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Abstract1

The intrinsic DNA sequence preferences and cell-type specific cooperative partners of transcription2

factors (TFs) are typically highly conserved. Hence, despite the rapid evolutionary turnover of indi-3

vidual TF binding sites, predictive sequence models of cell-type specific genomic occupancy of a TF4

in one species should generalize to closely matched cell types in a related species. To assess the via-5

bility of cross-species TF binding prediction, we train neural networks to discriminate ChIP-seq peak6

locations from genomic background and evaluate their performance within and across species. Cross-7

species predictive performance is consistently worse than within-species performance, which we show8

is caused in part by species-specific repeats. To account for this domain shift, we use an augmented9

network architecture to automatically discourage learning of training species-specific sequence fea-10

tures. This domain adaptation approach corrects for prediction errors on species-specific repeats and11

improves overall cross-speciesmodel performance. Our results demonstrate that cross-species TF bind-12

ing prediction is feasible when models account for domain shifts driven by species-specific repeats.13
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Introduction14

Characterizing where transcription factors (TFs) bind to the genome, and which genes they regulate, is key15

to understanding the regulatory networks that establish and maintain cell identity. A TF’s genomic occu-16

pancy depends not only on its intrinsic DNA sequence preferences, but also on several cell-specific factors,17

including local TF concentration, chromatin state, and cooperative binding schemes with other regulators18

(Siggers and Gordân 2014; Slattery et al. 2014; Srivastava and Mahony 2020). Experimental assays such as19

ChIP-seq can profile a TF’s genome-wide occupancy within a given cell type, but such experiments remain20

costly, rely on relatively large numbers of cells, and require either high-quality TF-specific antibodies or21

epitope tagging strategies (Park 2009; Savic et al. 2015). Accurate predictive models of TF binding could22

circumvent the need to perform costly experiments across all cell types and all species of interest.23

Cross-species TF binding prediction is complicated by the rapid evolutionary turnover of individual24

TF binding sites across mammalian genomes, even within cell types that have conserved phenotypes. For25

example, only 12-14% of binding sites for the key liver regulators CEBPA and HNF4A are shared across26

orthologous genomic locations in mouse and human livers (Schmidt et al. 2010). On the other hand, the27

general features of tissue-specific regulatory networks appear to be strongly conserved across mammalian28

species. The amino acid sequences of TF proteins, their DNA-binding domains, and intrinsic DNA sequence29

preferences are typically highly conserved (e.g., both CEBPA and HNF4A have at least 93% whole protein30

sequence identity between human and mouse). Further, the same cohorts of orthologous TFs appear to31

drive regulatory activities in homologous tissues. Thus, while genome sequence conservation information32

is not sufficient to accurately predict TF binding sites across species, it may still be possible to develop33

predictive models that learn the sequence determinants of cell-type specific TF binding and generalize34

across species. Indeed, several recent studies have demonstrated the feasibility of cross-species prediction35

of regulatory profiles using machine learning approaches (Chen et al. 2018; Kelley 2020; Schreiber et al.36

2020; Huh et al. 2018).37

Here, we evaluate different training strategies on the generalizability of neural network models of cell-38

type specific TF occupancy across species. We train our model using genome-wide TF ChIP-seq data in a39

given cell type in one species, and then assess its performance in predicting genome-wide binding of the40

same TF in a closely matched cell type in a different species. Specifically, we focus on predicting binding of41

four TFs (CTCF, CEBPA, HNF4A, and RXRA) in liver due to the existence of high quality ChIP-seq data in42
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both mouse and human. We proceed to investigate gaps in performance between within-species and cross-43

species models, with the aim of identifying specific genomic patterns that are associated with systematic44

misprediction specifically across species.45

We further evaluate the model performance improvement gained from integrating an unsupervised46

domain adaptation approach into model training. This domain adaptation strategy involves a neural net-47

work architecture with two sub-networks that share an underlying convolutional layer. We train the two48

sub-networks in parallel on different tasks. One subnetwork is trained with standard backpropagation49

to optimize classification of TF bound and unbound sequences in one species (the source domain). The50

other subnetwork attempts to predict species labels from sequences drawn randomly from two species (the51

source and target domain), but training is subject to a gradient reversal layer (GRL) (Ganin et al. 2016).52

While backpropagation typically has the effect of giving higher weights to discriminative features, a GRL53

reverses this effect, and discriminative features are down-weighted. Thus, our network aims to encourage54

features in the shared convolutional layer that discriminate between bound and unbound sites, while si-55

multaneously discouraging features that are species-specific. Importantly, this approach does not use TF56

binding labels from the target species at any stage in training. We conclude by assessing the effectiveness57

of domain adaptation in terms of reducing systematic mispredictions.58

Results59

Conventionally trained neural network models of TF binding show reduced predictive performance60

across species61

First, we set out to evaluate the ability of neural networks to predict TF binding in a previously unseen62

species. We chose neural networks due to their ability to learn arbitrarily complex predictive sequence63

patterns (Avsec et al. 2021a; Avsec et al. 2021b; Fudenberg et al. 2020; Kelley 2018; Koo et al. 2021).64

In particular, hybrid convolutional and recurrent network architectures have successfully been applied to65

accurately predict TF binding in diverse applications (Quang and Xie 2016; Quang and Xie 2019; Srivastava66

et al. 2020). The motivation behind these architectures is that convolutional filters can encode binding site67

motifs and other contiguous sequence features, while the recurrent layers can model flexible, higher-order68

spatial organization of these features. Our baseline neural network is designed in line with these state-of-69

the-art hybrid architectures (Figure 1).70
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Figure 1: Conventional network architecture. Convolutional filters scan the 500-bp input DNA sequence

for TF binding features. The convolutional layer is followed by a recurrent layer (LSTM) and two fully con-

nected layers. A final sigmoid-activated neuron predicts if a ChIP-seq peak falls within the input window.
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Using this architecture, named the “conventional model,” we trained the network to predict whether71

a given input sequence contained a ChIP-seq peak or not, using training data from a single source species,72

and then assessed the model’s predictive performance on entire held-out chromosomes in both the source73

species and a target (previously unseen) species. We chose mouse and human as our species of interest due74

to the availability of high-quality TF ChIP-seq datasets in liver from both species and the high conservation75

of key regulator TFs present in both species. For four different TFs, we trained two sets of models: one with76

mouse as the source species, and the other with human as the source species. To monitor reproducibility,77

model training was repeated 5 times for each TF and source species.78

As models trained for 15 epochs, we monitored source-species and target-species performance on79

held-out validation sets (Figure 2). Performance was measured using the area under the precision-recall80

curve (auPRC) which is sensitive to the extreme class imbalance of labels in our TF binding prediction81

task. We observed that over the course of model training, improvements in source-species auPRC from82

epoch to epoch did not always translate to improved auPRC in the target species. Generally, cross-species83

auPRCs showed greater variability across epochs andmodel replicates compared to source-species auPRCs.84

For HNF4A in particular, the mouse-trained models’ performance on the human validation set appeared85

to split part way through training – based on cross-species auPRC, some model-replicates appeared to86

become trapped in a suboptimal state relative to other models (see divergence in red lines in left column87

of Figure 2); meanwhile, the training-species auPRC did not show a similar trend. Evidently, validation88

set performance in the source species is not an ideal surrogate for validation set performance in the target89

species.90

Nevertheless, the epochs where models had highest source-species auPRCs were often epochs where91

models had near-best cross-species auPRC. Thus, we selected models saved at the point in training when92

source-species auPRC was maximized for downstream analysis. We next evaluated performance on held-93

out test datasets (distinct from the validation datasets) from each species (Figure 3).94

We observe across all TFs that for a given target species, the models trained in that species always95

outperformed or matched the performance of the models trained in the other species. We refer to this96

within-species vs. cross-species auPRC difference as a cross-species performance gap, while noting that97

models trained in either species were still relatively effective at cross-species prediction. Because we ob-98

serve a wider cross-species gap for mouse-trained models predicting in human than for human-trained99

models predicting in mouse, subsequent analysis focuses on addressing the mouse-to-human gap.100
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Figure 2: Model performance over the course of training, evaluated on held-out validation data frommouse

(left) and human (right) Chromosome 1. Five models were independently trained for each TF and source

species (mouse-trained models in blue, human-trained models in red). Values at epoch 0 are evaluations

of models after weight initialization but before training (akin to a random baseline). Note that auPRCs are

not directly comparable between different validation sets because ground truth labels are derived from a

different experiment for each dataset; the auPRC will depend on the fraction of sites labeled bound as well

as model prediction correctness. 6



Figure 3: Model performance evaluated on held-out test data: Chromosome 2 from human (top) andmouse

(bottom). Five models were independently trained for each TF and source species.
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To get a sense of how specific to our model design or training strategy this cross-species gap might be,101

we applied multiple sufficiently different machine learning approaches to the same problem and datasets102

and assessed whether the cross-species gap persists. First, we trained gapped k-mer support vector ma-103

chines, or gkSVMs, to classify a balanced sample of bound vs. unbound windows for each TF and species104

