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Abstract—Learning a vector representation of locations that
reflect human mobility patterns is useful for various tasks, in-
cluding location recommendation, city planning, urban analysis,
and even understanding the neighborhood effects on individuals’
health and well-being. Existing approaches that model and learn
such representations either do not scale or require significant
resources to scale. They often need the entire data to be loaded
in memory along with the intermediate data representation
(typically a co-location graph) and are usually not feasible to
execute on low-resource embedding systems such as edge devices.
The research question we seek to address in this article is,
can one develop efficient federated learning models for location
representation learning such that the training and the subsequent
updates of the model can occur on edge devices? We present a
simple yet novel model called LocationTrails for learning efficient
location embeddings to address this question. We show that our
proposed model can be trained under the federated learning
paradigm and can, therefore, ensure that the model can be
trained in a distributed fashion without centralizing locations
visited by all users, thereby mitigating some risks to privacy. We
evaluate the performance of LocationTrails on five real-world
human mobility datasets drawn from two use cases (four of
them from driving trajectory data obtained from a national
insurance agency; and one of them from a unique study of
adolescent mobility patterns in an urban setting). We compare
our proposed LocationTrails model against the strong baselines
from the network representation learning field. We show the
efficacy of LocationTrails in terms of better embedding quality
generation, memory consumption, and execution time. To the best
of our knowledge, the federated LocationTrails model is the first
model that can generate efficient location embeddings without
requiring the complete data to be loaded on a central server.

Index Terms—Human Mobility Analysis, Federated Learning,
Representation Learning

I. INTRODUCTION

The widespread availability of GPS-enabled devices such
as mobile phones and other edge devices has made it much
easier to capture and store human mobility data. Leverag-
ing such data sources is helpful in urban analysis [1], city
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planning [2] and even understanding the neighborhood effects
on individuals’ health and safety [3]. Importantly, learning a
vector representation of locations that reflect such mobility
patterns can be incredibly useful in improving services such
as location recommendation [4], classification of Points Of
Interest (POIs) [5] and venue mapping [6].

A natural model to represent such human mobility data is
to lever a co-location network [7]. A co-location network is
a bipartite (two-mode) network where one partition comprises
users, and the other partition comprises locations. If a user
visits a location, it is represented by an edge. Each edge can
optionally include attributes (time of visit, number of visits).
Each node can also optionally include attributes (GPS coordi-
nates, location labels, user attributes). Given this abstraction,
one can leverage techniques proposed in graph representation
learning to understand and query human movement dynamics
through co-location graphs.

The main challenge in adopting such ideas for our purpose
is that such solutions are often not feasible for low-resource
embedded systems or edge devices that need to accommodate
both training and inference [8]. First, scaling such graph
representation learning methods to the limited computational
and memory budget of such devices is challenging [9]. Second,
most of the methods surveyed rely on a global (or centralized)
picture of the graph model, which in turn can exacerbate
privacy! concerns with eventual deployment. We note that
Al at the edge is a shift in the computing paradigm from
cloud computing with advantages such as faster real-time
decisions, offline availability, reduced bandwidth consumption,
and also potentially mitigates some privacy pitfalls as the raw
data from consumers is not shared to a centralized cloud
server. Such ideas have found initial deployment in human
activity recognition [11], medical diagnostics [12] and mobile
keyboards [13], among others.

In this paper, we describe an approach — LocationTrails —
that seeks to address these challenges. Key to our approach is
to build localized co-location patterns specific to an individ-
ual user. The constructed sequence pattern can be abstractly
viewed as a path on the co-location network but importantly

'Many users would not prefer sharing the location visit data with the
organizations. Moreover, in Europe, the EDPB guidelines [10] mandates that
users consent to access data from their smartphones or from their vehicles. As
a result, it becomes critical to develop privacy-preserving mobility models that
can perform human mobility analysis and also satisfy the EDPB guidelines.

