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Abstract

The study of human cognition and the study of artificial intelligence (AI) have a symbiotic rela-
tionship, with advancements in one field often informing or creating new work in the other. Human
cognition has many capabilities modern AI systems cannot compete with. One such capability is the
detection, identification, and resolution of knowledge gaps (KGs). Using these capabilities as inspira-
tion, we examine how to incorporate detection, identification, and resolution of KGs in artificial agents.
We present a paradigm that enables research on the understanding of KGs for visual-linguistic com-
munication. We leverage and enhance and existing KG taxonomy to identify possible KGs that can
occur for visual question answer (VQA) tasks and use these findings to develop a classifier to identify
questions that could be engineered to contain specific KG types for other VQA datasets. Additionally,
we examine the performance of different VQA models through the lens of KGs.

Keywords: Artificial Intelligence; Cognitive Science; Computer Science; Computer Vision; Intelligent
agents; Computational Cognitive Modeling; Neural Networks

This work was done when author Daniel Schmidt was at AFRL.
Bortik Bandyopadhyay is currently employed at Apple. This work was done when Bortik Bandyopadhyay was

a student at The Ohio State University.
Correspondence should be sent to Goonmeet Bajaj, Department of Computer Science and Engineering, The

Ohio State University, 2015 Neil Ave, Columbus, OH 43210, USA. E-mail: bajaj.32@osu.edu

https://orcid.org/0000-0003-0182-9200
https://orcid.org/0000-0002-3510-6919
https://orcid.org/0000-0002-9603-9529
https://orcid.org/0000-0003-0556-5935
https://orcid.org/0000-0002-6062-6449


2 G. Bajaj et al. / Topics in Cognitive Science 00 (2021)

1. Introduction

The formal studies of human cognition and artificial intelligence (AI) are deeply entwined.
Through research on understanding human and animal learning, Rescorla and Wagner (1972)
developed a mathematical formula that has become the bedrock for reinforcement learning
algorithms in machine learning (Sutton & Barto, 1998). Similarly, groundbreaking research
on biological neural networks and their capacity to compute (cf., McClelland & Rumelhart,
1981; McCulloch & Pitts, 1943) has provided the foundation for machines to classify patterns
and select actions within highly complex games (cf., Silver et al., 2017). Indeed, it is difficult
to overstate the impact cognitive science research has had on AI.

Not only have the studies of human cognition and the processes governing human behavior
informed AI, but research within AI has helped facilitate theories of human cognition. For
example, theories that human cognition is optimal given the constraints on the cognitive sys-
tem, or boundedly optimal, are often evaluated through the use of machine learning techniques
that can provide provably optimal policies given human cognitive constraints (Acharya, Chen,
Myers, Lewis, & Howes, 2017; Lieder & Griffiths, 2020). The derived optimal policies are
then compared against human behavior to determine if humans approximate the optimal
policies.

Continuing in this vein, research has focused on the development of machines that can
be taught new information, either through interaction or instruction (Gluck & Laird, 2018;
Kupitz et al., 2021). In both cases, new knowledge required for completing a specified task is
provided to the intelligent system, agent, or model. Such approaches leverage discoveries and
capabilities from AI and the cognitive sciences with demonstrable successes (Eberhart et al.,
2020; Kirk, Mininger, & Laird, 2016; Li et al., 2019; Salvucci, 2021). Unfortunately, omitting
a step required to complete a task, leaving a step to be inferred, or insufficient prior knowledge
may lead to a knowledge gap (KG), which we define as the deficiency in knowledge that
prevents an intelligent system from completing the newly instructed task.

Research and development toward intelligent systems (human and machine, alike) capable
of determining that knowledge is insufficient to achieve its specified goals and rectifying
the insufficiency would mutually benefit AI and cognitive science and require discoveries and
capabilities from each. To this end, research has been initiated to study and develop intelligent
systems capable of detecting insufficient knowledge to achieve its goals and rectifying the
insufficiency. We broadly refer to these capabilities as KG processes.

When faced with KGs, intelligent systems (again, humans and machines alike) must be
capable of (a) detecting the existence of a gap, (b) identifying the KG type detected, and
(c) resolving the gap through some available method. The cognitive mechanisms supporting
human capabilities to detect and resolve KGs could be researched, understood, codified, and
leveraged to establish mechanisms within artificially intelligent systems and models of human
cognition to promote increased flexibility and robustness (Walsh, Einstein, & Gluck, 2013)
when faced with imperfect or incomplete information (see Fig. 1). To this end, models of
cognitive capacities and processes supporting the detection, identification, and resolution of
KGs require further research and understanding.

