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T
he emergence of machine learning as a society-
changing technology in the past decade has 
triggered concerns about people’s inability to 
understand the reasoning of increasingly complex 
models. The field of IML (interpretable machine 

learning) grew out of these concerns, with the goal of 
empowering various stakeholders to tackle use cases, such 
as building trust in models, performing model debugging, 
and generally informing real human decision-making. 7,10,17

Yet despite the flurry of IML methodological 
development over the past several years, a stark 
disconnect characterizes the current overall approach. 
As shown in figure 1, IML researchers develop methods 
that typically optimize for diverse but narrow technical 
objectives, yet their claimed use cases for consumers 
remain broad and often underspecified. Echoing similar 
critiques about the field, 17 it has thus remained difficult 
to evaluate these claims sufficiently and to translate 
methodological advances into widespread practical 
impact. 

This article outlines a path forward for the ML 
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3 Rigorously evaluate and establish potential IML 
diagnostics. IML researchers typically develop and 
evaluate methods by focusing on quantifiable technical 
objectives (e.g., maximizing various notions of faithfulness 
or adherence to some desirable axioms 4,18,24). While 
these IML methods generally target seemingly relevant 
aspects of a model’s behavior, it is imperative to measure 
their effectiveness on concrete use cases in order to 
demonstrate their utility as practical diagnostics.

These two principles motivated us to first illustrate 
our diagnostic vision via an incomplete taxonomy that 
synthesizes foundational works on IML methods and 
evaluation. The taxonomy (shown at an abstract level 
in the left side of figure 2) serves as not only a template 
for building an explicit mapping between potential IML 
diagnostics and specific use cases, but also a tool to unify 
studies of IML’s usefulness in real-world settings. Further, 
the incompleteness of the current taxonomy emphasizes 
the need for researchers and consumers to work together 
to expand the coverage of the use case organization (i.e., 
in the “Use Case Goals”), and to establish connections 
between methods and use cases by following the proposed 
workflow below.
(1) �Problem definition, where researchers work with 

consumers to define a well-specified target use case.
(2) �Method selection, where they identify potential 

IML methods for a target use case by navigating the 
methods part of the taxonomy and/or  leveraging 
previously established connections between similar use 
cases and methods.

(3) �Method evaluation, where researchers work with 
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of how three different potential diagnostics, each 
corresponding to different types of IML methods (local 
feature attribution, local counterfactual, and global 
counterfactual, respectively), may provide useful insights 
for three use cases. In particular, the computer vision use 
case from Table 1 is expanded upon as a running example.

BACKGROUND
An increasingly diverse set of methods has been recently 
proposed and broadly classified as part of IML. Multiple 
concerns have been expressed, however, in light of 
this rapid development, focused on IML’s underlying 
foundations and the gap between research and practice.
�
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Computer Vision:  Classifier to detect objects in images

Use Case: Debug the model by identifying if it uses positive spurious 
correlations (i.e., relies on object Y to detect object X).

Diagnostic Insight: When features (i.e., spurious objects) are present or missing,  
how does this affect a specific prediction?

Bank Lending:  Classifier to grant/deny loans to clients

Use Case: Recommend actionable recourse for an individual to get  
a loan after they have been previously denied.

Diagnostic Insight: What (low-cost) changes can an individual make to achieve  
a desired outcome?

Computational Biology:  Clustering to Analyze Single-Cell RNA Sequences

Use Case: Verify whether differences between clusters corroborate  
known scientific knowledge (e.g., different cell types).

Diagnostic Insight: What feature changes (i.e., to gene expression) can be made  
to a group of points to achieve a desired outcome?

TABLE 1 : Example Use Cases
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Critiques of the field’s foundations
Zachary C. Lipton provided an early critique, highlighting 
that the stated motivations of IML were both highly 
variable and potentially discordant with proposed 
methods.17 Maya Krishnan added to these arguments 
from a philosophical angle, positing that interpretability 
as a unifying concept is both unclear and of questionable 
usefulness.15 Instead, more focus should be placed on the 
actual end goals, for which IML is one possible solution.