377


mailto:permissions@acm.org
10.1145/3487351.3490964

2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

limited to only those parts of a network an individual user
actually visits. In other words, the global network is not
explicitly leveraged by LocationTrails. However, as described
later, LocationTrails implicitly leverages the common locations
visited by users. Given a path on the co-location network, one
can then extract pairs of target and context tokens from these
sequence patterns, computed using a chosen context window.
These pairs of target and context tokens are then fed to the
skip-gram model [14] for learning the location embeddings.
We note that this step can be executed in two different settings:
1. On a single server with optimization performed through
batch gradient descent; and 2. In a distributed setting by
adapting the idea of federated learning [15] for training the
model. Federated learning approach trains a model across
multiple decentralized edge devices without exchanging their
raw data samples. In other words, at each step, training is
performed on a set or subset of edge devices (according
to a specific algorithmic protocol) and the representation of
the model is the only information that is shared with the
server. This methodology allows one to tune the tradeoff
between privacy and performance depending on the number
of decentralized clients used to model the optimization.

Note that the existing graph embedding methods require
the complete graph to either perform matrix factorization or
random walks and hence cannot be easily trained within a
federated learning setup. In contrast, our proposed method
offloads the location embedding training (and inference) com-
putation from the central server to edge devices, which is vital
for applications whose services are availed by millions of users
daily. The learned location embeddings can then be treated
as a distributed representation of the location for downstream
applications such as location recommendation, next location
prediction, and types of locations a user may visit during the
course of a day. Since the training instance of LocationTrails
is constructed from locations visited by a user on a single day,
the model can be updated with the new data by treating the
new data as a new batch for training. However, the existing
graph embedding methods need to be trained from scratch, as
with new data, the graph structure would change.

We evaluate the performance of LocationTrails along the
axes of quality (of generated representations), resource re-
quirements (computational and memory). We also assess
the impact of federated learning, especially on quality (for
example, it has been shown in other studies that there is
a qualitative cost associated with federated training — i.e.,
improved mitigation of privacy concerns comes at a quality
cost). Our evaluation focuses on five datasets — four of which
model human mobility patterns from driving trajectories in
four major US cities; and one of which models human mobility
of adolescents within an urban (inner-city) setting. For the
former, provided by a major insurance company, such location
representation models can be useful for characterizing driving
style and driving context [16], [17]. For the latter, location rep-
resentation can provide cues on the types of locations each user
is likely to encounter during their daily routine and whether
such locations may inform on exposures to violence, risky

behavior, or collective efficacy. In both use-case settings, node
classification is an important cue for qualitative performance,
so we compare the performance of LocationTrails and the
competitive strawman on this specific task.

Our experiments on the real-world human mobility data
collected from a major insurance company and the adolescent
mobility study from a major US city demonstrate the efficacy
of our proposed method in terms of better embedding qual-
ity, less memory consumption, and faster execution than the
popular graph embedding methods. The contributions of our
work can be summarized as

o We propose a simple yet novel LocationTrails model for
learning efficient location embeddings.

o Our proposed LocationTrails model is amenable to be
trained via Federated Learning and, therefore, can pre-
serve users’ privacy and offload the computation burden
from server to edge devices.

e We perform experiments on five real-world human-
mobility datasets collected from distinct application do-
mains and show the efficacy of the proposed method on
both single server and federated system.

II. RELATED WORK

Location embeddings models: Location2vec [18] learns
location representations by collecting the Geo-tagged tweets
which fall within 10 meters of the selected location. The
authors then lever the skip-gram model [14] and treat the
location token as the target word and treat the words in the
Geo-tagged tweets as context words. A key differentiator from
our effort, is that they learn the representation from textual
data while we leverage (co-)location visit data collected by
GPS-enabled sensors. LBSN2vec [19] studies user mobility
and social relationships in Location-Based Social Networks.
The authors collect user check-ins and users’ social network
and then propose a hypergraph-based random walk approach
to learn location embeddings. Note that the social network of
users is not always available. Yan et al. [5] learn the Point
of Interest (POI) embeddings by proposing a novel method
of training corpus generation based on augmented spatial
contexts for word2vec model [14]. Few methods [20]-[22]
focus on the problem of Point-of-Interest (POI) classification.
However, these methods have been proposed for check-in data
and require additional information such as text content of POI
[22], or their source code is not publicly available [20], or
hard to reproduce due to lack of documentation and sample
data [21]. CATAPE [23] focuses on the problem of top-k POI
recommendation and propose a two-tower recommendation
model on the user embedding and POI embedding. The POI
embedding is learned by employing skip-gram on the user’s
POI check-ins sequence and POI categories sequence. As
we shall shortly see, both the problem setup and model
architecture are distinct from our approach. Moreover, the
user’s privacy concerns and distributed training aspects are
not considered in CATAPE [23].