In this work, we propose a research agenda focused on the abilities of humans and machines
alike to detect and resolve gaps in knowledge. The research agenda involves five elements
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Fig. 1. Areas of research activity on detection and resolution process of knowledge gaps.

of investigation (not necessarily in order of importance nor are they necessary steps): (a)
empirical studies with human participants to investigate when KG detection occurs and how
gaps are resolved, (b) the codification of the identified KG detection and resolution processes,
(c) the integration of the codified processes into AI systems and cognitive models, and (d)
evaluating AI and cognitive models with integrated KG processes. The fifth element, (e), and
the remaining focus of the paper, is the development of a paradigm that enables the rigorous
evaluation of KGs in human empirical studies as well as evaluating KG processes integrated
with cognitive models and other AI systems.

Contributions from a research agenda focused on KG processes are fourfold. First, we
present the concept of KGs with their hypothesized associated cognitive capacities (see
Table 1). Second, a paradigm for evaluating the KG processes (i.e., detection, identification,
and resolution) of humans, cognitive models, and other AI systems is presented. To this end,
we leverage the visual question answering (VQA) task as our evaluation paradigm, as it sits
at an intersection of three components of AI and human cognition: language, vision, and rea-
soning. Third, a simple classifier for identifying VQA questions that can be manipulated into
specific KG types for VQA is developed and presented. Fourth, we evaluate existing VQA
machine learning algorithms across different types of KGs.

2. Knowledge gaps and related processes

It is an unreasonable and impractical expectation for a person, or any other intelligent sys-
tem, to have complete knowledge of everything. Rather, knowledge is accumulated over an
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Table 1
Taxonomic mapping of gaps, cognitive capacities, and brief descriptions. KGs in bold are used for our KG-VQA
Paradigm. A machine readable version of the taxonomy is available at https://github.com/schmidtDTN/General-
Taxonomy-Graph.git

Gap Type Related Cognitive Capacities Brief Knowledge Gap Description

Lexical Language, Reasoning, Decision-Making A term outside of an agent’s vocabulary is
received.

Word-Sense Language, Reasoning A word with multiple meanings cannot be
disambiguated.

Activity Perception The specific action upon an object or person
cannot be recognized.

Material Perception The composition of an object is not clear
(subtype of Attribute Gap).

State Perception, Categorization The specific condition of an object or person
cannot be understood (subtype of
Attribute Gap).

Location Spatial, Perception, Attention The physical location of a setting cannot be
determined accurately.

Reasoning Reasoning, Memory There is insufficient knowledge to draw
conclusions from a set of premises.

Attribute Perception The feature(s) of an item or object are
unknown.

Sentiment Language, Emotion The sentiment of a statement cannot be
interpreted.

Target Language, Reasoning, Perception The target of a phrase or instruction is
unclear.

Context Spatial, Perception, Memory Seemingly disjoint information is provided.
Direction Spatial, Perception, Attention An agent is unsure of its position in space.
Size Spatial, Perception, Attention The size of an object or distance cannot be

determined (subtype of Attribute Gap).
Entity Resolution Perception, Attention The presence of an object cannot be

determined.
Explanatory Reasoning, Categorization An agent can perform accurately but not

explain how or why.
Memory Memory, Attention Relevant information is inaccessible through

forgetting. (Levine, 1983)

individual’s lifetime of experience that can then be applied to tasks (Spelke, 2017). Addi-
tionally, knowledge required for completing novel tasks can be explicitly provided through
instruction. Instructions often build on previously acquired knowledge to situate novel
information and steps required for the completion of novel tasks. However, prior knowledge
and new knowledge from instructions may be incomplete, producing a deficiency in an intel-
ligent system’s knowledge (declarative or procedural) required for completing a task or goal,
resulting in one or more KGs.

Unfortunately, there is relatively limited published research focused specifically on KG
processes. To overcome KGs, they must first be detected. Indeed, how often, and under what
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conditions, humans are capable of detecting KGs is poorly understood at this point. Nonethe-
less, once detected, KG resolution is similar to human problem-solving, where problem-
solving very generally requires the selection of an applicable method based on the task rep-
resentation (Newell & Simon, 1972; Reed & Vallacher, 2020). The detection and resolution
of KGs are related to problem-solving in important ways. First, KGs can occur from incom-
plete relevant semantic information associated with the problem (i.e., incorrect information
or information gaps in the task representation) or the absence of actions available to apply to
the problem. Second, like problem-solving, selecting method(s) to resolve KG(s) will depend
on the representation of the task. Third, having resolved a KG, the newly acquired informa-
tion/actions must be incorporated into the existing knowledge base for immediate use, future
use on a similar task, and continuous learning across diverse tasks.

Indeed, the impasse problem-solving mechanism within the Soar cognitive architecture
(Laird, 2012), based on human problem-solving research, provides one example of a KG
resolution process. Within the Soar architecture, when the system is in a state where a decision
between two or more operators cannot be applied, an impasse is encountered and the system
establishes a subcontext in an attempt to identify knowledge that can overcome the previous
impasse. Unfortunately, in instances where the required knowledge remains unavailable, a
KG persists and failures may occur, impeding the system’s ability of completing the task.