(Ghandi et al. 2014; Lee 2016). We then evaluated those models on the set of non-overlapping windows105

in each test dataset (Supplemental Fig. S1). We observe that the cross-species gap persists, although it106

shrinks in absolute magnitude, presumably due to the drastically lower auPRC values across the board.107

These auPRCs also demonstrate that our neural network approach can indeed outperform related methods108

on this task.109

Next, we sought to assess the cross-species performance of another state-of-the-art deep learning110

model trained on a related TF binding prediction task, distinct from our binary classification setup. We ap-111

plied a BPNet-like profile model, which predicts the distribution of the raw, base-resolution ChIP-seq read112

profile at a given genomic window rather than a 0-1 binary label, to both our mouse and human datasets113

across our four TFs (Avsec et al. 2021b). The profile models were trained using a peak-enriched subset of114

the training data used by the binary models, and performance was evaluated on the same test datasets (see115

Methods).116

First, we investigated how well individual profile predictions transfer across species (Supplemental117

Fig. S2, bottom). We observe that overall, within-species profile models are usually able to predict both the118

location and the shape of peaks accurately. Cross-species profile models tend to predict the peak location119

nearly as well as within-species models, but for some TFs, there is a clear discrepancy between the predicted120

and true profile shape. Specifically, there are apparent non-biological differences in experimental protocol121

or quality between our matched datasets across species; this can cause profile models that learned how122

reads typically distribute around binding sites from one experiment to appear to generalize imperfectly to123

other datasets with different read distributions about binding sites.124

Next, we quantified the performance of the profile models, using the predicted total number of reads125

across a genomic window as a proxy for binary label prediction (Supplemental Fig. S2, top). We again126

observe cross-species performance gaps for most datasets. We also note that the auPRC values attained by127

the profile models are comparable to those attained by our conventional model in most cases, so we decided128

to focus on understanding the cross-species gap in the context of the conventional model in the remainder129

of the study.130
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Themouse-to-human cross-species gap originates frommisprediction of both bound and unbound sites131

Since the target-species model consistently outperforms the source-species model (on target-species valida-132

tion), there must be some set of differentially predicted sites that the target-species model predicts correctly,133

but the source-species model does not. By comparing the distribution of source-model and target-model134

predictions over all target-species genomic windows, we can potentially identify trends of systematic errors135

unique to the source-species model. Whether these differentially predicted sites are primarily false posi-136

tives (unbound sites incorrectly predicted to be bound), false negatives (bound sites incorrectly predicted137

as unbound), or a combination of both can provide useful insight into the performance gap between the138

source and target models.139

For each TF, we generated predictions over the genomic windows in the human test dataset from both140

our mouse-trained and human-trained models. Then, we plotted all of the human-genome test sites using141

the average mouse model prediction (over 5 independent training runs) and the average human model142

prediction as the x- and y-axis, respectively (Figure 4). Bound and unbound sites are segregated into143

separate plots for clarity.144

For three of the four TFs, the unbound site plots show a large set of windows given low scores by145

the human model but mid-range to high scores by the mouse model – these are false positives unique to146

cross-species prediction (Figure 4 right column, bottom/bottom-right region of each plot). These sites are147

distinct from false positives mistakenly predicted highly by both models, as those common false positives148

would not contribute significantly to the auPRC gap. Even for CTCF, the exception to the pattern, there149

is an enrichment of unbound sites that can be characterized as mispredictions specific to mouse models.150

Additionally, in the bound site plots of all TFs except CEBPA, we see some bound sites that are scored151

high by the human model but are given mid-range to low scores by the mouse model – these are cross-152

species-unique false negatives (Figure 4 left column, top left region of each plot). Hence, our cross-species153

models are committing prediction errors in both directions on separate sets of site, although the errors in154

the unbound sites appear more prevalent than the errors in the bound sites.155
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Figure 4: Both bound and unbound sites from human Chromosome 2 show evidence of differential binding

predictions by human-trained (y-axis) vs. mouse-trained (x-axis) models. For visual clarity, only 25% of

bound sites and 5% of unbound sites are shown (sampled systematically).
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Motif-like sequence features discriminate between true-positive and false-negative mouse model pre-156

dictions157

Since the only input to our models is DNA sequence, sequence features must be responsible for differential158

prediction of certain sites across source and target models. Other potential culprits, such as chromatin159

accessibility changes or co-factor binding, may contribute to TF binding divergence across species without160

changes to sequence; but without an association between those factors and sequence, the human-trained161

model would not be able to gain an advantage over the mouse-trained model by training on sequence input162

alone. Thus, we focused on genomic sequence to understand differential site prediction.163

To begin, we searched for sequence features associated with differential prediction of bound sites from164

the human genome – specifically, we compared bound sequences that both the human-trained and mouse-165

trained models correctly predicted (true positives) to bound sequences the human-trained model correctly166

predicted but the mouse-trained model did not (mouse-specific false negatives). We used SeqUnwinder, a167

tool for deconvolving discriminative sequence features between sets of genomic sequences, to extract motifs168

that can discriminate between the two groups of sequences and quantitatively assess how distinguishable169

the sequence groups are (Kakumanu et al. 2017). SeqUnwinder was able to distinguish mouse-specific170

false negatives from true positives and randomly selected background genomic sequences with area under171

the ROC curve (auROC) of 0.78, 0.79, 0.80, and 0.87 for CTCF, CEBPA, HNF4A, and RXRA, respectively.172

Supplemental Fig. S3 shows the breakdown of sequence features that are able to distinguish between173

mouse-specific false negatives and true positives for each TF. Thus, we were able to identify TF-specific174

motifs that were enriched (or depleted) at mouse-specific false negatives. However, we did not observe175

systemic sequence features that unanimously contributed to the performance gap across all TFs studied,176

beyond a poly-A/poly-T motif.177

Primate-unique SINEs are a dominant source of the mouse-to-human cross-species gap178

One potential source of sequences that could confuse a cross-species model are repeat elements found179

in the genome of the target species but not the source species. Alu elements, a type of SINE, cover a180

large portion (10%) of the human genome and are found only in primates (Batzer and Deininger 2002).181

Several other factors make Alus even more likely candidates for confounding mouse-to-human TF binding182

predictions: they are enriched in gene-rich, GC-rich areas of the genome and contain 33% of the genome’s183
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CpG dinucleotides (a marker for promoter regions); they may play a role in gene regulation; and in silico184

studies have previously found putative TF binding sites within Alu sequences (Batzer and Deininger 2002;185

Schmid 1998; Ferrari et al. 2019; Polak and Domany 2006).186

Figure 5 shows only the unbound human-genome windows that overlap annotated Alu elements. Ta-187

ble 1 provides corresponding quantification of Alu enrichment. Note that while Alu elements are typically188

poorlymappable, and it is thus often difficult to assign them as bound or unbound in ChIP-seq experiments,189

we focus analyses here only on highly mappable Alu instances (see Methods). Across all four TFs, we see190

that Alus are substantially enriched in the unbound windows mispredicted only by the mouse model. On191

average, 89% of these false positives unique to the mouse model overlap with an Alu element, compared192

to the average overlap rate of 21% for unbound sites overall, or 18% for unbound sites incorrectly pre-193

dicted by both models. In contrast, Alus on average only overlap 6% of false negatives unique to the mouse194

model, which is less than the overlap fraction for bound sites overall (15%) and for false negatives common195

to both models (11%). We repeated this analysis using other repeat classes, including LINEs and LTRs,196

and confirmed that no other major repeat family shows an enrichment of comparable strength with either197

the false positives or false negatives unique to the mouse model (Supplemental Table S1). Investigating198

the enrichment of individual Alu subfamilies in mouse-model-unique false positives showed that this phe-199

nomenon is not restricted to a single subtype of Alu, but that subfamilies are enriched at different levels in200

a manner that is TF-specific and varies particularly between the AluJ, AluS, and AluY subfamily groupings201

(Supplemental Fig. S4).202

Thus, the vast majority of the false positives from the human genome mispredicted only by mouse203

models can be directly attributed to one type of primate-unique repeat element. We did not observe any204

similar direct associations between primate-unique elements and the false negatives unique to the mouse205

model, besides the expected depletion of Alu elements.206

Model interpretation reveals sequence features driving divergent mouse and humanmodel predictions207

To understand whymouse and humanmodels make divergent predictions at some sites, we compared base-208

pair resolution importance scores from bothmodels at selected example sites. Specifically, we implemented209

a strategy similar to in silico mutagenesis (ISM) where a base’s score was determined by the differential210

model output between the original sequence and the sequence with 5bp centered on that base replaced211

with bases from a dinucleotide-shuffled reference (Alipanahi et al. 2015). We observed that this strategy212

12



Figure 5: Most unbound sites from the human genome mispredicted by mouse-trained models (x-axis),

but not by human-trained (y-axis) models, contain Alu repeats. For visual clarity, only 5% of windows are

shown.
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TF Bound FN (Both Models) FN (Mouse Only) Unbound FP (Both Models) FP (Mouse Only)