Word embeddings: Mikolov et al. [14] proposed a skip-
gram model that attempts to maximize the probability of con-
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text words given the target word. Pennington et al. [24] levers
the global word-word co-occurrence matrix and achieves a
good vector space structure for tasks such as word-analogy.
Recently, transformer [25] based models such as BERT [26]
have shown tremendous promise on multiple natural language
processing tasks such as natural language inference and en-
tailment. However, the transformer-based models require a
massive amount of data, which is not always available.

Graph Representation Learning: Recently, there has been
surge of works in graph representation learning [27]-[30].
Deepwalk [27] learns node embeddings in the graph by first
performing multiple unbiased random walks of fixed length
from all the nodes in the graph and then employs the skip-
gram model to learn the node embedding. Node2vec [28]
proposed a biased random walk algorithm that alternates be-
tween Breadth-First Search and Depth-First Search to achieve
a microscopic or macroscopic view of the graph, respectively.
Line [31] learns node embeddings by maximizing first-order
and second-order proximity between the nodes. Qiu et al.
[29] showed that the network embedding methods such as
Deepwalk [27], Node2vec [28], and Line [31] are im-
plicitly performing matrix factorization on closed-form graph
Laplacian. Deep Graph Infomax [30] learns node embedding
by maximizing the mutual information between the global
representation of the graph and the local information of the
node. BINE [32] performs a biased random walk on bipartite
network where the number of random walks for each node
varies based on the nodes’ importance while the walk length
is determined in a probabilistic way. The interested reader is
encouraged to refer to surveys [33], [34].

III. METHODOLOGY

Here, we present our proposed approach LocationTrails and
begin by describing our graph abstraction model.

Co-location Graph Model: Human mobility data can often
be represented as through a bipartite co-location network G =
(U, L, E) where U and L are the set of all users and locations,
respectively, and E denotes the set of edges where an edge
(u,l,t) is formed between user u and location [ if user w visits
location [ at time t¢. The Figure 1a shows the user-location co-
location network.

LocationTrails: Our proposed method consists of two stages:
in the first stage, we construct a sequence based on the location
visit information of the users. This sequence can be abstractly
viewed as a walk on the co-location network but is limited to
the locations (or a subset of locations) actually visited by the
user. Let a location 4 be denoted as L;, a user j be denoted
as Uj;, let D; be the date [, W, and Wy represent weekend
and weekday, respectively. Additionally, let D be the set of
all dates. So, a user U visits locations on a particular day W,
would be represented as:

Uj . Dl . Lilv Li27 LigaLi17 L

in
The sequence of locations is temporally ordered such that
if location L; is visited by user U; at ¢, and L, is visited by

Users Locations Sample ITandom Walk
toty= L, | “\
& s A 4 4 & 2 %
o ts =% L, U L U L U L U L U
S

U, fk ta} " Sample LocationTrails Sequence
fto t} % Ls )

U, ,
Y a,, tRrO0 R0 10
ULy We Up Lg W, Uy Ly oW,
(@) (b)
Fig. 1. The bipartite co-location network between users and locations. The

edge represents users’ visit to a location, ¢; denotes the time of the visit and
We denotes weekend. We also show the sample random walk from user Uy
and the LocationTrails sequence constructed for user Uy.

user U; at t, where p < ¢ then the L; would appear earlier
in the sequence than L; . Note that the sequence can include
repeats — i.e., the same location is visited more than once (e.g.,
home, school, etc.). Preserving such repeat visits ensures that
the proximity of the eventual representation of the user node
and the location node remains close.

