined

shapes may have infinite number of candidates, techniques rely on constrained parameterization
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of shapes to make the enumeration feasible. In the Euclidean space, circles are often constrained
by two points—one at the center and the other on the circumference, corresponding to a O (N 2)
search space [102]. A center point may come from the set of event incidents (e.g., disease cases), un-
derlying control data (e.g., population points), or an additional input set of candidate centers (e.g.,
centers of cells in a grid [65]). This two-point definition has a natural explanation in epidemiology
or similar domains, where the spread of an event (e.g., an infectious disease) propagates from a
center source. Similarly, a ring-shaped cluster is parameterized by two concentric circles [63, 64].
Since the inner circle may have a low density of points (e.g., serial criminals often do not commit
crimes too close to their residence locations), its enumeration space uses three-point circles where
all three points lie on the circumference. The outer circle is still defined by one-point on the cir-
cumference as the center location has been determined by the inner circle; this leads to a O (N 4)
search space. For rectangular shapes, candidates are constrained to rectangles whose boundaries
on all sides touch at least one data point or grid cell, yielding the sameO (N 4) space [145, 146, 204].
Many other similar constraints are used for ellipses, non-orthogonal ellipses, and so on. Since flex-
ibly shaped patterns can hardly be parameterized, there is often no further computation-driven
constraints beyond the implicit constraints implied by different heuristic search strategies (e.g.,
local constraints).
In the network space, shortest-path is a common constraint for linear path enumeration [51,

156, 196]. While this may be a reasonable approximation for people’s travel behaviors, many real-
world paths such as bus routes do not always follow shortest-paths. Instead, a relaxed simple-path
constraint—any path without self-intersections—quickly increases the potential space to O (N !)
[199]. Another extension beyond shortest paths is to directly define the enumeration space using
real-world trajectories and their connected sub-components [115]. For network-distance based
circles [198], rings [62], and so on, the same shortest-path constraint is used to define the space
that is reachable from a center (e.g., by a threshold r ).
Solution-quality-driven constraints: This type of constraints is developed to further reduce

non-meaningful outputs beyond statistical modeling, and is irrespective of computational consid-
erations. One most important constraint is the spatial contiguity constraint, requiring that any
two locations inside a cluster are mutually reachable by its inner space. This typically increases
the computational cost [127]; in fact, a linear algorithm exists if this constraint is taken out [137].
A relaxed version of this contiguity constraint is the proximity constraint [137, 189–191], which
requires segments inside a candidate to be within a local neighborhood defined either by a spa-
tial distance or k-nearest neighbors; the segments are allowed to be spatially disjoint. Similarly,
density-contiguity within each hotspot can also be enforced via local constraints [211, 214]. In
network space, contiguity constraints are commonly defined by sub-graph connectivity or its re-
laxed formulations [11, 25]. Another widely used constraint is a maximum population threshold,
which eliminates clusters that cover more than 50% of underlying population used in control data
(e.g., [102]); otherwise, a cluster is considered as a general phenomenon rather than a “hotspot”.
As discussed in Section 3.5.1, regularity constraints were also used in arbitrarily-shaped cluster
detection to avoid over complicated tree-like patterns [30, 45, 58, 60].

3.5.3 Maximization Algorithms. Statistically, robust clustering techniques typically detect only
the best cluster in each round, and remove it before searching for the next cluster to avoid shad-
owing effects between patterns (detailed in Section 3.6.1). Thus, after an enumeration space is
defined, maximization algorithms are used to identify the cluster candidate with the highest test
statistic value. For example, test statistics T (S ) in Table 2 can be used as objective functions, and
S represents a cluster candidate where cluster-specific inputs (e.g., counts of case n and control a
for the Poisson-based test statistic) are calculated. Many new computational techniques have been
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developed by the data mining community to reduce the cost of maximization. In the following,
we summarize these acceleration algorithms in three broad categories: exact, approximation, and
heuristic algorithms.
Exact algorithms: The vast majority of maximization algorithms fall into this category, which

means they can guarantee that the output cluster indeed achieves the maximum test statistic value
within an explicitly defined search space (i.e., the cluster is the same as that of a brute-force algo-
rithm). As a result, exact methods mainly focus on pre-defined shapes (Sections 3.5.1 and 3.5.2).
The initial algorithmic improvement was introduced by SaTScan [4]. The algorithm is only appli-

cable to circular-shaped candidate enumeration, which pre-sorts all the points by distance to each
circle center. The pre-sorting frees a candidate evaluation step from performing range queries to
identify which case or control points are inside the candidate (inferred by the order after sorting).
This reduces the overall enumeration and evaluation cost from O (N 3) to O (N 2 · logN ), assum-
ing both cardinalities of center and circumference points are proportional to N . Since then, many
significant improvements have been developed to further reduce the cost.
The first major type of strategies uses pruning, i.e., to eliminate subsets of enumeration spaces

