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Abstract

The intrinsic DNA sequence preferences and cell-type specific cooperative partners of transcription
factors (TFs) are typically highly conserved. Hence, despite the rapid evolutionary turnover of indi-
vidual TF binding sites, predictive sequence models of cell-type specific genomic occupancy of a TF
in one species should generalize to closely matched cell types in a related species. To assess the via-
bility of cross-species TF binding prediction, we train neural networks to discriminate ChIP-seq peak
locations from genomic background and evaluate their performance within and across species. Cross-
species predictive performance is consistently worse than within-species performance, which we show
is caused in part by species-specific repeats. To account for this domain shift, we use an augmented
network architecture to automatically discourage learning of training species-specific sequence fea-
tures. This domain adaptation approach corrects for prediction errors on species-specific repeats and
improves overall cross-species model performance. Our results demonstrate that cross-species TF bind-

ing prediction is feasible when models account for domain shifts driven by species-specific repeats.
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Introduction

Characterizing where transcription factors (TFs) bind to the genome, and which genes they regulate, is key
to understanding the regulatory networks that establish and maintain cell identity. A TF’s genomic occu-
pancy depends not only on its intrinsic DNA sequence preferences, but also on several cell-specific factors,
including local TF concentration, chromatin state, and cooperative binding schemes with other regulators
(Siggers and Gordan 2014; Slattery et al. 2014; Srivastava and Mahony 2020). Experimental assays such as
ChIP-seq can profile a TF’s genome-wide occupancy within a given cell type, but such experiments remain
costly, rely on relatively large numbers of cells, and require either high-quality TF-specific antibodies or
epitope tagging strategies (Park 2009; Savic et al. 2015). Accurate predictive models of TF binding could

circumvent the need to perform costly experiments across all cell types and all species of interest.

Cross-species TF binding prediction is complicated by the rapid evolutionary turnover of individual
TF binding sites across mammalian genomes, even within cell types that have conserved phenotypes. For
example, only 12-14% of binding sites for the key liver regulators CEBPA and HNF4A are shared across
orthologous genomic locations in mouse and human livers (Schmidt et al. 2010). On the other hand, the
general features of tissue-specific regulatory networks appear to be strongly conserved across mammalian
species. The amino acid sequences of TF proteins, their DNA-binding domains, and intrinsic DNA sequence
preferences are typically highly conserved (e.g., both CEBPA and HNF4A have at least 93% whole protein
sequence identity between human and mouse). Further, the same cohorts of orthologous TFs appear to
drive regulatory activities in homologous tissues. Thus, while genome sequence conservation information
is not sufficient to accurately predict TF binding sites across species, it may still be possible to develop
predictive models that learn the sequence determinants of cell-type specific TF binding and generalize
across species. Indeed, several recent studies have demonstrated the feasibility of cross-species prediction
of regulatory profiles using machine learning approaches (Chen et al. 2018; Kelley 2020; Schreiber et al.

2020; Huh et al. 2018).

Here, we evaluate different training strategies on the generalizability of neural network models of cell-
type specific TF occupancy across species. We train our model using genome-wide TF ChIP-seq data in a
given cell type in one species, and then assess its performance in predicting genome-wide binding of the
same TF in a closely matched cell type in a different species. Specifically, we focus on predicting binding of

four TFs (CTCF, CEBPA, HNF4A, and RXRA) in liver due to the existence of high quality ChIP-seq data in
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both mouse and human. We proceed to investigate gaps in performance between within-species and cross-
species models, with the aim of identifying specific genomic patterns that are associated with systematic

misprediction specifically across species.

We further evaluate the model performance improvement gained from integrating an unsupervised
domain adaptation approach into model training. This domain adaptation strategy involves a neural net-
work architecture with two sub-networks that share an underlying convolutional layer. We train the two
sub-networks in parallel on different tasks. One subnetwork is trained with standard backpropagation
to optimize classification of TF bound and unbound sequences in one species (the source domain). The
other subnetwork attempts to predict species labels from sequences drawn randomly from two species (the
source and target domain), but training is subject to a gradient reversal layer (GRL) (Ganin et al. 2016).
While backpropagation typically has the effect of giving higher weights to discriminative features, a GRL
reverses this effect, and discriminative features are down-weighted. Thus, our network aims to encourage
features in the shared convolutional layer that discriminate between bound and unbound sites, while si-
multaneously discouraging features that are species-specific. Importantly, this approach does not use TF
binding labels from the target species at any stage in training. We conclude by assessing the effectiveness

of domain adaptation in terms of reducing systematic mispredictions.

Results

Conventionally trained neural network models of TF binding show reduced predictive performance

across species

First, we set out to evaluate the ability of neural networks to predict TF binding in a previously unseen
species. We chose neural networks due to their ability to learn arbitrarily complex predictive sequence
patterns (Avsec et al. 2021a; Avsec et al. 2021b; Fudenberg et al. 2020; Kelley 2018; Koo et al. 2021).
In particular, hybrid convolutional and recurrent network architectures have successfully been applied to
accurately predict TF binding in diverse applications (Quang and Xie 2016; Quang and Xie 2019; Srivastava
et al. 2020). The motivation behind these architectures is that convolutional filters can encode binding site
motifs and other contiguous sequence features, while the recurrent layers can model flexible, higher-order
spatial organization of these features. Our baseline neural network is designed in line with these state-of-

the-art hybrid architectures (Figure 1).
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Figure 1: Conventional network architecture. Convolutional filters scan the 500-bp input DNA sequence
for TF binding features. The convolutional layer is followed by a recurrent layer (LSTM) and two fully con-

nected layers. A final sigmoid-activated neuron predicts if a ChIP-seq peak falls within the input window.
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Using this architecture, named the “conventional model,” we trained the network to predict whether
a given input sequence contained a ChIP-seq peak or not, using training data from a single source species,
and then assessed the model’s predictive performance on entire held-out chromosomes in both the source
species and a target (previously unseen) species. We chose mouse and human as our species of interest due
to the availability of high-quality TF ChIP-seq datasets in liver from both species and the high conservation
of key regulator TFs present in both species. For four different TFs, we trained two sets of models: one with
mouse as the source species, and the other with human as the source species. To monitor reproducibility,

model training was repeated 5 times for each TF and source species.

As models trained for 15 epochs, we monitored source-species and target-species performance on
held-out validation sets (Figure 2). Performance was measured using the area under the precision-recall
curve (auPRC) which is sensitive to the extreme class imbalance of labels in our TF binding prediction
task. We observed that over the course of model training, improvements in source-species auPRC from
epoch to epoch did not always translate to improved auPRC in the target species. Generally, cross-species
auPRCs showed greater variability across epochs and model replicates compared to source-species auPRCs.
For HNF4A in particular, the mouse-trained models’ performance on the human validation set appeared
to split part way through training — based on cross-species auPRC, some model-replicates appeared to
become trapped in a suboptimal state relative to other models (see divergence in red lines in left column
of Figure 2); meanwhile, the training-species auPRC did not show a similar trend. Evidently, validation
set performance in the source species is not an ideal surrogate for validation set performance in the target

species.

Nevertheless, the epochs where models had highest source-species auPRCs were often epochs where
models had near-best cross-species auPRC. Thus, we selected models saved at the point in training when
source-species auPRC was maximized for downstream analysis. We next evaluated performance on held-

out test datasets (distinct from the validation datasets) from each species (Figure 3).

We observe across all TFs that for a given target species, the models trained in that species always
outperformed or matched the performance of the models trained in the other species. We refer to this
within-species vs. cross-species auPRC difference as a cross-species performance gap, while noting that
models trained in either species were still relatively effective at cross-species prediction. Because we ob-
serve a wider cross-species gap for mouse-trained models predicting in human than for human-trained

models predicting in mouse, subsequent analysis focuses on addressing the mouse-to-human gap.
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Figure 2: Model performance over the course of training, evaluated on held-out validation data from mouse
(left) and human (right) Chromosome 1. Five models were independently trained for each TF and source
species (mouse-trained models in blue, human-trained models in red). Values at epoch 0 are evaluations
of models after weight initialization but before training (akin to a random baseline). Note that auPRCs are
not directly comparable between different validation sets because ground truth labels are derived from a
different experiment for each dataset; the auPRC will depend on the fraction of sites labeled bound as well

as model prediction correctness. 6
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Figure 3: Model performance evaluated on held-out test data: Chromosome 2 from human (top) and mouse

(bottom). Five models were independently trained for each TF and source species.