Now given a sequence of locations visited by a user over
a given temporal resolution (e.g., a day), we construct a
modified sequence where we represent each location with
(location id, user id, weekday /weekendid). So, from the
previous example, if the day of the date D; is weekend,
then the newly constructed sequence of the previous example
sequence would be represented as:

Uj7 Li17Wea Uj>Li25 W67 Uj7 Li37 Wea Uj>Li1a W€7 seey Li"7W6

Figure 1b shows a sample LocationTrails sequence con-
structed for user U; where the user visits locations in the
following temporal order on a particular weekend: L1, L3,
L1. Notice that the constructed sequence does not explicitly
take into account the other users. While this is useful from a
privacy-preserving perspective, it can be a limitation w.r.t. tra-
ditional graph representation learning methods which do take
other users into account (see Figure 1). However, since Loca-
tionTrails is jointly representing users and the locations they
visit — if other users also visit similar locations, the information
from other users will be implicitly represented by our model.

We also point out that the user ids and weekday/weekend ids
in the constructed sequence enforce the following constraints
in the embedding space. The inclusion of user ids enforces
that the locations visited by the same users are implicitly
brought closer in embedding space, while the inclusion of
weekday/weekend ids enforces that the locations visited during
the same day of the week are implicitly brought closer in
embedding space. Therefore, this inclusion of ids results in
implicit regularization in the skip-gram objective function. We
empirically show (in the ablation study in the experiments
section) that the addition of this implicit regularization helps
in improving the quality of embeddings.

In the second stage, we consider the modified sequence as
analogous to a sentence in the Word2Vec skip-gram model
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[14]. The training corpus of such skip-grams consists of a pair
of target and context word and are constructed from the input
sentence based on the context window size. The skip-gram
model attempts to maximize the probability of the context
word given the embedding of the target word. The objective
function is given as:

Minimizey E
tj €C(ts)

—log Pr(t;|o(t:)) (1)

where t; can be either user, location or weekday/weekend
token, and C(t;) be the context words of token ¢;. Also, let
o(t;) be the embedding of token ¢;. The probability of the
context word given the target word is computed with a softmax
layer, a log-linear model. The softmax term is given as:

exp (¢(t;)¢(ti))
Pr(t;lo(t:) = : .
Ztkg{L,U,Wde} exp (¢ (tr)p(t:))
However, to reduce the computational burden of the above

softmax term, we employ a standard negative sampling [14]
technique for approximating the softmax and is specified as

2

log Pr(t;|¢(t;)) = log o(é(t;).0(t:)) +

m

> Eipnpenl log o(—o(tk).¢(t:)) |

p=1
3)
where o is the sigmoid function, m is the number of
negative samples and P;(¢;) is the noise distribution of all
the location, user and weekday and weekend tokens.

The pseudo-code of LocationTrails is shared in Algorithm
1. For each user ¢ from the list of available users and on each
available date d for which we have the location visit informa-
tion of user ¢, we construct a sequence of locations visited by
the user ¢ on date d. Then, we replace each location with the
tuple (location id, user id, weekday/weekendidof date d)
while maintaining the order of the locations visited. The
modified sequence is treated as a sentence and a pair of
target words and context words is computed. These target,
context pairs are then fed to the skip-gram model described
in equations 1 and equation 3.

Federated LocationTrails: We now describe the federated
training procedure of LocationTrails. Federated learning [15]
is a distributed machine learning approach that performs
iterative model averaging through synchronous batch training.
This approach is useful in unbalanced and non-IID data
distributions. Note that the sensitive and private client data
present on an edge device is not shared with the server but
only the model updates are shared.

The training procedure of the LocationTrails model with
Federated Learning is described as follows: 1) The client
downloads the initial (base) LocationTrails model from the
server. 2) The client then collects the mobility data of the
user and trains the LocationTrails model using the training
procedure specified in Algorithm 1. The user embeddings
are stored locally at the client [35] and are not shared with

Algorithm 1 LocationTrails

Input: Sequences of users’ location visits along with day
information. Context window w.

Output: Location embeddings.