Considerable research has been conducted on whether missing information is critical for
decision-making and when one should move on from collecting more information to making
a decision. For example, a gap in knowledge could lead to equivalent or greater success than
if the gap were filled, as in the case of satisficing (Simon, 1957) and heuristic-driven behavior
and decision-making (Gigerenzer & Todd, 1999; Marewski & Schooler, 2011). Further, deter-
mining when to continue acquiring information versus proceeding on with the task or making
a decision, or information foraging (Pirolli & Card, 1999) has demonstrated that humans are
good at determining when to move on to a new source for information. Indeed, such a bal-
ance between seeking out knowledge to fill gaps and acting on the available knowledge must
be balanced in the KG resolution process to prevent an agent from continuously searching
for knowledge.

Others have theorized that humans should provide the KG capabilities for machines. Chan-
drasekaran, Yadav, Chattopadhyay, Prabhu, and Parikh (2017) argue that humans should
develop a theory of a machine’s “mind” to increase the effectiveness of human-AI team-
ing. They found that with only few examples, lay people can be trained to better understand
predicted responses and future failures of a complex AI system. Similarly, Nushi, Kamar, and
Horvitz (2018) propose a set of hybrid human–machine methods and tools for describing and
explaining system failures. Their methods use both human and system-generated observations
to summarize conditions of system malfunction with respect to the input content and system
architecture. The methods are designed to predict the probability of failure given the input.
Similarly, to address the issue of computer vision systems failing abruptly without warning or
explanation, Zhang, Wang, Farhadi, Hebert, & Parikh (2014) explored an approach of eval-
uating the input itself. The authors found that the ability to detect the likelihood of correctly
classifying an input prior to processing the input completely may provide an initial mecha-
nism for detecting when and identifying how image processing may fail.
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It is likely that there are different types of KGs, and that not all KGs are resolved using the
same methods. For example, a KG due to an unknown lexical term could be resolved using a
dictionary, WordNet (Miller, 1995), or a thesaurus. However, a KG associated with the spatial
arrangement of information in a scene may require visuospatial processes to resolve. Deter-
mining which method to apply to resolve a detected KG can be informed from the current
task context (a la problem-solving) as well as from the type of gap and its associated cog-
nitive capacities. To begin addressing the detection and resolution of KGs, a set of potential
KG types and their associated cognitive capacities is proposed to provide intelligent systems
with clues on how the gaps can be resolved as well. A taxonomy of KGs and their associated
capacities can also help researchers to focus on particular gaps or be informed on what types
of gaps might arise as they research and develop particular cognitive capacities. See Bajaj
et al. (2020) and Schmidt (2020) for an initial taxonomic representation of KGs. In Table 1,
we expand our understanding of this initial representation by providing a mapping between
the gaps that have been identified (Bajaj et al., 2020) and the cognitive processes or capacities
we hypothesize to be involved in their resolution.

Table 1 is incomplete, and will likely change as research progresses. For example, certain
use cases of the taxonomy may include relationships between gap types and cognitive pro-
cesses that are not related in the current taxonomy; in other cases, additional domain-specific
gaps may be identified as subtypes of existing gap types or even as novel gap types.

The relationship between KGs and cognitive capacities presented in Table 1 is of benefit to
the greater research community by providing a starting point from which to conduct further,
targeted research into specific KG types, whether by identifying and incorporating new forms
of gaps or new connections between gaps and cognitive processes. This mapping between
KGs and cognitive capabilities was derived from prior work associated with developing large-
scale cognitive models required to operate with human team members over extended periods
of time, specifically, errors that arose within the models through the lack of language and
task knowledge (Myers et al., 2019). Additionally, this taxonomic mapping can be applied in
situations where knowledge integrity is essential, granting insight into what kinds of failures
from an absence of knowledge could arise given the capacities of the agent and enabling
improvements with this targeted knowledge.

3. A paradigm for evaluating knowledge gap detection, identification, and resolution

A paradigm is required for thoroughly and objectively evaluating the performance of
humans, cognitive models, and AI systems on their abilities to detect KGs, identify the KG
type, and resolve the identified KG. Such a paradigm for rigorously evaluating KG processes
should (a) enable a researcher to identify and focus on specific KGs of interest, (b) pro-
vide the same set of stimuli to humans, cognitive models, and AI systems for evaluation and
direct comparisons, and (c) be sufficiently complex yet tractable for intelligent systems to
perform and require the use of KG detection, identification, and resolution processes. Related
to such functionalities within a paradigm is the ability to control the distribution of stimuli
given different KG types, as it enables researchers to better control human experiments using
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the paradigm as well as understand how the training data affect the capabilities learned by
AI and machine learning systems. Based on these desired requirements, the VQA paradigm
was selected, as it sits at the intersection of three areas of cognitive science and AI: language,
vision, and reasoning, thus making it an ideal task. In the following sections, we provide steps
to transitioning the VQA paradigm from a machine learning task to a paradigm for rigorously
evaluating KG processes. We refer to this paradigm as KG-VGA.