CTCF 12.6% 12.8% 9.9% 21.3% 10.0% 78.6%
CEBPA 18.3% 11.1% 0.0% 21.3% 22.9% 84.8%
HNF4A 13.6% 10.4% 8.0% 21.3% 16.9% 95.1%
RXRA 13.7% 10.6% 5.5% 21.4% 20.3% 97.4%

Table 1: Percent of windows overlapping an Alu element, for various categories of genomic windows from

the held-out test set. Alu elements dominate the false positives unique to the mouse models. FPs: false

positives. FNs: false negatives. See Methods for more details on site categorization.

outperformed backpropagation-based scoring methods, potentially by avoiding gradient instability.213

First, we compared importance scores between the mouse and human models at example bound sites214

that both models predicted correctly (Supplemental Fig. S5). If the two models learned to use similar215

logic to make binding predictions, we would expect to see similar sequence features highlighted in the216

importance scores. Overall, we observe that the scores generated by the mouse and human models are217

reasonably concordant, although the extent of agreement varies noticeably across TFs. CTCF and CEBPA218

show the greatest tendency for agreement in importance scores across models. HNF4A showed a slightly219

weaker trend of score agreement, while RXRA importance scores were the most likely to disagree across220

models, including instances where motifs are highlighted by high scores from one model but given near-221

zero scores by the other model. However, across all TFs, instances of the primary cognate motif for the222

appropriate TF are common in the sequences marked by higher importance scores from either model.223

Next, we repeated the analysis on example unbound windows classified as mouse-model-unique false224

positives (Supplemental Fig. S6). At these sites, the mouse model’s prediction scores overshoot those of the225

humanmodel by at least 0.5. Importance scores in this set of sites showmuch greater disagreement between226

the two models. Commonly across all four TFs, we observed two trends: first, the mouse models often227

assigned high importance to motif-sized contiguous stretches of bases which were not similarly recognized228

by the human models. These pseudo-motifs can superficially resemble approximate matches to the TF’s229

cognate motif. Second, the human models commonly showed apparent sensitivity to specific, often sparse230

features which received negative scores of moderate to high magnitude. These observations imply that the231

human model has learned to ignore certain sequence features that the mouse model’s scores suggest are232

favorable for binding. Furthermore, the human model may be adopting that strategy based on whether or233

not there are nearby sequence contexts that indicate that the sequence is not a binding site.234
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Figure 6: Performance of models that are mouse-trained (blue), human-trained with SINE examples (red),

and human-trained without SINE examples (yellow), evaluated on the held-out human Chromosome 2.

Five models were independently trained for each TF and training species.

Human models trained without SINE examples behave like hybrid mouse-human models235

To further characterize how Alu elements are influencing cross-species model performance, we trained236

additional models on the human dataset after removing all windows from the training dataset that overlap237

with any SINEs (Figure 6). We filtered out all SINEs, including the primate-specific FLAM and FRAM238

repeats as well as Alus, to avoid keeping examples that shared any sequence homology with Alus. The no-239

SINE models were evaluated on the same held-out chromosome test data used previously (which includes240

SINEs). For all TFs except CTCF, the no-SINE models perform substantially worse than models trained241

using the complete human training sets.242

Site-distribution plots show that, for unbound sites, no-SINE human-trained models make mispre-243

dictions in a pattern similar to mouse-trained models; there is a similarly-sized subset of unbound sites244

mispredicted by the no-SINE human-trained models but not by the standard human-trained models (Fig-245

ure 7). Plotting only the sites that overlap withAlus confirms that the false positives unique to the no-SINEs246

model are predominantly Alu elements (Supplemental Fig. S7). For bound sites, on the other hand, no-247

SINE human-trainedmodels make predictions that generally agree with predictions from standard human-248
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Figure 7: Differential human Chromosome 2 site predictions between models trained on human data with

or without any examples of SINE windows. Human-NS: models trained on human data with no SINE

examples. Similar to mouse-trained models, no-SINE human-trained models systematically mispredict

some unbound sites.
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trained models.249

This suggests that the Alu false positives unique to the mouse-trained model may simply be due to the250

fact that mouse models are not exposed to Alus during training (i.e., Alu elements are “out of distribution”).251

In addition, the reduction in model-unique false negatives observed when the no-SINE human-trained252

model is compared to the normal human-trained model suggests that those mispredictions are unrelated253

to Alus.254

Domain-adaptive mouse models can improve cross-species performance255

Having observed an apparent “domain shift” across species, partially attributable to species-unique re-256

peats, our next step is to ask how we might bridge this gap and reduce the difference in cross-species model257

performance. Our problem is analogous to one encountered in some image classification tasks, where the258

test data is differently distributed from the training data to the extent that the model performs well on259

training data but much worse on test data (for example, the training images were taken during the day260

but the test images were taken at sunset). In these situations, various techniques for explicitly forcing the261

model to adapt across different image “domains” have been shown to improve performance at test time262

(e.g., Long et al. 2015; Bousmalis et al. 2016; Sun et al. 2016).263

One unsupervised domain adaptation method utilizes a gradient reversal layer to encourage the “fea-264

ture generator” portion of a neural network to be domain-generic (Ganin et al. 2016). The gradient reversal265

layer’s effect is to backpropagate a loss to the feature generator that prevents any domain-unique features266

from being learned. We chose to test the effectiveness of this version of domain adaptation for our cross-267

species TF binding prediction problem because we have observed evidence that domain-unique features268

(species-unique repeat elements) were a major component of the cross-species domain shift.269

Wemodified our existing model architecture to perform training-integrated domain adaptation across270

species (Figure 8). A gradient reversal layer (GRL) was added in parallel with the LSTM, taking in the result271

of the max-pooling step (after the convolutional layer) as input. During standard feed-forward prediction,272

the GRL merely computes the identity of its input, but as the loss gradient backpropagates through the273

GRL, it is reversed. The output of the GRL then passes through two fully connected layers before reaching a274

new, secondary output neuron. This secondary output, a “species discriminator,” is tasked with predicting275

whether themodel’s input genomic window is from the source or target species. Themodel training process276
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Figure 8: Domain-adaptive network architecture. The top network output predicts TF binding, as before,

while the bottom network output predicts the species of origin of the input sequence window. The gradient

reversal layer has the effect of discouraging the underlying convolutional filters from learning sequence

features relevant to the species prediction task.
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is modified so that the model is exposed to sequences from both species, but only the binding labels of277

the source species (see Methods). Without the GRL, adding the species discrimination task to the model278

would encourage the convolutional filters to learn sequence features that best differentiate between the279

two species – features like species-unique repeats – but with the GRL included, the convolutional filters280

are instead discouraged from learning these features. We hypothesize that this domain-adaptive model will281

outperform our basic model architecture by reducing mispredictions on species-unique repeats.282

We trained domain-adaptive models using the same binding training datasets as before and evaluated283

performance with the same held-out datasets. We observe that the auPRC for our domain-adaptive models284

on cross-species test data is moderately higher than the auPRC for the basic mousemodels for all TFs except285

CTCF, where auPRCs are merely equal (Figure 9, top, blue/left vs. green/middle dots). The domain-286

adaptive models’ auPRCs on mouse test data, meanwhile, is comparable to the auPRCs of basic models287

(Figure 9, bottom, blue/left vs. green/middle). While the auPRC improvement is promising, it is also288

modest in comparison to the full cross-species gap; the domain-adaptive models still do not achieve a level289

of performance comparable to same-species models (Figure 9, top, green/middle vs. red/right).290

Domain-adaptive mouse models reduce over-prediction on Alu elements291

Next, we repeated our site-distribution analysis to determine what constituted the domain-adaptive mod-292

els’ improved performance. The unbound site plots in Figure 10 compare human genome predictions293

between domain-adaptive mouse models and the original human models. Alu elements are highlighted in294

Figure 11, with quantification in Supplemental Table S2.295

Compared to Figure 4, the mouse-model-specific false positives have diminished for all TFs. This296

suggests that the domain-adaptive models are able to correct the problem of false positive predictions from297

Alus by scoring unbound sites overlapping Alus lower than the basic model did. This effect is even present298

for CTCF, even though there was no noticeable auPRC difference for CTCF between domain-adaptive and299

basic mouse models – likely because the initial Alu enrichment in CTCF mouse-model false positives was300

lower than for other TFs.301

In contrast, the site-distribution plots for bound sites demonstrate no noticeable difference from the302

original plots for the basic model architecture. We applied the same SeqUnwinder analysis to look for303

sequence features that discriminate between mouse-model false negatives and true positives and discov-304

19



Figure 9: Performance of mouse-trained generic (blue), mouse-trained domain-adaptive (green), and

human-trained (red) models, evaluated on human (top) and mouse (bottom) Chromosome 2. Five mod-

els were independently trained and evaluated for each TF and training species.