101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

To get a sense of how specific to our model design or training strategy this cross-species gap might be,
we applied multiple sufficiently different machine learning approaches to the same problem and datasets
and assessed whether the cross-species gap persists. First, we trained gapped k-mer support vector ma-
chines, or gkSVMs, to classify a balanced sample of bound vs. unbound windows for each TF and species
(Ghandi et al. 2014; Lee 2016). We then evaluated those models on the set of non-overlapping windows
in each test dataset (Supplemental Fig. S1). We observe that the cross-species gap persists, although it
shrinks in absolute magnitude, presumably due to the drastically lower auPRC values across the board.
These auPRCs also demonstrate that our neural network approach can indeed outperform related methods

on this task.

Next, we sought to assess the cross-species performance of another state-of-the-art deep learning
model trained on a related TF binding prediction task, distinct from our binary classification setup. We ap-
plied a BPNet-like profile model, which predicts the distribution of the raw, base-resolution ChIP-seq read
profile at a given genomic window rather than a 0-1 binary label, to both our mouse and human datasets
across our four TFs (Avsec et al. 2021b). The profile models were trained using a peak-enriched subset of
the training data used by the binary models, and performance was evaluated on the same test datasets (see

Methods).

First, we investigated how well individual profile predictions transfer across species (Supplemental
Fig. S2, bottom). We observe that overall, within-species profile models are usually able to predict both the
location and the shape of peaks accurately. Cross-species profile models tend to predict the peak location
nearly as well as within-species models, but for some TFs, there is a clear discrepancy between the predicted
and true profile shape. Specifically, there are apparent non-biological differences in experimental protocol
or quality between our matched datasets across species; this can cause profile models that learned how
reads typically distribute around binding sites from one experiment to appear to generalize imperfectly to

other datasets with different read distributions about binding sites.

Next, we quantified the performance of the profile models, using the predicted total number of reads
across a genomic window as a proxy for binary label prediction (Supplemental Fig. S2, top). We again
observe cross-species performance gaps for most datasets. We also note that the auPRC values attained by
the profile models are comparable to those attained by our conventional model in most cases, so we decided
to focus on understanding the cross-species gap in the context of the conventional model in the remainder

of the study.



131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

The mouse-to-human cross-species gap originates from misprediction of both bound and unbound sites

Since the target-species model consistently outperforms the source-species model (on target-species valida-
tion), there must be some set of differentially predicted sites that the target-species model predicts correctly,
but the source-species model does not. By comparing the distribution of source-model and target-model
predictions over all target-species genomic windows, we can potentially identify trends of systematic errors
unique to the source-species model. Whether these differentially predicted sites are primarily false posi-
tives (unbound sites incorrectly predicted to be bound), false negatives (bound sites incorrectly predicted
as unbound), or a combination of both can provide useful insight into the performance gap between the

source and target models.

For each TF, we generated predictions over the genomic windows in the human test dataset from both
our mouse-trained and human-trained models. Then, we plotted all of the human-genome test sites using
the average mouse model prediction (over 5 independent training runs) and the average human model
prediction as the x- and y-axis, respectively (Figure 4). Bound and unbound sites are segregated into

separate plots for clarity.

For three of the four TFs, the unbound site plots show a large set of windows given low scores by
the human model but mid-range to high scores by the mouse model — these are false positives unique to
cross-species prediction (Figure 4 right column, bottom/bottom-right region of each plot). These sites are
distinct from false positives mistakenly predicted highly by both models, as those common false positives
would not contribute significantly to the auPRC gap. Even for CTCEF, the exception to the pattern, there
is an enrichment of unbound sites that can be characterized as mispredictions specific to mouse models.
Additionally, in the bound site plots of all TFs except CEBPA, we see some bound sites that are scored
high by the human model but are given mid-range to low scores by the mouse model — these are cross-
species-unique false negatives (Figure 4 left column, top left region of each plot). Hence, our cross-species
models are committing prediction errors in both directions on separate sets of site, although the errors in

the unbound sites appear more prevalent than the errors in the bound sites.
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Figure 4: Both bound and unbound sites from human Chromosome 2 show evidence of differential binding
predictions by human-trained (y-axis) vs. mouse-trained (x-axis) models. For visual clarity, only 25% of

bound sites and 5% of unbound sites are shown (sampled systematically).
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Motif-like sequence features discriminate between true-positive and false-negative mouse model pre-

dictions

Since the only input to our models is DNA sequence, sequence features must be responsible for differential
prediction of certain sites across source and target models. Other potential culprits, such as chromatin
accessibility changes or co-factor binding, may contribute to TF binding divergence across species without
changes to sequence; but without an association between those factors and sequence, the human-trained
model would not be able to gain an advantage over the mouse-trained model by training on sequence input

alone. Thus, we focused on genomic sequence to understand differential site prediction.

To begin, we searched for sequence features associated with differential prediction of bound sites from
the human genome — specifically, we compared bound sequences that both the human-trained and mouse-
trained models correctly predicted (true positives) to bound sequences the human-trained model correctly
predicted but the mouse-trained model did not (mouse-specific false negatives). We used SeqUnwinder, a
tool for deconvolving discriminative sequence features between sets of genomic sequences, to extract motifs
that can discriminate between the two groups of sequences and quantitatively assess how distinguishable
the sequence groups are (Kakumanu et al. 2017). SeqUnwinder was able to distinguish mouse-specific
false negatives from true positives and randomly selected background genomic sequences with area under
the ROC curve (auROC) of 0.78, 0.79, 0.80, and 0.87 for CTCF, CEBPA, HNF4A, and RXRA, respectively.
Supplemental Fig. S3 shows the breakdown of sequence features that are able to distinguish between
mouse-specific false negatives and true positives for each TE. Thus, we were able to identify TF-specific
motifs that were enriched (or depleted) at mouse-specific false negatives. However, we did not observe
systemic sequence features that unanimously contributed to the performance gap across all TFs studied,

beyond a poly-A/poly-T motif.

Primate-unique SINEs are a dominant source of the mouse-to-human cross-species gap

One potential source of sequences that could confuse a cross-species model are repeat elements found
in the genome of the target species but not the source species. Alu elements, a type of SINE, cover a
large portion (10%) of the human genome and are found only in primates (Batzer and Deininger 2002).
Several other factors make Alus even more likely candidates for confounding mouse-to-human TF binding

predictions: they are enriched in gene-rich, GC-rich areas of the genome and contain 33% of the genome’s

11
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CpG dinucleotides (a marker for promoter regions); they may play a role in gene regulation; and in silico
studies have previously found putative TF binding sites within Alu sequences (Batzer and Deininger 2002;

Schmid 1998; Ferrari et al. 2019; Polak and Domany 2006).

Figure 5 shows only the unbound human-genome windows that overlap annotated Alu elements. Ta-
ble 1 provides corresponding quantification of Alu enrichment. Note that while Alu elements are typically
poorly mappable, and it is thus often difficult to assign them as bound or unbound in ChIP-seq experiments,
we focus analyses here only on highly mappable Alu instances (see Methods). Across all four TFs, we see
that Alus are substantially enriched in the unbound windows mispredicted only by the mouse model. On
average, 89% of these false positives unique to the mouse model overlap with an Alu element, compared
to the average overlap rate of 21% for unbound sites overall, or 18% for unbound sites incorrectly pre-
dicted by both models. In contrast, Alus on average only overlap 6% of false negatives unique to the mouse
model, which is less than the overlap fraction for bound sites overall (15%) and for false negatives common
to both models (11%). We repeated this analysis using other repeat classes, including LINEs and LTRs,
and confirmed that no other major repeat family shows an enrichment of comparable strength with either
the false positives or false negatives unique to the mouse model (Supplemental Table S1). Investigating
the enrichment of individual Alu subfamilies in mouse-model-unique false positives showed that this phe-
nomenon is not restricted to a single subtype of Alu, but that subfamilies are enriched at different levels in
a manner that is TF-specific and varies particularly between the AluJ, AluS, and AluY subfamily groupings

(Supplemental Fig. S4).

Thus, the vast majority of the false positives from the human genome mispredicted only by mouse
models can be directly attributed to one type of primate-unique repeat element. We did not observe any
similar direct associations between primate-unique elements and the false negatives unique to the mouse

model, besides the expected depletion of Alu elements.

Model interpretation reveals sequence features driving divergent mouse and human model predictions

To understand why mouse and human models make divergent predictions at some sites, we compared base-
pair resolution importance scores from both models at selected example sites. Specifically, we implemented
a strategy similar to in silico mutagenesis (ISM) where a base’s score was determined by the differential
model output between the original sequence and the sequence with 5bp centered on that base replaced

with bases from a dinucleotide-shuffled reference (Alipanahi et al. 2015). We observed that this strategy

12
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TF | Bound FN (Both Models) FN (Mouse Only) | Unbound FP (Both Models) FP (Mouse Only)

CTCF 12.6% 12.8% 9.9% 21.3% 10.0% 78.6%
CEBPA | 18.3% 11.1% 0.0% 21.3% 22.9% 84.8%
HNF4A | 13.6% 10.4% 8.0% 21.3% 16.9% 95.1%
RXRA | 13.7% 10.6% 5.5% 21.4% 20.3% 97.4%

Table 1: Percent of windows overlapping an Alu element, for various categories of genomic windows from
the held-out test set. Alu elements dominate the false positives unique to the mouse models. FPs: false

positives. FNs: false negatives. See Methods for more details on site categorization.

outperformed backpropagation-based scoring methods, potentially by avoiding gradient instability.

