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Abstract—Scalable graph embedding on large networks is
challenging because of the complexity of graph structures and
limited computing resources. Recent research shows that the
multi-level framework can enhance the scalability of graph
embedding methods with little loss of quality. In general, methods
using this framework first coarsen the original graph into a
series of smaller graphs then learn the representations of the
original graph from them in an efficient manner. However, to
the best of our knowledge, most multi-level based methods do
not have a parallel implementation. Meanwhile, the emergence of
high-performance computing for machine learning provides an
opportunity to boost graph embedding by distributed computing.

In this paper, we propose a Distributed MultI-Level
Embedding (DistMILE') framework to further improve the
scalability of graph embedding. DistMILE leverages a novel
shared-memory parallel algorithm for graph coarsening and a
distributed training paradigm for embedding refinement. With
the advantage of high-performance computing techniques, Dist-
MILE can smoothly scale different base embedding methods over
large networks. Our experiments demonstrate that DistMILE
learns representations of similar quality with respect to other
baselines, while reduces the time of learning embeddings on
large-scale networks to hours. Results show that DistMILE can
achieve up to 28 x speedup compared with a popular multi-level
embedding framework MILE and expedite existing embedding
methods with 40x speedup.

Index Terms—Graph Embedding, High-Performance Comput-
ing, Distributed Machine Learning, Multi-Level Framework

I. INTRODUCTION

Graph embedding aims to learn low-dimensional represen-
tations capturing the structural properties in the network. The
learned representations can be used as features in a variety
of machine learning tasks such as node classification and link
prediction. Graph embedding has been deployed in various
real-world applications including anomaly detection [1] and
e-commerce recommendation [2].

In recent years, many graph embedding methods have
been proposed using different methodologies such as matrix
factorization (NetMF [3]), random walk (DeepWalk [4] and
node2vec [5]), and deep neural network (SDNE [6]). These
algorithms usually either consume too much time or memory,
which prevents them from scaling to large datasets. To improve
the scalability of existing embedding methods, Liang et al. [7]
proposed a multi-level embedding framework MILE. MILE
first repeatedly coarsens the original graph, then applies an

!Our code is available at https:/github.com/heyuntian/DistMILE

existing embedding method to the coarsened graph, and finally
uses graph neural networks (GNN) to refine the embeddings.
Experiments demonstrate that MILE can not only boost the
embedding methods but also scale them to large networks.
Methods using a similar framework include HARP [8] and
GOSH [9].

A benefit of MILE is that it is agnostic to the underlying
embedding methods, which is convenient for users. While
HARP and GOSH are designed for specific embedding meth-
ods, MILE is compatible with any existing methods. For
example, scientific or commercial projects [2], [10] usually
have their own customized embedding system, and the expense
of replacing it with a new one can be prohibitive. In contrast,
wrapping the current embedding system in MILE can preserve
the customized methodology and is relatively inexpensive.

Additionally, machine learning benefits from the usage of
high-performance computing techniques. One might think of
extending the multi-level embedding framework to parallel
or distributed settings. However, it is non-trivial to leverage
parallelism in graph algorithms due to the connectivity of
nodes in a graph, which can cause race conditions if processed
in parallel. For example, MILE and many multi-level graph
partitioning algorithms [11]-[13] adopt heavy edge matching
(HEM) and its variants for graph coarsening. HEM has dif-
ferent parallel implementations for distributed systems [12]
and shared-memory machines [13]. These implementations,
unfortunately, only emphasize handling race conditions rather
than reducing them. Moreover, some approaches used in multi-
level embedding do not have any parallel implementation,
such as the structural equivalent matching (SEM) approach
in MILE.

Another challenge of designing parallel multi-level embed-
ding methods lies in model training. For example, MILE trains
a GNN to learn embeddings on a finer-grained graph from a
coarser one. As the growing scale of network data exceeds
the limit of GPU memory, multiple GNN models [14]-[16]
use minibatch to train on GPU and enable parallel training.
On the other hand, distributed machine learning has attracted
much interest [17]-[19]. Horovod [17] is a distributed training
framework which scales the model training across multiple
machines with a high scaling efficiency. It is also compatible
with MPI implementations such as MVAPICH [20] for further
enhancement.