Gaps between research and practice 
Multiple works have also highlighted important  
gaps between existing methods and their claimed  
practical usefulness. Some have demonstrated a lack of  
stability/robustness in popular approaches. 1,2,16 Others, 
meanwhile, discuss how common IML methods can fail to 
help humans in the real world, both through pointing out 
hidden assumptions and dangers, 6,21 as well as conducting 
case studies with users. 5,14

More recently, many review papers 3,10,19,20 have 
attempted to clean up and organize aspects of IML but 
largely do not address these issues head on. In contrast, 
the reframing of IML methods as diagnostic tools proposed 
here follows naturally from these concerns. Notably, 
this article embraces the seeming shortcomings of 
IML methods as providing merely “facts” 15 or “summary 
statistics”21 about a model, and instead focuses on the 
practical questions of when and how these methods can be 
useful.

A DIAGNOSTIC VISION FOR IML
In our vision, a diagnostic is a tool that provides some 
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actionable insight about a model. As an analogy, consider 
the suite of diagnostic tools at a doctor’s disposal that 
similarly provides various insights about a patient. An 
X-ray could be useful for identifying bone fractures, while 
a heart-rate monitor would be helpful for identifying an 
irregular rhythm. Importantly, neither tool enables the 
doctor to broadly “understand” a person’s health, but each 
can be useful if applied properly to a well-scoped problem. 
A similarly rigorous approach to establishing connections 
between IML methods and well-defined use cases is 
imperative for the IML community.

To begin such a pursuit, let’s identify and reconcile the 
many method goals and use case goals that you might 
currently encounter. Based on contemporary practices and 
discourse, let’s consider a taxonomy that organizes separate 
hierarchies for the method goals at the top end and use case 
goals at the bottom end (as illustrated in figure 3). While the 
diagnostic vision for the field ideally involves a clearly defined 
set of use cases and a robust set of connections between 
these two sides, a cloud is used to illustrate the current 
overall lack of well-established diagnostics. Moving forward, 
the goal for researchers and consumers is to conduct 
principled studies focused on filling in both gaps. First, they 
should work to refine the current organization of use cases, 
consisting of an incomplete list of commonly discussed broad 
goals, by defining more well-specified target use cases 
(shown in green) via the consumer-researcher handshake. 
Second, they should aim to establish explicit connections 
between these targets and technical objectives (shown in 
blue).
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Method goals
Each IML method provides a specific type of insight into 
a given model. The forms of these insights help provide a 
hierarchical organization that divides the set of existing 
IML methods into eight method clusters. In the diagnostic 
vision, each method cluster is thought of broadly as a class 
of diagnostics that addresses a TO (technical objective). 
Later, each TO is described in a way that allows individual 
method goals to be specified.

Hierarchical organization
The top end of the taxonomy aims to differentiate between 
the various perspectives that explanations provide, 
based on three factors commonly discussed in existing 
literature:3,9,11

3 Explanation representation.  Model explanations are 
typically given in terms of either feature relationships  
between inputs and outputs or training examples .
3 Types of feature relationships. In the context of 
explanations based on feature relationships, there are 
three distinct approaches for explaining different aspects 
of the model’s reasoning: (1) feature attribution ; (2) 
counterfactual; and (3) approximation . Note that because 
the IML community focuses less on generating example-
based explanations, we consider one main grouping along 
that branch: sample importance explanations .
3 Explanation scale.  Explanations vary in terms of the 
scale of the desired insights, with their scope ranging from 
local (i.e., for an individual instance) to global  (i.e., for a 
well-defined region of the input space).

At the leaf nodes are the TOs, classes of goals that 
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are precise enough to be generally linked to a method 
cluster that most directly addresses them. In total, 
there are eight TOs/method clusters that capture a 
large portion of the goals of existing IML methods. 
There are a couple of important nuances regarding the 
characterization of TOs.
3 First, although TOs and method clusters are one-to-one 
in the proposed taxonomy, it is important to explicitly 
distinguish these two concepts because of the potential 
for cross-cluster adaptation . This notion arises because it is 
frequently possible for a method to, in an ad hoc fashion, be 
adapted to address a different TO.
3 Second, each TO should be thought of as defining a class 
of related goals. Indeed, for a given TO, we hypothesize 
what some of the key technical detail(s)  are that must 
be considered toward fully parametrizing meaningfully 
different instantiations of the same broader goal. These 
important technical details, taken together with the TO, 
allow you to define individual proxy metrics that reflect the 
desired properties of your explanations. Proxy metrics can 
then serve as tractable objective functions for individual 
methods to optimize for, as well as measures of how well 
any method addresses a particular instantiation of the TO.