20



0.0

0.5

1.0

Hu
m

an
 M

od
el

 P
re

di
ct

io
n

0.0

0.5

1.0

Hu
m

an
 M

od
el

 P
re

di
ct

io
n

0.0

0.5

1.0

Hu
m

an
 M

od
el

 P
re

di
ct

io
n

0.0 0.5 1.0
Mouse+DA Model Prediction

0.0

0.5

1.0

Hu
m

an
 M

od
el

 P
re

di
ct

io
n

0.0 0.5 1.0
Mouse+DA Model Prediction

CT
CF

Bound Sites Unbound Sites

CE
BP

A
HN

F4
A

RX
RA

Figure 10: Differential predictions of human genome sites between human-trained and domain-adaptive

mouse-trained models. Domain-adaptive mouse models, unlike the original mouse models, do not show

species-specific systematic misprediction of unbound sites.

21



Figure 11: Differential predictions of unbound sites containing Alu elements between domain-adaptive

mouse-trained models and human-trained models. Unlike the original mouse models, domain-adaptive

mouse models do not show systematic overprediction of Alu repeats.
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ered similar, but not identical, motif-like short sequence patterns as we did previously (Supplemental Fig.305

S8). Thus, our domain adaptation approach does not appear to have any major influence on bound site306

predictions.307

Alus commonly drive mouse-model false positives across diverse cell types308

Finally, we asked whether the observed over-prediction of species-specific repeats is a general issue of309

concern in cross-species TF binding prediction, or whether it is particular to the examined liver TFs. We310

thus widened our analyses to 53 additional pairs of ChIP-seq datasets targeting orthologous TFs across 8311

additional equivalent human and mouse cell types (see Methods). One caveat is that the expanded set of312

paired datasets typically focus on cell lines and cell types that are more difficult to closely match across313

species than liver samples. Thus, the additional experiments examined here may not be as comparable314

across species as the previously examined liver datasets.315

Our expanded analyses confirm that the cross-species performance gap is present in most tested TFs316

and cell types (Supplemental Table S3). A large portion of mouse-to-human false positive predictions is317

attributable to Alu elements. In 43 of the 53 additional examined datasets, Alu elements overlap a third or318

more of the mouse-model-unique false positive predictions (Supplemental Table S4). Our domain adap-319

tation procedure is successful in reducing Alu-related false positive predictions in 46 of the 53 additional320

examined datasets (Figure 12; Supplemental Table S4). However, in megakaryocyte and hematopoietic321

progenitor datasets, we generally see a smaller percentage of mouse-model-unique false positives being322

attributable to Alus. The false positive predictions that do overlap Alus are also generally less likely to be323

corrected by our domain adaptation approach in these cell types (Figure 12). Therefore, our observations324

may not apply uniformly to all cell types.325

Discussion326

Enabling effective cross-species TF binding imputation strategies would be transformative for studying327

mammalian regulatory systems. For instance, TF binding information could be transferred from model328

organisms in cell types and developmental stages that are difficult or unethical to assay in humans. Simi-329

larly, one could annotate regulatory sites in non-model species of agricultural or evolutionary interest by330

leveraging the substantial investment that has been made to profile TF binding sites in human, mouse, and331
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other model organisms (The ENCODE Project Consortium 2012; Yue et al. 2014; Roadmap Epigenomics332

Consortium et al. 2015).333

Our results suggest that cross-species TF binding imputation is feasible, but we also find a pervasive334

performance gap between within-species and cross-species prediction tasks. One set of culprits for this335

cross-species performance gap are species-specific transposable elements. For example, models trained336

using mouse TF binding data have never seen an Alu SINE element during training, and often falsely337

predict that these elements are bound by the relevant TF. Since Alu elements appear at high frequency in338

the human genome, their misprediction constitutes a large proportion of the cross-species false positive339

predictions, and thereby substantially affect the genome-wide performance metrics of the model. It should340

be noted that Alus and other transposable elements can serve as true regulatory elements (Bourque et al.341

2008; Sundaram et al. 2014), and thus we don’t assume that all transposable elements should be labeled as342

TF “unbound”. Indeed, we minimized the potential mislabeling of truly bound transposable elements as343

“unbound” by focusing all our analyses on regions of the genome that have a high degree of mappability344

(and are thereby less likely to be subject to mappability-related false negative labeling issues in the TF345

ChIP-seq data).346

We demonstrated that a simple domain adaptation approach is sufficient to correct the systematic347

mispredictions of Alu elements as TF bound. Training a parallel task (discriminating between species) but348

with gradient reversal employed during backpropagation has the effect of discouraging species-specific349

features being learned by the shared convolutional layers of the network. This approach is straightforward350

to implement and has the advantage that TF binding labels need only be known in the training species.351

Our approach accounts for domain shifts in the underlying genome sequence composition, assuming that352

the general features of TF binding sites are conserved within the same cell types across species.353

We note that the underlying assumption of cross-species TF binding prediction - i.e., that the overall354

features of cell-specific TF binding sites are conserved - may not hold true in all cases. For some TFs,355

concordant importance scores between mouse and human models across true-positive bound sites suggests356

that both models learned similar representations of the TF’s cognate motif. However, for other TFs, the357

same analysis suggests that the models’ representations of the sequences important for binding may not358

completely agree. We also observe, particularly for those TFs with less concordant importance scores across359

species, that there are sequence features in bound sites that discriminate between correct and incorrect360

predictions specific to cross-species models. Therefore, cross-species false negative prediction errors could361

25



be the result of differential TF activity across the two species. Such differential activities could result from362

gain or loss of TF expression patterns, non-conserved cooperative binding capabilities, or evolved sequence363

preferences of the TF itself. Our sequence composition domain adaptation approach is unlikely to address364

situations where TF binding logic is not fully conserved across species.365

Other recent work has also demonstrated the feasibility of cross-species regulatory imputation. For366

example, Chen, et al. assessed the abilities of support vector machines (SVMs) and CNNs to predict po-367

tential enhancers (defined by combinations of histone marks) when trained and tested across species of368

varying evolutionary distances (Chen et al. 2018). They observed that while CNNs outperform SVMs in369

within-species enhancer prediction tasks, they are worse at generalizing across species. Our work suggests370

a possible reason for, and a solution to, this generalization gap. Two other recent manuscripts have ap-371

plied more complex neural network architectures to impute TF binding and other regulatory signals across372

species (Kelley 2020; Schreiber et al. 2020). Those studies focus on models that are trained jointly across373

thousands of mouse and human regulatory genomic datasets. They thus assume that substantial amounts374

of regulatory information has already been characterized in the target species, which may not be true in375

some desired cross-species imputation settings. In general, however, joint modeling approaches are also376

likely to benefit from domain adaptation strategies that account for species-specific differences in sequence377

composition, and our results are thus complementary to these recent reports.378

In summary, our work suggests that cross-species TF binding prediction approaches should beware of379

systematic differences between the compositions of training and test species genomes, including species-380

specific repetitive elements. Our contribution also suggests that domain adaptation is a promising strategy381

for addressing such differences and thereby making cross-species predictions more robust. Further work is382

needed to characterize additional sources of the cross-species performance gap and to generalize domain383

adaptation approaches to scenarios where training data is available from multiple species.384

Methods385

Data processing386

Datasets were constructed by splitting the mouse (mm10) and human (hg38) genomes, excluding sex chro-387

mosomes, into 500 bp windows, offset by 50 bp. Any windows overlapping ENCODE blacklist regions388
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were removed (Amemiya et al. 2019). We then calculated the fraction of each window that was uniquely389

mappable by 36 bp sequencing reads and retained only the windows that were at least 80% uniquely map-390

pable (Karimzadeh et al. 2018). Mappability filtering was performed to remove potential peak-calling false391

negatives; otherwise, any genomic window too unmappable for confident peak-calling would be a potential392

false negative.393

ChIP-seq experiments and corresponding controls (where available) were collected from ENCODE,394

GEO, and ArrayExpress. Database accession IDs for all data used in this study are listed in Supplemen-395

tal Tables S5, S6, and S7. We chose to focus our initial analyses on liver, as several previous studies have396

provided matched ChIP-seq experiments characterizing orthologous TF binding across mammalian liver397

samples (Schmidt et al. 2010; Odom et al. 2007). Our expanded analyses use erythroid, lymphoblast, and398

ES cell line experiments that were previously compared across species by Denas, et al. (Denas et al. 2015).399

We also analyzed matched adipocyte datasets that were performed on adipocyte cell lines within the same400

labs (Schmidt et al. 2011; Mikkelsen et al. 2010). Additional datasets were sourced by searching the lit-401

erature for ChIP-seq data targeting orthologous TFs in erythroid progenitor, megakaryocyte, macrophage,402

and hematopoietic progenitor cell types (Tijssen et al. 2011; Hu et al. 2011; Pham et al. 2012; Pencovich et403

al. 2013; Kaikkonen et al. 2013; Beck et al. 2013; Yue et al. 2014; Huang et al. 2016; Goode et al. 2016).404