3.1. VQA paradigm

Within the VQA task, images and related information (e.g., scene graphs) are provided to
algorithms to evaluate their ability to answer questions about image scenes. More formally,
given an image and question pair, (I, Q), VQA systems are trained to provide an answer,
A. Answers provided by algorithms performing VQA tasks are in the form of natural lan-
guage responses or the selection of an option among alternatives. VQA is an active area of AI
research with multiple ongoing visual-question challenges (e.g., VQA, TextVQA + TextCaps,
VizWiz, and GQA) and different datasets (e.g., VQA 2.0 [Antol et al., 2015a], VCR,1 GQA,
OK-VQA,2 KBVQA,3 FVQA,4 ConVQA,5 and VQA Introspect6) that are used for measuring
progress for VQA algorithms. VQA datasets contain questions about spatial information of
objects, object attributes, or general scene understanding questions (see Fig. 2). Recent VQA
datasets have focused increasingly on questions that rely on external knowledge or common-
sense knowledge to reduce system dependency on memorized linguistic features and enhance
visual understanding. Consequently, we can assume that all of the information needed to
answer a question may not be readily available in the image or the agent’s knowledge repos-
itory for these datasets. However, it is still unclear which knowledge capabilities are learned
by or are built into existing VQA algorithms.

Traditional machine learning and deep-learning VQA algorithms methods consist of three
primary steps (Kafle & Kanan, 2017): (a) extraction of image features (image featurization),
(b) extraction of question features (question featurization), and (c) designing and implement-
ing an algorithm that combines these features to produce an answer (see Fig. 3). However, the
more recent transformer-based models that use unsupervised self-training are now considered
as state-of-the-art methods for many computer vision tasks (Lu, Batra, Parikh, & Lee, 2019).
The visual transformer architectures use a self-attention mechanism to learn the relationships
between elements of a sequence. Self-attention transformer models consist of a two-stage
training pipeline. The first stage (i.e., pre-training) is an unsupervised task that uses a large-
scale dataset to learn initial weights. The second stage fine-tunes the pre-trained weights for
a downstream task. However, neither traditional nor transformer-based VQA models have
integrated KG processes. To the best of our knowledge, we are the first to study how VQA
questions can produce KGs within intelligent systems to understand their knowledge capabil-
ities.

We use our understanding of KGs in the VQA paradigm to examine the characteristics of
VQA dataset(s) and the strength and limitations of current VQA models through the lens of
KGs. The benefit of this is twofold: (a) We can assess the different types of KGs that can
occur in VQA questions. (b) We can investigate how the model architecture affects which
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Fig. 2. Sample images and questions from the GQA dataset with knowledge gap tags.

Fig. 3. The traditional visual question answering framework and pipeline (adapted from Kafle & Kanan, 2017).

types of questions an agent is able answer, thus removing possible KGs. The current VQA
agents we examine do not have KG processes built into them; therefore, we only consider
the number of correct and incorrect responses to evaluate their performance. Particular KGs
can be introduced for VQA tests by altering the information available to an agent or the
agent itself. Specifically, for the VQA paradigm, a KG can be introduced by removing or
modifying important information from the input image or question. By altering the question,
we can change the specific tasks the VQA agent has to complete to arrive at the correct answer,
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resulting in the introduction of new KGs to the problem domain. In this work, we study two
VQA datasets: GQA (Hudson & Manning, 2019) and VQA 2.0 (Antol et al., 2015a). We use
the GQA dataset to formulate our problem of identifying possible KGs in the VQA domain
and to enhance the existing KG taxonomy. We use the VQA 2.0 dataset to test our ability to
automatically identify possible KGs when rich image and question metadata are not available.

3.2. GQA dataset

The GQA dataset (Hudson & Manning, 2019) consists of 22 million questions about vari-
ous day-to-day images. There are 148,855 images in the dataset, 1878 possible answers, and a
vocabulary of 3097 words. Questions in the dataset require multiple reasoning skills, includ-
ing spatial understanding and multistep inferencing. The dataset is balanced by controlling
the answer distribution for various collections of questions to limit educated guesses using
language and world priors. The dataset contains images, scene graphs, questions, and object
and spatial features. Scene graphs are machine readable image representations that can pro-
vide the semantic input used to train VQA models but are not sufficient to answer many VQA
questions. For each image, the scene graph contains the image’s objects, object attributes, and
relations among other objects (see Fig. 4). Questions in the dataset are annotated with differ-
ent characteristics (see Fig. 5). Section 3.4 contains an overview of how the characteristics
outlined in color in Fig. 5 are used to identify potential KGs for questions. We work with
the balanced training and validation dataset splits and direct the readers to the official GQA
website for more information. Additionally, Fig. 2 contains sample image and question pairs
from the GQA dataset and KGs assigned by our system.