First, we compared importance scores between the mouse and human models at example bound sites
that both models predicted correctly (Supplemental Fig. S5). If the two models learned to use similar
logic to make binding predictions, we would expect to see similar sequence features highlighted in the
importance scores. Overall, we observe that the scores generated by the mouse and human models are
reasonably concordant, although the extent of agreement varies noticeably across TFs. CTCF and CEBPA
show the greatest tendency for agreement in importance scores across models. HNF4A showed a slightly
weaker trend of score agreement, while RXRA importance scores were the most likely to disagree across
models, including instances where motifs are highlighted by high scores from one model but given near-
zero scores by the other model. However, across all TFs, instances of the primary cognate motif for the

appropriate TF are common in the sequences marked by higher importance scores from either model.

Next, we repeated the analysis on example unbound windows classified as mouse-model-unique false
positives (Supplemental Fig. S6). At these sites, the mouse model’s prediction scores overshoot those of the
human model by at least 0.5. Importance scores in this set of sites show much greater disagreement between
the two models. Commonly across all four TFs, we observed two trends: first, the mouse models often
assigned high importance to motif-sized contiguous stretches of bases which were not similarly recognized
by the human models. These pseudo-motifs can superficially resemble approximate matches to the TF’s
cognate motif. Second, the human models commonly showed apparent sensitivity to specific, often sparse
features which received negative scores of moderate to high magnitude. These observations imply that the
human model has learned to ignore certain sequence features that the mouse model’s scores suggest are
favorable for binding. Furthermore, the human model may be adopting that strategy based on whether or

not there are nearby sequence contexts that indicate that the sequence is not a binding site.

14
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Figure 6: Performance of models that are mouse-trained (blue), human-trained with SINE examples (red),
and human-trained without SINE examples (yellow), evaluated on the held-out human Chromosome 2.

Five models were independently trained for each TF and training species.

Human models trained without SINE examples behave like hybrid mouse-human models

To further characterize how Alu elements are influencing cross-species model performance, we trained
additional models on the human dataset after removing all windows from the training dataset that overlap
with any SINEs (Figure 6). We filtered out all SINEs, including the primate-specific FLAM and FRAM
repeats as well as Alus, to avoid keeping examples that shared any sequence homology with Alus. The no-
SINE models were evaluated on the same held-out chromosome test data used previously (which includes
SINEs). For all TFs except CTCF, the no-SINE models perform substantially worse than models trained

using the complete human training sets.

Site-distribution plots show that, for unbound sites, no-SINE human-trained models make mispre-
dictions in a pattern similar to mouse-trained models; there is a similarly-sized subset of unbound sites
mispredicted by the no-SINE human-trained models but not by the standard human-trained models (Fig-
ure 7). Plotting only the sites that overlap with Alus confirms that the false positives unique to the no-SINEs
model are predominantly Alu elements (Supplemental Fig. S7). For bound sites, on the other hand, no-

SINE human-trained models make predictions that generally agree with predictions from standard human-

15
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examples. Similar to mouse-trained models, no-SINE human-trained models systematically mispredict

some unbound sites.
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trained models.

This suggests that the Alu false positives unique to the mouse-trained model may simply be due to the
fact that mouse models are not exposed to Alus during training (i.e., Alu elements are “out of distribution”).
In addition, the reduction in model-unique false negatives observed when the no-SINE human-trained
model is compared to the normal human-trained model suggests that those mispredictions are unrelated

to Alus.

Domain-adaptive mouse models can improve cross-species performance

Having observed an apparent “domain shift” across species, partially attributable to species-unique re-
peats, our next step is to ask how we might bridge this gap and reduce the difference in cross-species model
performance. Our problem is analogous to one encountered in some image classification tasks, where the
test data is differently distributed from the training data to the extent that the model performs well on
training data but much worse on test data (for example, the training images were taken during the day
but the test images were taken at sunset). In these situations, various techniques for explicitly forcing the
model to adapt across different image “domains” have been shown to improve performance at test time

(e.g., Long et al. 2015; Bousmalis et al. 2016; Sun et al. 2016).

One unsupervised domain adaptation method utilizes a gradient reversal layer to encourage the “fea-
ture generator” portion of a neural network to be domain-generic (Ganin et al. 2016). The gradient reversal
layer’s effect is to backpropagate a loss to the feature generator that prevents any domain-unique features
from being learned. We chose to test the effectiveness of this version of domain adaptation for our cross-
species TF binding prediction problem because we have observed evidence that domain-unique features

(species-unique repeat elements) were a major component of the cross-species domain shift.

We modified our existing model architecture to perform training-integrated domain adaptation across
species (Figure 8). A gradient reversal layer (GRL) was added in parallel with the LSTM, taking in the result
of the max-pooling step (after the convolutional layer) as input. During standard feed-forward prediction,
the GRL merely computes the identity of its input, but as the loss gradient backpropagates through the
GRL, it is reversed. The output of the GRL then passes through two fully connected layers before reaching a
new, secondary output neuron. This secondary output, a “species discriminator,” is tasked with predicting

whether the model’s input genomic window is from the source or target species. The model training process
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Figure 8: Domain-adaptive network architecture. The top network output predicts TF binding, as before,
while the bottom network output predicts the species of origin of the input sequence window. The gradient
reversal layer has the effect of discouraging the underlying convolutional filters from learning sequence

features relevant to the species prediction task.
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is modified so that the model is exposed to sequences from both species, but only the binding labels of
the source species (see Methods). Without the GRL, adding the species discrimination task to the model
would encourage the convolutional filters to learn sequence features that best differentiate between the
two species — features like species-unique repeats — but with the GRL included, the convolutional filters
are instead discouraged from learning these features. We hypothesize that this domain-adaptive model will

outperform our basic model architecture by reducing mispredictions on species-unique repeats.

We trained domain-adaptive models using the same binding training datasets as before and evaluated
performance with the same held-out datasets. We observe that the auPRC for our domain-adaptive models
on cross-species test data is moderately higher than the auPRC for the basic mouse models for all TFs except
CTCEF, where auPRCs are merely equal (Figure 9, top, blue/left vs. green/middle dots). The domain-
adaptive models” auPRCs on mouse test data, meanwhile, is comparable to the auPRCs of basic models
(Figure 9, bottom, blue/left vs. green/middle). While the auPRC improvement is promising, it is also
modest in comparison to the full cross-species gap; the domain-adaptive models still do not achieve a level

of performance comparable to same-species models (Figure 9, top, green/middle vs. red/right).

Domain-adaptive mouse models reduce over-prediction on Alu elements

Next, we repeated our site-distribution analysis to determine what constituted the domain-adaptive mod-
els” improved performance. The unbound site plots in Figure 10 compare human genome predictions
between domain-adaptive mouse models and the original human models. Alu elements are highlighted in

Figure 11, with quantification in Supplemental Table S2.

Compared to Figure 4, the mouse-model-specific false positives have diminished for all TFs. This
suggests that the domain-adaptive models are able to correct the problem of false positive predictions from
Alus by scoring unbound sites overlapping Alus lower than the basic model did. This effect is even present
for CTCEF, even though there was no noticeable auPRC difference for CTCF between domain-adaptive and
basic mouse models — likely because the initial Alu enrichment in CTCF mouse-model false positives was

lower than for other TFs.

In contrast, the site-distribution plots for bound sites demonstrate no noticeable difference from the
original plots for the basic model architecture. We applied the same SeqUnwinder analysis to look for

sequence features that discriminate between mouse-model false negatives and true positives and discov-
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Figure 9: Performance of mouse-trained generic (blue), mouse-trained domain-adaptive (green), and
human-trained (red) models, evaluated on human (top) and mouse (bottom) Chromosome 2. Five mod-

els were independently trained and evaluated for each TF and training species.
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species-specific systematic misprediction of unbound sites.
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ered similar, but not identical, motif-like short sequence patterns as we did previously (Supplemental Fig.
S8). Thus, our domain adaptation approach does not appear to have any major influence on bound site

predictions.