1: sentences = {}

2: for each user ¢ in U do

3: for each date d in D do

4: Collect and sort the locations by user ¢ on date d
in the visited order.

5: Replace each location with
the tuple (location id,
user id, weekday/weekendid of date d)

6: Add the sequence constructed in previous step to
the list of sentences

7: end for

8: end for

9: Construct target and context pairs from the sentence available
from the list of sentences.
10: Learn the location embeddings using Eqn 1 and Eqn 3.

the server. The negative samples required for Equation 3 is
constrained to be either location ids or week ids. The client
then updates the model locally (Equation 4). 3) Then the client
sends the updated model — consisting of embeddings of all the
tokens (except user embeddings) — to the server. 4) The server
collects the updated models from multiple clients and then
performs model averaging in a weighted fashion (Equation 5).
Then steps 1-4 are repeated for n number of epochs.

Let I(¢) be the loss defined in equation 3, w; be the current
global model present at the server and w} be the model present
at client k. Let 1 be the local learning rate. Then using the
standard gradient descent the model w’ would be updated as:

wy =wf —nVi(e) (4)

Let C; be the set of clients which trained the LocationTrails
model w; and then sent the updated model w/ 1 to the server,
ng be the training instances at client & and n be the total
number of training instances. The current global model w;
present at the server is updated as:

|Ctl

Wil = Z -, Wi @)
k=1

The above approach ensures that raw data from the clients
is never directly shared with the central server. However, this
approach is not perfect as the client could still lose some
privacy if the updates to the central server only impact a
fraction of the locations being modeled. In this scenario, one
could reverse engineer information about locations visited. The
privacy-preserving nature of this scheme could potentially be
further improved via differential privacy [36] coupled with
secure aggregation protocols [37]. We do not explore this
thread or other forms of adversarial attacks [38], [39] on
federated location trails at this point but this is a direction
we would like to explore in the future.
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IV. EXPERIMENTS
A. Datasets

The first use-case consists of driving trajectory data obtained
from a national insurance agency Nationwide Insurance; while
the second use-case consists of adolescent mobility patterns
in an urban setting obtained from the Adolescent Health and
Development in Context (AHDC) Study. Table 1 shows the
statistics of the five datasets. We consider a sequence of
locations visited by an individual on a particular day as a trail.
The statistics Mode and Mean are computed on the distribution
of the length of all the trails.

1) Nationwide Trajectories: The “Nationwide Trajecto-
ries” is a real-world dataset of telematics information provided
by Nationwide. This dataset provides comprehensive data
collected by designated devices on each connected vehicle.
The data used in this study were collected from Atlanta (GA),
Columbus (OH), Pittsburgh (PA), and Philadelphia (PA), The
data collection period is between July 2017 and December
2019. For each city, the data sample comprises a set of drivers
for whom there were at least 50 trajectories longer than 30
seconds with valid GPS data available. For each driver, we
ensured that the trajectories were collected during a relatively
short period of time (e.g., two months). The last condition is
to avoid any potential bias due to the time gap in the sampling
process. For each trajectory, we find the origin and destination
data points. Origin and destination points represented by GPS
coordinates cannot be directly employed in our application.
Thus, we use a reverse geocoding process to map-match origin
and destination points to the closest places. The Nominatim
API is used for the reverse geocoding process.

2) AHDC Study: The AHDC study is a representative,
longitudinal study of 1,347 adolescents residing in Colum-
bus, Ohio. The adolescents are provided with GPS-enabled
smartphones and their movements are tracked through GPS
for a period of 7 days. The details of the AHDC dataset are
shown in Table I. Note that the nature of the AHDC dataset
is different than that of Nationwide dataset in the following
ways: 1. The individuals in AHDC study are adolescents rather
than adults and 2. The GPS coordinates are collected from
GPS-enabled mobile devices rather than automobiles. Another
important aspect of this dataset is that it is carefully curated to
mitigate noise effects of GPS positioning — specifically, visited
location information is also independently verified by extrinsic
sources (nightly surveys confirming each visited location).