where no candidatemay have themaximum test statistic value. An overlap-kd-tree based approach
was first developed for finding square-shaped clusters in a two-dimensional grid [145]. Overlaps
are added to original kd-tree partitions so that candidates that span across partitions are notmissed.
Then, a branch-and-bound pruning strategy is used to enumerate through the tree. Since only the
optimal cluster is selected in each round, the existingmaximum score is used as thresholds to prune
branches with a smaller upper-bound score. Later works have extended the overlap-kd-tree and
branch-and-bound strategies to cover rectangular shaped clusters [146], and for multi-dimensional
data [150]. Similarly, filter-and-refine strategies were designed for various pre-defined shapes (e.g.,
circles [65], rings [63, 64], ellipses [197], linear paths [156, 196, 199], and iso-distance sub-networks
[198]) in non-tessellated input spaces. Leveraging that calculating the number of points in a sub-
grid (e.g., O (1) using an integral image [214]) is much faster than in a continuous space, these
techniques typically use a discretized grid space to compute upper bounds of test statistic values
of candidates in continuous spaces. A refining step is only carried out to check exact candidates if
the upper bounds exceed a threshold (either user-specified or using the current maximum). These
bounds are often designed specifically for each shape based on their characteristics. In addition,
incremental update rules have also been developed to efficiently compute test statistic scores of
neighboring candidates (e.g., O (1) amortized cost [133, 140, 207]); the update rules depend on
specific test statistics.
Another widely adopted strategy is based on a linear-time subset scanning (LTSS) property

first introduced in [137] for tessellated data. LTSS only applies to scenarios where components (e.g.,
grid cells) of a cluster are unconstrained by spatial contiguity, i.e., it can be any arbitrary subset
of data elements. By relaxing the contiguity constraint, LTSS states that, for many test statistic
functions F , there exists an ordering functionG, such that the subset with a cardinality of k always
reaches the maximum F score if its members have the top-k individual G scores in the data [137].
Assuming a sorted order of individual components by G has been given, LTSS allows finding the
optimal subset in linear time out of an exponential enumeration space. It has been shown that
the LTSS property can be satisfied by a variety of test statistic functions [123, 144, 190], including
Kulldorff’s scan statistic, expectation-based Poisson or Gaussian function, separable exponential
families and many quasi-convex functions. The method has also been used in non-parametric scan
statistics [36], GraphScan [25], and so on. A few special cases have been proven to make LTSS able
to output contiguous subsets as clusters (e.g., non-existence of break-tires [36]). As mentioned
above, one key limitation of LTSS is the lack of spatial contiguity in each cluster. To mitigate
this, a proximity-constrained extension was developed [189, 191]. Instead of applying LTSS on the
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entire data, it sequentially goes through all data components (e.g., grid cells) and apply LTSS only
on the k-nearest neighbors of each component, or neighbors within its r -radius neighborhood.
Discontiguity is still allowed for subsets within each local neighborhood, but this avoids long-
distance separation.
In the network space, shortest-path trees were used to efficiently enumerate candidate paths

between all pairs of points [156, 196]. Since data points may add a large number of low-degree
(two-degree) nodes to a network, dynamic segmentation was employed to construct the shortest-
path tree with only original network nodes and then dynamically retrieve shortest paths between
data points. For the all-simple-path enumeration space, the number of candidates can be factorial
[199]. Thus, more aggressive pruning methods were developed. Instead of directly using network
nodes to build a simple-path tree, fragmentation-multi-graph-trees are used, where each tree node
represents a sub-network and paths within each node can be dynamically computed and reused.
Pruning and filter-and-refine strategies described above for Euclidean space based methods were
also used in network-based hotspot detection [198]. To handle high computational cost (e.g., NP-
hardness [11, 25], high-order combinatorials [180, 181]) incurred by constraints on sub-graph con-
nectivity, compactness or sparsity, methods often use relaxed reformulations such as semi-definite
programming [11] or spectral graph theory based relaxations [180, 181], where results (e.g., detec-
tion power) can be rigorously analyzed.
Approximation and heuristic algorithms: We discuss algorithms in these two categories

together as it is hard to draw an exact boundary given the various definitions used by techniques.
In computational theory, an approximation algorithm should guarantee that it always returns a
solution Sapx whose objective function value F (Sapx ) (i.e., test statistic value for hotspot mapping)
is within ϵ of the optimal solution F (Sopt ). For hotspot mapping, one challenge in clearly defining
“approximation” is that—from an application perspective—it is as important to know “where” and
“how large” a hotspot is in addition to a F value; this can be further complicated considering the
large number of shapes used. In addition, this problem has broad interests by researchers from
statistics and computer science, making the use of “approximation” more diversified.
A major difficulty in approximating the solution of spatial hotspots is due to the combinatorial

nature of candidate enumeration in a finite and discrete space of parameters. To bridge this gap, an
approximation scheme was provided in [8] to search for the maximum-scoring region over a set of
axis-parallel rectangles. This approach requires the scoring function F to be a convex discrepancy
function, and one key idea was to simplify the optimization using a set of linear functions to con-
struct an approximation. Using Kulldorff’s spatial scan statistic as an example of F , the approach
was able to reduce the search cost fromO (N 4) to P ( 1

ϵ
N 2 log2 N ), where ϵ is the gap to optimality.