Alus commonly drive mouse-model false positives across diverse cell types

Finally, we asked whether the observed over-prediction of species-specific repeats is a general issue of
concern in cross-species TF binding prediction, or whether it is particular to the examined liver TFs. We
thus widened our analyses to 53 additional pairs of ChIP-seq datasets targeting orthologous TFs across 8
additional equivalent human and mouse cell types (see Methods). One caveat is that the expanded set of
paired datasets typically focus on cell lines and cell types that are more difficult to closely match across
species than liver samples. Thus, the additional experiments examined here may not be as comparable

across species as the previously examined liver datasets.

Our expanded analyses confirm that the cross-species performance gap is present in most tested TFs
and cell types (Supplemental Table S3). A large portion of mouse-to-human false positive predictions is
attributable to Alu elements. In 43 of the 53 additional examined datasets, Alu elements overlap a third or
more of the mouse-model-unique false positive predictions (Supplemental Table S4). Our domain adap-
tation procedure is successful in reducing Alu-related false positive predictions in 46 of the 53 additional
examined datasets (Figure 12; Supplemental Table S4). However, in megakaryocyte and hematopoietic
progenitor datasets, we generally see a smaller percentage of mouse-model-unique false positives being
attributable to Alus. The false positive predictions that do overlap Alus are also generally less likely to be
corrected by our domain adaptation approach in these cell types (Figure 12). Therefore, our observations

may not apply uniformly to all cell types.

Discussion

Enabling effective cross-species TF binding imputation strategies would be transformative for studying
mammalian regulatory systems. For instance, TF binding information could be transferred from model
organisms in cell types and developmental stages that are difficult or unethical to assay in humans. Simi-
larly, one could annotate regulatory sites in non-model species of agricultural or evolutionary interest by

leveraging the substantial investment that has been made to profile TF binding sites in human, mouse, and
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Alu Erichment in Mouse-Model False Positives
Before and After Domain Adaptation
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Figure 12: The fraction of mouse-model-unique false positives that overlap Alus when either the basic

mouse model (x-axis) or the domain-adaptive mouse model (y-axis) are compared against the human

model, across our additional paired datasets. The black diagonal line shows y = x; points below the line

represent TFs where the fraction of Alus in mouse-model-unique false positives decreased with our domain

adaptation strategy.
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other model organisms (The ENCODE Project Consortium 2012; Yue et al. 2014; Roadmap Epigenomics

Consortium et al. 2015).

Our results suggest that cross-species TF binding imputation is feasible, but we also find a pervasive
performance gap between within-species and cross-species prediction tasks. One set of culprits for this
cross-species performance gap are species-specific transposable elements. For example, models trained
using mouse TF binding data have never seen an Alu SINE element during training, and often falsely
predict that these elements are bound by the relevant TE. Since Alu elements appear at high frequency in
the human genome, their misprediction constitutes a large proportion of the cross-species false positive
predictions, and thereby substantially affect the genome-wide performance metrics of the model. It should
be noted that Alus and other transposable elements can serve as true regulatory elements (Bourque et al.
2008; Sundaram et al. 2014), and thus we don’t assume that all transposable elements should be labeled as
TF “unbound”. Indeed, we minimized the potential mislabeling of truly bound transposable elements as
“unbound” by focusing all our analyses on regions of the genome that have a high degree of mappability
(and are thereby less likely to be subject to mappability-related false negative labeling issues in the TF
ChIP-seq data).

We demonstrated that a simple domain adaptation approach is sufficient to correct the systematic
mispredictions of Alu elements as TF bound. Training a parallel task (discriminating between species) but
with gradient reversal employed during backpropagation has the effect of discouraging species-specific
features being learned by the shared convolutional layers of the network. This approach is straightforward
to implement and has the advantage that TF binding labels need only be known in the training species.
Our approach accounts for domain shifts in the underlying genome sequence composition, assuming that

the general features of TF binding sites are conserved within the same cell types across species.

We note that the underlying assumption of cross-species TF binding prediction - i.e., that the overall
features of cell-specific TF binding sites are conserved - may not hold true in all cases. For some TFs,
concordant importance scores between mouse and human models across true-positive bound sites suggests
that both models learned similar representations of the TF’s cognate motif. However, for other TFs, the
same analysis suggests that the models’ representations of the sequences important for binding may not
completely agree. We also observe, particularly for those TFs with less concordant importance scores across
species, that there are sequence features in bound sites that discriminate between correct and incorrect

predictions specific to cross-species models. Therefore, cross-species false negative prediction errors could
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be the result of differential TF activity across the two species. Such differential activities could result from
gain or loss of TF expression patterns, non-conserved cooperative binding capabilities, or evolved sequence
preferences of the TF itself. Our sequence composition domain adaptation approach is unlikely to address

situations where TF binding logic is not fully conserved across species.

Other recent work has also demonstrated the feasibility of cross-species regulatory imputation. For
example, Chen, et al. assessed the abilities of support vector machines (SVMs) and CNNs to predict po-
tential enhancers (defined by combinations of histone marks) when trained and tested across species of
varying evolutionary distances (Chen et al. 2018). They observed that while CNNs outperform SVMs in
within-species enhancer prediction tasks, they are worse at generalizing across species. Our work suggests
a possible reason for, and a solution to, this generalization gap. Two other recent manuscripts have ap-
plied more complex neural network architectures to impute TF binding and other regulatory signals across
species (Kelley 2020; Schreiber et al. 2020). Those studies focus on models that are trained jointly across
thousands of mouse and human regulatory genomic datasets. They thus assume that substantial amounts
of regulatory information has already been characterized in the target species, which may not be true in
some desired cross-species imputation settings. In general, however, joint modeling approaches are also
likely to benefit from domain adaptation strategies that account for species-specific differences in sequence

composition, and our results are thus complementary to these recent reports.

In summary, our work suggests that cross-species TF binding prediction approaches should beware of
systematic differences between the compositions of training and test species genomes, including species-
specific repetitive elements. Our contribution also suggests that domain adaptation is a promising strategy
for addressing such differences and thereby making cross-species predictions more robust. Further work is
needed to characterize additional sources of the cross-species performance gap and to generalize domain

adaptation approaches to scenarios where training data is available from multiple species.

Methods

Data processing

Datasets were constructed by splitting the mouse (mm10) and human (hg38) genomes, excluding sex chro-

mosomes, into 500 bp windows, offset by 50 bp. Any windows overlapping ENCODE blacklist regions
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were removed (Amemiya et al. 2019). We then calculated the fraction of each window that was uniquely
mappable by 36 bp sequencing reads and retained only the windows that were at least 80% uniquely map-
pable (Karimzadeh et al. 2018). Mappability filtering was performed to remove potential peak-calling false
negatives; otherwise, any genomic window too unmappable for confident peak-calling would be a potential

false negative.

ChIP-seq experiments and corresponding controls (where available) were collected from ENCODE,
GEO, and ArrayExpress. Database accession IDs for all data used in this study are listed in Supplemen-
tal Tables S5, S6, and S7. We chose to focus our initial analyses on liver, as several previous studies have
provided matched ChIP-seq experiments characterizing orthologous TF binding across mammalian liver
samples (Schmidt et al. 2010; Odom et al. 2007). Our expanded analyses use erythroid, lymphoblast, and
ES cell line experiments that were previously compared across species by Denas, et al. (Denas et al. 2015).
We also analyzed matched adipocyte datasets that were performed on adipocyte cell lines within the same
labs (Schmidt et al. 2011; Mikkelsen et al. 2010). Additional datasets were sourced by searching the lit-
erature for ChIP-seq data targeting orthologous TFs in erythroid progenitor, megakaryocyte, macrophage,
and hematopoietic progenitor cell types (Tijssen et al. 2011; Hu et al. 2011; Pham et al. 2012; Pencovich et

al. 2013; Kaikkonen et al. 2013; Beck et al. 2013; Yue et al. 2014; Huang et al. 2016; Goode et al. 2016).

For cell types where all data was sourced from the mouse and human ENCODE projects (i.e., erythroid,
lymphoblast, and ES cell lines), we downloaded ChIP-seq narrow peak calls from the ENCODE portal. For
liver and all other cell types, we first aligned the FASTQ files to the mm10 and hg38 reference genomes
using Bowtie (version 1.3.0) (Langmead and Salzberg 2012). We then called ChIP-seq peaks using MultiGPS
v0.74 with default parameters, excluding ENCODE blacklist regions (Mahony et al. 2014; Amemiya et al.
2019). Corresponding control experiments were utilized during peak calling when available. Peak calls
were converted to binary labels for each window in a genome: “bound” (1) if any peak center fell within
the window, “unbound” (0) otherwise. Supplemental Table S5 shows the numbers of peaks called for liver
datasets, as well as the number of bound windows retained after filtering and the fraction of all retained
windows that are bound; Supplemental Tables S6 and S7 show the same information for all other datasets.
Candidate datasets were discarded from the analysis if the numbers of called peaks was less than 1000 in

mouse or human.
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Dataset splits for training and testing

Chromosomes 1 and 2 of both species were held out from all training datasets. For computational effi-
ciency, one million randomly selected windows from Chromosome 1 were used as the validation set for
each species (for hyperparameter tuning). All windows from Chromosome 2 were used as the test sets.
Chromosomes X and Y were not used to avoid confounding because our matched datasets across species

did not always match in sex.

