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ABSTRACT

The present topography of the north-
ern Tibetan Plateau is characterized by the
northwest-trending Eastern Kunlun Range,
Qaidam Basin, and Qilian Shan, which figure
importantly into the evolution and mecha-
nism of Tibetan plateau development during
Cenozoic Indo-Asian convergence. Under-
standing the Cenozoic deformation history
and the source-to-sink relationship through
time has significant implications for deci-
phering the growth history of the northern
Tibetan Plateau. Despite decades of study,
the timing, pattern, and mechanisms of de-
formation across the northern Tibetan Pla-
teau are still vigorously debated. The North
Qaidam thrust belt, located between the Qa-
idam Basin and Qilian Shan thrust belt, pro-
vides a valuable record of Cenozoic deforma-
tion in the northern Tibetan Plateau. Here,
we present the results of new geologic map-
ping, structural and sedimentology analysis,
and apatite fission track thermochronology
to constrain the Cenozoic evolution history
and reconstruct the paleogeomorphology
of the eastern domain of the North Qaidam
thrust belt and its foreland, the Wulan Ba-
sin. Our analyses reveal the North Qaidam
thrust belt experienced multi-phase exhuma-
tion since the Cretaceous. A period of Eocene
localized thrust-related uplift of the North
Qaidam thrust belt initiated shortly after
India-Asia collision, and lower erosion rates
in the Oligocene allowed the thrust belt to
expand along-strike eastward. Local uplift
shed sediments to the southwest, directly
into the Qaidam Basin. Reactivation of the
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proximal thrust faults and initiation of the
northwest-striking right-slip Elashan fault at
ca. 15-10 Ma drove the final accelerated mid-
Miocene cooling and denudation to the sur-
face. This phase of deformation established
the overall framework morphology of the
northeastern margin of the Tibetan Plateau,
including the overall structure of the basins
and ranges.

INTRODUCTION

Understanding the spatiotemporal devel-
opment of Cenozoic deformation across the
Tibetan Plateau is critical in determining the
mechanisms of crustal thickening and strain
accommodation in continental tectonics (e.g.,
England and Houseman, 1986; Tapponnier
et al., 1982, 2001; Yin et al., 2010; Zuza et al.,
2020). Although the basic evolutionary history
of the plateau has been established after decades
of research, the distribution pattern, initial tim-
ing, and geodynamics of orogen-scale continen-
tal deformation remain debated (Meyer et al.,
1998; Clark, 2012; Hough et al., 2011; Molnar
et al., 1993, 2009; Royden et al., 2008; Tap-
ponnier et al., 2001; Wang et al., 2008, 2014;
Lin et al., 2016). Addressing the questions of
when and how the Tibetan Plateau reached its
modern elevation and established its northern
margin can help us understand the processes of
orogenic plateau construction (Burchfiel et al.,
1991; Tapponnier et al., 2001; Wang et al., 2008;
Yin, 2010; Clark, 2012; Wang et al., 2016a; Zuza
et al., 2016).

The northeastern margin of the plateau is
characterized by northwest-trending mountain
ranges and basins, including the Eastern Kun-
lun Range, Qaidam Basin, and Qilian Shan
(Shan = mountains in Chinese) from south to
north, respectively (Fig. 1; Cheng et al., 2016a;
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Wau et al., 2019a). The Eastern Kunlun Range
and Qilian Shan are active thrust belts, bounded
by the active left-slip Altyn Tagh fault to the
west, that accommodate largely distributed
thrusting, crustal thickening, and complex strain
partitioning during northward convergence (e.g.,
Zuza and Yin, 2016; Wu et al., 2019b; Cheng
et al., 2021a). The left-slip Altyn Tagh fault has
absorbed a large portion of thrusting and uplift
across the whole present-day Qilian Shan (Mey-
er et al., 1998; Bovet et al., 2009; Zuza and Yin,
2016; Zhuang et al., 2018), and subordinately af-
fected the interior of the Qaidam Basin by fold-
ing and reverse faulting (e.g., Chen et al., 2006;
Wei et al., 2016; Wang et al., 2016b; Wu et al.,
2019b). The Qaidam Basin represents a region
of relatively lower strain between the aforemen-
tioned two deformation belts, and the North Qa-
idam thrust belt marking the transition between
the Qaidam Basin and Qilian Shan (Fig. 1; Yin
et al., 2008a, 2008b; Cheng et al., 2016a). The
initiation timing and deformation pattern of the
Cenozoic structures, and its role in impacting the
deposition history of the related foreland basins,
are poorly constrained.

There are broadly two end-member models
for the Cenozoic growth and development of the
northern Tibetan Plateau: (1) the in-sequence
northeast-propagation model where deforma-
tion systematically propagated from the south-
ern collisional zone of the Himalaya-Tibetan
orogen to its northeast margin over the course of
the Cenozoic (e.g., Meyer et al., 1998; Tappon-
nier et al., 2001; Zheng et al., 2010, 2017; Yu
et al., 2019a, 2019b), with initial strain reach-
ing the northeastern plateau in the middle Mio-
cene or later (e.g., Yue and Liou, 1999; Meyer
et al., 1998; Sun et al., 2005; Wang et al., 2020;
Zheng et al., 2017; Pang et al., 2019); and (2)
an out-of-sequence deformation model where
growth of the northern Tibetan Plateau initiated

https://doi.org/10.1130/B36215.1; 11 figures; 1 supplemental file.
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Figure 1. (A) Map of the Himalayan-Tibetan orogen showing the location of B as a dashed box. (B) Cenozoic tectonic map of the Qaidam Basin
and surrounding area of the northern Tibetan Plateau. (C) Geologic map version of B (Yin et al., 2008a; Chen et al., 2012; Bush et al., 2016),
showing the location of the previous published sections (see Fig. 2 for details), detailed geologic map of study area (see box labeled Fig. 3), and
major thrust of the North Qaidam thrust belt. SSTT—Saishiteng thrust; SNT—Sainan thrust; QST—Qaidam Shan thrust; LLT—Luliang
thrust; XTST—Xitie Shan thrust; OLT—Olongbulak thrust. Structures are from Yin et al. (2008a), Chen et al. (2012), Yu et al. (2017b), and
Zuza et al. (2019). The digital topographic basemaps are from the GeoMapApp program (www.geomapapp.org) (Ryan et al., 2009).

shortly after the initial India-Asia collisioninthe  since (Jolivet et al., 2001; Dupont-Nivet et al., Qietal.,2016; He et al., 2018; Zuza et al., 2019;
Paleogene, and this region has persisted as the = 2004; Clark et al., 2010; Duvall et al., 2011, Wuetal., 2019¢c, 2021; An et al., 2020; Li et al.,
stationary boundary of the entire Tibetan Plateau  2013; Zhuang et al., 2011; Cheng et al., 2015; 2020, 2021). These previous studies highlight
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Cenozoic deformation in the eastern domain of the North Qaidam thrust belt

our incomplete understanding of the Cenozoic
deformation pattern and intra-plate basin evolu-
tion within the northern Tibetan Plateau. Contin-
uous sediment accumulation in the Qaidam Ba-
sin may have recorded the onset of exhumation
across the basin-bounding ranges and associated
switch of sediment depositional settings and
sources. In this study, we focused on examining
the sedimentary record in the Qaidam Basin to
decipher and reconstruct the topographic growth
history of the North Qaidam thrust belt since the
early Cenozoic.

To determine the Cenozoic spatial-temporal
evolution history and characterize the nature
of the basin and range relationships across the
North Qaidam thrust belt, we systematically
conducted geologic mapping, structural and
sedimentology analysis, and apatite fission track
(AFT) thermochronology. This study focused
on the eastern domain of the North Qaidam
thrust belt, where the exposure of Proterozoic
to Paleozoic bedrock and Miocene sediments in
range-bounded basins allow us to reconstruct the
cooling and basin-infilling history of this region.
Taken together, we document a complex history
of overprinting thrust and strike-slip faulting,
and reconstruct the geomorphic evolution of the
North Qaidam thrust belt. We argue the North
Qaidam thrust belt experienced multi-phase
growth history of Eocene fault-related uplift
shortly after the India-Asia collision, which was
followed by eastward along-strike expansion of
the thrust belt in the Oligocene. Middle Miocene
regional deformation reactivated the proximal
thrust faults and initiated the northwest-striking
Elashan right-slip fault at ca. 15-10 Ma, which
established the overall framework morphology
of the northeastern margin of the Tibet Plateau,
including the overall structure of the basins
and ranges.