For cell types where all data was sourced from themouse and human ENCODE projects (i.e., erythroid,405

lymphoblast, and ES cell lines), we downloaded ChIP-seq narrow peak calls from the ENCODE portal. For406

liver and all other cell types, we first aligned the FASTQ files to the mm10 and hg38 reference genomes407

using Bowtie (version 1.3.0) (Langmead and Salzberg 2012). We then called ChIP-seq peaks usingMultiGPS408

v0.74 with default parameters, excluding ENCODE blacklist regions (Mahony et al. 2014; Amemiya et al.409

2019). Corresponding control experiments were utilized during peak calling when available. Peak calls410

were converted to binary labels for each window in a genome: “bound” (1) if any peak center fell within411

the window, “unbound” (0) otherwise. Supplemental Table S5 shows the numbers of peaks called for liver412

datasets, as well as the number of bound windows retained after filtering and the fraction of all retained413

windows that are bound; Supplemental Tables S6 and S7 show the same information for all other datasets.414

Candidate datasets were discarded from the analysis if the numbers of called peaks was less than 1000 in415

mouse or human.416
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Dataset splits for training and testing417

Chromosomes 1 and 2 of both species were held out from all training datasets. For computational effi-418

ciency, one million randomly selected windows from Chromosome 1 were used as the validation set for419

each species (for hyperparameter tuning). All windows from Chromosome 2 were used as the test sets.420

Chromosomes X and Y were not used to avoid confounding because our matched datasets across species421

did not always match in sex.422

TF binding task training data was constructed identically for all model architectures. Since binary423

classifier neural networks often perform best when the classes are balanced in the training data, the binding424

task training dataset consisted of all bound examples and an equal number of randomly sampled (without425

replacement) unbound examples, excluding examples fromChromosomes 1 and 2. To increase the diversity426

of examples seen by the network across training, in each epoch a distinct random set of unbound examples427

was used, with no repeated unbound examples across epochs.428

Domain-adaptivemodels also require an additional “species-background” training set from both species429

for the species discrimination task. Species-background data consisted of randomly selected (without re-430

placement) examples from all chromosomes except 1, 2, X, and Y. Binding labels were not used in the431

construction of these training sets. In each batch, the species-background examples were balanced, with432

50% human and 50% mouse examples, and labeled according to their species of origin (not by binding).433

The total number of species-background examples in each batch was double the number of binding exam-434

ples.435

Basic model architecture436

The network takes in a one-hot encoded 500 bp window of DNA sequence and passes it through a convolu-437

tional layer with 240 20-bp filters, followed by a ReLU activation andmax-pooling (pool window and stride438

of 15 bp). After the convolutional layer is an LSTM with 32 internal nodes, followed by a 1024-neuron439

fully-connected layer with ReLU activation, followed by a 50% Dropout layer, followed by a 512-neuron440

fully-connected layer with sigmoid activation. The final layer is a single sigmoid-activated neuron.441
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Domain-adaptive model architecture442

The domain-adaptive network builds upon the basic model described above by adding a new “species443

discriminator” task. The network splits into two output halves following max-pooling after the convolu-444

tional layer. The max-pooling output feeds into a gradient reversal layer (GRL) – the GRL merely outputs445

the identity of its input during the feed-forward step of model training, but during backpropagation, it446

multiplies the gradient of the loss by −1. The GRL is followed by a Flatten layer, a ReLU-activated fully447

connected layer with 1024 neurons, a sigmoid-activated fully connected layer of 512 neurons, and finally a448

single-neuron layer with sigmoid activation.449

Model training450

All models were trained with Keras v2.3.1 using the Adam optimizer with default parameters (Chollet451

2015; Kingma and Ba 2014). Training ran for 15 epochs, with models saved after each epoch. After train-452

ing, we selected models for downstream analysis by choosing the saved model with highest auPRC on the453

training-species validation set.454

The basic models were trained by standard procedure with a batch size of 400 (see Section 2.1.2 for455

training dataset construction). The domain-adaptive models, on the other hand, required a more complex456

batching setup. Because domain-adaptive models predict two tasks – binding and the species of origin of457

the input sequence – they require two stages of dataset input per batch. The first stage is identical to a basic458

model training batch, but with ⌊400/3⌋ = 133 binding examples from the source species. The second stage459

uses ⌈400 ∗ 2/3⌉ = 267 examples each from the source species’ and target species’ “species-background”460

datasets.461

Crucially, the stages differ in how task labels are masked. For each stage, only one of the two output462

halves of the network trains (the loss backpropagates from one output only). In the first stage, we mask463

the species discriminator task, so that only the binding task half of the model trains on binding examples464

from the training species. In the second stage, we mask the binding task, so only the species discriminator465

task half trains. Thus, the binding task only trains on examples from the source species, while the species466

discriminator task doesn’t see binding labels from either species.467

Meanwhile, the weights of the shared convolutional layer are influenced by both tasks. Because these468

stages occur within a single batch and not in alternating batches, they concurrently influence the weights469
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of the convolutional filters; there is no oscillating “back-and-forth” between the two tasks from batch to470

batch.471

Model performance evaluations were computed with the sci-kit-learn v0.23 implementation of the472

average precision score function, which closely approximates the area under the precision-recall curve473

(auPRC).474

Differentially-predicted site categorization475

To quantify site enrichment within discrete categories such as “false positives” and “false negatives”, it was476

necessary to define the boundaries for these labels. In particular, when comparing prediction distributions477

between models, we needed to define what constitutes, for instance, a “false positive unique to model A.”478

We constructed the following rules for site categorization: 1) unbound sites must have predictions above 0.5479

to be labeled false positives, and bound sites must have predictions below 0.5 to be labeled false negatives;480

2) a site is considered to be differentially predicted between two source species A and B if |PA − PB| > 0.5,481

where PA and PB are the predictions frommodels trained on data from species A and species B, respectively;482

3) only sites meeting this differential prediction threshold are labeled as a false positive or negative unique483

to one model. Thus, if we are comparing models from species A and B, and a site is labeled a false positive484

unique to model A, then PA > 0.5 and PB < 0.5. To reduce noise in these categorizations, rather than letting485

PA and PB equal the predictions from single models, we trained 5 independent replicate models for each TF486

and source species, and then let PA be the average prediction across the 5 replicate models trained on data487

from species A for a given TF.488

Bound site discriminative motif discovery489

SeqUnwinder (v. 0.1.3) (Kakumanu et al. 2017) was used to find motifs that discriminate between true490

positive predictions and mouse-model-specific false negative predictions using the following command-491

line settings: “--threads 10 --makerandregs --makerandregs --win 500 --mink 4 --maxk 5 --r 10 --x 3 --a 400492

--hillsthresh 0.1 --memesearchwin 16”, and using MEME v. 5.1.0 (Machanick and Bailey 2011) internally.493
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Repeat analysis494

All repeat analysis used the RepeatMasker track from the UCSC Genome Browser (Smit et al. 1996).495

Genome windows were labeled as containing an Alu element if there was any overlap (1 or more bp) with496

any Alu annotation. For Supplemental Table S1, repeat classes were excluded if fewer than 500 examples497

of that class were annotated in the test chromosome (before mappability filtering).498

Gapped k-mer SVMs499

The gkmtrain and gkmpredict utilities from the lsgkm package were used for gkmSVMs gkm training and500

prediction generation, respectively (Lee 2016). For training, 50000 examples each were selected randomly501

from the set of all bound windows and unbound windows in the original neural network model train-502

ing sets. Every 10th example from the original test set (in other words, sampling windows such that all503

selected windows were non-overlapping) was considered in evaluation for computational efficiency. All504

default parameters were used in running lsgkm (center-weighted + truncated l-mer kernel, word length505

11, maximum 3 mismatches).506

Profile models507

Our profile model consists of a dilated convolutional residual model architecture that closely resembles the508

BPNet architecture (Avsec et al. 2021b), with the following modifications: 1) 21bp-long filters in the first509

convolutional layer, rather than 25bp; 2) 8 dilated convolutional layers, rather than 9; 3) a learning rate510

of 0.001; 4) 2114 bases of sequence input. The first three hyperparameters were selected by tuning on the511

source-species validation set loss; the sequence input length was chosen based on what would produce a512

1000bp-long profile prediction given the 8-layer architecture’s receptive field.513

The profile models were trained using the same task and loss scheme as in Avsec et al. 2021b, with514

the loss function value of λ set to 10. Training lasted 30 epochs, with early stopping used to select the best515

model according to the source-species validation set profile (multinomial) loss. The training data used was516

sampled from regions in the training set used by the binary models: specifically, each epoch the profile517

model saw a 3:1 ratio of windows centered on peaks from training set chromosomes, with up to 200bp518

jitter, and windows not overlapping peaks with a GC-content distribution that matched the set of peak-519

centered windows. Hyperparameter tuning was performed using a combination of the BPNet multinomial520
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loss for the profile task, calculated on peaks from Chromosome 1, and auPRCs calculated using the same521

validation set of 1 million random windows from Chromosome 1 that the binary models used. Final model522

evaluation was performed on the full original test sets from Chromosome 2 used by the binary models.523

Importance scoring524

For a given 500bp window and model, importance scores were generated using a method similar to in525

silico mutagenesis, which measures the change in model prediction when a given base and the region526

immediately around it are ablated. First, ten independent dinucleotide-shuffled versions of the original527

sequence were generated to serve as reference sequences unlikely to contain motifs. Next, the 5bp region528

centered at a particular base was replaced with the corresponding 5bp region from one of the ten shuffled529

sequences, and the post-sigmoid difference in model output for this ablated sequence was recorded. This530

was repeated for all ten shuffled sequences, with the average model prediction differential reported as531

the score for the base that the ablated region centered on. This process was repeated for all bases in the532

sequence being scored.533

Software availability534

Open source code (MIT license) is provided in a Supplemental Code file and is also available from:535

https://github.com/seqcode/cross-species-domain-adaptation536
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Supplemental Figure 1: Results of evaluating the performance of mouse-trained (blue) and human-trained (red) gapped 
k-mer SVM models on non-overlapping windows from the mouse (left) and human (right) test datasets (Chromosome 2). 
For each TF and species, an SVM was trained using a balanced set of bound and unbound windows from the original 
training set. 