TF binding task training data was constructed identically for all model architectures. Since binary
classifier neural networks often perform best when the classes are balanced in the training data, the binding
task training dataset consisted of all bound examples and an equal number of randomly sampled (without
replacement) unbound examples, excluding examples from Chromosomes 1 and 2. To increase the diversity
of examples seen by the network across training, in each epoch a distinct random set of unbound examples

was used, with no repeated unbound examples across epochs.

Domain-adaptive models also require an additional “species-background” training set from both species
for the species discrimination task. Species-background data consisted of randomly selected (without re-
placement) examples from all chromosomes except 1, 2, X, and Y. Binding labels were not used in the
construction of these training sets. In each batch, the species-background examples were balanced, with
50% human and 50% mouse examples, and labeled according to their species of origin (not by binding).
The total number of species-background examples in each batch was double the number of binding exam-

ples.

Basic model architecture

The network takes in a one-hot encoded 500 bp window of DNA sequence and passes it through a convolu-
tional layer with 240 20-bp filters, followed by a ReLU activation and max-pooling (pool window and stride
of 15 bp). After the convolutional layer is an LSTM with 32 internal nodes, followed by a 1024-neuron
fully-connected layer with ReLU activation, followed by a 50% Dropout layer, followed by a 512-neuron

fully-connected layer with sigmoid activation. The final layer is a single sigmoid-activated neuron.
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Domain-adaptive model architecture

The domain-adaptive network builds upon the basic model described above by adding a new “species
discriminator” task. The network splits into two output halves following max-pooling after the convolu-
tional layer. The max-pooling output feeds into a gradient reversal layer (GRL) — the GRL merely outputs
the identity of its input during the feed-forward step of model training, but during backpropagation, it
multiplies the gradient of the loss by —1. The GRL is followed by a Flatten layer, a ReLU-activated fully
connected layer with 1024 neurons, a sigmoid-activated fully connected layer of 512 neurons, and finally a

single-neuron layer with sigmoid activation.

Model training

All models were trained with Keras v2.3.1 using the Adam optimizer with default parameters (Chollet
2015; Kingma and Ba 2014). Training ran for 15 epochs, with models saved after each epoch. After train-
ing, we selected models for downstream analysis by choosing the saved model with highest auPRC on the

training-species validation set.

The basic models were trained by standard procedure with a batch size of 400 (see Section 2.1.2 for
training dataset construction). The domain-adaptive models, on the other hand, required a more complex
batching setup. Because domain-adaptive models predict two tasks — binding and the species of origin of
the input sequence — they require two stages of dataset input per batch. The first stage is identical to a basic
model training batch, but with [400/3] = 133 binding examples from the source species. The second stage
uses [400+2/3] = 267 examples each from the source species” and target species’ “species-background”

datasets.

Crucially, the stages differ in how task labels are masked. For each stage, only one of the two output
halves of the network trains (the loss backpropagates from one output only). In the first stage, we mask
the species discriminator task, so that only the binding task half of the model trains on binding examples
from the training species. In the second stage, we mask the binding task, so only the species discriminator
task half trains. Thus, the binding task only trains on examples from the source species, while the species

discriminator task doesn’t see binding labels from either species.

Meanwhile, the weights of the shared convolutional layer are influenced by both tasks. Because these

stages occur within a single batch and not in alternating batches, they concurrently influence the weights
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of the convolutional filters; there is no oscillating “back-and-forth” between the two tasks from batch to

batch.

Model performance evaluations were computed with the sci-kit-learn v0.23 implementation of the
average_precision_score function, which closely approximates the area under the precision-recall curve

(auPRC).

Differentially-predicted site categorization

To quantify site enrichment within discrete categories such as “false positives” and “false negatives”, it was
necessary to define the boundaries for these labels. In particular, when comparing prediction distributions
between models, we needed to define what constitutes, for instance, a “false positive unique to model A.”
We constructed the following rules for site categorization: 1) unbound sites must have predictions above 0.5
to be labeled false positives, and bound sites must have predictions below 0.5 to be labeled false negatives;
2) a site is considered to be differentially predicted between two source species A and B if |P4 — P3| > 0.5,
where P4 and Pg are the predictions from models trained on data from species A and species B, respectively;
3) only sites meeting this differential prediction threshold are labeled as a false positive or negative unique
to one model. Thus, if we are comparing models from species A and B, and a site is labeled a false positive
unique to model A, then P, > 0.5 and Py < 0.5. To reduce noise in these categorizations, rather than letting
P, and Py equal the predictions from single models, we trained 5 independent replicate models for each TF
and source species, and then let P4 be the average prediction across the 5 replicate models trained on data

from species A for a given TE.

Bound site discriminative motif discovery

SeqUnwinder (v. 0.1.3) (Kakumanu et al. 2017) was used to find motifs that discriminate between true
positive predictions and mouse-model-specific false negative predictions using the following command-
line settings: “--threads 10 --makerandregs --makerandregs --win 500 --mink 4 --maxk 5 --r 10 --x 3 --a 400

--hillsthresh 0.1 --memesearchwin 16”, and using MEME v. 5.1.0 (Machanick and Bailey 2011) internally.
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Repeat analysis

All repeat analysis used the RepeatMasker track from the UCSC Genome Browser (Smit et al. 1996).
Genome windows were labeled as containing an Alu element if there was any overlap (1 or more bp) with
any Alu annotation. For Supplemental Table S1, repeat classes were excluded if fewer than 500 examples

of that class were annotated in the test chromosome (before mappability filtering).

Gapped k-mer SVMs

The gkmtrain and gkmpredict utilities from the Isgkm package were used for gkmSVMs gkm training and
prediction generation, respectively (Lee 2016). For training, 50000 examples each were selected randomly
from the set of all bound windows and unbound windows in the original neural network model train-
ing sets. Every 10th example from the original test set (in other words, sampling windows such that all
selected windows were non-overlapping) was considered in evaluation for computational efficiency. All
default parameters were used in running lsgkm (center-weighted + truncated /-mer kernel, word length

11, maximum 3 mismatches).

Profile models

Our profile model consists of a dilated convolutional residual model architecture that closely resembles the
BPNet architecture (Avsec et al. 2021b), with the following modifications: 1) 21bp-long filters in the first
convolutional layer, rather than 25bp; 2) 8 dilated convolutional layers, rather than 9; 3) a learning rate
of 0.001; 4) 2114 bases of sequence input. The first three hyperparameters were selected by tuning on the
source-species validation set loss; the sequence input length was chosen based on what would produce a

1000bp-long profile prediction given the 8-layer architecture’s receptive field.

The profile models were trained using the same task and loss scheme as in Avsec et al. 2021b, with
the loss function value of A set to 10. Training lasted 30 epochs, with early stopping used to select the best
model according to the source-species validation set profile (multinomial) loss. The training data used was
sampled from regions in the training set used by the binary models: specifically, each epoch the profile
model saw a 3:1 ratio of windows centered on peaks from training set chromosomes, with up to 200bp
jitter, and windows not overlapping peaks with a GC-content distribution that matched the set of peak-

centered windows. Hyperparameter tuning was performed using a combination of the BPNet multinomial
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loss for the profile task, calculated on peaks from Chromosome 1, and auPRCs calculated using the same
validation set of 1 million random windows from Chromosome 1 that the binary models used. Final model

evaluation was performed on the full original test sets from Chromosome 2 used by the binary models.

Importance scoring

For a given 500bp window and model, importance scores were generated using a method similar to in
silico mutagenesis, which measures the change in model prediction when a given base and the region
immediately around it are ablated. First, ten independent dinucleotide-shuffled versions of the original
sequence were generated to serve as reference sequences unlikely to contain motifs. Next, the 5bp region
centered at a particular base was replaced with the corresponding 5bp region from one of the ten shuffled
sequences, and the post-sigmoid difference in model output for this ablated sequence was recorded. This
was repeated for all ten shuffled sequences, with the average model prediction differential reported as
the score for the base that the ablated region centered on. This process was repeated for all bases in the

sequence being scored.