GEOLOGIC SETTING

The >500-km-long North Qaidam thrust
belt is located between the Qilian Shan to the
north and Qaidam Basin to the south along the
northern Tibetan Plateau. This NW-trending
tectonic belt is geometrically truncated by the
Altyn Tagh fault to the west and Elashan fault
to the east (Fig. 1). The North Qaidam thrust
belt consists of major contractional structures,
including the Saishiteng thrusts, Sainan thrust,
Qaidam Shan thrust, Luliang thrusts, Xitie Shan
thrusts, Olongbulak thrust, and Aimunik thrust
from west to east (Fig. 1C; Yin et al., 2008a). The
south-directed thrust belt experienced a complex
tectonic evolution through the Phanerozoic, as-
sociated with the early Paleozoic Qilian orogen
(e.g., Yang et al., 2002; Song et al., 2013; Zuza
et al., 2018), late Paleozoic Zongwulong orogen

(e.g., Guo et al., 2009), Mesozoic evolution with
early extension transitioning to compression in
the Early Cretaceous (Chen et al., 2003; Wu
etal.,2011; Yuetal., 2017a; Zhang et al., 2020),
and Cenozoic contractional and transpressional
deformation (e.g., Yin et al., 2008a, 2008b;
Cheng et al., 2016a). The overprinting Cenozoic
deformation juxtaposes Neoproterozoic gneiss-
es, early Paleozoic ultrahigh-pressure metamor-
phic rocks, metamorphosed Ordovician-Silurian
arc sequences, and Jurassic sedimentary rocks
over the Cenozoic strata (Fig. 1C; e.g., Yang
etal., 2001; Zhang et al., 2005; Yin et al., 2008a).
The Cenozoic contractional structures resulting
from the brittle deformation evolved consistently
throughout the unmetamorphosed Devonian to
Cenozoic strata, which differ from the develop-
ment of ductile deformation in the pre-Devonian
structures (Yang et al., 2001; Yin et al., 2008a).

The Cenozoic North Qaidam thrust belt is
characterized by folds and thrust faults that ac-
commodate the India-Asia convergence (e.g.,
Yin et al., 2008a, 2008b; Cheng et al., 2016a;
Zuza et al., 2019). Cenozoic deformation and
crustal shortening across the North Qaidam
thrust belt are kinematically associated with the
Qaidam Basin and the Qilian Shan thrust belt
(Yin et al., 2007, 2008a, 2008b; Chen et al.,
2010; Gao et al., 2013; Zuza et al., 2016). Below,
we briefly describe the Cenozoic deformation of
these two tectonic units.

Cenozoic Qaidam Basin

The Cenozoic Qaidam Basin, currently the
largest interior depression inside the Tibetan
Plateau, is surrounded by the Qilian Shan, the
Eastern Kunlun Range, and the Altyn Tagh
Range (Fig. 1B; e.g., Yin et al., 2002; Rieser
et al., 2005; Chen et al., 2011; Cheng et al.,
2016a; Wang et al., 2017). The overall present-
day structure of the Cenozoic Qaidam Basin is
dominated by a series of anticlines bounded by
active thrust faults in the north and south that
initiated at ca. 50 Ma and 30-20 Ma, respec-
tively (Fig. 1C; Yin et al., 2008b), in response
to the ongoing contractional strain generated
by the India-Asia collision (Yin et al., 2008a;
Chen et al., 2010). Growth strata from seismic
interpretations indicates that Cenozoic deforma-
tion of the northern Qaidam Basin transitioned
eastward since the early Eocene time (Yin et al.,
2008a; Chen et al., 2010; Cheng et al., 2019a,
2021b), based on debated Cenozoic sediment
age models outlined below.

The Cenozoic stratigraphy and their age esti-
mates of the Qaidam Basin was recognized by
detailed sedimentology, magnetostratigraphy,
and various data sources (e.g., Yang et al., 1992;
Xia et al., 2001; Sun et al., 2005; Rieser et al.,
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2006; Fang et al., 2007; Yin et al., 2008b; Chen
et al., 2011; Cheng et al., 2016a; Bush et al.,
2016; Ji et al., 2017; Wang et al., 2017; McRiv-
ette et al., 2019). Continuous Cenozoic sedimen-
tary sequences are mainly composed of: (1) Lu-
lehe Formation, Paleocene to early Eocene (ca.
53.5-43.8 Ma; Yang et al., 1992; Rieser et al.,
2006; Ke et al., 2013; Yu et al., 2014a; Ji et al.,
2017); (2) Xiaganchaigou Formation, middle
Eocene to early Oligocene (43.8-35.5 Ma; Yang
etal., 1992; Sun et al., 2005; Yu et al., 2014a; Li
etal., 2016; Jietal., 2017); (3) Shangganchaigou
Formation, late Oligocene (35.5-22.0 Ma; Sun
etal., 1999; Yu et al., 2014a; Chang et al., 2015;
Li et al., 2016; Ji et al., 2017); (4) Xiayousha-
shan Formation, lower to middle Miocene (22.0—
15.3 Ma; Sun et al., 1999; Chang et al., 2015; Li
et al., 2016; Ji et al., 2017); (5) Shangyousha-
shan Formation, middle to late Miocene (15.3—
8.2 Ma; Sun et al., 1999; Wang et al., 2007; Fang
etal., 2007; Chang et al., 2015; Li et al., 2016; Ji
et al., 2017); and (6) Shizigou Formation; upper
Miocene and Pliocene (8.2-2.5 Ma; Sun et al.,
1999; Fang et al., 2007; Wang et al., 2007; Yu
et al., 2014a; Li et al., 2016; Fig. 2).

The Lulehe Formation, as the Cenozoic basal
sedimentation in the Qaidam Basin, presumably
represents the initiation of thrust-induced load-
ing around the basin’s periphery in response to
the India-Asia convergence. However, the depo-
sitional age of the Lulehe Formation is highly
debated, and two end-member age models have
been proposed. The Lulehe Formation is gener-
ally considered to be Paleocene to early Eocene
in age, based on previous magnetostratigraphy
studies, regional lithostratigraphic correlations,
spore and pollen assemblages, as well as seis-
mic reflection interpretations (Yang et al., 1992;
Rieser et al., 2006; Yin et al., 2008b; Ke et al.,
2013; Jietal.,2017; Cheng et al., 2019a, 2021b),
but a recent age model proposes an Oligocene
initial depositional age (ca. 30 Ma) of the Lulehe
Formation, on the basis of the magnetostratigra-
phy study of the Dahonggou section in the north-
ern Qaidam Basin (Fig. 1C; Wang et al., 2017).
A younger Oligocene age for the Lulehe Forma-
tion would shift the overall age of Cenozoic sedi-
ments in the Qaidam Basin, and shift the timing
of the deformation implied by the erosion and
deposition of this detritus to be younger.

Cenozoic Qilian Shan Thrust Belt

The ~350-km-wide Cenozoic Qilian Shan
thrust belt defines the northeastern margin of the
Tibetan Plateau (Fig. 1B), which can be divided
into the North Qilian Shan, Central Qilian Shan,
and South Qilian Shan (e.g., Gehrels et al., 2003;
Yue et al., 2005; Bovet et al., 2009; Yan et al.,
2019). This tectonic belt is mainly comprised of
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Figure 2. Generalized stratigraphic column of the Cenozoic series in the north Qaidam Basin, northern Tibetan Plateau. Lithology and
sedimentary facies, and paleocurrent directions for the Dahonggou section were obtained from Lu and Xiong (2009) and Bush et al. (2016),
whereas the sedimentary characteristics and paleocurrent data for the Huaitoutala section were obtained from Fang et al. (2007) and Pang
et al. (2019), respectively. Deposit data for the Wulan section were measured in this study. The age ranges of each sequence are from Fang
et al. (2007), Lu and Xiong. (2009), and Lu et al. (2012), respectively. Q.—Quaternary; Plio.—Pliocene; Envir. Cycle—Environment Cycle;

n—number of paleo-current measurements.