 
 
Supplemental Figure 2: Top: results from evaluating the performance of mouse-trained (blue/left) and human-trained 
(red/right) profile models on non-overlapping windows from the human (left panel) and mouse (right panel) test datasets 
(Chromosome 2). Bottom: example predicted vs. true ChIP-seq read distribution profiles from mouse (left) and human 
(right) test datasets. See Methods for profile model details. 



 
 
Supplemental Figure 3: Motif-like sequence features can discriminate between human-genome bound sites correctly 
predicted by mouse-trained and human-trained models (true positives or TP) and bound sites correctly predicted only by 
human-trained models (mouse-specific false negatives or FN) for each TF. See Methods for site categorization details. 



 
 
Supplemental Figure 4: Enrichment of specific Alu subfamilies within the set of false positives unique to the mouse-
trained model, relative to false positives common to both mouse-trained and human-trained models. For a given TF and 
Alu subfamily, the fraction of windows overlapping any RepeatMasker-annotated instance of that repeat type were 
calculated for both classes of false positives. The values in the figure show the ratio between Alu fractions in mouse-
model-unique false positives and both-model false positives. Only Alu subamilies with annotations overlapping at least 
500 examples in the test dataset (Chromosome 2) and covering at least 0.01% of the both-model false positive category 
are included. 



 
 
Supplemental Figure 5: Importance scores for example both-model true positive sites for the four TFs. Bases were 
scored using a modified ISM algorithm (see Methods). The 500bp example sites have been enlarged and cropped around 
motif-like instances for readability. 



 
 
Supplemental Figure 6: Importance scores for example false positive sites mispredicted only by the mouse model. Bases 
were scored using a modified ISM algorithm (see Methods). 



 
 
Supplemental Figure 7: Comparison between the predictions of human-trained models that were trained without 
examples overlapping SINEs (x-axis) to the predictions of standard human-trained models (y-axis). Unbound Alu repeats 
make up a large part of the false positives unique to the no-SINEs model. For visual clarity, only 5% of windows are 
shown. 



 
 
Supplemental Figure 8: False negative predictions unique to mouse-trained models trained with domain adaptation, 
compared to human-trained models, can be distinguished from true positive predictions through motif-like sequence 
features. See Methods for site categorization details. 



TF Bound FN (Both Models) FN (Mouse Only) Unbound FP (Both Models) FP (Mouse Only)

DNA

CTCF 10.1% 11.4% 7.3% 11.4% 8.9% 9.0%
CEBPA 12.3% 10.4% 8.3% 11.3% 13.0% 9.2%
HNF4A 10.7% 12.0% 11.3% 11.4% 9.5% 9.0%
RXRA 10.1% 11.7% 8.8% 11.4% 10.0% 9.4%

LINE

CTCF 18.3% 22.5% 21.3% 37.6% 17.8% 31.6%
CEBPA 25.6% 26.3% 25.0% 37.6% 29.0% 32.3%
HNF4A 21.0% 25.3% 26.3% 37.6% 21.5% 30.5%
RXRA 21.0% 27.9% 22.1% 37.8% 22.1% 33.2%

Low Complexity

CTCF 2.5% 1.0% 2.6% 1.9% 4.0% 1.5%
CEBPA 1.5% 1.4% 0.0% 1.9% 1.6% 1.4%
HNF4A 2.0% 1.1% 1.5% 1.9% 2.4% 1.3%
RXRA 2.1% 1.3% 2.0% 1.9% 2.2% 1.5%

LTR

CTCF 8.6% 12.6% 8.2% 17.6% 16.4% 15.5%
CEBPA 12.8% 12.5% 41.7% 17.6% 19.4% 14.0%
HNF4A 13.3% 15.0% 16.0% 17.6% 19.4% 12.6%
RXRA 12.2% 14.8% 9.8% 17.6% 18.2% 11.5%

Simple Repeat

CTCF 13.4% 10.1% 10.9% 11.5% 15.8% 12.0%
CEBPA 9.4% 8.6% 25.0% 11.6% 9.8% 11.9%
HNF4A 12.3% 11.4% 9.1% 11.5% 11.6% 12.8%
RXRA 11.5% 9.4% 13.3% 11.5% 11.1% 13.4%

SINE

CTCF 23.9% 23.2% 20.6% 31.2% 18.4% 81.1%
CEBPA 30.9% 22.6% 41.7% 31.2% 35.2% 86.9%
HNF4A 27.1% 23.6% 22.6% 31.2% 28.9% 95.5%
RXRA 27.1% 25.3% 18.9% 31.3% 32.2% 97.6%

Unknown

CTCF 0.2% 0.1% 0.0% 0.2% 0.1% 0.0%
CEBPA 0.3% 0.5% 0.0% 0.1% 0.2% 0.0%
HNF4A 0.2% 0.1% 0.0% 0.2% 0.2% 0.0%
RXRA 0.2% 0.3% 0.0% 0.1% 0.2% 0.0%

Table S1: Percent of windows overlapping various RepeatMasker-defined repeat elements, for different cate-

gories of genomic windows from the held-out test set. Only RepeatMasker repeat classes with at least 500 dis-

tinct annotations within the testset are shown. FPs: false positives. FNs: false negatives. Mouse Only: specific

to mouse-trained models. See Methods for more details on site categorization.

Shaun Mahony



TF Bound FN (Both Models) FN (Mouse Only) Unbound FP (Both Models) FP (Mouse Only)

CTCF 12.6% 13.5% 13.7% 21.3% 9.0% 28.8%
CEBPA 18.3% 16.8% 0.0% 21.3% 21.9% 49.5%
HNF4A 13.6% 14.8% 13.7% 21.3% 14.0% 34.3%
RXRA 13.7% 17.7% 10.7% 21.4% 15.8% 58.7%

Table S2: Percent of windows overlapping an Alu element when domain-adaptive mouse models are compared to human

models (compare to Table 1). The fraction of mouse-model-unique false positives overlapping Alu elements (right-most

column) have decreased notably for all TFs. FPs: false positives. FNs: false negatives.



auPRC, Mouse Test Set auPRC, Human Test Set

TF Mouse(Basic) Mouse(+DA) Human Mouse(Basic) Mouse(+DA) Human

Adipocytes

CEBPA 0.18 0.18 0.17 0.18 0.21 0.35
CTCF 0.67 0.66 0.55 0.56 0.56 0.62

PPARG 0.08 0.07 0.08 0.07 0.06 0.22

Erythroid Cells

BHLHE40 0.09 0.09 0.07 0.13 0.13 0.19
CTCF 0.71 0.68 0.62 0.60 0.58 0.67
E2F4 0.10 0.07 0.09 0.17 0.17 0.23
ELF1 0.28 0.28 0.27 0.26 0.26 0.34
ETS1 0.16 0.16 0.05 0.11 0.10 0.21

GATA1 0.20 0.19 0.11 0.09 0.09 0.10
JUND 0.05 0.03 0.02 0.10 0.09 0.26
MAFK 0.14 0.12 0.14 0.17 0.16 0.39
MAX 0.18 0.18 0.14 0.19 0.20 0.26
MAZ 0.15 0.15 0.14 0.21 0.22 0.32

MEF2A 0.03 0.01 0.02 0.02 0.01 0.04
MXI1 0.20 0.21 0.16 0.09 0.10 0.10
MYC 0.14 0.14 0.09 0.17 0.18 0.23
NRF1 0.33 0.32 0.22 0.33 0.35 0.36
TAL1 0.14 0.14 0.11 0.14 0.14 0.19
UBTF 0.15 0.15 0.15 0.19 0.19 0.23
USF1 0.21 0.18 0.16 0.17 0.16 0.25
USF2 0.12 0.11 0.09 0.14 0.16 0.13