Technical objectives
The following is an overview of the TOs (and their technical 
details) that correspond to various method clusters. 
Because of the overlaps in content, local and global 
versions of the same general method type/objective are 
grouped together. (For more details and examples of 
specific methods for each, see our longer-form paper, 
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“Interpretable Machine Learning: Moving from Mythos to 
Diagnostics,” by Chen, et al. 8).
3 Feature attribution explanations  address how the 
model’s prediction(s) are affected when features are 
present (or missing), i.e., how “important” each feature is to 
the model’s prediction(s). Often, measures of importance 
are defined based on how the model’s prediction(s) 
changes relative to its prediction for some baseline input. 
The baseline input is sometimes implicit and domain 
specific (e.g., all black pixels for grayscale images or the 
mean input in tabular data). Thus, the technical details are 
both the precise notion of “ importance” and the choice 
of the baseline input . Relevant proxy metrics typically 
measure how much the model prediction changes for 
different types of perturbations applied to the individual 
(or the training data) according to the “importance” values 
as computed by each method.
3 Counterfactual explanations  address what “low-cost” 
modification can be applied to data point(s) to achieve 
a desired prediction. The most common technical detail 
is the specific measure of cost,  and the most common 
proxy metric is how often the counterfactual changes the 
model’s prediction(s).
3 Approximation methods  address how to summarize the 
model by approximating its predictions in a region, either 
locally around a data point, globally around as many points 
as possible, or across a specific region of the input space. 
These methods require the technical details of both the 
definition of the region and the simple function’s model 
family. For local approximation, a canonical metric is local 
fidelity, which measures how well the method predicts 
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within a certain neighborhood of a data point. For global 
approximation, a proxy metric is coverage, which measures 
how many data points the explanation applies to.
3 Sample importance methods address which training 
points most influence a model’s prediction for either an 
individual point or the model as a whole. Technical details 
differ from method to method, so it is difficult to identify a 
uniform axis of variation. These methods can be evaluated 
with proxy metrics that represent the usefulness of the 
provided explanations through simulated experiments of 
finding corrupted data points, detecting points responsible 
for data distribution shifts, and recovering high accuracy 
with the samples considered important.

How do by-design methods fit in? 
While they do not have a corresponding method cluster 
in this taxonomy, it is important to discuss another family 
of IML methods that propose models that are themselves 
interpretable by design. 21 The differentiating property of 
these models from the post-hoc methods referenced in 
the above section is that the TO(s) of these approaches 
is intrinsically tied to the model family itself; hence, the 
models are interpretable by design only in that they satisfy 
said TO(s). That said, by-design methods also fit into this 
framework and should be viewed as a different way to 
answer the same TOs in the taxonomy. When by-design 
methods are proposed or used, they should clearly specify 
which TOs they intend to address.

Use case goals
Much of the current discourse on IML use cases surrounds 
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differentiating fairly broad goals, such as debugging 
models, gaining trust of various stakeholders, and 
providing actionable recourse to users (figure 3). While 
this level of categorization represents a good start, it is of 
limited utility because it treats each of these categories 
as monolithic problems for IML to solve. For one, these 
problems are complex and should not be assumed to be 
completely, nor solely, solvable by IML itself. Rather, IML 
is but one potential set of tools that must be proven to be 
useful. That is, to show that an IML method is an effective 
diagnostic, specific use cases must be identified and 
demonstrated.15 

Secondly, each broad goal really includes multiple 
separate technical problems, crossed with many possible 
practical settings and constraints. It is unlikely that a given 
IML method will be equally useful across the board for all 
of these subproblems and domains.

Thus, claims of practical usefulness should ideally be 
specified down to the level of an adequately defined TUC 
(target use case). Like TOs on the methods side, TUCs 
correspond to learning a specific relevant characteristic 
about the underlying model (e.g., a certain property or 
notion of model behavior). Unlike a TO, however, they 
represent real-world problems that, while they can 
be evaluated, often might not be amenable to direct 
optimization. 