NWe-striking thrust and strike-slip faults over-
printing the early frameworks originally formed
during early Paleozoic orogeny and related arc-
arc and arc-continent accretion (e.g., Song et al.,
2013; Zuza et al., 2018; Li et al., 2021). The
Qilian Shan thrust belt experienced widespread
Jurassic—Cretaceous extension or transtension
with the development of terrestrial basins (e.g.,
Vincent and Allen, 1999; Chen et al., 2003,
2004; Yin et al., 2008b; Zuza et al., 2018; He
et al., 2019). This area also experienced a pulse
of Early Cretaceous contractional deformation,
triggered by far-field effects of the Lhasa-Qiang-
tang collision (Chen et al., 2019; Cheng et al.,
2019c; He et al., 2019; Yu et al., 2019¢; Zhang
et al., 2020; Wang et al., 2021a).

Cenozoic deformation in the Qilian Shan
generally involved mixed thrust and strike-slip
faulting (Tapponnier et al., 2001; Duvall et al.,
2013; Yuan et al., 2013; Yin et al., 2008a, 2008b;
Zuza and Yin, 2016; Li et al., 2019, 2020). The
Cenozoic strain appears to have propagated to
the northern Tibetan Plateau by Eocene to Oligo-
cene time (e.g., Jolivet et al., 2001; Clark et al.,
2010; He et al., 2018; Cheng et al., 2016a; An
et al., 2020; Li et al., 2020), and the exhumed
Qilian Shan provided the clastic material

deposited in both the Qaidam Basin to the south
and Hexi Corridor to the north (Yin et al., 2008a;
Bovet et al., 2009; Zhuang et al., 2011; Cheng
et al., 2019b, 2019c; Yu et al., 2019c). Subse-
quent regional Miocene deformation across the
Qilian Shan was accompanied by thrust-related
rapid exhumation and the initiation of the major
left-slip Haiyuan fault (e.g., Duvall et al., 2013;
Yuan et al., 2013; Liu et al., 2019a; Zheng et al.,
2017; Li et al., 2019, 2020; Yu et al., 2021a).
Subsidiary right-slip faults, such as the Elashan
and Riyueshan faults, initiated in the Miocene
(Yuan et al., 2011; Cheng et al., 2021a) and are
probably kinematically linked with the left-slip
Haiyuan and Kunlun faults (e.g., Duvall and
Clark, 2010; Cheng et al., 2021a). Therefore,
protracted Cenozoic deformation has affected
the region since the Eocene, and overprinted the
complex pre-Cenozoic structures under the re-
gime of the intracontinental strain accommodat-
ing the convergence of the India-Asia collision
(e.g., Yin et al., 2008a, 2008b; Zuza et al., 2018,
2019; Chen et al., 2020; Li et al., 2021). Previ-
ous studies also show that tectonic activity in the
Qilian Shan and the Qaidam Basin have been
significantly enhanced during the Quaternary
(Kapp et al., 2011; Yuan et al., 2011; Lu et al.,
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2015; Yu et al., 2015, 2021b; Bao et al., 2017,
Liu et al., 2021).

STRUCTURAL GEOLOGY OF THE
EASTERN DOMAIN OF NORTH
QAIDAM THRUST BELT

The Cenozoic North Qaidam thrust belt
bounds the southernmost part of the active Qilian
Shan fold-thrust belt (Fig. 1B; Wang and Burch-
fiel, 2004; Yin et al., 2008a). The eastern domain
of thrust belt, where this study was conducted,
consists of the Buguote Shan, Wulan Basin, and
Aimunik Shan from north to south, respectively
(Figs. 1 and 3). Structures along the Buguote
Shan trend northwest, which control the present-
day morphology of the range. Cambrian-Ordovi-
cian metamorphic rocks are thrust over Miocene
sediments by the Laohukou fault (f;), which dips
~40-50° NE (Figs. 3 and 4A-4D; Site NQI).
Cambrian foliated marbles in fault zone display
complex folds at Site NQ2 (Fig. 4E).

Southwest of field site NQ3 in our mapping
area, the north-dipping thrust fault was directly
observed in the field, which places Proterozoic
metamorphic rocks over southward overturned
Jurassic sandstone and continuous Cenozoic
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Figure 3. Geologic map (for location, see Fig. 1C) with sample locations (above), and cross section with apatite fission track ages of samples
(below) across the easternmost segment of the North Qaidam thrust belt of the northern Tibetan Plateau based on Qinghai BGMR (1991)
and our own detailed mapping. Annotations NQ1, NQ2, NQ3, and NQ4 correspond to field sites discussed in this study. f,—~Aimunik thrust;
f>-Laohukou Fault; f;~Buguote Shan Fault; f,—South Zongwulong Shan Fault; f;~North Zongwulong Shan Fault; f,—Elashan Fault.

sedimentary successions (Figs. 3, 5A, and 5B).  been inferred to be Miocene in the Wulan and  red mudstone and conglomerate as the basal
Precise age constraints on these local Cenozoic  nearby basins (Lu and Xiong, 2009; Lu et al.,  sediments of early Miocene age recorded within
sediments are lacking, but similar rocks have  2012). Lu et al. (2012) interpreted a set of dark  the Wulan basin. The presence of an unconfor-
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Figure 4. Field photographs of
the easternmost segment of the
North Qaidam thrust belt of
the northern Tibetan Plateau
highlighting important Mio-
cene deformation relationships.
(A-D) Views of the north-dip-
ping Laohukou thrust fault
(f>), which places Cambro-Or-
dovician metamorphic rocks
over gently north-dipping
Miocene sediments (Fig. 3).
This thrust system is the south-
ern boundary of the Qilian
Shan thrust belt, connecting
to the east, along strike, with
the Qinghai Nan Shan (e.g.,

Miocene
‘ Sediments

Craddock et al., 2014). Photos
were taken near site NQ1 (see
Fig. 3). (E) View of the south
vergent hanging-wall anticline
in Cambrian thrust shown in A
and B. Photo was taken at site
NQ?2. (F) Tilted Miocene strata
developed in the Shangyousha-
shan Formation in the Wulan
Basin, photo was taken near
site NQ1. (G-H) North-dipping
thrust fault with syn-tectonic

Holocene
fluvial sediments

o
5 &
Miocene

sediments

Holocene basin-fill deposits.
Photo was taken near site NQ4
(see Fig. 3). Note the attitudes
reported in the figures are in
the form of strike and dip.

inconformity.

mity between the early Miocene red mudstone
and the underlying Jurassic coal-bearing strata
could be observed in the field (Fig. S5A). The
Miocene basal sediments and overlying yellow-
ish brown sandstone were discordant by ~16°
across tens of m (Fig. 5A), which we interpret
to be resulting from the trishear deformation
with the development of fault-related fold after
the deposition of the early-Miocene sediments
(e.g., Hardy and Ford, 1997; Allmendinger,

1998; Pei et al., 2017). These trishear-induced
discordant relationships reflect pulses of Mio-
cene deformation, which are commonly ob-
served from seismic profiles across the Qaidam
basin (e.g., Cheng et al., 2015; Pei et al., 2017).

The Wulan Basin is located in the north-
eastern most domain of the Qaidam Basin,
and bounded by the Laohukou fault (f,) to the
north and the right-slip Elashan fault to the
east, respectively (Fig. 3). Two continuous
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Miocene sedimentary successions of the Xiay-
oushashan Formation and Shangyoushashan
Formation are well exposed within the basin,
with age constraints from magnetostratigraphic
data (Fang et al., 2007; Lu and Xiong, 2009;
Lu et al., 2012). The most recent multi-phase
thrusts crosscut the Miocene sediments, which
are unconformably overlain by Holocene flu-
vial sediments in Site NQ4 (Figs. 4G and
4H). These faults dip ~40°-60° north, and
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mid-Miocene trishear thrusting as footwall anticline. (B) View of the north-dipping thrust fault, which places Proterozoic (Pt) metamorphic
rocks over Jurassic coal-bearing sediments. (C-D) Field relations of the overturned Jurassic and Cenozoic strata with attitudes.

are parallel to the prominent range-bounding
Laohukou fault (f,) in map view (Fig. 3). This
relationship indicates that the active thrusting
propagated southward to the interior of the
Waulan Basin along these newly formed faults,
subsequently deforming footwall rocks of the
thrust fault system.