The linear-function based approximation was further improved in [7] leveraging the fact that only
the maximum-scoring region is needed for each round. It also provides a new approximation algo-
rithm for grid-based input data with an O (д3 · poly (logд, 1

ϵ
)) complexity, where д is the number

of columns and rows in a д × д grid. For rectangular shaped hotspot detection, an approximation-
version of the exact brand-and-bound algorithm was also given in [146]. This extension uses a
relaxed instead of an exact upper-bound and thus allows more aggressive pruning. Probabilistic
results were provided to describe how likely each individual relaxed-bound will remain correct,
though no distance to global optimality was given. A scalable sampling-based approach was also
developed for trajectory data, which established approximation relationship among variable error
bounds, cluster shape, sample size, and execution time [122]; it also considered various ways to
spatially sample and approximate the input trajectories. In network space, approximation algo-
rithms have also been developed by analyzing and using the submodularity of objective functions
[173]. For sparsity constraints, efficient stochastic gradient descent algorithms have been devel-
oped, which have linear convergence rates for various objective functions [228]. Another type of
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approximation algorithms aims at maintaining the optimality with respect to asymptotic detection
power, guaranteeing that the approach will give the optimal solution with sufficiently large num-
ber of samples [172, 174, 204]. Related results were first achieved for one-dimension data, where
regions are defined as intervals [174]. This approximation only needs a O (N logN ) search over
the O (N 2) enumeration space. The analysis has been later extended to two-dimensional space
[204], where the best candidate in a set of O (N 4) axis-parallel rectangles can be approximated by
an economical set of rectangles, with an O (N log2 N ) cost. Additional assumptions typically used
by these results include continuous surface of control data, independence between samples, data
types and certain test statistic functions.
Several other methods have a clearer heuristic nature. In ring-shaped hotspot detection, for

example, a Delaunay-triangulation was used to generate guesses of ring centers instead of exhaus-
tively going over centers of all three-point circles, reducing the center space fromO (N 3) toO (N )
[63]. For multinomial-model-based hotspot detection (e.g., hotspots of high-diversity), a heuristic
was developed to gradually narrow search volume as candidate sizes grow, based on the obser-
vation that candidate scores tend to converge (i.e., stabilize) as their sizes get larger [207]. An
empirical sampling based approach was also developed to use only a subset of all data points to
perform hotspot mapping [121]. Finally, the metaheuristics reviewed for flexible-shaped hotspot
enumeration (e.g., [57, 58, 92]) can also be considered as heuristic-based optimization strategies.
While heuristic approaches, in general, will not guarantee solution quality, many have demon-
strated high power and performance through empirical results.

3.6 Hypothesis Testing

Hypothesis testing is the final step in each round of hotspot detection, which determines if the
optimal cluster is a true hotspot or a spurious pattern.

3.6.1 Region Maximization: A Revisit. There are two major reasons for selecting and testing
only the optimal region in a single round [102, 112, 139, 146, 215, 225]. First and most importantly,
returning only the optimal region allows robust control over the false positive rate given a signifi-
cance level α ; otherwise, detecting multiple regions (e.g., candidates at different locations or with
different sizes) at the same time may be susceptible to multi-testing, i.e., increasing the chance
of having a type-I error. As suggested by many studies, this maximization can be viewed as an
automatic adjustment of significance levels for different groups of candidates (e.g., candidates of
the same size) [172, 174, 204]. The intuition can also be easily explained from a data perspective
[207, 215]. GivenM datasets generated under a null hypothesisH0, having a critical value—a score
threshold derived to determine a candidate’s significance at the α level—on the maximum score
makes sure that a spurious cluster can only be falsely reported as a hotspot in smaller than αM
datasets. In other words, to get a spurious detection in a dataset under H0, its maximum score
has to pass the threshold on the maximum score. The second reason is that this helps reduce the
mutual shadow effect between true hotspots [112, 225]; e.g., eliminating a true hotspot from data
will make the signal of a secondary true hotspot statistically stronger.

In order to detect multiple clusters, a significant hotspot will be removed from data (both its case
and control points), and the same detection and testing procedure will be repeated on the updated
data.While this may increase the risk of reporting a spurious hotspot at the dataset-level, the effect
is very slight as the execution of any following round is conditional on the detection of a signif-
icant cluster in the previous round (i.e., strict unidirectional dependence between rounds). There
have also been many studies trying to increase the detection power for multi-hotspot scenarios by
adjusting test statistic functions [112, 225].
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Table 4. Statistical Hypothesis Testing

Paradigms Aspects Examples

Frequentist Modeling • Random locations [64, 102, 146, 211] or fixed location
with random values [89, 104, 207]
• Scale-independent [102, 156, 194], scale-dependent [174,
204, 213], or unified [215] testing
• Bayesian as sub-models [50, 123, 226]
• Nonparametric empirical p-values [36, 142]

Computation • Monte-Carlo simulation accelerated by bounds [64, 146,
211], shared computation [156, 199], reduction [215],
and so on.
• Test statistic distribution approximation [39, 40, 75]

Bayesian Modeling • Direct priors [140, 149] or priors as parametric distribu-
tions [119, 139]
• Direct posterior probabilities as results [132, 140, 148,
149] or with added tests (e.g., empirical) [136, 179]
• Rank-based [168, 169]

Computation • Fast subset sums [137, 143, 179]
• Conjugate priors [132]