Software availability

Open source code (MIT license) is provided in a Supplemental Code file and is also available from:

https://github.com/seqcode/cross-species-domain-adaptation
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Supplemental Figure 1: Results of evaluating the performance of mouse-trained (blue) and human-trained (red) gapped
k-mer SVM models on non-overlapping windows from the mouse (left) and human (right) test datasets (Chromosome 2).

For each TF and species, an SVM was trained using a balanced set of bound and unbound windows from the original
training set.
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Supplemental Figure 2: Top: results from evaluating the performance of mouse-trained (blue/left) and human-trained
(red/right) profile models on non-overlapping windows from the human (left panel) and mouse (right panel) test datasets
(Chromosome 2). Bottom: example predicted vs. true ChIP-seq read distribution profiles from mouse (left) and human
(right) test datasets. See Methods for profile model details.

RXRA



andom
andom

- Z 0o

L = o L = o

5
HBEE - BEE v BHEE .
= B .o BB . B B crc

H - BEE - HEE -ccc

CEBPA CTCF HNF4A
Model-specific
discriminative score

-0.4 0 0.4

Supplemental Figure 3: Motif-like sequence features can discriminate between human-genome bound sites correctly
predicted by mouse-trained and human-trained models (true positives or TP) and bound sites correctly predicted only by
human-trained models (mouse-specific false negatives or FN) for each TF. See Methods for site categorization details.
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Supplemental Figure 5: Importance scores for example both-model true positive sites for the four TFs. Bases were
scored using a modified ISM algorithm (see Methods). The 500bp example sites have been enlarged and cropped around
motif-like instances for readability.
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Supplemental Figure 6: Importance scores for example false positive sites mispredicted only by the mouse model. Bases
were scored using a modified ISM algorithm (see Methods).
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Supplemental Figure 7: Comparison between the predictions of human-trained models that were trained without
examples overlapping SINEs (x-axis) to the predictions of standard human-trained models (y-axis). Unbound Alu repeats
make up a large part of the false positives unique to the no-SINEs model. For visual clarity, only 5% of windows are
shown.
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Supplemental Figure 8: False negative predictions unique to mouse-trained models trained with domain adaptation,
compared to human-trained models, can be distinguished from true positive predictions through motif-like sequence

features. See Methods for site categorization details.



TF Bound FN (Both Models) FN (Mouse Only) Unbound FP (Both Models) FP (Mouse Only)

DNA
CTCF 10.1% 11.4% 7.3% 11.4% 8.9% 9.0%
CEBPA 12.3% 10.4% 8.3% 11.3% 13.0% 9.2%
HNF4A 10.7% 12.0% 11.3% 11.4% 9.5% 9.0%
RXRA 10.1% 11.7% 8.8% 11.4% 10.0% 9.4%
LINE
CTCF 18.3% 22.5% 21.3% 37.6% 17.8% 31.6%
CEBPA 25.6% 26.3% 25.0% 37.6% 29.0% 32.3%
HNF4A 21.0% 25.3% 26.3% 37.6% 21.5% 30.5%
RXRA 21.0% 27.9% 22.1% 37.8% 22.1% 33.2%
Low Complexity
CTCF  2.5% 1.0% 2.6% 1.9% 4.0% 1.5%
CEBPA 1.5% 1.4% 0.0% 1.9% 1.6% 1.4%
HNF4A 2.0% 1.1% 1.5% 1.9% 2.4% 1.3%
RXRA 2.1% 1.3% 2.0% 1.9% 2.2% 1.5%
LTR
CTCF  8.6% 12.6% 8.2% 17.6% 16.4% 15.5%
CEBPA 12.8% 12.5% 41.7% 17.6% 19.4% 14.0%
HNF4A 13.3% 15.0% 16.0% 17.6% 19.4% 12.6 %
RXRA 12.2% 14.8% 9.8% 17.6% 18.2% 11.5%
Simple Repeat
CTCF 13.4% 10.1% 10.9% 11.5% 15.8% 12.0%
CEBPA 9.4% 8.6% 25.0% 11.6% 9.8% 11.9%
HNF4A 12.3% 11.4% 9.1% 11.5% 11.6% 12.8%
RXRA 11.5% 9.4% 13.3% 11.5% 11.1% 13.4%
SINE
CTCF 23.9% 23.2% 20.6% 31.2% 18.4% 81.1%
CEBPA  30.9% 22.6% 41.7% 31.2% 35.2% 86.9%
HNF4A 27.1% 23.6% 22.6% 31.2% 28.9% 95.5%
RXRA 27.1% 25.3% 18.9% 31.3% 32.2% 97.6%
Unknown
CTCF  0.2% 0.1% 0.0% 0.2% 0.1% 0.0%
CEBPA 0.3% 0.5% 0.0% 0.1% 0.2% 0.0%
HNF4A  0.2% 0.1% 0.0% 0.2% 0.2% 0.0%
RXRA 0.2% 0.3% 0.0% 0.1% 0.2% 0.0%

Table S1: Percent of windows overlapping various RepeatMasker-defined repeat elements, for different cate-
gories of genomic windows from the held-out test set. Only RepeatMasker repeat classes with at least 500 dis-
tinct annotations within the testset are shown. FPs: false positives. FNs: false negatives. Mouse Only: specific

to mouse-trained models. See Methods for more details on site categorization.
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TF Bound FN (Both Models) FN (Mouse Only) ‘ Unbound FP (Both Models) FP (Mouse Only)

CTCF | 12.6% 13.5% 13.7% 21.3% 9.0% 28.8%
CEBPA | 18.3% 16.8% 0.0% 21.3% 21.9% 49.5%
HNF4A | 13.6% 14.8% 13.7% 21.3% 14.0% 34.3%
RXRA | 13.7% 17.7% 10.7% 21.4% 15.8% 58.7%

Table S2: Percent of windows overlapping an Alu element when domain-adaptive mouse models are compared to human
models (compare to Table 1). The fraction of mouse-model-unique false positives overlapping Alu elements (right-most

column) have decreased notably for all TFs. FPs: false positives. FNs: false negatives.



auPRC, Mouse Test Set auPRC, Human Test Set

TF Mouse(Basic)  Mouse(+DA) Human  Mouse(Basic)  Mouse(+DA)  Human
Adipocytes
CEBPA 0.18 0.18 0.17 0.18 0.21 0.35
CTCF 0.67 0.66 0.55 0.56 0.56 0.62
PPARG 0.08 0.07 0.08 0.07 0.06 0.22
Erythroid Cells
BHLHE40 0.09 0.09 0.07 0.13 0.13 0.19
CTCF 0.71 0.68 0.62 0.60 0.58 0.67
E2F4 0.10 0.07 0.09 0.17 0.17 0.23
ELF1 0.28 0.28 0.27 0.26 0.26 0.34
ETSI1 0.16 0.16 0.05 0.11 0.10 0.21
GATA1 0.20 0.19 0.11 0.09 0.09 0.10
JUND 0.05 0.03 0.02 0.10 0.09 0.26
MAFK 0.14 0.12 0.14 0.17 0.16 0.39
MAX 0.18 0.18 0.14 0.19 0.20 0.26
MAZ 0.15 0.15 0.14 0.21 0.22 0.32
MEF2A 0.03 0.01 0.02 0.02 0.01 0.04
MXI1 0.20 0.21 0.16 0.09 0.10 0.10
MYC 0.14 0.14 0.09 0.17 0.18 0.23
NRF1 0.33 0.32 0.22 0.33 0.35 0.36
TALI1 0.14 0.14 0.11 0.14 0.14 0.19
UBTF 0.15 0.15 0.15 0.19 0.19 0.23
USF1 0.21 0.18 0.16 0.17 0.16 0.25
USF2 0.12 0.11 0.09 0.14 0.16 0.13
Erythroid Progenitors
CTCF 0.69 0.67 0.57 0.60 0.59 0.67
GATA1 0.09 0.09 0.08 0.10 0.08 0.16
TAL1 0.06 0.04 0.07 0.08 0.07 0.21
ESCs
CTCF 0.78 0.76 0.71 0.53 0.54 0.66
MAFK 0.43 0.40 0.40 0.31 0.28 0.34
NANOG 0.14 0.12 0.05 0.05 0.05 0.08
POUSF1 0.11 0.10 0.09 0.07 0.06 0.09
Hematopoietic Progenitors
FLI1 0.21 0.16 0.09 0.06 0.06 0.17
LMO2 0.06 0.04 0.00 0.00 0.00 0.01
RUNX1 0.06 0.04 0.05 0.05 0.05 0.20
SPI1 0.32 0.28 0.32 0.38 0.38 0.62

Continued on next page.