For example, you can set up evaluations to determine 
whether an IML method is useful for identifying a 
particular kind of bug in the model (e.g., positive spurious 
correlations), but it is not so obvious how to optimize an 
IML method that will succeed on those evaluations.
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A WORKFLOW FOR ESTABLISHING DIAGNOSTICS
Let’s turn now to how a diagnostic vision for IML can 
be more fully realized, discussing how methods can be 
established as diagnostics, thus filling gaps in the existing 
taxonomy. Specifically, an ideal workflow is defined for 
consumer-researcher teams to conduct future studies 
about IML methods. It describes how the taxonomy can 
guide best practices for each of the three key steps: (1) 
problem definition; (2) method selection; and (3) method 
evaluation. This workflow applies both to teams who wish 
to study existing IML methods and to those proposing 
new ones.

A running example helps contextualize this discussion, 
building on the computer vision model debugging example 
from table 1. Model debugging is not only a common 
consumer use case, 7,13 but also a well-grounded one. It is a 
natural starting point because of the versatile nature of 
its assumed consumer, data scientists, who typically have 
both substantial ML knowledge and domain expertise, 
minimizing the communication gap between the data 
scientist and the IML researcher.

Step 1: Problem Definition
An important first step for any principled study is to define 
a well-specified TUC. This process is called the consumer-
researcher handshake  (figure 3), where researchers work 
with consumers to progressively refine the latter’s real-
world problems into relevant TUCs. In this process, some 
helpful pieces of information include: the data available, 
the ML pipeline used, and the domain knowledge required 
to perform evaluations. Ultimately, a more fleshed-out 
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the taxonomy (figure 4), the umbrella of model debugging 
includes several subproblems, such as detecting spurious 
correlations and identifying bad edge-case behavior. Thus, 
the team of researcher and data scientist needs to identify 
a TUC that is more specific than “perform model debugging” 
by identifying exactly what notion of “bug” the IML 
method should detect. Through the consumer-researcher 
handshake, it arises that the data scientist is concerned 
that the model might not be making correct decisions 
based on the actual target objects, but rather is relying 
on correlated objects that also happen to be present. For 
example, the model might be using the presence of a person 
as an indicator that there is a tennis racket in the image, 
instead of the racket itself.

This information allows the team to navigate the 
relevant branches of the taxonomy. Here, by considering 
the data scientist’s concern, they first narrow the goal 
from model debugging to detecting spurious correlations. 
Then, by also taking into account the specific setting (i.e., 
the presence of the tennis racket at the same time as the 
tennis player), they are able to arrive at a further specified 
use case of detecting spurious correlations between two 
positively correlated objects (marked by the white border 
in figure 4). In this case, the team takes care to differentiate 
this from the analogous problem of detecting reliance on 
negatively correlated objects, reasoning that the latter is 
fundamentally different (i.e., it is harder to tell whether the 
output depends on an object if the co-occurrences are rare 
in the first place).
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Step 2: Method Selection
After a TUC has been properly defined, the next step is to 
consider which IML methods might be appropriate. This 
does assume that IML methods are necessary—that is, the 
team should have demonstrated that the TUC presents 
challenges to more “trivial” or conventional diagnostics. 
For example, Bansal, et al. found model confidence to be 
a competitive baseline against dedicated interpretability 
approaches for AI/human decision-making teams. 5

If non-IML diagnostics are unsuccessful, the taxonomy 
can be used in two ways to select methods. First, 
researchers and consumers can, as a default, traverse the 
methods part of the taxonomy to identify the TOs (and 
thus, respective method clusters) that might best align 
with the TUC. Doing so should rely on the researcher’s best 
judgment in applying prior knowledge and intuition about 
various method types to try to narrow down the set of 
potential TOs. If a method is being proposed, it should be 
mapped to the appropriate method cluster, and the same 
selection process should follow. Second, the team can also 
navigate starting from the use cases part, leveraging and 
expanding on connections established by previous studies. 
Naturally, if some methods have already been shown 
to work well on a TUC, then those (or similar) methods 
provide immediate baselines when studying the same (or 
similar) use cases.