3.6.2 Two Paradigms. Both frequentist and Bayesian-based paradigms have been explored to
test the significance of a cluster. The frequentist approach is used for both spatial and spatiotempo-
ral hotspot detection. While the Bayesian variation was originally proposed and mainly used for
the latter (e.g., emerging hotspot detection using time-series data over space), it can still be used
if prior information is available. Table 4 shows a summary of the two paradigms.
Frequentist Approach. Frequentist based testing is the classic in this field and still dominates

the use in related research and applications, partially because of the tradition and the popularity
of the software SaTScan. The frequentist view considers the data as an aggregation of the past, so
null hypotheses based on it typically assume an entire dataset is generated by a complete random
process (e.g., homogeneous Poisson process). The exact definitions of the hypotheses differ by
statistical models discussed in Section 3.4.1.
Figure 4 shows several examples of random point distributions following different point pro-

cesses in the Euclidean space. Figures 4(a1) and (a2) show example datasets generated by Bernoulli-
based spatial point processes (SPP) under H1 and H0, respectively; where the black and orange
points are control and case points, respectively. Under the null hypothesis H0, each control point
has an identical probability of being a case point (e.g., a COVID-19 case). In contrast,H1 in (a1) has
a higher rate inside hotspot regions and lower outside. Figures 4(b1) and (b2) are example point
distributions from the continuous Poisson point processes. Here, H0 assumes a homogeneous un-
derlying probability density, which is also known as the complete spatial randomness.H1 contains
a region with a higher probability density of generating points (i.e., a hotspot). In Figure 4(c2), H0

of a normal-model-based point process assumes the values observed at all data points (e.g., PM-2.5
readings on air quality sensors) are generated by the same distribution. Instead, a hotspot in H1

has a higher mean (of the normal model) as shown in Figure 4(c1). Finally, Figures 4(d1) and (d2)
show example distributions from a multinomial-model-based point process, where H1 in (d1) con-
tains a region with significantly higher diversification of point types (e.g., biodiversity) and (d2)
contains a random redistribution of the point types over space. Figure 5 further shows examples
of Bernoulli-based and Poisson point processes in a network space with linear hotspots.
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Fig. 4. Example statistical models for SPP in Euclidean space. The top-row shows observed data (i.e., input)

with a true hotspot inserted usingH1; and the bottom row shows examples of simulation datasets generated

byH0 in a Monte Carlo trial. Note that SPPs by default model the spatial distribution of points. While in this

example point locations are allowed to be fixed (can be random), it can be interpreted as having the space

confined to a set of spatial coordinates.

Fig. 5. Examples of SPP in network space.

Based on the hypotheses, the test will produce a p-value for the optimal cluster C∗
obs

in the
observed dataDobs : PH0 (C

∗
obs
,Dobs ) = P {F (C∗

obs
,Dobs ) ≤ F (C∗H0

,DH0 )}, where F is the test statistic

function and C∗H0
is the optimal cluster in data DH0 following H0.

Given the combined complexity of point processes, test statistics, enumeration spaces, and max-
imization algorithms, the distribution of F (C∗H0

,DH0 ) in general is unknown in closed-form, except

in over-simplified special cases that are often not useful in practice [146]. Thus, there have been
two lines of strategies developed to estimate the p-value.

The most common strategy is to approximate the distribution via Monte Carlo simulation, i.e.,
generating a large number of randomized datasets (e.g., 999, 9,999) following H0 and running
the same maximization algorithm on all datasets to simulate the distribution of F (C∗H0

,DH0 ) (e.g.,

[102, 174, 188, 204]). Figure 4 (bottom row) shows randomization examples generated under H0,
where each can be considered as the simulated dataset in a Monte Carlo trial. Note that the spatial
distribution of control points or base locations can either remain the same or be redistributed for
Bernoulli, normal and multinomial point processes [102, 104, 146, 207]. In contrast, the control
for continuous Poisson and many other processes is assumed to be a continuous surface, so the
case point locations need to be redistributed in each trial. This Monte Carlo approach is broadly
applicable as long as H0 is well defined, at the price of greatly increased computational cost.
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In addition to the computational enhancements discussed in Section 3.5.3, which can be used as
efficient sub-routines in Monte Carlo trials, a variety of dedicated algorithms have been developed
to reduce the simulation cost (e.g., [64, 146, 150, 196]). One convenient characteristic that has
been leveraged by many approaches is that we do not need to know the exact maximum value
F (C∗H0

,DH0 ) for each random dataset DH0 ; instead, to calculate the p-value PH0 (C
∗
obs
,Dobs ), all we

need is whether F (C∗
obs
,Dobs ) ≤ F (C∗H0

,DH0 ) in the trials. Using this characteristic, the maximum

score from the observed data F (C∗
obs
,Dobs ) is directly used as the bound in both branch-and-bound

[150] or filter-and-refine algorithms [64, 115, 156, 196, 199] to aggressively narrow search spaces.
In addition, once a candidate is found to have a greater score than F (C∗

obs
,Dobs ), the rest of the

trial can be skipped. This also allows the use of non-exact but low-cost data structures during
the simulation. As an example, a discrete-DBSCAN was used to replace the original DBSCAN for
Monte Carlo trials to pre-estimate upper and lower bounds of F (C∗H0