Erythroid Progenitors

CTCF 0.69 0.67 0.57 0.60 0.59 0.67
GATA1 0.09 0.09 0.08 0.10 0.08 0.16
TAL1 0.06 0.04 0.07 0.08 0.07 0.21

ESCs

CTCF 0.78 0.76 0.71 0.53 0.54 0.66
MAFK 0.43 0.40 0.40 0.31 0.28 0.34

NANOG 0.14 0.12 0.05 0.05 0.05 0.08
POU5F1 0.11 0.10 0.09 0.07 0.06 0.09

Hematopoietic Progenitors

FLI1 0.21 0.16 0.09 0.06 0.06 0.17
LMO2 0.06 0.04 0.00 0.00 0.00 0.01

RUNX1 0.06 0.04 0.05 0.05 0.05 0.20
SPI1 0.32 0.28 0.32 0.38 0.38 0.62

Continued on next page.



auPRC, Mouse Test Set auPRC, Human Test Set

TF Mouse(Basic) Mouse(+DA) Human Mouse(Basic) Mouse(+DA) Human

Lymphoblasts

BHLHE40 0.23 0.21 0.15 0.13 0.14 0.17
CTCF 0.70 0.69 0.58 0.63 0.61 0.65
E2F4 0.12 0.09 0.12 0.12 0.11 0.13
ELF1 0.32 0.30 0.27 0.34 0.34 0.34
ETS1 0.16 0.15 0.05 0.05 0.05 0.19
IRF4 0.23 0.22 0.14 0.11 0.10 0.14
JUND 0.09 0.07 0.05 0.04 0.04 0.07
MAX 0.17 0.17 0.13 0.17 0.18 0.19
MAZ 0.13 0.12 0.12 0.20 0.20 0.24

MEF2A 0.16 0.14 0.09 0.06 0.06 0.11
MXI1 0.19 0.20 0.18 0.14 0.15 0.16
MYC 0.14 0.14 0.07 0.08 0.10 0.11
NRF1 0.32 0.30 0.25 0.38 0.34 0.45
TBP 0.16 0.15 0.14 0.09 0.09 0.11

TCF12 0.24 0.23 0.17 0.12 0.11 0.14
USF1 0.22 0.20 0.17 0.20 0.20 0.19
USF2 0.16 0.15 0.12 0.10 0.10 0.09

Macrophages

SPI1 0.41 0.41 0.33 0.29 0.30 0.46

Megakaryocytes

FLI1 0.26 0.15 0.22 0.15 0.07 0.16
GATA1 0.09 0.08 0.02 0.03 0.02 0.04
RUNX1 0.08 0.06 0.04 0.13 0.12 0.28

Table S3: Average auPRC values from evaluating the basic mouse models, domain-adaptive mouse

models, and basic human models on the mouse (left columns) and human (right columns) test sets, across

all additional datasets beyond the primary liver TFs. The auPRCs shown are the average across three

replicate model trainings for basic mouse-trained and human-trained models and across two replicate

model trainings for domain-adaptive mouse models. Note that because the auPRC metric depends on

the sparsity of the positive class (bound sites), these values are not comparable across test sets, across

TFs, or across cell types.



Basic Mouse Models Domain-adaptive Mouse Models

TF Unbound FPs (Both) FPs (Mouse Only) Unbound FPs (Both) FPs (Mouse Only)

Adipocytes

CEBPA 21.3% 20.5% 76.5% 21.3% 19.5% 59.9%
CTCF 21.3% 11.4% 86.7% 21.3% 9.8% 31.3%

PPARG 21.4% 15.9% 68.1% 21.4% 14.8% 50.7%

Erythroid Progenitors

CTCF 21.3% 9.7% 42.0% 21.3% 9.8% 24.6%
GATA1 21.3% 15.1% 62.1% 21.3% 14.5% 64.4%
TAL1 21.3% 17.1% 86.3% 21.3% 14.0% 76.8%

Erythroid Cells

BHLHE40 21.3% 17.2% 63.5% 21.3% 16.0% 49.6%
CTCF 21.3% 13.6% 61.4% 21.3% 11.6% 34.0%
E2F4 21.3% 8.8% 71.1% 21.3% 8.2% 44.1%
ELF1 21.3% 13.7% 58.9% 21.3% 12.8% 40.5%
ETS1 21.3% 9.7% 35.0% 21.3% 8.9% 26.5%

GATA1 21.3% 14.1% 41.8% 21.3% 13.7% 28.7%
JUND 21.3% 20.6% 65.0% 21.3% 17.6% 54.6%
MAFK 21.3% 15.7% 56.4% 21.3% 14.2% 35.2%
MAX 21.3% 14.0% 72.2% 21.3% 13.0% 56.9%
MAZ 21.3% 12.3% 87.6% 21.3% 11.2% 60.9%

MEF2A 21.3% 12.5% 41.2% 21.3% 13.0% 36.3%
MXI1 21.3% 13.2% 81.7% 21.3% 11.9% 55.9%
MYC 21.3% 15.3% 68.5% 21.3% 14.0% 43.6%
NRF1 21.3% 8.9% 65.4% 21.3% 8.8% 47.2%
TAL1 21.3% 16.1% 38.8% 21.3% 15.4% 48.7%
UBTF 21.3% 10.6% 97.6% 21.3% 9.4% 84.5%
USF1 21.3% 14.8% 66.4% 21.3% 14.2% 55.3%
USF2 21.3% 11.9% 73.8% 21.3% 11.5% 62.8%

ESCs

CTCF 21.4% 14.9% 82.5% 21.4% 12.2% 31.5%
MAFK 21.3% 13.5% 80.7% 21.3% 13.4% 76.8%

NANOG 21.3% 10.3% 38.8% 21.3% 9.4% 26.7%
POU5F1 21.3% 11.0% 40.9% 21.3% 9.8% 22.7%

Hematopoietic Progenitors

FLI1 21.3% 6.9% 49.4% 21.3% 6.6% 34.5%
LMO2 21.3% 6.0% 20.0% 21.3% 6.4% 29.6%

RUNX1 21.3% 8.4% 25.5% 21.3% 7.9% 30.0%
SPI1 21.5% 13.6% 9.0% 21.5% 13.0% 17.4%

Continued on next page.



Basic Mouse Models Domain-adaptive Mouse Models

TF Unbound FPs (Both) FPs (Mouse Only) Unbound FPs (Both) FPs (Mouse Only)

Lymphoblasts

BHLHE40 21.3% 15.3% 67.5% 21.3% 14.0% 29.3%
CTCF 21.3% 11.4% 70.8% 21.3% 10.8% 33.8%
E2F4 21.3% 6.8% 51.2% 21.3% 6.6% 25.8%
ELF1 21.3% 11.8% 41.5% 21.3% 10.4% 18.2%
ETS1 21.3% 10.4% 32.8% 21.3% 9.7% 20.7%
IRF4 21.3% 13.3% 52.9% 21.3% 12.2% 21.0%
JUND 21.3% 12.6% 28.5% 21.3% 12.1% 25.8%
MAX 21.3% 8.6% 61.3% 21.3% 8.2% 30.1%
MAZ 21.3% 8.5% 50.4% 21.3% 8.2% 26.6%

MEF2A 21.3% 17.3% 64.5% 21.3% 13.8% 14.7%
MXI1 21.3% 11.6% 77.8% 21.3% 10.6% 43.6%
MYC 21.3% 6.3% 47.6% 21.3% 5.8% 31.7%
NRF1 21.3% 5.6% 26.6% 21.3% 5.6% 17.8%
TBP 21.3% 14.3% 89.2% 21.3% 12.4% 56.4%

TCF12 21.3% 11.6% 51.5% 21.3% 10.4% 17.5%
USF1 21.3% 11.0% 64.6% 21.3% 10.5% 63.1%
USF2 21.3% 11.4% 71.1% 21.3% 11.0% 71.2%

Macrophages

SPI1 21.4% 15.5% 27.2% 21.4% 14.2% 13.8%

Megakaryocytes

FLI1 21.3% 8.4% 23.0% 21.3% 7.6% 18.1%
GATA1 21.3% 7.6% 11.3% 21.3% 8.2% 19.4%
RUNX1 21.3% 7.8% 15.7% 21.3% 8.2% 15.4%

Table S4: The percent of sites overlapping an Alu element without (left column set) or with domain adaptation (right

column set), for each of the additional datsets included in Figure 12. FPs: false positives; either the set of unbound sites

mispredicted as bound by both the mouse model and the human model, or false positives mispredicted by the mouse

model only. See Methods for site categorization details.



TF Species Raw Peaks Filtered Peaks Bound Windows Frac. Bound Accession ID

CTCF Mouse 32006 28943 296117 0.71% ENCSR000CBU
Human 29067 26477 270100 0.55% ENCSR911GFJ

CEBPA Mouse 62636 48812 566945 1.35% E-TABM-722
Human 32243 28545 298066 0.61% E-TABM-722

HNF4A Mouse 44800 36540 415846 0.99% E-TABM-722
Human 42766 34714 387077 0.79% E-TABM-722

RXRA Mouse 46443 33751 404284 0.97% GSM1299600
Human 95085 71032 854289 1.75% ENCSR098XMN

Table S5: For the primary experimental data used in this study, the following quantities are listed: the number of peaks

called across the entire genome; the number of called peaks within the filtered window set, merged if within 500 bp of

each other; the number of windows in the filtered window set labeled bound due to peak overlap; the fraction of the

filtered window set labeled bound; and the database accession ID (ENCODE, GEO, or ArrayExpress). The size of the

filtered window sets for the mouse and human genomes were 41883806 and 48742577, respectively.