In either case, an important—yet subtle—choice must 
then be made for each method: exactly how its resulting 
explanations should be interpreted (i.e., which TO is being 
addressed). As discussed in the section about method goals, 
a method belonging to a specific cluster may most naturally 
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address the associated TO, but it is also possible, and indeed 
commonplace, to attempt cross-cluster adaptation  for 
addressing other TOs. Unfortunately, while such adaptations 
may be useful at times, they are often performed in an 
ad hoc fashion. Specifically, the differences between the 
technical details of each TO are often overlooked in the 
adaptation process, as illustrated via the following two 
examples (and in more depth in Chen, et al. 8).

First, you might try to use “feature importance weights,” 
via SHAP (Shapley additive explanations), 18 as linear 
coefficients in a local approximation. Such an adaptation 
assumes that the notion of local “importance” also can 
reflect linear interactions with features on the desired 
approximation region. This is not necessarily guaranteed 
by SHAP, however, which instead enforces a different set 
of game-theoretic desiderata on the importance values 
and may be set up to consider a quite disparate set of 
perturbations compared to the target approximation region.

Conversely, you can think of saliency maps via vanilla 
gradients23 as an adaptation in the opposite direction. 
These saliency maps, a local approximation where the 
effective neighborhood region is extremely small, are 
more popularly used to address local feature attribution 
objectives, such as identifying which parts of the image 
are affecting the prediction the most. This adaptation, 
however, carries an underlying assumption that the pixels 
with the largest gradients are also the most “important.” 
This approximation may not be accurate because the 
local shape measured by the gradient is not necessarily 
indicative of the model’s behavior near a baseline input 
that is farther away.
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Running example:  In this scenario, suppose that there 
have been no previously established results for detecting 
positive spurious correlations. The team follows the 
methods part of the taxonomy to generate hypotheses 
for which types of local explanations best suit their needs 
for understanding individual images. They decide against 
approximation-based objectives, because as the inputs 
vary in pixel space, simple approximations are unlikely to 
hold or be semantically meaningful across continuous local 
neighborhoods. They choose feature attribution because 
they believe that visualizing the features that the model 
deems most important would be useful for detecting these 
types of spurious correlations.

The team proposes a method in the local counterfactual 
method cluster that identifies the super-pixels that must 
change in order to flip the prediction from “tennis racket” 
to “no tennis racket.” By “visualizing” the counterfactual 
explanation like a saliency map, the team performs a cross-
cluster adaptation to interpret the counterfactual as a 
feature attribution explanation. To do so, they are assuming 
that the most changed features are also the most important 
for detecting the tennis racket. They reason that a feature 
attribution explanation would be a more intuitive format 
for the data scientist for this TUC. In terms of comparison, 
the feature attribution method that the team selects for 
comparison is Grad-CAM (gradient-weighted class activation 
mapping),22 which also produces a saliency map.

Step 3: Method Evaluation
Once appropriate method(s) have been chosen, the last 
step is to evaluate them. Evaluation is the crucial step 
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corresponds to meeting objectives of a specific TO in the 
methods part, and usefulness corresponds to meeting the 
TUC in the use cases part. Then, it also lays out the various 
moving components that affect each type, with gray boxes 
denoting components that require more careful study. This 
serves to ground how each may be carried out, which we 
discuss in greater detail next. 

Faithfulness evaluations  are performed with respect 
to a proxy metric specified using the relevant technical 
details from the target TO class. For example, if the goal 
were to show the usefulness of an approximation-based 
explanation adapted as a counterfactual, the faithfulness 
evaluation should be with respect to a counterfactual 
proxy metric. Referring to the terminology from Doshi-
Velez and Kim, 9 these types of evaluations are called 
functionally grounded —that is, involving automated proxy 
tasks and no humans. While such evaluations are easiest to 
carry out, they come with key limitations.

In general, you should expect that a method would 
perform well at least on a proxy for its selected TO, and, 
naturally, those methods that do not directly target 
this specific proxy will likely not perform as well. An 
explanation’s performance can also be faultily compared 
with another’s as a result of unfair or biased settings 
of technical details. As an example, although GAMs 
(generalized additive models) 12 and linear models both 
provide local approximations, comparing these methods 
only in the context of fidelity ignores the fact that GAMs 
potentially generate more “complicated” explanations.