,DH0 ) [211, 214]; the original
DBSCAN is only re-applied for a subset of trials where the bounds are insufficient to deduce the
relationship. Another widely adopted trick is early-termination [4]. As its name suggests, this
method terminates the whole Monte Carlo simulation once the results from completed trials are
sufficient to conclude the significance. This is extremely efficient if a detection is insignificant. For
example, for a significance level α = 0.01, the minimum number of trials needed to accept H0 is 9
out of 999. It was also shown in [214] that early-termination is highly efficient for general hotspot
detection formulations.
Shared computation has also been used for tasks that remain stationary across Monte Carlo

trials. For example, many expensive operations for candidate enumeration and maximization
(Section 3.5.3) only need to be pre-computed once, such as the sorting of points [88, 89, 104, 207],
and shortest-path trees [156, 196] or fragmentation-multi-graph trees [199] constructed for under-
lying road networks. The possibility of using only a small set of samples from the entire dataset to
construct upper bounds of p-values has been explored. Specifically, a reduction algorithm was de-
veloped in [215]. It shows that the original significance-enforced clustering problem can bemapped
to a series of reduced problems (e.g., from N to 	ρN 
 points) where the p-values of reduced clus-
ters in these problems can be used to upper-bound the p-values of clusters in the original problem.
Moreover, in scenarios where significance testing needs to be performed simultaneously for a col-
lection of clusters, a dual-convergence algorithm was used to gradually narrow the gap between
upper and lower bounds in pruning as the simulation progresses [211, 214].
In addition toMonte Carlo simulation, another line of efforts has explored a variety ofmathemat-

ical approximations of the distribution of F (C∗H0
,DH0 ). Similar to many of the approximation algo-

rithms summarized in Section 3.5.3, the approximation schemes here often aim to asymptotically
approximate the distribution, i.e., narrowing the error bound as the number of samples gradually
grows to infinity. Related work started on one-dimensional data [74, 131] or fixed-cluster-size (e.g.,
equal-size 1D or 2D windows [38, 39]) due to the complexity of analysis, and was later extended
to two- and multi-dimension spaces for several types of test statistics (e.g., maximum normalized
scan score) [40, 76, 77]. Strategies have also been explored to select best-performing parameters in
the approximation models [39], and many approximations have demonstrated good performance
through comparisons with simulated results [39, 76]. As discussed in Section 1, a detailed sum-
mary of these mathematical approximations has been provided in [75]. Compared to the Monte
Carlo based techniques, accurate approximations of test statistic distributions in closed-forms may
greatly reduce the computational overhead. On the other hand, Monte Carlo simulation tends to
be more stable (e.g., fewer assumptions) and more flexible (e.g., can be generally applied to hotspot
detection problems). Some efforts have also tried to combine Monte Carlo simulation with math-
ematical approximation as a middle ground between the two types of approaches [4]. Finally, as
discussed in Section 3.4.3, p-values are commonly calculated in a scale-independent manner (i.e.,
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the same critical value for all hotspot sizes), but scale-aware methods tend to be more robust
[174, 204, 215].

Bayesian Approach: Bayesian based testing schemes were developed to better model uncer-
tainty during hotspot detection by incorporating informative prior information (e.g., expected
number of observations in a spatial region, shape regularity, and size) when available. As explained
in [139], prior information may also be added into frequentist approaches as constraints, weights,
or penalty functions in test statistics [30, 172, 190], but the Bayesian approach offers more flexibil-
ity (e.g., priors as continuous distributions). Moreover, a fundamental difference between the two
frameworks is that the frequentist approach tests the significance of clusters by checking ifH0 can
be rejected, whereas the Bayesian method (e.g., [132]) compares the posterior probabilities of the
null and a set of different alternative hypotheses. In the multivariate Bayesian scan statistic [149],
for example, each alternative hypothesis H1 is defined by a pair of a spatial footprint S (i.e., a can-
didate region) and an event type E (e.g., an increase in pharmacy visits may be caused by a disease
outbreak, promotional sales of OTC medicines, and so on.). A posterior probability is calculated

for each hypothesis as P (H0 |D) = P (D |H0 ) ·P (H0 )
P (D ) and P (H1 (S,E) |D) = P (D |H1 (S,E )) ·P (H1 (S,E ))

P (D ) , where

D is the observed data, H0 is the null hypothesis and H1 is the alternative hypothesis for a region
S and event E (there is typically a large number of (S,E) pairs).

Informative prior distributions and their parameters over space are themost critical components
to calculate the large number of posteriors in Bayesian scan statistics [132, 140, 148, 149]. Unin-
formative priors may reduce the Bayesian approach to certain versions of frequentist approaches
such as the spatial scan statistic where candidates are ranked by their likelihood ratios [139] (many
other types of test statistic functions exist as summarized in Section 3.4.2).
Original forms of Bayesian scan statistics methods [140, 149] estimate the priors by directly

learning their distributions (e.g., a prior conditional probability of an event occurring in each re-
gion) from past data within a relevant temporal window. Due to the large number of candidate
regions (Section 3.5.1), this nonparametric learning requires a large amount of training data to
work. To mitigate this issue, some of the prior distributions are further abstracted to parametric
distributions that are governed by a small number of parameters [119], which can be learned well
with a smaller amount of training data. The downside is that the training is done through a compu-
tationally expensive expectation-maximization process [139]. In addition, the Bayesian approach
normalizes the individual posteriors using the overall probability of data. This is again costly as
P (D) = P (D |H0)P (H0) +

∑
S,E P (D |H1 (S,E))P (H1 (S,E)), which means all combinations of candi-

date regions and events need to be enumerated to calculate the summation. As a result, this method
is constrained to simple regular shapes (e.g., circles, rectangles).
A remedy is the fast subset sums approach [143, 179], which is an alternative to the above region-

based Bayesian scan statistics. This method focuses more on individual locations and subsets of
locations rather than contiguous regions. It was found in [136] that the computationally-expensive
terms in estimating the final posterior probability for each individual location loc , such as the sums
of posteriors of all location-subsets that contain loc , can be exactly computed without enumerating
through all the subsets. The result becomes a map of posterior probabilities on individual locations.
To improve the spatial proximity of locations with high posterior probabilities, a generalized fast
subset sums method was developed [179], in which the proximity and regularity can be controlled
by a new sparsity parameter. Another computational enhancement used in Bayesian approaches
is the construction of a conjugate prior [132]; otherwise expensive simulations such as Markov