STRATIGRAPHIC ANALYSIS IN
WULAN BASIN

In order to characterize the stratigraphic ar-
chitecture of the Wulan basin, we conducted a
2060 m field-based section and provenance anal-
ysis that spans the Cenozoic basin fill (Figs. 3,
6, and 7). Age constraints of the Wulan section
are from magnetostratigraphic data of Lu et al.
(2012). Provenance analysis was conducted in
the Wulan section (nine sites) by measuring the
paleocurrent orientations, which were deter-
mined from cross bedding and gravel imbrica-
tions. We recognized major depositional shifts
based on facies distributions of the Xiayousha-
shan and Shangyoushashan formations (Fig. 7),
which have assigned depositional ages of ca. 22—
15 Ma and ca 15-8 Ma, respectively (Lu et al.,
2012). This stratigraphic constraint could allow
us to bracket the onset of deformation along the
fault systems bounding the Wulan Basin, and
reconstruct the tectonic paleogeomorphologic
pattern of this region.

Xiayoushashan Formation

The 1025-m-thick Xiayoushashan Formation
represents the initial deposit of the Wulan Basin,
and is mainly comprised of coarse-grained flu-
vial and fine-grained lacustrine sediments. Dull-
red deposits of the Xiayoushashan Formation
(0-70 m) are distinctively characterized by nor-
mally graded, lenticular conglomerate, trough
cross-stratified sandstone, and structureless to
ripple siltstone and mudstone, with ~3-5 sedi-
mentary cycles (Figs. 6A and 7A). Upper strati-
graphic levels (70-390 m) include a set of regres-
sively upward-fining sedimentary sequences.
The lower part of the deposit is dominated by
clast-supported, thick bedded or massive con-
glomerate containing clasts of 1-10 cm diam-
eter, and intercalated with sandstone (Fig. 6B).
The middle to upper part of this sequence com-
monly fines upward, and is characterized by
coarse-grained sandstone of trough cross-bed-
ding with interbedded siltstone and mudstone, to
fine- to very fine-grained, ripple cross-stratified
silty sandstone and mottled, 5—10-cm-thick beds
of mudstone (Figs. 6C and 6D).

The intermediate succession (390-443 m)
contains coarser material with few gravel clasts.
The deposits consist of multistory glutenite
bodies with sharp bases, these are composed of
clast-supported, poorly sorted, granulecobble
conglomerate interbedded with medium-to
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coarse-grained, horizontally and inclined strati-
fied gravel sandstone (Fig. 6E). At 576-860 m,
thick beds of coarse-grained, clast-supported,
trough cross-stratified conglomerate are inter-
bedded with fine- to very fine-grained, struc-
tureless siltstone. Above the fluvial deposits
(860-1025 m), the frequency and thickness of
sediments decrease, with deposits dominated by
medium-fine grained, cross-stratified sandstone,
ripple cross-stratified mudstone and clasts.
Lithofacies and strata geometries of the Xiay-
oushashan Formation are basically characteristic
of two gravelly to sandy braided fluvial system
(Fig. 7A). Coarse-grain size, cross-stratification,
and lenticular bed geometries of the basal sedi-
ments are representative of proximal deposition
in an aggradational channel belt. Paleocurrent
directions measured for the Xiayoushashan
Formation indicate variable southward flow
(Fig. 7A), implying that transported clasts were
derived from regions north of the Wulan Basin,
most probably uplifted flanking ranges due to the
early initiation of the North Qaidam thrust belt.

Shangyoushashan Formation

Compared to the sedimentary sequences of
the Xiayoushashan Formation, the lithology
of the 1035-m-thick Shangyoushashan Forma-
tion is relatively monotonous, and dominated
by heavy-layered and mottled mudstone and
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Figure 6. Typical field photographs of sedimentary characteristic in the Wulan Basin, northern Tibetan Plateau. (A) Lenticular sand-
stone deposited above the muddy overbank sediments, with widespread development of gray-greenish calcareous bands. (B) Horizontally
stratified bedding of sandstone and conglomerate, indicating vertical aggradation of flatbed under high flow regime. (C) Tabular medium-
grained sandstone interbedded with mudstone, suggesting shallow lacustrine environment. (D) Sandstone with horizontal bedding and
ripple lamination developed in the shallow lacustrine environment. (E) Matrix-supported conglomerate interbedded with cross-stratified
sandstone, indicating proximal rapid deposition. (F) Massive mudstone interbedded with thin-bedded silty sandstone, suggesting open la-
custrine environment of the Shangyoushashan Formation. Note photos A-E were taken of the Xiayoushashan Formation.

laminated and fine-grained siltstone (Fig. 6F). indicates a retrogradational system in which several sets of interbedded coarse-grained sedi-
This upward-thickening and upward-fining coarse-grained transverse fluvial systems re- ments of conglomerate and sandstone developed
pattern in the Xiayoushashan Formation likely  gressed into the lacustrine systems. In addition, in this sequence, which could be interpreted as
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Figure 7. Stratigraphic columns for major depositional environments of the Wulan section
in the northern Tibetan Plateau. Age assignment of the sediment units were from Lu et al.
(2012). (A) Braided and meandering fluvial deposits of the early Miocene Xiayoushashan
Formation. (B) Lacustrine deposits of the late Miocene Shangyoushashan Formation.

subaqueous turbid deposits (Fig. 7B). Paleocur-
rent directions measured for the Shangyousha-
shan Formation suggest apparent southeastward
flow (Fig. 7B), indicating the transported detritus
originated from the north and east regions of the
north Qaidam and Elashan, respectively.

METHODS
Sandstone Petrology

Nine Miocene sandstone samples were col-
lected from the Wulan Basin for petrographic
analysis. We examined samples using a standard
petrographic microscope to observe features
such as the mineral composition, grain size,
sorting, and roundness on standard and stained
thin sections. Modal compositions were then
measured with a minimum of 500 points using

the modified Gazzi-Dickinson method on each
thin section (Ingersoll et al., 1984). Detailed
sample locations and raw point-counting data are
summarized in the Table S1'. Samples were clas-
sified and plotted on the ternary diagrams using
the scheme outlined in Dickinson et al. (1983).
We follow the mineral abbreviation of Dickin-
son and Suczek (1979) to better describe our
results: Qt—total quartz; Qm—monocrystal-
line quartz; F—feldspar; Lt—total lithic grains;

ISupplemental Material. Table S1: Detrital
framework grain compositions of Miocene
sandstones from the Wulan Basin, northern Tibetan
Plateau. Table S2: Analytical data of the apatite
fission track samples from the eastern domain of
the North Qaidam thrust belt, northern Tibetan
Plateau. Please visit https://doi.org/10.1130/GSAB
.S.19372097 to access the supplemental material, and
contact editing @geosociety.org with any questions.
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Lv—volcanic lithic grains; and Ls—sedimen-
tary lithic grains.

Apatite Fission Track Thermochronology

We collected eight Neoproterozoic to Pa-
leozoic granitoid samples and one sandstone
sample for AFT analyses across the Cenozoic
North Qaidam thrust belt. Apatite grains were
separated using traditional heavy-liquid, mag-
netic, and handpicking separation techniques
at the Hebei Institute of Geology and Mineral
Resources in China. The apatite grains were
then mounted in epoxy resin on glass slides,
ground and polished to an optical finish to ex-
pose internal grain surface. Spontaneous tracks
were revealed by 5.5% HNO; at 21 °C for
20 s. Thin low-uranium (<4 ppb) muscovite
grains as external track detectors were packed
together with apatite sample grain mounts and
CNS uranium glass dosimeters were irradiated
in the well thermalized hot-neutron flux in the
492 Light-water reactor at China Institute of
Atomic Energy, Beijing. Muscovite grains were
detached and etched in 40% HF for 20 min at
25 °C to reveal the induced fission tracks (Yuan
et al., 2003). Fission-track ages were measured
and calculated at Beijing Zekang’en Technol-
ogy Co. LTD in China by the zeta calibration
approach (Hurford, 1990). Track densities for
both natural and induced fission-track popula-
tions were measured with a dry objective mag-
nification. Neutron fluence was monitored by
CNS5 uranium dosimeter glasses (Bellemans
et al., 1995). The lengths of confined fission
tracks and its corresponding the mean etch pit
diameter (Dpar) values were measured by trans-
mitted light microscopy with a Zeiss Axioplan
2. The zeta value is obtained by dating standard
Durango and Fish Canyon Tuff apatite, with
the value of 391 + 17.8 a/cm?. The Chi-square
(x?) test was used to detect the probability of all
analyzed age grains with the binomial “peak-
fitting” method (Galbraith, 1990) by the Radi-
alPlotter program (Vermeesch, 2009).