TF Cell Type Peaks Bound Windows Frac. Bound Accession ID

CEBPA Adipocyte 15458 117291 0.26% GSE27450
CTCF Adipocyte 53354 431411 0.97% GSE20752

PPARG Adipocyte 11465 93351 0.21% GSE20752
BHLHE40 Erythroid 16967 142473 0.32% ENCSR000ESH

CTCF Erythroid 47297 397943 0.90% ENCSR000ETQ
E2F4 Erythroid 4925 39272 0.09% ENCSR000ETY
ELF1 Erythroid 19518 162146 0.37% ENCSR033OWC
ETS1 Erythroid 40913 337420 0.76% ENCSR000ETB

GATA1 Erythroid 46171 384871 0.87% ENCSR000EUG
JUND Erythroid 7277 60316 0.14% ENCSR000ETZ
MAFK Erythroid 9846 81190 0.18% ENCSR000ETK
MAX Erythroid 28616 228588 0.52% ENCSR000ETX
MAZ Erythroid 20486 162023 0.37% ENCSR000ESL

MEF2A Erythroid 4827 40776 0.09% ENCSR867SDZ
MXI1 Erythroid 39255 298761 0.67% ENCSR000ETN
MYC Erythroid 29362 230225 0.52% ENCSR000EUA
NRF1 Erythroid 11191 93732 0.21% ENCSR135SWH
TAL1 Erythroid 18775 156858 0.35% ENCSR000DIA
UBTF Erythroid 6549 51131 0.12% ENCSR000ESJ
USF1 Erythroid 19958 167188 0.38% ENCSR705HGT
USF2 Erythroid 4186 35607 0.08% ENCSR000ETF
CTCF Erythroid progenitor 30998 256447 0.58% GSE36029

GATA1 Erythroid progenitor 11162 93403 0.21% GSE36029
TAL1 Erythroid progenitor 4356 34771 0.08% GSE36029
CTCF ESC 44581 371955 0.84% ENCSR362VNF
MAFK ESC 17123 142736 0.32% ENCSR604XDL

NANOG ESC 16037 130587 0.29% ENCSR779CZG
POU5F1 ESC 4198 34197 0.08% ENCSR392DGA

FLI1 Hematopoietic progenitor 9838 83763 0.19% GSE69099
LMO2 Hematopoietic progenitor 4618 39374 0.09% GSE69099

RUNX1 Hematopoietic progenitor 2888 24860 0.06% GSE69099
SPI1 Hematopoietic progenitor 17273 145004 0.33% GSE69099

BHLHE40 Lymphoblast 46376 382831 0.86% ENCSR000ERC
CTCF Lymphoblast 63983 535673 1.21% ENCSR000ERM
E2F4 Lymphoblast 6263 50365 0.11% ENCSR000ERU
ELF1 Lymphoblast 28901 237091 0.54% ENCSR293WTN
ETS1 Lymphoblast 30839 252203 0.57% ENCSR000ERA
IRF4 Lymphoblast 43458 357105 0.81% ENCSR743ZJL
JUND Lymphoblast 15998 131797 0.30% ENCSR000ERR
MAX Lymphoblast 31198 250415 0.57% ENCSR000ERL
MAZ Lymphoblast 21334 169037 0.38% ENCSR000EQT

MEF2A Lymphoblast 30789 250229 0.57% ENCSR806JZK
MXI1 Lymphoblast 32224 244761 0.55% ENCSR000ERE
MYC Lymphoblast 30247 241587 0.55% ENCSR000ERN
NRF1 Lymphoblast 17314 142918 0.32% ENCSR980YXJ
TBP Lymphoblast 23408 183549 0.41% ENCSR000ERP

TCF12 Lymphoblast 36815 294533 0.67% ENCSR906QEK
USF1 Lymphoblast 8158 69811 0.16% ENCSR973SOG
USF2 Lymphoblast 5322 45624 0.10% ENCSR000ERJ
SPI1 Macrophage 65942 525645 1.19% GSE48759
FLI1 Megakaryocyte 3224 27394 0.06% GSE36029

GATA1 Megakaryocyte 4154 35204 0.08% GSE36029
RUNX1 Megakaryocyte 10700 90597 0.20% GSE45372

Table S6: Summary statistics for all additional mouse datasets. The mouse genome filtered window set con-

sisted of 41883806 windows in total.



TF Cell Type Peaks Bound Windows Frac. Bound Accession ID

CEBPA Adipocyte 53157 396024 0.77% GSE27450
CTCF Adipocyte 48914 376510 0.73% GSE20752

PPARG Adipocyte 58757 462122 0.90% GSE20752
BHLHE40 Erythroid 27808 217471 0.42% ENCSR000EGV

CTCF Erythroid 59803 476076 0.92% ENCSR000DMA
E2F4 Erythroid 9109 68965 0.13% ENCSR000EWL
ELF1 Erythroid 32683 258940 0.50% ENCSR000BMD
ETS1 Erythroid 13775 101997 0.20% ENCSR000BKQ

GATA1 Erythroid 14676 113735 0.22% ENCSR000EFT
JUND Erythroid 47180 367973 0.71% ENCSR000EGN
MAFK Erythroid 27213 213251 0.41% ENCSR000EGX
MAX Erythroid 37342 286474 0.56% ENCSR000EFV
MAZ Erythroid 40398 308748 0.60% ENCSR000EFX

MEF2A Erythroid 6407 49536 0.10% ENCSR000BNV
MXI1 Erythroid 9081 70132 0.14% ENCSR000EGZ
MYC Erythroid 31378 233216 0.45% ENCSR000EGJ
NRF1 Erythroid 4436 36511 0.07% ENCSR000EHH
TAL1 Erythroid 29476 229424 0.45% ENCSR000EHB
UBTF Erythroid 19228 139064 0.27% ENCSR000EFZ
USF1 Erythroid 22382 177524 0.34% ENCSR000BKT
USF2 Erythroid 3621 29702 0.06% ENCSR000EHG
CTCF Erythroid progenitor 36729 292844 0.57% GSE26501

GATA1 Erythroid progenitor 25710 198358 0.38% GSE26501
TAL1 Erythroid progenitor 38152 285562 0.55% GSE26501
CTCF ESC 57384 466110 0.90% ENCSR000BNH
MAFK ESC 13422 109310 0.21% ENCSR000EBS

NANOG ESC 8905 72332 0.14% ENCSR000BMT
POU5F1 ESC 5029 41330 0.08% ENCSR000BMU

FLI1 Hematopoietic progenitor 38760 310707 0.60% GSE45144
LMO2 Hematopoietic progenitor 2037 16312 0.03% GSE45144

RUNX1 Hematopoietic progenitor 29950 241749 0.47% GSE45144
SPI1 Hematopoietic progenitor 167273 1283083 2.49% GSE70660

BHLHE40 Lymphoblast 28651 227674 0.44% ENCSR000DZJ
CTCF Lymphoblast 41765 339466 0.66% ENCSR000DZN
E2F4 Lymphoblast 4375 35071 0.07% ENCSR000DYY
ELF1 Lymphoblast 27369 212273 0.41% ENCSR000BMB
ETS1 Lymphoblast 12912 103978 0.20% ENCSR000BKA
IRF4 Lymphoblast 23043 182227 0.35% ENCSR000BGY
JUND Lymphoblast 7602 61307 0.12% ENCSR000DYS
MAX Lymphoblast 13605 104721 0.20% ENCSR000DZF
MAZ Lymphoblast 23166 175906 0.34% ENCSR000DZA

MEF2A Lymphoblast 22588 180702 0.35% ENCSR000BKB
MXI1 Lymphoblast 21737 164076 0.32% ENCSR000DZI
MYC Lymphoblast 4950 37375 0.07% ENCSR000DKU
NRF1 Lymphoblast 3363 27933 0.05% ENCSR000DZO
TBP Lymphoblast 19535 147978 0.29% ENCSR000DZZ

TCF12 Lymphoblast 25023 201436 0.39% ENCSR000BGZ
USF1 Lymphoblast 8461 69700 0.14% ENCSR000BGI
USF2 Lymphoblast 4450 36621 0.07% ENCSR000DZU
SPI1 Macrophage 88793 693731 1.35% GSE31621
FLI1 Megakaryocyte 4649 38182 0.07% GSE24674

GATA1 Megakaryocyte 4147 33052 0.06% GSE24674
RUNX1 Megakaryocyte 58757 209261 0.41% GSE24674

Table S7: Summary statistics for all additional human datasets. The human genome filtered window set consisted of

51548966 windows in total.
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