Chain Monte Carlo (MCMC) are needed to calculate the posterior.
The randomization test summarized in the frequentist approach is not used here for significance

testing. Instead, the posterior probabilities (e.g., a regular-shaped cluster with highest posterior for
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H1 or a map of posterior probabilities) are directly given to users for decision making. To enforce
a false positive rate more explicitly, historical and synthetic data were used in [136, 179] to select
a proper threshold on the posterior probabilities or its sums, where the number of false positives
under different thresholds can be empirically evaluated.
Many variations have also been developed. A Bayesian network model was developed to com-

bine the spatial-based multivariate Bayesian scan statistic [140] and the population-based PANDA
[43] to better capture details in individual data with spatial consideration [95]. A temporal exten-
sion was later proposed [94], where the increase of density is modeled using a linear function.
A rank-based spatial clustering algorithm uses the Bayesian scan statistic [168, 169] to compute
posterior probabilities on individual locations, which were then used to search for clusters. A ded-
icated Bernoulli version of the Bayesian scan statistic was developed to improve performance on
binary labeled points (e.g., a crime case or not, which is not aggregated) [170].
Integrated Bayesian-frequentist based approaches have been explored. A grid-based Bayesian

variable window approach first uses Bayesian to define the test statistic and then employs a fre-
quentist based randomization test to perform significance testing [226]. Similarly, methods such
as anomalous group detection [50] and fast generalized subset scan [123] use a Bayesian network
to evaluate and select the best candidates, and randomization tests to compute critical values.

3.7 Evaluation

One additional benefit of this statistically-robust clustering formulation is that ground truth
hotspots are mathematically well-defined using point-process-based hypotheses (Section 3.6). This
allows rigorous synthetic data generation, where true hotpots with varying properties can be in-
serted into point processes to generate validation datasets (e.g., Figures 4 and 5). Such datasets
have been widely used to evaluate results from different clustering approaches [6, 60, 87, 107, 129,
134, 172] under a variety of assumptions (e.g., data size, effect size, spatial scale). Typical metrics
used in the literature include detection power (i.e., 1-β where β is the Type-II error) [60, 107, 134];
rate of spurious results (i.e., Type-I error) or a total number of spurious clusters detected [149, 215];
precision, recall and F1-scores [207, 213, 215]; and the number of days in advance in detecting an
emerging hotspot in the spatio-temporal case [95, 140, 141, 149, 179]. While counting the num-
ber of spurious detections in H0-data is straightforward, measuring if a true hotspot is success-
fully detected can be tricky. Different strategies have been used to conduct this. For tessellated
data (e.g., grid or polygon inputs), the success is often measured by the overlap ratio (i.e., inter-
section over union—IoU) between the true pattern and detection [95, 179, 191]. This can also be
generalized to the IoU between point sets [211]. At the object level, IoU may be less robust. For
example, the IoU between two circles decreases quickly even with small differences in center lo-
cations and radii [215]. Thus, separate criteria on center accuracy—which may be important in
applications (e.g., source of infection or pollution [102]; locations of serial criminals [64])—and
size similarity have been used as replacements [207, 215]. To make the validation process more
holistic, incompatible assumptions have been used to generate synthetic data and test the sensitiv-
ity of techniques (e.g., regular vs. irregular shapes [45, 60, 200], normal vs. non-normal processes
for continuous-value based clustering [88, 89, 104]). In addition to quantitative evaluation, qualita-
tive evaluation (e.g., real or simulated case studies, visual inspection) is also commonly employed
[60, 63, 156, 162, 196, 211, 214].
In general, many empirical results (e.g., [146, 174, 204, 213, 215]) have shown that spatial hotspots

are easier to detect with larger data sizes, effect sizes, and spatial footprints; fewer number of true
hotspots; less uncertainty (e.g., due to aggregation or positional inaccuracy); regular shapes, and
so on. Related theoretical results have also been developed (e.g., detectability of a clustering signal)
[34, 166, 204]. Validation using real-world datasets (e.g., crime cases, traffic accidents, COVID-19

ACM Computing Surveys, Vol. 55, No. 2, Article 36. Publication date: January 2022.



36:26 Y. Xie et al.

Table 5. Examples of Open Datasets for Evaluation

Category Examples of open datasets

Simulated data with
ground truth

Northeastern US benchmark [2, 25–27, 55, 107, 186]; New York City disease
outbreaks benchmark [108, 200]; arbitrarily-shaped (with customizable gener-
ation code) [211, 214], and so on.

Real data with known
ground truth

Battle of the water sensor networks [25–27, 37, 158]; New York Bronx Legion-
naire’s disease outbreak [63]; Disease infection at airports (social network data)
[187], and so on.

Real data without
known ground truth∗

New York cancer incidence [5, 24, 79], New York birth defects [5, 185], Sudden
Infant Death Syndrome (SIDS) occurrences in North Carolina [47, 127]; Metro
Transit bus trajectories with enginemeasurements [115]; Los Angeles highway
traffic [26, 27]; Orlando pedestrians fatalities [196], and so on.