Thermal History Modeling

Considering the fission-track parameters and
the particular geological setting of the northern
Tibetan Plateau, we performed inverse model-
ing of the AFT data using the QTQt program of
(v.5.5.0; Gallagher, 2012) with the multi-kinetic
annealing model of Ketcham et al. (2007) and
Dpar values as a kinetic parameter. QTQt uses
a Bayesian transdimensional Markov Chain
Monte Carlo sampling method to generate a
range of acceptable thermal histories, quantified
in terms of a posterior probability distribution
(Gallagher, 2012).
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The inversion models were run with single
grain ages and track lengths associated for each
sample. The thermal history model inputs for
simulations proceed from an initial randomly
chosen time-temperature without any additional
constrain to obtain the maximum interpolation
range. Each inversion was run at 100,000 burn-
in and 100,000 post-burn-in iterations, respec-
tively, which are sufficient to provide stable
models with their associated probabilities. This
would allow the calculation of model statistics
and the representative “expected” model (Gal-
lagher, 2012). Samples were collected along
a traverse across the east domain of the North
Qaidam thrust belt, but most were not collected
along a single vertical elevation profile (Fig. 3).
Therefore, we modeled the AFT data for sam-
ples which passed the chi-square (x?) test indi-
vidually. Based on the fission-track results (i.e.,
ages and lengths), the inversion modeling was
performed with the following temperature con-
straints: (1) An initial condition began at high
temperatures of 160-200 °C, as available AFT
data indicated complete apatite annealing oc-
curred at this high temperature. (2) The present-
day surface temperature of 10 £ 10 °C by 0 Ma
provided the final modeling constraint.

RESULTS
Sandstone Petrographic Results

Samples collected from the Wulan Basin are
medium- to fine-grained sandstones, they are all
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well to moderately sorted and characterized by
subangular to subrounded grains (Figs. 8A—8D).
The average compositions of the lithics in the
samples can reach up to 45.11% (Table S1; see
footnote 1), although the lithic composition of
single samples are relatively discrete. The over-
all transition pattern of samples in the QmFLt
diagram shows good correspondence with their
sedimentary process on the stratigraphic col-
umns (Figs. 6 and 7).

Sample WLO0530-1 is collected from the
lower stratigraphic level of the Wulan sec-
tion, and suggests a meandering river deposit
system. The modal compositions of sample
WLO0530-1 are Qt: F: L =44:11:45, Qm: F:
Lt =44:11:45, and Qp: Lv: Ls = 1:1:98, plot-
ting into the “recycled orogen” field in the Qt-F-
L and “quartzose recycled orogen” field in the
Qm-F-Lt diagrams (Figs. 8E and 8F). Samples
WL0530-4, WL0530-5, and WL0605-4 repre-
sent a retrogradational deposit system in which
a coarse-grained braided river system regressed
into the lacustrine system, and their average
modal compositions are Qt:F:L = 64:10:26,
Qm:F:Lt = 64:10:26, and Qp: Lv:Ls = 4:1:95,
also plotting into the “recycled orogen” field
in both the Qt-F-L and the “quartzose recy-
cled orogen” field in the Qm-F-Lt diagrams
(Figs. 8E and 8F).

Samples collected from the upper stratigraph-
ic level of the Xiayoushashan Formation depos-
ited in the fan-delta (WL0602-1) and braided
river (WL0602-3 and WL0602-5) deposit sys-
tems showed average modal compositions of

Subduction Comple:
Sources

Lithic
Recycled

Qt: F: L =153:10:37, Qm: F: Lt =52:10:38,
and Qp: Lv: Ls = 3:1:96, also plotting into the
“recycled orogen” field in the Qt-F-L diagram.
Samples WL0602-3 and WL0602-5 plotted in
the “quartzose recycled orogen” field of the Qm-
F-Lt diagram; whereas sample WL0602-1 plot-
ted on the border of the “transitional recycled
orogen” (Figs. 8E and 8F).

Sandstone samples WL0601-1 and
WL0601-2 from the Shangyoushashan For-
mation indicated the subaqueous turbid
current sediment system. The modal com-
positions of sample WL0601-1 are Qt: F:
L =30:7:63, Qm: F: Lt = 30:7:63, and Qp:
Lv: Ls = 1:0:99, plotting into the magmatic
field of the “undissected arc” in the Qt-F-L
diagram and the “lithic recycled” field in
the Qm-F-Lt diagram; whereas the modal
compositions of sample WL0601-2 are
Qt:F:L = 30:28:42, Qm:F:Lt = 29:28:42, and
Qp:Lv:Ls = 1:0:99, plotting into the magmat-
ic field of the “dissected arc” in the Qt-F-L
and the Qm-F-Lt diagrams (Figs. 8E and 8F).

In the Qp-Lv-Ls diagram and the raw point-
counting data (Table S1; see footnote 1), sedi-
mentary lithic grains are the dominant composi-
tion of the total lithic fragments, which plot in
the “collision orogen and fold-thrust belt” field
of Figure 8G. The apparent increase of feldspar
grains in sample WL0601-29 (Fig. 8F) may
be related to the large-scale exhumation of the
plutons from the Qilian orogen (e.g., Liu et al.,
2019b; Li et al., 2021) and Zongwulong orogen
(e.g., Guo et al., 2009) in the north. The clastic
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Figure 8. (A-D) Cross-polarized light photomicrograph of four representative Miocene samples from the Wulan Basin, northern Tibetan
Plateau. (E-G) Ternary diagrams showing the relative abundance of framework grains in sandstone from the Miocene strata in the Wu-
lan Basin. The provenance fields follow the method of Gazzi-Dickinson (Dickinson et al., 1983). Qt—total quartz; Qm—monocrystalline
quartz; Qp—polycrystalline quartz; F—feldspar; L—lithic rock fragments; Lv—rvolcanic lithic fragments; Ls—sedimentaric lithic frag-
ments; Lt—total lithic fragments (lithic rock fragments and polycrystalline quartz).
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components of the sandstones in the Wulan Ba-
sin correspond with their sedimentary process,
indicating the provenance distributions may be
impacted by the multi-phase tectonic activities
of the North Qaidam thrust belt.

Apatite Fission Track Results
Results obtained from AFT analysis of bed-

rock samples are listed in Table S2, including
AFT ages, mean track lengths, and Dpar in-

formation. The AFT ages from nine bedrock
samples can be divided into two distinct groups
of Cretaceous and Cenozoic ages, ranging from
97 £ 5Ma (lo; Sample CQL2017-15(1)) to
24 + 5 Ma (1o; Sample CQL2017-45(1)). All
AFT ages are much younger than their crystal-
lization and depositional ages (Fig. 3; Guo et al.,
2009), which represent the cooling ages that may
record post-crystallization regional exhumation
events. AFT ages for almost all analyzed samples
passed the chi-square (x?) test (P (x?) < 5%; Gal-

braith, 1990) with the two exception of samples
SQL2017-105(1) and CQL2017-16(1). The ratio
plot of obtained single grain ages from this Devo-
nian granite sample (SQL2017-105(1)) presents
an age-dispersion of 64% and two dominated age
populations of 67.2 £ 5.9 Ma (60.2 + 8.6%) and
14.6 + 1.3 Ma (39.8 £ 8.6%); whereas sample
CQL2017-16(1) shows slight age-dispersion
of 19% and two age peaks of 61.6 + 3.9 Ma
(79 + 12%) and 103.0 &+ 13.0 Ma (21 £+ 12%)
(Fig. 9; Vermeesch, 2009). The age dispersion
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Figure 9. Apatite fission track radial plots (from RadialPlotter of Vermeesch, 2009) for bedrock samples from the eastern domain of the
North Qaidam thrust belt, northern Tibetan Plateau with thermal history modeled. Single-grain ages are statistically split into two popula-
tions (Peak 1 and Peak 2) for samples SQL2017-105(1) and CQL2017-16(1) due to P ()2) < 5%.
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could be attributed to the existing heavily
annealed and shortened fission tracks causing
difficulties in accurate identification of these
tracks and/or a bias in the data acquisition
(e.g., Gleadow et al., 1986; Green, 1988; Lin
et al., 2011). For samples that passed the %2
test, the pooled ages are reported as AFT ages;
otherwise, the central ages are adopted (Sobel
et al., 2006).