3.3. VQA 2.0 dataset

The VQA 2.0 dataset (Antol et al., 2015b) is another popular dataset for VQA. The
dataset contains open-ended questions about images that require an understanding of vision,
language, and commonsense knowledge to answer. There are 204,721 images, 1,105,904
questions, and 11,059,040 ground truth answers. Questions in the VQA 2.0 dataset are
not annotated with the same metadata as the questions in the GQA dataset. Additionally,
images in VQA 2.0 are not accompanied with scene graphs (see the VQA 2.0 website
https://visualqa.org for additional details and examples).

3.4. Analysis of knowledge gaps in the GQA Dataset

We refine the general-purpose KG taxonomy presented in Section 2 using the GQA dataset
for the VQA paradigm (see bolded KGs in Table 1) to understand the types of questions in
the GQA dataset and the cognitive capacities required to answer the questions. We first create
a manual mapping to identify KGs for questions in the GQA dataset. Questions in the GQA
dataset are annotated with rich metadata that also contain information about the image (see
Fig. 5). In particular, we use the global group, detailed type, and semantic filters annotations
associated with each question to assign KGs (see Fig. 5 for an example). The global group tag

https://visualqa.org
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Fig. 4. Partial-sample scene graph (object attributes are not visualized).

provides the question with an answer type, such as “place” (Location) or “texture” (Material),
while the detailed type tags the question with a specific reasoning step required for the answer,
such as “existObj” (Entity Resolution) or “comparativeChoose” (Reasoning). The semantic
filter details a specific attribute that should be used to differentiate between subjects in the
image, such as “color” (Attribute), “height” (Size), or “facial expression” (Sentiment). This
mapping allows for questions to be tagged with multiple KGs. The detailed mapping for
question metadata fields to KGs and details about the KG identification method can be found
in Bajaj et al. (2020) and a sample mapping is presented in Table 2.

After tagging questions with possible KGs, we observe a skew in the distribution of the
number of questions per KG category in the GQA dataset. Fig. 6 displays the number of
training questions per KG, respectively. The blue bar indicates the total number of ques-
tions tagged with a particular KG. The orange bar indicates the number of unique question
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Fig. 5. Metadata for the question associated with the Image 2a in Fig. 2.

Table 2
GQA metadata tags to KG mapping

Knowledge
Gaps

Detailed Types Global Group Label Semantic Filters

Activity activity, activityWho,
activityChoose

activity, sportActivity choose activity, choose
sportActivity,
activity, sportActivity

Location place, placeVerify,
placeVerifyC,
placeChoose,
locationVerifyC,
locationVerify

place, room, nature
environment, urban
environment, road

location, place, room

texts tagged with a particular KG. The GQA dataset primarily contains questions that inquire
about spatial relations (Direction Gap), object attributes (Attribute, Size, or Material Gaps), or
the existence of objects (Entity Resolution Gaps). We calculate the coefficient of determina-
tion and Kullback–Leibler divergence (Kullback & Leibler, 1951) (r2 = 0.999, KL = 0.00)
between the training and validation datasets to ensure that the test set approximates the train-
ing set distribution for the number of questions per KG type. The observed skew in the dis-
tribution of image-question stimuli across KGs is important for researchers to be aware of as
they may impact what is learned through training or result in an undesired disproportionate
amount of KG types provided to human participants. If necessary, the skew can be alleviated
by generating new KG-specific questions or using stratified sampling. In the next section, we
present a method to identify KGs for the VQA 2.0 dataset. Identifying KGs for questions
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Fig. 6. Skew in the distribution of training questions per KG.

in different VQA datasets helps us understand how the training data impact what cognitive
capacities are built into or learned by AI models.

3.5. Knowledge gap identification for VQA 2.0 questions

Questions in the VQA 2.0 dataset are not annotated with the same metadata as the questions
in the GQA dataset; thus, we cannot directly use our GQA mapping approach to tag questions
with KGs. Instead, we developed a classifier and apply self-training to tag questions with pos-
sible KGs that can occur when an agent tries to answer a question. We fine-tuned bidirectional
encoder representations from transformer (BERT) (Devlin, Chang, Lee, & Toutanova, 2019)
on the GQA dataset and adopted questions from the VQA 2.0 into the training data using self-
training. BERT is a language model that is bidirectionally trained over a large text corpus. The
transformer-based model takes as input a sentence and outputs context-aware vectors for each
word of the sentence. Fine-tuned transformer models have achieved state-of-the-art results
in many downstream natural language processing tasks such as question answering, named
entity recognition, and language understanding (see Devlin et al., 2019, for further details
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Table 3
Fleiss’ Kappa per knowledge gap