∗The score of the best significant cluster and computational time are often used to compare methods, and domain

knowledge is used to identify explanations and surprises.

symptoms) often require deep involvement of domain experts. Many studies have used combi-
nations of real-world base data (e.g., spatial domains such as city boundaries, county maps, and
road networks [60, 87, 102, 107, 156, 196, 199]; control data such as population or traffic volume
[115, 140, 146]) and synthetic event data (e.g., disease cases) in evaluation. Moreover, to further im-
prove synthetic data’s representativeness of real-world phenomenons, studies have gone beyond
simple statistical assumptions to generate more realistic distributions (e.g., using imitation learn-
ing), such as synthetic population and contact networks [23, 82, 227], human mobility maps [18],
trajectories [159], and so on. These strategies for realistic spatial data generation can help better
estimate the performance of techniques in real scenarios. Finally, we list examples of open datasets
across various domains that can be leveraged for evaluation and comparison in Table 5.

4 FUTURE OPPORTUNITIES

There are many opportunities lying ahead to: (1) further enhance existing hotspot detection tech-
niques, (2) incorporate statistical rigor into general clustering methods, (3) harness emerging prob-
lems and new forms of spatial data, and (4) explore synergistic integrationwith learning for mutual
benefits.

4.1 Improving SolutionQuality, Flexibility, and Efficiency

As discussed in Section 3.4.2, the design of a test statistic is a critical component that directly de-
termines the solution quality. Moreover, the design is non-trivial as localized test statistics (e.g.,
likelihood ratios [64, 102, 145], density ratios [156, 184, 196, 199], and entropy measures [207]) can
be easily biased when being used to compare and rank candidates in hotspot detection, especially
across scales [34, 172, 174, 204]. While approaches have been developed to correct the bias and
restore the optimal detection power (e.g., [34, 172, 174, 204]), most of them require sophisticated
analysis and have only been explored in special cases of hotspot mapping (e.g., Gaussian white
noises, one-dimensional intervals, rectangular regions). This limits the methods’ adoption in gen-
eral scenarios summarized in Section 3, despite their importance. An interesting direction would
be to explicitly explore the tradeoff between flexibility and optimality, and develop more generally
applicable frameworks that may not necessarily fully restore the optimal power. In addition, re-
cent methods that try to correct the bias by incorporating spatial-nondeterminism-awareness are
less dependent on the specification of problems [207, 213, 215], but they do introduce additional
computational complexity and require more efficient algorithms and data structures. Scalability-
wise, existing algorithmic building blocks (Section 3.5.3) have not yet considered applications in
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the context of spatial big data [67, 165, 221]. Enabling frameworks of large-scale applications need
to be developed to model additional complexity (e.g., I/O, network communication, indexing) in
distributed environments (e.g., Apache Sedona [221]).

4.2 More Holistic Modeling

The tradeoff between detection power and robustness against spurious patterns has not been suffi-
ciently explored. While statistical rigor is certainly important to suppress false alarms—especially
in real-world applications where resource is limited, missing one true hotspot in many cases may
turn out to bemore costly in certain scenarios (e.g., the spread of COVID-19). Thus, to better inform
decision making, an integration of the two indicators may be needed [140, 215]. This integration
can be non-trivial as the relative weights of detection power and false positive rate may be nonsta-
tionary during different stages of an event (e.g., disease spread) and can be affected by additional
dynamic factors (e.g., cost of remedy, impact, policies, forecasts, geographical heterogeneity, local
demographics). Consideration of these complex factors in hotspot recommendation may require
measures beyond a single test statistic and simple criteria based on significance levels. These new
modeling will also require new computational frameworks.
Moreover, the vast majority of techniques use the simplifying assumption that there is a single

hotspot in the input data for H1 [112, 139]. Although this does not necessarily limit the use of the
approaches in detecting arbitrary number of clusters [4, 64, 207, 215] (e.g., by performing rounds of
detection until the best candidate is no longer significant, as discussed in Section 3.6.1), it may cause
the methods to work sub-optimally due to shadow-effects between multiple hotspots [225]. For
example, existence of other hotspots increases the baseline score outside one true hotspot, making
it harder to confirm its significance. While several methods have been developed to mitigate this
issue [112, 225], they are again limited to certain special cases and have not been widely adopted
(e.g., not explored for Bayesian modeling [139]). There are opportunities to more broadly consider
this issue in hotspot detection and develop general frameworks to address it.
The uncertainty in input datasets also has not been well modeled in general except a few efforts

(e.g., [25, 90, 155]). Given that existing datasets in many problems (e.g., disease surveillance) are
often provided at an aggregated level (e.g., by county or zip code) due to privacy concerns, such
positional uncertainty of individual points can substantially affect solution quality [52, 117, 120].
Explicit techniques (e.g., Dempster– Shafer based modeling) are needed in future research to im-
prove the robustness of the techniques in face of uncertainty.