auPRC, Mouse Test Set

auPRC, Human Test Set

TF Mouse(Basic)  Mouse(+DA) Human  Mouse(Basic)  Mouse(+DA)  Human
Lymphoblasts
BHLHEA40 0.23 0.21 0.15 0.13 0.14 0.17
CTCF 0.70 0.69 0.58 0.63 0.61 0.65
E2F4 0.12 0.09 0.12 0.12 0.11 0.13
ELF1 0.32 0.30 0.27 0.34 0.34 0.34
ETSI1 0.16 0.15 0.05 0.05 0.05 0.19
IRF4 0.23 0.22 0.14 0.11 0.10 0.14
JUND 0.09 0.07 0.05 0.04 0.04 0.07
MAX 0.17 0.17 0.13 0.17 0.18 0.19
MAZ 0.13 0.12 0.12 0.20 0.20 0.24
MEF2A 0.16 0.14 0.09 0.06 0.06 0.11
MXI1 0.19 0.20 0.18 0.14 0.15 0.16
MYC 0.14 0.14 0.07 0.08 0.10 0.11
NRF1 0.32 0.30 0.25 0.38 0.34 0.45
TBP 0.16 0.15 0.14 0.09 0.09 0.11
TCF12 0.24 0.23 0.17 0.12 0.11 0.14
USF1 0.22 0.20 0.17 0.20 0.20 0.19
USF2 0.16 0.15 0.12 0.10 0.10 0.09
Macrophages
SPI1 0.41 0.41 0.33 0.29 0.30 0.46
Megakaryocytes
FLI1 0.26 0.15 0.22 0.15 0.07 0.16
GATA1 0.09 0.08 0.02 0.03 0.02 0.04
RUNXI1 0.08 0.06 0.04 0.13 0.12 0.28

Table S3: Average auPRC values from evaluating the basic mouse models, domain-adaptive mouse

models, and basic human models on the mouse (left columns) and human (right columns) test sets, across

all additional datasets beyond the primary liver TFs. The auPRCs shown are the average across three

replicate model trainings for basic mouse-trained and human-trained models and across two replicate

model trainings for domain-adaptive mouse models. Note that because the auPRC metric depends on

the sparsity of the positive class (bound sites), these values are not comparable across test sets, across

TFs, or across cell types.



Basic Mouse Models Domain-adaptive Mouse Models
TF Unbound  FPs (Both)  FPs (Mouse Only)  Unbound  FPs (Both)  FPs (Mouse Only)
Adipocytes
CEBPA 21.3% 20.5% 76.5% 21.3% 19.5% 59.9%
CTCF 21.3% 11.4% 86.7 % 21.3% 9.8% 31.3%
PPARG 21.4% 15.9% 68.1% 21.4% 14.8% 50.7 %
Erythroid Progenitors
CTCF 21.3% 9.7% 42.0% 21.3% 9.8% 24.6 %
GATA1 21.3% 15.1% 62.1% 21.3% 14.5% 64.4%
TAL1 21.3% 17.1% 86.3% 21.3% 14.0% 76.8 %
Erythroid Cells
BHLHE40 21.3% 17.2% 63.5% 21.3% 16.0% 49.6 %
CTCF 21.3% 13.6% 61.4% 21.3% 11.6% 34.0%
E2F4 21.3% 8.8% 71.1% 21.3% 8.2% 44.1%
ELF1 21.3% 13.7% 58.9% 21.3% 12.8% 40.5%
ETS1 21.3% 9.7% 35.0% 21.3% 8.9% 26.5%
GATA1 21.3% 14.1% 41.8% 21.3% 13.7% 28.7 %
JUND 21.3% 20.6% 65.0% 21.3% 17.6% 54.6 %
MAFK 21.3% 15.7% 56.4% 21.3% 14.2% 35.2%
MAX 21.3% 14.0% 72.2% 21.3% 13.0% 56.9 %
MAZ 21.3% 12.3% 87.6% 21.3% 11.2% 60.9 %
MEF2A 21.3% 12.5% 41.2% 21.3% 13.0% 36.3%
MXI1 21.3% 13.2% 81.7% 21.3% 11.9% 55.9%
MYC 21.3% 15.3% 68.5% 21.3% 14.0% 43.6%
NRF1 21.3% 8.9% 65.4% 21.3% 8.8% 47.2%
TAL1 21.3% 16.1% 38.8% 21.3% 15.4% 48.7 %
UBTF 21.3% 10.6% 97.6 % 21.3% 9.4% 84.5%
USF1 21.3% 14.8% 66.4% 21.3% 14.2% 55.3%
USF2 21.3% 11.9% 73.8% 21.3% 11.5% 62.8%
ESCs
CTCF 21.4% 14.9% 82.5% 21.4% 12.2% 31.5%
MAFK 21.3% 13.5% 80.7 % 21.3% 13.4% 76.8%
NANOG 21.3% 10.3% 38.8% 21.3% 9.4% 26.7 %
POUS5F1 21.3% 11.0% 40.9 % 21.3% 9.8% 22.7%
Hematopoietic Progenitors

FLI1 21.3% 6.9% 49.4 % 21.3% 6.6% 34.5%
LMO2 21.3% 6.0% 20.0% 21.3% 6.4% 29.6%
RUNX1 21.3% 8.4% 25.5% 21.3% 7.9% 30.0%
SPI1 21.5% 13.6% 9.0% 21.5% 13.0% 17.4%

Continued on next page.



Basic Mouse Models Domain-adaptive Mouse Models

TF Unbound  FPs (Both)  FPs (Mouse Only)  Unbound  FPs (Both)  FPs (Mouse Only)
Lymphoblasts
BHLHE40 21.3% 15.3% 67.5% 21.3% 14.0% 29.3%
CTCF 21.3% 11.4% 70.8 % 21.3% 10.8% 33.8%
E2F4 21.3% 6.8% 51.2% 21.3% 6.6% 25.8%
ELF1 21.3% 11.8% 41.5% 21.3% 10.4% 18.2%
ETS1 21.3% 10.4% 32.8% 21.3% 9.7% 20.7 %
IRF4 21.3% 13.3% 52.9% 21.3% 12.2% 21.0%
JUND 21.3% 12.6% 28.5% 21.3% 12.1% 25.8%
MAX 21.3% 8.6% 61.3% 21.3% 8.2% 30.1%
MAZ 21.3% 8.5% 50.4% 21.3% 8.2% 26.6 %
MEF2A 21.3% 17.3% 64.5% 21.3% 13.8% 14.7%
MXI1 21.3% 11.6% 77.8% 21.3% 10.6% 43.6 %
MYC 21.3% 6.3% 47.6 % 21.3% 5.8% 31.7%
NRF1 21.3% 5.6% 26.6% 21.3% 5.6% 17.8%
TBP 21.3% 14.3% 89.2% 21.3% 12.4% 56.4%
TCF12 21.3% 11.6% 51.5% 21.3% 10.4% 17.5%
USF1 21.3% 11.0% 64.6 % 21.3% 10.5% 63.1%
USF2 21.3% 11.4% 71.1% 21.3% 11.0% 71.2%
Macrophages
SPI1 21.4% 15.5% 27.2% 21.4% 14.2% 13.8%
Megakaryocytes
FLI1 21.3% 8.4% 23.0% 21.3% 7.6% 18.1%
GATA1 21.3% 7.6% 11.3% 21.3% 8.2% 19.4%
RUNXI1 21.3% 7.8% 15.7% 21.3% 8.2% 15.4%

Table S4: The percent of sites overlapping an Alu element without (left column set) or with domain adaptation (right
column set), for each of the additional datsets included in Figure 12. FPs: false positives; either the set of unbound sites
mispredicted as bound by both the mouse model and the human model, or false positives mispredicted by the mouse

model only. See Methods for site categorization details.



TF Species ‘ Raw Peaks  Filtered Peaks =~ Bound Windows  Frac. Bound Accession ID

CTCF Mouse 32006 28943 296117 0.71% ENCSR000CBU
Human 29067 26477 270100 0.55% ENCSRO911GFJ
CEBPA Mouse 62636 48812 566945 1.35% E-TABM-722
Human 32243 28545 298066 0.61% E-TABM-722
HNF4A  Mouse 44800 36540 415846 0.99% E-TABM-722
Human 42766 34714 387077 0.79% E-TABM-722
RXRA Mouse 46443 33751 404284 0.97% GSM 1299600
Human 95085 71032 854289 1.75% ENCSRO098XMN

Table S5: For the primary experimental data used in this study, the following quantities are listed: the number of peaks
called across the entire genome; the number of called peaks within the filtered window set, merged if within 500 bp of
each other; the number of windows in the filtered window set labeled bound due to peak overlap; the fraction of the
filtered window set labeled bound; and the database accession ID (ENCODE, GEO, or ArrayExpress). The size of the

filtered window sets for the mouse and human genomes were 41883806 and 48742577, respectively.