In the analyzed apatite grains, mean track
lengths range between 13.4 £ 1.9 pm and
10.4 = 2.3 pm, with most proportion in the
12-13 pm range (Table S2). This suggests the
track lengths in most of the samples have been
shortened by annealing and indicates the sam-
ples have been experienced long-term annealing-
related residence in the partial annealing zone
(PAZ). Dpar values primarily range from 1.17
to 1.84 pm (Table S2).

Thermal History Modeling

The AFT cooling ages indicate when the
mineral grain passed through the PAZ at
60-120 °C, which may not directly reflect a
specific geological event given a complex tec-
tonic and thermal history (Gleadow and Brown,
2000; Zhang and Wang, 2004; Flowers et al.,
2015). Inverse thermal modeling is therefore
required to infer the thermal history of samples
(e.g., Ketcham et al., 2007; Gallagher, 2012).
The AFT ages and measured track lengths can
be inverted into thermal history models to re-
veal the cooling history of rocks within the
shallow crust (e.g., Ketcham, 2005; Ketcham
et al., 2007). In this work, two of nine samples
were not modeled because not enough satis-
factory mean track lengths were measured for
modeling (Table S2; samples CQL2017-45(1)
and SQL2017-55(1)).

In the thermal history modeling, sample
SQL2017-92(1) reveals steady cooling from a
temperature around the upper limit of the PAZ
since the Early Cretaceous and residence in the
PAZ until it was cooled rapidly through the low-
er limit of the PAZ since the Paleocene (Fig. 10).
Samples CQL2017-37(2) and SQL2017-72(1)
reflect steady cooling since the late Cretaceous
(Fig. 10).

The time-temperature model for sample
CQL2017-15(1) experienced Early Cretaceous
cooling, subsequent long-term tectonic quies-
cence around the lower limit of the PAZ, and ac-
celerated cooling to the surface since the Eocene
(ca. 40 Ma); whereas sample SQL2017-105(1)
underwent a long-term thermal stagnation within
the PAZ since the Late Cretaceous, and a strong
pulse of rapid cooling to the surface at mid-late
Miocene time (ca. 10 Ma; Fig. 10).
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DISCUSSION

Cenozoic Structural Deformation in the
Eastern North Qaidam Thrust Belt

The field relationships presented in this study
constrain the Mesozoic-Cenozoic kinematic
history of the eastern North Qaidam thrust belt
(Figs. 3-5). Previous field observations and seis-
mic profile interpretation suggest that Paleozo-
ic-Jurassic strata were subhorizontal across the
northern Tibetan Plateau prior to the Cenozoic
(Fig. 5; Zuza et al., 2018; Huang et al., 2021).
There are observations across the northern Qa-
idam Basin and South Qilian Shan that suggest
Early Cretaceous contractional deformation may
have occurred locally (e.g., Cheng et al., 2019c,
Zhang et al., 2020), but no significant late Pa-
leozoic through Jurassic phases of deformation
have been reported, and these strata regionally
appear parallel (Fig. 3).

The Paleocene to early Eocene coarse-grained
clastic deposit of the Lulehe Formation marks
the initiation of the Cenozoic foreland sedimen-
tation in the Qaidam Basin (Fig. 2; e.g., Yin
et al., 2008b; Zhuang et al., 2011; Bush et al.,
2016; Jietal., 2017; Cheng et al., 2019a, 2021b;
Wang et al., 2021b). However, one site in the
northern Qaidam Basin has reinterpreted the
Lulehe Formation age at Oligocene or Miocene
(Wang et al., 2017; Nie et al., 2020). Here we
prefer the Paleocene-Eocene assignment for
the Lulehe Formation, which is based on inde-
pendent studies across the Qaidam Basin (e.g.,
Yin et al., 2008b; Ji et al., 2017; Cheng et al.,
2019a, 2021b), rather than a single site (Wang
et al., 2017). Additional conformation of this
older age model comes from flexural modeling
of the Lulehe Formation that suggests there was
a period of topographic load during its deposi-
tion induced by the rapid uplifting of the Qilian
Shan (Cheng et al., 2018a; Wang et al., 2021b).
Compiled thermochronology from the Qilian
Shan shows pulses of exhumation throughout the
Cenozoic (e.g., Jietal.,2017; He et al., 2018; Li
et al., 2020) and, therefore, the simplest model
suggests that this Cenozoic exhumation loaded
the Qaidam Basin and provided sediments for
deposition in the early Cenozoic.

Based on the traditional age model for Ceno-
zoic sediments in the Qaidam Basin, where the
basal Lulehe Formation is Paleocene-Eocene
(Fig. 2; e.g., Yin et al., 2008b; Cheng et al.,
2019a), we interpret the early Cenozoic uplift in
the North Qaidam thrust belt must have gener-
ated relief and erosion for the deposition of the
Eocene strata in the Qaidam Basin and local
Waulan Basin (Figs. 5; Yu et al., 2014a, 2017b).
This may have been distal uplift, as the Eo-
cene Xiaganchaigou Formation and Oligocene

Geological Society of America Bulletin

Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/doi/10.1130/B36215.1/5603558/b36215.pdf
bv niversity of Nevada Reno user

Shangganchaigou Formation growth-strata
have been observed and interpreted across the
nearby basins from seismic profiles and drilling
data (Fig. 2; i.e., Yu et al., 2017b). In this study
area, the Proterozoic metamorphic gneiss was
thrust southwest over Jurassic sandstone and
Cenozoic basin sediments (Figs. SA and 5B).
These early Miocene sediments were depos-
ited unconformably with Jurassic strata, which
might result from the Eocene-Oligocene defor-
mation. Finally, a phase of Miocene-to-present
south-directed faulting overturned the section
to the south, which led to the development of
the ~16° discordant within the Miocene sedi-
ments (Fig. 5A). This deformation continued to
the present as evidenced by tilted strata within
the Shangyoushashan Formation (Fig. 4D) and
minor thrusts interior of the Wulan Basin cutting
Miocene strata (Figs. 4G and 4H).

Late Cretaceous to Cenozoic Multi-Phase
Cooling History of the North Qaidam
Thrust Belt

Our new AFT ages and time-temperature ther-
mal models suggest that the Neoproterozoic to
Paleozoic rocks across the North Qaidam thrust
belt were deeply buried and subsequently expe-
rienced multiple phases of cooling history and
uplifting events through the Cretaceous to the
present day.

The thermal histories for some samples sug-
gest consistent slow cooling exhumation since
Late Cretaceous to the present, and indicate that
these samples have resided for a long-term pe-
riod in the apatite PAZ through the Late Cre-
taceous to Cenozoic (Fig. 10). The rest of the
samples yielded variable Cenozoic AFT ages
and thermal histories (Table S2; Fig. 10). The in-
verse thermal histories for these samples suggest
two broad Cenozoic cooling stages: pronounced
cooling through the AFT PAZ in the early Eo-
cene (ca. 40 Ma) and late Miocene (ca. 10 Ma;
Fig. 10). The bimodal and complicated track-
length distributions suggest phases of slight re-
heating, possibly due to thrust burial (Fig. 10).