B. Baselines and Evaluation Methodology

We evaluate the efficacy of the proposed method against
baselines based on three criteria, namely, embedding quality,
memory consumption and running time. We also report the
results of our proposed LocationTrails model via Federated
Learning. We select following baselines: Deepwalk [27],
Node2vec [28], NetMF [29], LINE [31], BiNE [32], Deep
Graph Infomax (DGI) [30]. All baselines operate on the co-
location graph containing both user ids and location ids. We
also tune the parameters of these methods and report their

Columbus  Atlanta  Pittsburgh  Philadelphia ~AHDC Study

# Users 3,586 779 1,230 1,317 1,347

# Locations 41,630 23,757 22,990 30,971 5,572

Mode length 4 3 3 4 4

Mean length 4.61 4.07 4.16 4.64 4.33

# of Trails 159,860 71,254 120,619 133,898 6,483
TABLE I

THE STATISTICS OF THE TRAILS ON MULTIPLE DATASETS.

best performance. The grid-search parameters for Deepwalk,
Node2vec, and Metapath2vec are windows = [2, 3, 5, 10], walk
lengths = [20, 40], number of walks = [20, 40] and epochs =
[20, 50, 100]. For Node2vec, we set p=4.0 and q=0.25. For
Metapath2vec, the metapaths are: [[‘user’, ‘location’, ‘user’],
[‘location’, ‘user’, ‘location’]]. NetMF parameters : windows
=[5, 10, 20], ranks = [100, 200, 500], negatives = [3, 5, 10],
LINE parameters: negatives = [3, 5, 10] and epochs = [100,
200, 500], M-NMF parameters: communities = [20, 50, 100],
a = [0.05, 0.2], 8 = [0.05, 0.2], and A = [0.2, 0.4], BiNE
parameters: negatives =[1, 4, 10], window size = [1, 5, 9],
probs = [0.05, 0.15, 0.5], 8 =[0.001, 0.01, 1] and ~ = [0.01,
0.1, 5], DGI parameters: Dropout = [0.0, 0.25, 0.5] and weight
decay = [0.0, 0.1, 0.2].

Note that the selected methods consist of recent network
representation learning methods (DGI, BINE, NetMF) and
also include the Deepwalk method which is found to be a
competitive baseline [40], [41].

LocationTrails parameters: We perform grid search on
following parameters: windows = [2, 3, 5, 10] and epochs
= [20, 50, 100]. The number of negative samples is set to 5
and the embedding dimension is set to 128 for all the methods.
Note that LocationTrails does not require either the number of
walks or walk length as parametric input.

Evaluation of Embedding quality: In both use-case set-
tings node classification is an important cue for qualitative
performance so we compare the performance of LocationTrails
and the competitive strawman on this specific task. Specifi-
cally, we evaluate the embedding quality through the location
label classification task. Ground truth location labels for the
Nationwide dataset is collected from the place “type” present
in OpenstreetMaps place records. We consider only those place
types whose number of instances in our dataset is smaller than
600 and greater than 50. We perform multi-class classification
for the Nationwide dataset. The class imbalance problem is
addressed through oversampling [42] of the minority class.

Ground truth location labels for AHDC study is collected
through the survey performed in the study where adolescents
provided semantic label of the visited location. However, a
location could have a semantic label of “Home” for a particular
adolescent while the same location could have a semantic label
as “Friends’ Home” for another adolescent. Hence we perform
multi-label classification — instead of performing multi-class
classification — on the AHDC dataset.

Experiment Settings: We lever logistic regression as a
classifier for node classification. We use grid-search with 5-
fold cross-validation for tuning the hyperparameters of logistic
regression. We report results on the micro-f1 metric which is
known to be sensitive to the imbalance of the classes.
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~—+— NetMF —+— LocationTrails -—+— Deepwalk
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Fig. 2. The performance of all the methods on multi-class classification task on the Nationwide datasets measured with Micro-f1 on various train:test splits.
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Fig. 3. Memory consumption and running time on the Nationwide datasets.