4.3 Expanding to Broad Problems and Emerging Spatial Data

A major advantage of the wide variety of techniques summarized in this article is their statisti-
cal robustness, which allows explicit control of the rate of spurious detections in the output. This
modeling has also been used recently to improve the statistical robustness and automate param-
eter selection of general clustering techniques. Significant DBSCAN [211, 214], for example, can
effectively filter out a large number of spurious clusters generated by DBSCAN in data containing
heavy-noise and clusters of varying densities. The incorporation of statistical modeling can also
greatly reduce efforts in parameter selection. Similarly, a significant spatial data partitioning ap-
proach based on non-parallel split lines has been developed [72]. However, in general, statistically
robust formulations have not been explored for most general clustering and data partitioning ap-
proaches (e.g., HDBSCAN [29, 152], spectral clustering [202], deep clustering [125], and many oth-
ers [217]). Many opportunities lie ahead to incorporate statistical rigor into these broad techniques.
In addition, there are many newly emerging spatial data types and problems where hotspot

detection techniques may be valuable. As an example, location-enriched social network data (e.g.,
geo-tagged tweets) open up opportunities for monitoring disease spread and many other events
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(e.g., disasters) using novel formulations of hotspot detection [187, 188]. In the context of COVID-
19, business points-of-interest data and their visits (e.g., SafeGraph [3]) can also be leveraged in
hotspot detection to generate timely warning of high-risk regions and inform policy making. The
use of these new types of datasets in hotspot detection is also challenging due to well-known issues
including data quality (e.g., positional accuracy and uncertainty [52, 117]), non-stationarity (e.g.,
algorithm dynamics, which are considered as major factors that cause erroneous predictions in
Google Flu Trends in 2013 [110]) and representativeness (e.g., selection bias [100]).
Many new types of data are also available in the network space. First, traditional GPS trajectories

are currently underutilized in hotspot detection despite their potential importance (e.g., transporta-
tion safety, environment, smart cities, and public health) [15]. Second, attribute-enriched trajecto-
ries, including on-board-diagnostic data (i.e., vehicle trajectories with hundreds of real-time engine
measurements [113, 114]) and connected vehicle data [12], also provide lots of new possibilities in
novel hotspot detection formulations (e.g., routes with abnormally high emission or energy con-
sumption [115]). Also, many events in urban areas happen and propagate through road networks
rather than the Euclidean space, so current research that are mostly focused on the Euclidean space
may be expanded to the network space to take the full advantage of new high-resolution datasets.
Advancements in these directions may require new statistical formulations (e.g., physics-aware
point processes) and computational frameworks.
New opportunities also exist to go beyond existing hotspot formulations to address emerging

societal problems. For example, the lack of diversity in many domains has raised major concerns
in recent years on the resilience of our communities (e.g., low crop diversity in agriculture poses
high risk to global food security [164]). Research landscape in spatial hotspot detection can be
broadened to help address these critical issues faced by our society [207].

4.4 Synergistic Integration with Learning

One fundamental property of spatial data is spatial heterogeneity, i.e., data distributions are non-
stationary over space, violating the common identical distribution assumption under machine
learning methods. Recently, incorporation of statistically-robust formulations (e.g., multivariate
scan statistics) in deep learning models has shown promising results in tackling spatial data het-
erogeneity and substantially improving model performances [210, 212].

On the other hand, statistically robust clustering techniques can also leverage advances from
related communities to improve its capacity. For example, the growing maturity of deep learning
[111], especially in computer vision and natural language processing, may provide a useful way
to further enrich the variety of datasets that can be used for hotspot detection. While it can be
risky to directly use deep learning to find hotspots due to concerns such as non-interpretability
and overfitting issues [31], these models can help preprocess large volumes of visual and text infor-
mation from remote sensing data (satellite or aerial imagery, LiDAR point clouds) [93, 208], social
platforms (e.g., Twitter, Flickr), traffic cameras, connected vehicles, and so on, to generate valuable
new data sources for hotspot detection, which would otherwise be tedious, time-consuming and
not scalable. Moreover, learning approaches (e.g., generative adversarial networks) may be lever-
aged to generate more realistic simulation data under various scenarios to improve evaluation
[18, 159, 227].
From a computational perspective, data-driven approaches may also be used to reduce compu-

tation load and speed up the enumeration process [118] in scenarios where computing resource
is limited on the application-side or real-time performance (e.g., interaction) is needed. Machine
learning methods, for example, may be used to heuristically prune low-potential enumeration
spaces or recommend a list of high-potential regions for the search to prioritize [17, 223]. Other
settings such as reinforcement learning can also be helpful in this scenario.
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To reduce the need of training data (e.g., in Bayesian hotspot detection techniques [140, 149]),
novel transfer learning methods [195] can be explored to reuse relevant parameters based on sim-
ilarity between domain distributions across spatial locations, time periods, data, or problems.

5 CONCLUSIONS

In this article, we provided an overview of statistically robust clustering techniques for spatial
hotspot mapping. Given the wide application of hotspot mapping techniques in societal applica-
tions and the potential importance (e.g., infectious disease surveillance for COVID-19 scenarios),
the goal is to present a taxonomy of the vast literature in different key sub-fields (e.g., statistical
modeling, maximization algorithms, significance testing) to trigger more thoughts from the broad
computing communities.1 On the other hand, the statistically robust formulations may provide
new paths for improving general clustering (e.g., removing spurious clusters) and learning tech-
niques (e.g., heterogeneity); similarly, the validation strategies described (e.g., statistical definition
based ground-truth generation) can be potentially used to expand existing evaluation methods for
general clustering. To serve these purposes, we selected the terms clustering and hotspot mainly
due to their common use and adoption in the computing community.2

We hope that the taxonomies and summaries of techniques provided in this article can serve
as a stepping stone for generating new ideas and approaches (e.g., future directions discussed in
Section 4) in computing research, and help practitioners select appropriate paradigms based on
their data and application needs.
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