Further, while faithfulness evaluations can act as 
a first-step sanity check before running more costly 
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usefulness evaluations, showing that a method is faithful 
to the model alone is not conclusive of the method’s 
real-world usefulness until a direct link is established 
between the corresponding proxy and TUC. Once these 
links are established, these proxies can then be used more 
confidently to help rule out bad setups before performing 
expensive usefulness evaluations.

Usefulness evaluations, in contrast to faithfulness, 
measure a user’s success in applying explanations to the 
specified TUC. Since they are ultimately an evaluation of 
what a user does with an explanation, usefulness depends 
crucially on factors, such as the user’s prior knowledge—
for example, their domain and ML/IML experience. Again, 
using terminology from Doshi-Velez and Kim, 9 users’ 
perspectives can be incorporated through studies on 
real humans performing simplified or actual tasks (i.e., 
human-grounded or application-grounded evaluations, 
respectively). In particular, as part of conducting 
usefulness studies, you would need to consider how users 
might act differently depending on the presentation 
of the explanation and explicit instructions that are 
provided.

As highlighted by the cloud in figure 5, exactly how 
users translate explanation calculations (in their minds) 
to their final judgments remains murky. This motivates 
further research relating to better understanding what 
users understand explanations to tell them and how they 
act upon these understandings . Then, when establishing 
new diagnostics, these assumptions/limitations should be 
clearly spelled out for when researchers use the method in 
a future study and when consumers deploy the method.
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Motivated by these challenges, researchers might want 
to also consider another type of usefulness evaluation: 
simulation evaluation . This is an algorithmic evaluation on 
a simulated version of the real task where success and 
failure are distilled by a domain expert into a measurable 
quantity (as illustrated in the running example). This type 
of evaluation is still based on the real task but is easier and 
potentially more reliable to run than user studies. 

By simulating the users and their decision-making 
process algorithmically, thus controlling some noisier 
aspects of usefulness evaluation, researchers may be 
able to better understand why their methods are “failing”: 
is it because of the algorithm itself or the users’ actual 
decision-making process?

Overall, success on these various levels of evaluations 
provides evidence for establishing a connection between 
the method in question and the TUC. Specifically, the team 
should check to see if the proxy metrics considered earlier 
were correlated to success on the TUC. If so, this would 
provide evidence for whether the proxy metrics considered 
should be used again in future studies, connecting 
faithfulness and usefulness evaluations.

Running example: The team first performs separate 
local feature attribution faithfulness evaluations for both 
methods using the respective notions of importance that 
each defines. For example, for the proposed method, the 
team ensures that each generated explanation faithfully 
carries out its intended TO of identifying the effect of the 
presence or absence of a super-pixel. Good performance 
on any proxy metric, however, does not conclusively imply 
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good performance on the actual TUC, so the team turns to 
usefulness evaluation.

The team first conducts a simulation evaluation, where 
datasets are created that contain either (artificially 
induced) positive correlation between a pair of objects or 
no such correlations. By carefully controlling the training 
and validation distributions, they can automatically verify 
whether a model has learned the problematic behavior 
they want to detect. Then they can define a scoring function 
for the explanations (i.e., how much attention they pay 
to the spurious object) and measure how well that score 
correlates with the ground truth for each explanation.

Second, the team runs a human study with multiple 
models where they know the ground truth of which ones 
use spurious correlations. They score data scientists 
based on whether they are able to use each explanation 
generated by the counterfactual versus Grad-CAM to 
identify models that use spurious correlations. If the 
methods are successful on the human studies, the team has 
demonstrated the connection between them and the TUC of 
detecting positively correlated objects.

CONCLUSION
Assuming a diagnostic vision for IML, the taxonomy 
presented here is a way to clarify and begin bridging the 
gap between methods and use cases. Further, this article 
discusses best practices for how the taxonomy can be used 
and refined over time by researchers and consumers to 
establish which methods are useful for which use cases. As 
the taxonomy is fleshed out via more studies by consumer-
researcher teams, our vision is that it will be increasingly 
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useful for both parties individually (figure 2, right). Overall, 
the goal is to promote better practices in discovering, 
testing, and applying new and existing IML methods moving 
forward.
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