Knowledge Gaps Fleiss’ Kappa

Activity 0.608
Attribute 0.944
Direction 0.905
Entity Resolution 0.940
Location 0.886
Material 0.854
Reasoning 0.903
Sentiment 0.958
Size 0.937
State 0.904

of BERT or the tutorial blog, Khalid, 2019). We train our classifier using a max of 10,000
questions from each KG (to reduce the KG-type imbalance issue) and 40,000 questions from
the VQA 2.0 dataset. We fine-tune the Sequence Classification BERT model for two epochs.
To adapt questions from the VQA 2.0 dataset, we evaluate the model after every 600 batches
to determine which questions to include as a part of the training data. Questions in the VQA
2.0 that are assigned KG(s) with at least 95% probability are adapted into the training data.
We conducted several experiments by varying the number of training questions, questions
to adapt from the VQA 2.0 dataset, and the probability of adaption threshold. Empirically,
we find that as we increase the number of questions to adapt from the VQA 2.0 dataset, we
see a decrease in the performance of the KG classifier. We evaluate our KG classifier on a
validation dataset of 685 questions from the VQA 2.0 dataset with KGs manually identified
for these questions by three human judges. Table 3 presents the Fleiss’s Kappa (Fleiss &
Cohen, 1973) per KG to show a measure of the agreement between the three human raters for
500 questions.

Our current experiments indicate that automatic KG identification without metadata is a
challenging task for machine learning models, particularly when trained on and applied to
different datasets (see Table 4). Consequently, we plan to improve our KG classifier to use it
to identify KGs for other VQA datasets as part of future research initiatives.

3.6. Performance of VQA models

A key component of our paradigm is to evaluate the performance of AI agents through
the lens of KGs. We examine the performance of the vision-and-language BERT (ViLBERT)
(Lu et al., 2019), MCAN (Yu, Yu, Cui, Tao, & Tian, 2019), and MAC model (Hudson &
Manning, 2018) for the GQA dataset. We refrain from reporting the performance of these
models on the VQA 2.0 dataset because of the acknowledged limitations of our KG classi-
fier, see Table 4. The MAC model uses a unique memory, attention, and composition (MAC)
recurrent cell in a neural network architecture, which is composed of a control state and
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Table 4
KG classifier results for VQA 2.0 dataset. Precision is the ratio of true positives identified by the model to the total
number of positive samples identified. Recall is the ratio of true positives identified to the total number of positive
samples in the data. F1-score is the harmonic mean of precision and recall

Knowledge Gaps Precision Recall F1-Score

No Gap 0.0 0.0 0.0
Activity 0.557 0.542 0.50
Attribute 0.356 0.656 0.462
Direction 0.75 0.29 0.419
Entity Resolution 0.952 0.079 0.146
Location 0.396 0.588 0.473
Material 0.333 0.5 0.4
Reasoning 0.5 0.021 0.04
Sentiment 1.0 0.261 0.414
Size 0.097 0.929 0.176
State 1.0 0.029 0.056
Micro Avg 0.323 0.255 0.285
Macro Avg 0.54 0.354 0.285
Weighted Avg 0.644 0.255 0.244
Samples Avg 0.315 0.26 0.273

a memory state. The control state performs reasoning-related tasks, while the memory state
reads, extracts, and integrates specific information from the image, guided by the control state.
We use the code and data provided by the author to train a model for this work. The modu-
lar coattention network (MCAN) model takes advantage of region-based convolutional neural
networks (R-CNNs) and long–short-term memory recurrent units (LSTMs) to perform feature
extraction on the input image and question, which are passed as input to deep coatten-
tion mechanisms that select important information from the question–image pair. Traditional
attention mechanisms attend to a single input source, usually a text segment, but the adapted
coattention units can relay information between the question and image to inform informa-
tion extraction. The MCAN model then uses feedforward networks on the attention-processed
input to select an answer to the question. We use the MCAN Large pretrained model and code
provided by OpenVQA (footnote: https://openvqa.readthedocs.io/en/latest/) to evaluate the
MCAN model on the GQA Testdev Dataset. Finally, the more recent ViLBERT model uses
coattention-based transformers, which expands on the previously described BERT architec-
ture (see Section 3.5) to include visual image information. Similar to the MCAN model, ViL-
BERT uses coattention mechanisms to extract important information from question–image
pairs as it processes data. Traditional BERT models operate on text segments, while the mod-
ified ViLBERT architecture jointly operates on text segments and image regions. We use the
code and data provided by the original author to evaluate the pretrained multitask model for
the GQA task (i.e., Task 15).