In this case, bedrock samples with slow cool-
ing exhumation since Late Cretaceous to the
present revealed the progressive development
of the northeastern Qaidam thrust belt (Fig. 10),
which corresponds with the isostatic effects of
the Cenozoic sedimentary accumulation in the
Qaidam Basin (Yu et al., 2015; Yu and Guo.
2021); whereas multi-phase Cretaceous to pres-
ent exhumations have also been observed across
the eastern domain of the North Qaidam thrust
belt. The first phase of the local Late Cretaceous
cooling (Fig. 10), documented by our AFT re-
sults, suggests a period of regional exhumation,
which corresponds with similar observations
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elsewhere in the central segment of the North
Qaidam thrust belt and the Qilian Shan to the
north (Fig. 10; e.g., George et al., 2001; Cheng
et al., 2016b; Yu et al., 2019a; Li et al., 2020).
This phase of exhumation may have resulted
in the Cretaceous exhumation of the Elashan
Range (Jiang et al., 2008; Lu et al., 2012; Duvall
etal., 2013), and the development of the Elashan
highland (also referred to as the Dulan-Chaka
highland; Duvall et al., 2013). The exact mecha-
nism of this pulse of cooling has not been well
constrained due to severe reactivation and over-
printing by subsequent Cenozoic deformation,
but it may possibly be due to the regional defor-
mation driven by the far-field effects of the col-
lision between the Lhasa and Qiangtang terranes
during Middle Jurassic to Early Cretaceous (e.g.,
Kapp et al., 2007; Cheng et al., 2019c¢), which
has been interpreted to have affected much of the
northern Tibetan Plateau (e.g., Wu et al., 2011;
Zhang et al., 2020; Wang et al., 2021a).

The period of rapid cooling since the Eocene,
as revealed by sample CQL2017-15(1), may in-
dicate the early initiation of the Aimunik thrust
fault (f;; Fig. 3) in response to the early Cenozoic
collision of the India-Asia plates to the south
(e.g., Hu et al., 2015; Zhu et al., 2015). This is
also identified in the Qaidam Shan, Saishiteng
Shan, and Zongwulong Shan from west to east
across the North Qaidam thrust belt (Fig. 1C;
Wang et al., 2004; Wan et al., 2011; Cheng et al.,
2016b; Yu et al., 2017b). The existence of the
unconformity between the Jurassic and Miocene
strata is also evidence for early Cenozoic, pre-
Miocene deformation (Fig. 5SA). We propose
that Eocene-Oligocene fault-related uplift led to
local cooling, which shed the sediments to the
southwest into the Qaidam Basin until at least
early Miocene time. The Xiaganchaigou For-
mation had a small depocenter in the northeast
Qaidam Basin that may have collected sediments
shed from the study region (Yin et al., 2008b; Yu
et al., 2014a; Cheng et al., 2018a).

The mid-late Miocene accelerated cooling
corresponds to a widespread phase of exhuma-
tion across the North Qaidam thrust belt. Spe-
cifically, sample SQL 2017-105(1) from the
fault-bounded area of North Qaidam thrust fault
and right-slip Elashan fault (f;) displays Mio-
cene rapid cooling signal (Figs. 10). This phase
of deformation led to south-directed thrusting
and local overturning of Eocene-Miocene strata
(Fig. 5A). Distributed Miocene growth strata
have been observed throughout the Qaidam
Basin based on field mapping and seismic pro-
file interpretation (Fig. 4F; Cheng et al., 2016a,
2018b; 2021b; Yu et al., 2021a). These observa-
tions suggest widespread Miocene tectonic de-
formation along the thrust system and within the
basin (Zhou et al., 2006;Yin et al., 2007, 2008a,
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2008b; Wu et al., 2014; Cheng et al., 2016a,
2019c; Wei et al., 2016).

Structural and Sedimentary Evolution of
the Eastern Qaidam Basin

We integrated field observations, sedimen-
tologic analysis, thermochronology dating,
and previous studies to reconstruct the tec-
tonic evolution of the Wulan Basin. We identi-
fied variations in drainage patterns dictated by
multi-episode shifts in the tectonic development
of flanking the North Qaidam thrust belt and its
related range growth. Results presented here
document the Cenozoic depositional record in
the Wulan Basin, and its relations to the north-
eastern Qaidam Basin and the broader northern
Tibetan Plateau.

The Late Cretaceous contractional deforma-
tion and related range growth in the Elashan
Range, recorded by previous studies and our
AFT thermal history (i.e., samples SQL2017-
72(1) and SQL2017-92(1)), indicate an early
and constant exhumation of the Elashan fault
(fy)- This could be interpreted as a northeast-
ern onlap boundary of the Paleo-Wulan Basin,
as the deposit of Cenozoic sediments north of
the fault are negligible (Fig. 3). That said the
Miocene strata would possibly pinch out in
the depth of the Elashan fault (f;; Fig. 3). The
subsequent Eocene cooling signal from sample
CQL2017-15(1) indicates the initiation of the
Aimunik thrust fault (f;) interior of the Paleo-
Waulan Basin, which probably shed the deposits
southwestward into the Qaidam Basin until the
aforementioned early Miocene time (Yin et al.,
2008b; Yu et al., 2014a; Cheng et al., 2018a).

In the Wulan Basin, the coarser-grained
Xiayoushashan Formation (ca. 22-15 Ma), of
conglomerate and sandstone, generally reflects
braided river, braided river delta, and some of
lacustrine sedimentary systems (Figs. 2 and
7A), suggesting the initial stages of basin de-
velopment. Signs of soilification, such as gray-
green calcareous bands, nodules, plant roots,
and wormholes can be observed on the deposit
sequence of the dull red, tens of meters thick,
meandering sedimentary system of the lower
stratigraphic level of the Xiayoushashan Forma-
tion (Fig. 7A). The extensive development of the
early-mid Miocene high-energetic, braided river
and delta deposits flowing southward indicate
the Wulan Basin performed as a typical inter-
mountain flexural basin and was mainly filled
by the nearby Buguote Shan to the north and the
Elashan Range to the east.

In the mid-late Miocene, the deposits in the
Waulan Basin transitioned into a low-energy la-
custrine sedimentary system of the Shangyou-
shashan Formation (ca. 15-8 Ma; Figs. 2 and

Geological Society of America Bulletin

Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/doi/10.1130/B36215.1/5603558/b36215.pdf
bv niversity of Nevada Reno user

7B). However, the subaqueous turbid sediments
of conglomerate and sandstone from our new
measured stratigraphic section indicate the re-
lief between the basin and range was still sig-
nificant (Fig. 7B). This suggests the Wulan Ba-
sin was characterized with high water-level and
underfilled lacustrine fan-delta system during
the mid-late Miocene (e.g., Horton and Schmitt,
1996). This lacustrine fan-delta system, cou-
pling with the high level of lithic fragments in
the sandstones (Table S1, see footnote 1; Fig. 8)
suggest the initiation of the Laohukou fault (f,)
and the right-slip Elashan fault (f;), which bound
the northern and eastern Wulan Basin (Figs. 1
and 3). The clastic components of the Miocene
sandstones from the Wulan Basin also corre-
spond with their depositional process (Fig. 8),
indicating the provenance distributions may be
impacted by the mid-Miocene thrust and strike-
slip faulting of the eastern Qaidam Basin.

The Elashan Range, east of the Wulan Basin,
may have experienced thrust-related protracted
uplift since the Cretaceous to the early Oligo-
cene as revealed by the AFT thermal history
(Figs. 1 and 11A; Jiang et al., 2008; Lu et al.,
2012; Duvall et al., 2013). This pre-Cenozoic ex-
isting Elashan highland led to the absence of Pa-
leogene sediment in the surrounding region, and
separated the eastern Qaidam Basin and western
Gonghe Basin as independent sedimentary ba-
sins (Craddock et al., 2011; Lu et al., 2012). Pre-
vious studies have inferred the right-slip initial
age of the Elashan fault at ca. 1015 Ma based
on estimated Quaternary slip rates at ~1.1 mm/
yr (Yuan et al., 2011; Cheng et al., 2021a) and
apatite helium age from vertical transect (Duvall
etal., 2013). Our study bolster the validity of this
hypothesis based on the following observations
and analysis: (1) the dominate rapid cooling sig-
nal from sample SQL2017-105(1) may also cor-
respond to the lateral motion of the Elashan fault
as the sample was collected from the footwall of
the horsetail splay fault system (Fig. 3; Cheng
et al., 2021a); (2) the retrogradational transition
of the clastic provenance and the increasing of
the lithic grains in the Miocene sandstones from
the Wulan Basin indicate nearby exhumation of
the Elashan Range, which was possibly associ-
ated with the slip motion of the Elashan fault
(Figs. 8E and 11B; Table S1, see footnote 1). The
synchronous uplift of the surrounding mountain
ranges around the Wulan Basin led to the sedi-
mentary system transition into a relatively to-
pographically enclosed lacustrine environment
(Fig. 11). On a larger scale, the deposits begin
coarsening upward since the deposition of the
Shangganchaigou Formation in the Dahonggou
section (Fig. 1C). Fining sedimentation in the
Huaitoutala section (Fig. 1C; Fang et al., 2007)
and the Wulan section (this study) from west to
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Figure 11. Late Cenozoic development and paleogeomorphic reconstruction in the east domain of the North Qaidam thrust belt, northern
Tibetan Plateau (Modified from Wang et al., 2021c).

east, indicates the depocenter of the northern Qa-
idam Basin shifted eastward during the Miocene
time (Fig. 2; Wang et al., 2006; Yin et al., 2007,
2008a; Chen et al., 2010; Yu et al., 2014a).