C. Embedding Quality Comparison

The location-label classification task results on micro-fl
is described in Figure 2 (Results are similar for the macro-
fl metric). The quality of the location embeddings learned
by the LocationTrails model is often better than that of the
competitive baselines. On all four datasets, we observe that
the micro-f1 scores for LocationTrails, on the majority of the
train: test splits, are better than that of the baselines. On all
four datasets, we observe that the walk-based methods — Loca-
tionTrails, Deepwalk, Node2vec, and Metapath2vec — perform
better than other baselines on the corresponding co-location
networks. Often, the performance of Deepwalk, Node2vec, and
Metapath2vec is closer to that of LocationTrails. However, as
we will discuss in the next section, the memory requirement
and running time cost of methods Deepwalk, Node2vec, and
Metapath2vec are significantly higher than LocationTrails.
Deep Graph Infomax (DGI) proposed for homogenous non-
bipartite graphs doesn’t seem to perform well on three co-
location networks. On our largest dataset, Columbus, we
observe that LocationTrails outperforms the next best baseline
by 3% with micro-fl metric on the train: test splits of
50:50. Additionally, on three datasets Columbus, Atlanta, and
Pittsburgh, the classification performance of LocationTrails is
better than all the baselines on most of the selected train: test
splits in terms of micro-fl.

D. Ablation Study on Sequence Construction

The results of the ablation study on our proposed Loca-
tionTrails are shown in Figure 4. The ablation factors are
Trails which consists of a sequence of locations, Trails +

B LocationTrails WM Trails + week ids Wl Trails + userids W Trails

Columbus  Atlanta  Pittsburg Philadelphia Columbus Atlanta  Pittsburg Philadelphia
Dataset Dataset

(a) Micro-F1 (b) Macro-F1

Macro f1
o
3

Fig. 4. Ablation study on LocationTrails with three ablation factors.

user-ids which consists of a sequence of location and user-
ids interlaced together, Trails + weekday/weekend ids which
consists of a sequence of location and weekday/weekend
information interlaced together. We report the micro-fl1 and
macro-fl scores of location-label classification with 50:50
train:test split. From Figure 4, we observe that LocationTrails
location label classification performance is better than all
other ablation factors on all the datasets except Philadelphia—
Trails + weekday/weekend ids classification performance is
slightly better than LocationTrails on macro-f1 metric. On
micro-f1 metric, LocationTrails achieve up to 3.1% and 2.6%
better classification performance as compared to Trails on the
Columbus and Atlanta datasets, respectively.

E. Memory and Running time Comparison

The memory consumption in MB and running time in
minutes of LocationTrails, Deepwalk, Node2vec, and Meta-
path2vec are shown in Figure 3. We select these methods
because they are the most competitive ones. Additionally, these
methods are implemented in the same language (python), and
all of the methods lever the same gensim library [43]. We see
that LocationTrails consumes less memory and learns location
embedding much faster than random-walk based baselines.
While reporting memory consumption and running time of
the Node2vec method, we also include the memory consumed
by the Alias Table and the time taken to construct the Alias
Table. This is because the construction of the Alias Table is
required and necessary step for learning the node embeddings
using Node2vec. From Figure 3, we observe that Location-
Trails requires 1.6x - 2.2x less memory than Node2vec and
1.32x - 1.44x less memory than Deepwalk. Additionally,
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LocationTrails is 7x - 25x times faster than Node2vec and
2.6x - 8x times faster than Deepwalk. The running time of
Metapath2vec is highest because while performing a random
walk, it has to select a neighboring node of a particular type
based on the metapath schema which is time consuming. In
short, LocationTrails requires less memory, learns location
embedding significantly faster than Deepwalk, Node2vec and
Metapath2vec and learns better quality location embeddings.