There are 943,000 training questions and 132,062 validation questions in the GQA dataset.
Table 5 presents the accuracy of each model on the GQA Testdev questions with identified
KGs using our KG to question mapping (see Table 2). Experiment results indicate that the

https://openvqa.readthedocs.io/en/latest/
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Table 5
Accuracy of VQA systems with respect to KGs for the GQA dataset based on author dataset splits

Knowledge Gaps ViLBERT MAC Network MCAN

Activity 0.449 0.372 0.426
Attribute 0.672 0.615 0.649
Direction 0.551 0.505 0.534
Entity Resolution 0.506 0.473 0.481
Location 0.443 0.411 0.417
Material 0.663 0.607 0.644
Reasoning 0.672 0.618 0.642
Sentiment 0.600 0.627 0.587
Size 0.655 0.591 0.643
State 0.681 0.569 0.644

transformer-based model outperforms the two other VQA models. Additionally, all models
have the highest accuracy for the entity resolution gap. This is partly because all questions
tagged with entity resolution gaps are binary questions (e.g., yes/no). Moreover, we can see
that all models do not perform similarly for all KGs; in particular, the MCAN model per-
forms significantly worse on activity and location gaps compared to the MCAN model’s per-
formance on the other gaps. For location, this discrepancy is likely due to the homogeneity of
questions associated with the gap, which has a low number of unique questions; if the MCAN
or MAC model is unable to properly leverage image information to answer the question, the
model will likely converge on the most probable answer based on language or world prior to
respond with, which may not be correct. For questions associated with activity gaps, attention
to the surroundings of the subject in the image is important to discern the motion and posi-
tion of the subject. From our understanding, the deeply interconnected multihead attention
mechanisms of ViLBERT exceed the attention mechanisms found in the MCAN and MAC
models; thus, the drop in the performance for activity-related questions for ViLBERT is not
as substantial as the drops in the performance observed in the MAC or MCAN models. Addi-
tionally, the transformer-based ViLBERT model is trained on multiple computer vision tasks,
giving it the benefit of contextualized pre-training.

The KG-VQA paradigm enables initial steps toward understanding VQA through the lens
of KGs and cognitive capabilities. In our future work, we plan to generate questions to fur-
ther test these data-hungry VQA models to better understand their sensitivity with respect
to different dataset characteristics (e.g., number of questions, number of questions per KG,
number of images, etc.). Further, the KG-VQA paradigm will be used to collect human data
and cognitive models, and used to evaluate other AI systems and methodologies.

3.7. Challenges in the VQA domain

While developing the KG-VQA paradigm, several aspects of VQA required caution. First,
some questions are ambiguous, even for humans (i.e., Word-Sense KG). A solution has
not been incorporated to identify questions with Word-Sense KGs, further increasing the
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complexity of the task. For example, “Is the table clear?” can be interpreted as asking about
the table’s opacity or asking if there are any objects on the table. These questions further add
to the difficulty of VQA. Second, we note that there are inconsistencies in annotations across
the GQA dataset. For the following questions, the global group label in the dataset is color:

• Which is healthier, the orange or the muffins?
• Which is healthier, the candies or the orange?

This annotation is incorrect, as the question is not about the color of an object, but is instead
about the object orange. Additionally, for some questions, parts of the annotation are missing,
for example, “Is the large pot to the right or to the left of the jar in the middle of the picture?”
There is no mention of size or large in the question annotation.

Furthermore, VQA system answers are evaluated using exact string match, multiple choice,
or by looking at the top k most likely responses. These metrics ignore any semantic similarity
between the target answer and the answer suggested by the agent. This could misrepresent the
ability of an agent to answer the question. For example, if an agent is posed with the question
“What is the girl wearing?,” the answers t-shirt and dress are much more similar than the
answers t-shirt and utensil, yet neither dress nor utensil matches the target string of t-shirt.
For this question, the agent that answers dress might display the same performance as the
agent that answers utensil, even though dress is a better answer. The Wu–Palmer similarity
(WUPS) (Wu & Palmer, 1994) has also been used to evaluate VQA models (Malinowski
& Fritz, 2014). WUPS tries to measure the difference between the semantic meaning of a
predicted answer and the ground truth by finding the least common subsumer between two
semantic senses (Kafle & Kanan, 2017). However, WUPS cannot handle pairs of words that
are lexically similar and text phrases, which is a problem for VQA systems that accept open-
text responses.

There are also social biases present in the VQA 2.0 dataset questions. For example, the
question “What are these Asians going to eat?” is presented alongside an image of an Asian
family playing a game, with no food present. The associated answers with this question are
“Sushi,” “Pizza,” “Rice,” and “Stew,” along with generic answers of “Food” and “Nothing.”
By training a VQA agent to associate people of Asian descent with specific food types, social
biases are strengthened and reinforced. Additionally, numerous questions in the VQA 2.0
dataset ask about the sexuality of a target with no pertinent context in the image; one such
question asks “Does this guy look gay?” alongside a portrait of a man in business attire with a
generic background and no other objects in frame. This forces the agent to perpetuate possibly
harmful assumptions without reasonable evidence or context.