The northern Tibetan Plateau underwent a
major pulse of regional mid-Miocene reorgani-
zation with the onset of the major left-slip faults
(i.e., Haiyuan and Kunlun faults; e.g., Lease
et al., 2011; Zuza and Yin, 2016; Cheng et al.,
2018b; Wu et al., 2019¢; Cheng et al., 2021a; Yu
et al., 2021a). The subsidiary right-slip Elashan
and Riyueshan faults may kinematically link to
the left-slip faults related to left lateral extrusion
(Tapponnier et al., 1982; Wang and Burchfiel,
2004; Cheng et al., 2015), and/or bookshelf
faulting associated with clockwise fault rota-
tion (England and Houseman, 1989; Zuza and
Yin, 2016; Cheng et al., 2021a). Therefore, such
widespread initiation of these intertwined strike-
slip faults at ca. 15-10 Ma may have disrupted
the previous sedimentary system and established
the overall framework morphology across the
northeast domain of the Qaidam Basin (Fig. 11;
Craddock et al., 2011; Zhang et al., 2012; Cheng
et al., 2021b and this study).

Cenozoic Expansion of the North Qaidam
Thrust Belt during the Growth of the
Northern Tibetan Plateau

Ascertaining the existence and exploring the
mechanism of the early Cenozoic deformation
in the northern Tibetan Plateau has significant
implications for understanding the kinematics
of intracontinental deformation of the Tibetan
Plateau. This phase of contemporaneous early
Cenozoic tectonic events has been supported by

the published low temperature thermochronol-
ogy ages across most of the northern Tibetan
Plateau, such as in the Qimen Tagh, southern
and northern margins of the Qaidam Basin, Qil-
ian Shan, and western Qinling (e.g., Jolivetet al.,
2001; Clark et al., 2010; Duvall et al., 2011;
Zhuang et al., 2011, 2018; Cheng et al., 2016a,
2016b; Qi et al., 2016; Liu et al., 2017; He et al.,
2018; Li et al., 2020). Specific to this study, ob-
served Eocene AFT cooling and the apparent
unconformity between the Jurassic and Miocene
sediments (Figs. 5A and 10) suggest the North
Qaidam thrust belt was exhuming in the early
Cenozoic, implying the Cenozoic contractional
strain transferred to the northern Tibetan Plateau
shortly after the initial India-Asia collision at
ca. 58 Ma (e.g., DeCelles et al., 2014; Hu et al.,
2015, 2016).

Previous studies indicate that thrust-induced
sedimentation in the Qaidam Basin began with
the deposition of the Lulehe Formation (e.g., Ji
et al., 2017; Cheng et al., 2018a; Wang et al.,
2021b). The early Cenozoic sediments are rel-
atively thin (i.e., <1000 m) and their distribu-
tion is restricted to the west-central part of the
Qaidam Basin as revealed by the isopach maps
(Yin et al., 2008b; Yu et al., 2014a; Cheng et al.,
2018a). However, there is an apparent eastward
expansion of sedimentation since the Oligocene
time (e.g., Yu et al., 2014a) that we interpret
may relate to deformation observed in field
observations presented in Figure 5. The expan-
sion of sedimentation in the Qaidam Basin may
be triggered by the transition of the stress field
(Yu et al., 2014a, 2014b) and/or the accelerated
activity of the Altyn Tagh fault (e.g., Yin et al.,
2002; Wu et al., 2012; Cheng et al., 2016a),
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where uplift of the Altyn Tagh Range blocked
the westward flowing drainages and eventu-
ally closed off the contiguous interconnected
Tarim-Qaidam Basin (Fig. 1C; Yin et al., 2002;
Meng and Fang, 2008). With this interpretation,
a closed Qaidam Basin (Yin et al., 2002; Yu and
Guo, 2019) with a higher erosive base level, cou-
pled with an overall dryer post-Eocene climate
(e.g., Chengetal., 2019b; Wu et al., 2021), could
have dramatically reduced erosion rates in the
growing basin-bounding mountain ranges. Less
focused erosion promotes along-strike growth
of the thrust belt (e.g., McQuarrie et al., 2008;
Liu et al., 2020), in addition to promoting across-
strike thrust belt expansion (e.g., Malavieille,
2010; Cheng et al., 2019b). Therefore, we inter-
pret that expanded Oligocene to the present de-
position in the Qaidam Basin reflects: (1) closure
of the integrated Tarim-Qaidam Basin system
shifting the Qaidam Basin depocenter eastward
and (2) eastward growth of the North Qaidam
thrust due to less focused erosion in the western
part of the thrust belt (e.g., Hilley et al., 2004;
Champagnac et al., 2012; Cheng et al., 2019b).
Our new obtained AFT thermochronology
combined with previous data across the northern
Tibetan Plateau indicate a period of accelerated
mid-Miocene exhumation (e.g., (George et al.,
2001; Jolivet et al., 2001; Craddock et al., 2011;
Duvall et al., 2011; Yuan et al., 2013; Zheng
et al., 2017; Zhuang et al., 2018; Li et al., 2019;
Yu et al., 2019a, 2019b; Wang et al., 2020). This
period of defamation is consistent with the ini-
tiation and development of the major strike-slip
faults (e.g., Fu and Awata, 2007; Duvall et al.,
2013; Yuan et al., 2013, Zuza and Yin, 2016; Li
et al., 2019; Wu et al., 2019c; Yu et al., 2020),



and may have resulted in the shift of deformation
pattern from early thrusting to mixed-mode of
thrust and strike-slip faulting (Lease et al., 2012;
Yuan et al., 2013) in the middle Miocene time
when the crustal thickening would have reached
its present-day value (e.g., Zuza et al., 2020).
This Miocene to the present pulse of deforma-
tion and synchronous range growth imply that
contractional structures possibly having reac-
tivated the older structures (e.g., Meyers et al.,
1992; Zuza et al., 2018; Li et al., 2021), and
established the current geomorphic and tectonic
pattern of the northern Tibetan Plateau (e.g.,
Yuan et al., 2013).

CONCLUSIONS

Geologic mapping, field observations, sand-
stone petrologic and sedimentologic analysis,
and AFT thermochronology dating provide con-
straints on the complex Cenozoic exhumation
history, initiation ages of thrust and strike-slip
faults, and the paleogeomorphic reconstruction
of the North Qaidam thrust belt. The integrated
results of our study have led to the following in-
terpretations.

The North Qaidam thrust belt experienced
uplift and exhumation in the Cretaceous due to
a far-field tectonic response, Eocene-Oligocene
thrust faulting and strata tilting, and the contin-
ued mid-Miocene to present exhumation.

Sandstone petrologic and sedimentologic re-
sults indicate the well-preserved Wulan Basin
experienced a distinct two-stage evolution, with
a switch from the fluvial stage to lacustrine stage
during the mid-late Miocene. This transition
may have been triggered by the growth of the
surrounding ranges during the initiation of the
right-slip Elashan fault at ca. 15-10 Ma.

Based on the previous studies and our obser-
vations, we argue the North Qaidam thrust belt
experienced multiple phases of Cenozoic growth
and expansion in response to the complex evo-
lution of the northern Tibetan plateau. Eocene
thrust-induced uplift and deformation may reflect
an initial response to early Cenozoic India-Asia
collision. The eastward Oligocene expansion of
the North Qaidam thrust belt and related migra-
tion of the Qaidam Basin depocenter may be
related to lower erosion rates induced by rising
local base level and/or arid climate conditions
in the Oligocene. Middle Miocene deformation
that involved the initiation of major strike-slip
fault systems established the current geomorphic
tectonic pattern of the northern Tibetan Plateau.
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