F. Federated Learning

Setup: We implement the LocationTrails-Federated model
in the Tensorflow Federated framework. The training is per-
formed on the simulated clients and model averaging is per-
formed on the simulated server. We implement the simulated
clients, training procedure and the simulated server using the
Federated Core API present in the framework. The Tensorflow
Federated — at the time of writing this paper — provides only
single-machine simulation runtime; multi-machine simulation
is not yet available to the public. In the framework, the global
model is replicated on all the simulated clients, as a result,
training LocationTrails with thousands of simulated clients is
not feasible on our single machine with 28 cores and 128
GB RAM. We select the number of simulated clients equal
to 20 and randomly hash a user to a client. Each client
k trains the model wf based on the location visit data of
all the users hashed to that client. Note that the hashing
function does not explicitly hash users residing in the same
neighborhood to the same client. We keep the same set of
hyperparameters for both the LocationTrails model trained
with standard gradient descent and the LocationTrails model
trained with Federated learning. The grid-search parameters
for the total number of federated rounds is [20, 50, 100]. In this
work, we focus on the unsupervised representation learning of
existing users/locations — a common assumption in network
representation learning. Modeling new users and locations is
left for future work.

Figure 5 show the results on location label classification
task with multiple train:test splits on Micro-f1> for: i) the
LocationTrails model trained with standard gradient descent,
and ii) the LocationTrails model trained with Federated Learn-
ing (LocationTrails_Federated), on four real-world human
mobility datasets. The quality of embeddings learned by

2Macro-f1 figure not shown due to the paucity of space. We observe similar
trends with the Macro-fl metric to that observed with the Micro-fl metric.
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Classification performance of LocationTrails trained with stochastic gradient descent vs federated learning on Nationwide datasets.

the LocationTrails model trained with Federated Learning is
comparable to that of the LocationTrails model trained with
standard gradient descent. On the Philadelphia dataset, we see
around 1% performance difference between different training
procedures while on Atlanta and Pittsburgh, we see around
2-3% performance difference with respect to Micro-fl. On
Columbus dataset, the maximum micro-f1 difference is around
5% while minimum micro-fl is around 2%. The drop in
classification is not surprising in that similar performance has
been observed in other works too [11], [15], where the training
a model with standard stochastic gradient descent achieve a
particular test accuracy, while the training the same model with
Federated Learning achieve a slightly lower test accuracy. For
example, the human activity recognition test accuracy of 93%
versus 89% in [11] and the image classification test accuracy
of 86% versus 85% in [15]. We reiterate that while there
is a slight drop in classification performance, the federated
approach comes with an additional advantage in user privacy.

G. AHDC Study

In this section, we show that our proposed LocationTrails
model is a generalized model and can be applied in scenarios
where human mobility data is collected from mobile phones.
The multi-label location classification performance of the
baselines is reported in Figure 6. We observe that the proposed
LocationTrails model outperforms all other baselines on all the
train: test splits. There is slight drop in the performance for
LocationTrails model trained with Federated Learning - similar
performance has been observed in other works too [11], [15].
We observe more than 7% absolute difference in macro-fl
score between LocationTrails on the best baseline with 90:10
train: test split. Additionally, we observe that as we increase
the training percent, the rate of increase in location classifi-
cation for LocationTrails is higher than that of the baselines.
We also perform the ablation study along with memory and
running time comparison of the methods on the AHDC dataset
with the experimental setup for these experiments kept similar
to that of conducted on the Nationwide dataset. We observe
similar trends in AHDC study as observed in the Nationwide
dataset in terms of ablation factors, memory consumption and
execution time for the LocationTrails model.

V. CONCLUDING REMARKS

In this work, we propose LocationTrails a simple but novel
model to efficiently learn meaningful location representations
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Fig. 6. The performance of all the methods on multi-label classification task
on the AHDC dataset.

from human mobility data. We then present a variation of
the model whose training and subsequent model updates
can happen on edge devices through a federated learning
approach. We perform experiments on five real-world human
mobility datasets and show the efficacy of our proposed
approach w.r.t competitive baselines in terms of embedding
quality, memory consumption, and execution time.

With respect to impact and deployment, we note that the
ideas presented in this work are currently being integrated
in the next wave of the AHDC study. We are also engaged
with the insurance and mobility sector to see how such ideas
can enhance the development of next-generation Al on the
edge models for driver risk prediction. Specifically in this
context, we are currently examining ways to quantify the
benefits of such federated models, by also leveraging tools
from differential privacy and secure aggregation to explore
the trade-off between users privacy and location representation
quality and end-utility.
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