4. Discussion and future work

We introduce a paradigm for KG detection, identification, and resolution. Our work is far
from complete but allows us to examine the VQA domain from a new lens. Our work is
currently focused on KG identification using the GQA dataset, though we do consider clas-
sifying questions in different VQA datasets (i.e., VQA 2.0) to determine the types of KGs
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questions are amenable to. However, our results in Table 4 indicate that this is a challenging
task. As future work, we aim to improve our KG classifier and test VQA models on differ-
ent datasets as well to analyze the performance across different KGs. Currently, we are only
able to identify KGs for 59% (559,020 out of 943,000) questions in the GQA-balanced train-
ing dataset and 59% (78,343 out of 132,062) questions GQA-balanced validation dataset.
Generalizing KGs for different VQA datasets is challenging without the additional meta-
data the GQA dataset provides for questions. Moreover, we identify KGs through textual
questions; however, KGs potentially occur due to the absence of information in a question–
image pair, not just the question. Our simplistic, textual model for KG identification could fail
to identify KGs that arise due to information in the image. Additionally, we observe that VQA
models are data hungry models, making it difficult to manipulate the distribution of questions
per KG to examine the performance of these models without augmenting the dataset with
new questions.

In this work, we focus on the identification of KGs. Orthogonally, this can be expanded to
understand how to automatically detect KGs. Our future work on KG detection, identification,
and resolution in the VQA domain will focus primarily on targeted question generation for
the introduction of KGs as well as methods of resolving a KG when it is present. Possible
methods of augmenting the VQA datasets to cover a set of questions amenable to specific KGs
include question generation and question adaptation. For question generation, we introduce a
new model that takes an image and target KG as input and produces a question–answer pair
as output. The generative model will produce a stylized question amenable to the target KG
using information that can be learned or collected from the image and associated object and
spatial features. We propose a similar model for question adaptation, taking influence from
StyleGAN (Karras, Laine, & Aila, 2019), to generate new questions from existing ones while
adapting them to contain new possible KGs. These methods of KG question generation enable
us to inject specific KGs into the by changing or introducing data.

To resolve KGs, we propose a reinforcement learning model with a set of atomic actions
the agent can perform to help resolve the identified KG. Atomic actions are simple, discrete
actions the agent can take to collect information relevant to the KG it is experiencing to help
it in decision-making and reasoning. For example, if a VQA agent experiences a lexical gap
due to not recognizing a particular word, it might query a lexical database such as WordNet
(Miller, 1995) to find appropriate synonyms or antonyms to use in place of the original word.
In another instance, the agent might even query the user for more information it can use to
find the answer to the question. Additionally, we plan to explore how to evaluate detection,
identification, and resolution capabilities in AI models. Broader directions of future research
include: (a) examining formal processes to expand and refine on the current sent of specified
KGs; (b) designing systematic approaches to identifying and resolving relevant KGs for a
particular problem or set of intelligent agents; (c) exploring mechanisms to codify lessons
learned from human empirical studies (see Fig. 1); and (d) developing new types of AI and
cognitive models that inculcate KG processes.
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5. Conclusion

Human cognition has many capabilities that modern AI systems lack, such as the detection,
identification, and resolution of KGs. In this work, we present an evaluation paradigm for KG
detection, identification, and resolution for the VQA task. We share a simple classifier for
identifying VQA questions that can be manipulated into specific KG types (per our taxonomic
representation) for VQA. Additionally, we examine VQA datasets and analyze VQA models
in a novel fashion through the lens of the KG-VQA paradigm to benchmark performance for
specific KGs. Finally, we consider extensions to this work with question generation for KG
introduction and reinforcement learning agents for KG resolution.
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Notes

1 https://visualcommonsense.com/download/
2 https://okvqa.allenai.org
3 https://bitbucket.org/sxjzwq1987/kb-vqa-dataset
4 https://www.dropbox.com/s/iyz6l7jhbt6jb7q/new_dataset_release.zip?dl=0
5 https://arijitray1993.github.io/ConVQA/
6 https://www.microsoft.com/en-us/research/project/vqa-introspect/
7 https://cs.stanford.edu/people/dorarad/gqa/about.html
8 https://cs.stanford.edu/people/dorarad/gqa/download.html
9 https://huggingface.co/transformers/model_doc/bert.html

10 https://github.com/stanfordnlp/mac-network/tree/gqa
11 https://github.com/MILVLG/mcan-vqa
12 https://github.com/facebookresearch/vilbert-multi-task
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