TF Cell Type Peaks ~ Bound Windows  Frac. Bound Accession ID
CEBPA Adipocyte 15458 117291 0.26% GSE27450
CTCF Adipocyte 53354 431411 0.97% GSE20752
PPARG Adipocyte 11465 93351 0.21% GSE20752

BHLHEA40 Erythroid 16967 142473 0.32% ENCSROOOESH
CTCF Erythroid 47297 397943 0.90% ENCSRO0OETQ
E2F4 Erythroid 4925 39272 0.09% ENCSROOOETY
ELF1 Erythroid 19518 162146 0.37% ENCSR0330WC
ETS1 Erythroid 40913 337420 0.76% ENCSROOOETB
GATA1 Erythroid 46171 384871 0.87% ENCSRO0O0EUG
JUND Erythroid 7277 60316 0.14% ENCSROO0OETZ
MAFK Erythroid 9846 81190 0.18% ENCSROOOETK
MAX Erythroid 28616 228588 0.52% ENCSROOOETX
MAZ Erythroid 20486 162023 0.37% ENCSROOOESL

MEF2A Erythroid 4827 40776 0.09% ENCSR867SDZ
MXI1 Erythroid 39255 298761 0.67% ENCSROOOETN
MYC Erythroid 29362 230225 0.52% ENCSROOOEUA
NRF1 Erythroid 11191 93732 0.21% ENCSR135SWH
TALI Erythroid 18775 156858 0.35% ENCSRO00DIA
UBTF Erythroid 6549 51131 0.12% ENCSROOOESJ
USF1 Erythroid 19958 167188 0.38% ENCSR705HGT
USF2 Erythroid 4186 35607 0.08% ENCSROOOETF
CTCF Erythroid progenitor 30998 256447 0.58% GSE36029
GATALI Erythroid progenitor 11162 93403 0.21% GSE36029
TALI Erythroid progenitor 4356 34771 0.08% GSE36029
CTCF ESC 44581 371955 0.84% ENCSR362VNF
MAFK ESC 17123 142736 0.32% ENCSR604XDL
NANOG ESC 16037 130587 0.29% ENCSR779CZG
POUSF1 ESC 4198 34197 0.08% ENCSR392DGA
FLI1 Hematopoietic progenitor 9838 83763 0.19% GSE69099
LMO2 Hematopoietic progenitor 4618 39374 0.09% GSE69099
RUNX1 Hematopoietic progenitor 2888 24860 0.06% GSE69099

SPI1 Hematopoietic progenitor 17273 145004 0.33% GSE69099

BHLHE40 Lymphoblast 46376 382831 0.86% ENCSROOOERC
CTCF Lymphoblast 63983 535673 1.21% ENCSROOOERM
E2F4 Lymphoblast 6263 50365 0.11% ENCSROOOERU
ELF1 Lymphoblast 28901 237091 0.54% ENCSR293WTN
ETS1 Lymphoblast 30839 252203 0.57% ENCSROOOERA
IRF4 Lymphoblast 43458 357105 0.81% ENCSR743ZJL
JUND Lymphoblast 15998 131797 0.30% ENCSROOOERR
MAX Lymphoblast 31198 250415 0.57% ENCSROOOERL
MAZ Lymphoblast 21334 169037 0.38% ENCSROOOEQT

MEF2A Lymphoblast 30789 250229 0.57% ENCSR806JZK
MXIT1 Lymphoblast 32224 244761 0.55% ENCSROOOERE
MYC Lymphoblast 30247 241587 0.55% ENCSROOOERN
NRF1 Lymphoblast 17314 142918 0.32% ENCSR980YXJ

TBP Lymphoblast 23408 183549 0.41% ENCSROOOERP
TCF12 Lymphoblast 36815 294533 0.67% ENCSR906QEK
USF1 Lymphoblast 8158 69811 0.16% ENCSR973S0OG
USF2 Lymphoblast 5322 45624 0.10% ENCSROOOERJ

SPI1 Macrophage 65942 525645 1.19% GSE48759

FLI1 Megakaryocyte 3224 27394 0.06% GSE36029
GATA1 Megakaryocyte 4154 35204 0.08% GSE36029
RUNX1 Megakaryocyte 10700 90597 0.20% GSE45372

Table S6: Summary statistics for all additional mouse datasets. The mouse genome filtered window set con-

sisted of 41883806 windows in total.



TF Cell Type Peaks Bound Windows  Frac. Bound Accession ID
CEBPA Adipocyte 53157 396024 0.77% GSE27450
CTCF Adipocyte 48914 376510 0.73% GSE20752
PPARG Adipocyte 58757 462122 0.90% GSE20752

BHLHEA40 Erythroid 27808 217471 0.42% ENCSRO0O0EGV
CTCF Erythroid 59803 476076 0.92% ENCSROO0DMA
E2F4 Erythroid 9109 68965 0.13% ENCSROOOEWL
ELF1 Erythroid 32683 258940 0.50% ENCSRO00BMD
ETSI Erythroid 13775 101997 0.20% ENCSRO00BKQ
GATA1 Erythroid 14676 113735 0.22% ENCSROOOEFT
JUND Erythroid 47180 367973 0.71% ENCSRO00EGN
MAFK Erythroid 27213 213251 0.41% ENCSROO0EGX
MAX Erythroid 37342 286474 0.56% ENCSROOOEFV
MAZ Erythroid 40398 308748 0.60% ENCSRO00OEFX

MEF2A Erythroid 6407 49536 0.10% ENCSRO0O0BNV
MXI1 Erythroid 9081 70132 0.14% ENCSRO00EGZ
MYC Erythroid 31378 233216 0.45% ENCSRO00OEGIJ
NRF1 Erythroid 4436 36511 0.07% ENCSROOOEHH
TALI Erythroid 29476 229424 0.45% ENCSROOOEHB
UBTF Erythroid 19228 139064 0.27% ENCSRO0OOEFZ
USF1 Erythroid 22382 177524 0.34% ENCSROO0BKT
USF2 Erythroid 3621 29702 0.06% ENCSRO0O0EHG
CTCF Erythroid progenitor 36729 292844 0.57% GSE26501
GATAL1 Erythroid progenitor 25710 198358 0.38% GSE26501
TALI Erythroid progenitor 38152 285562 0.55% GSE26501
CTCF ESC 57384 466110 0.90% ENCSROO0OBNH
MAFK ESC 13422 109310 0.21% ENCSROOOEBS
NANOG ESC 8905 72332 0.14% ENCSROOOBMT
POUSF1 ESC 5029 41330 0.08% ENCSR0O00BMU
FLI1 Hematopoietic progenitor 38760 310707 0.60% GSE45144
LMO2 Hematopoietic progenitor 2037 16312 0.03% GSE45144
RUNX1 Hematopoietic progenitor 29950 241749 0.47% GSE45144

SPI1 Hematopoietic progenitor 167273 1283083 2.49% GSE70660

BHLHEA40 Lymphoblast 28651 227674 0.44% ENCSR000DZJ
CTCF Lymphoblast 41765 339466 0.66% ENCSRO00DZN
E2F4 Lymphoblast 4375 35071 0.07% ENCSRO00DYY
ELF1 Lymphoblast 27369 212273 0.41% ENCSRO00BMB
ETS1 Lymphoblast 12912 103978 0.20% ENCSRO00BKA
IRF4 Lymphoblast 23043 182227 0.35% ENCSRO00BGY
JUND Lymphoblast 7602 61307 0.12% ENCSRO00DYS
MAX Lymphoblast 13605 104721 0.20% ENCSRO00DZF
MAZ Lymphoblast 23166 175906 0.34% ENCSRO00DZA

MEF2A Lymphoblast 22588 180702 0.35% ENCSRO00BKB
MXT1 Lymphoblast 21737 164076 0.32% ENCSRO000DZI
MYC Lymphoblast 4950 37375 0.07% ENCSRO0O0DKU
NRF1 Lymphoblast 3363 27933 0.05% ENCSR000DZO

TBP Lymphoblast 19535 147978 0.29% ENCSR000DZZ
TCF12 Lymphoblast 25023 201436 0.39% ENCSR000BGZ
USF1 Lymphoblast 8461 69700 0.14% ENCSRO00BGI
USF2 Lymphoblast 4450 36621 0.07% ENCSR000DZU

SPI1 Macrophage 88793 693731 1.35% GSE31621

FLI1 Megakaryocyte 4649 38182 0.07% GSE24674
GATAL1 Megakaryocyte 4147 33052 0.06% GSE24674
RUNX1 Megakaryocyte 58757 209261 0.41% GSE24674

Table S7: Summary statistics for all additional human datasets. The human genome filtered window set consisted of

51548966 windows in total.
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