In this paper, we proposed a Distributed Multl-Level
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Embedding framework DistMILE, which extends MILE to
a distributed setting. Our contributions can be summarized as
follows:

o We propose DistMILE, a distributed multi-level embed-
ding framework. To the best of our knowledge, this is
the first model-agnostic embedding framework designed
for distributed setting. DistMILE leverages a hybrid of
parallel and distributed computing techniques to expedite
the embedding process. It treats the base embedding
phase as a black box, hence it is generalizable to any
embedding method.

o We propose a parallel graph coarsening algorithm, which
includes a novel locality-sensitive-hashing (LSH) based
approach for node matching. We explore different design
choices in this algorithm to reduce the synchronization
costs and race conditions in parallel coarsening. The
proposed algorithm can also be used in other graph
problems such as graph partitioning.

o We propose a distributed training paradigm for the re-
finement of node embeddings. Specifically, this training
paradigm is built on Horovod and leverages distributed
learning and parallel computing technique for a maximum
speedup.

o« We conduct extensive experiments on real-world graph
datasets to compare DistMILE with MILE. Through the
task of node classification, our experiments show that
DistMILE can learn embeddings of comparable quality
with respect to MILE, but significantly reduce the run-
ning time. On YouTube, DistMILE achieves up to 28x
speedup. On the largest dataset Yelp, only DistMILE
is able to scale the embedding methods to learn the
representations.

e We also study the impact of different parameters on
DistMILE’s performance. The results not only show
that DistMILE performs well under different settings,
but also give an insight into the tradeoff between the
cost of computing resources and the performance of our
proposed framework.

The rest of this paper is organized as follows: Section 2
reviews previous work on distributed machine learning as
well as graph embedding, especially multi-level embedding
methods. Section 3 formulates the graph embedding problem
on multiple machines. Section 4 introduces the methodol-
ogy of DistMILE, including a shared-memory parallel graph
coarsening algorithm and a distributed training paradigm.
In Section 5, we evaluate DistMILE and MILE to observe
their performance in terms of efficiency and quality. We also
conduct drilldown experiments to understand how DistMILE
works under different settings. We conclude this paper in
Section 6.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce multi-level embedding,
including a popular framework MILE [7] and other works from
this group. We also review the related work of graph embed-
ding and high-performance computing for machine learning.
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A. Multi-level Embedding

The multi-level embedding framework is a powerful tool
to mitigate the huge overhead of embedding large graphs.
In general, a method using this framework first coarsens the
input graph then learn the embeddings of the fine-grained
graph from the compressed ones. By shrinking the graph size,
the multi-level embedding framework can not only boost the
embedding but also preserve higher-order structural features
for a better quality.

One recent work adopting this framework is MILE [7].
MILE runs on a single machine with no parallel computing
involved. It consists of three phases: graph coarsening, base
embedding, and embedding refinement. Initially, given the
original graph G (or Gp), MILE repeatedly coarsens the graph
m times and eventually obtains the coarsest graph G,,,. At each
coarsen level, MILE merges groups of nodes into supernodes
in the coarser graph, and the edges of a supernode are the
union of edges incident to its nodes in the finer graph. MILE
adopts a hybrid of two methods for node matching: Structural
Equivalence Matching (SEM) and Normalized Heavy Edge
Matching (NHEM). SEM aims to find nodes which have the
same neighbors, while NHEM matches each unmatched node
u with its unmatched neighbor v such that the normalized
weight of edge (u,v) is maximized. In addition, NHEM visits
the nodes in the ascending order of their number of neighbors
in order to collapse more nodes.

After forming the coarse graph, MILE applies a graph
embedding method on G,,, to learn the embeddings &,,. Due to
the smaller size, embedding G,, is more efficient than directly
embedding G. MILE treats this phase as a black box, and it
is generalizable to any embedding method.

The final phase of MILE is embedding refinement. Given
the embeddings on the coarsest graph &,, and the series of
graphs {G,,Gm—1,...,G1,G0}, MILE iteratively computes
embeddings of each graph and finally gets &. Specifically,
MILE trains a GNN model (e.g., GraphSAGE [14] and
GCN [21]) that refines the embeddings &; to &_1. At each
level, MILE projects the embeddings of supernodes in G; to
their corresponding nodes in G; 1, then applies the trained
model to refine the projected embeddings.

In addition to MILE, some other embedding methods us-
ing the multi-level framework have been proposed recently.
HARP [8] has a similar paradigm that coarsens the input
graph prior to embedding. Instead of directly refining &;,
HARP learns &;_; by embedding G, 1 with & used as
initialization. Unlike MILE and HARP which do not have a
parallel implementation, GOSH [9] is a multi-level embedding
approach that runs in parallel. GOSH benefits from the high
speed of GPU-based training and is able to embed large
networks with limited GPU memory. However, HARP and
GOSH are not model-agnostic because of their customized
embedding modules that cannot extend to other embedding
methods. Recently Deng et al. [22] proposed GraphZoom that
relies on the multilevel framework to learn node embeddings.
GraphZoom accelerated the coarsening process by utilizing the
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optimized MATLAB modules written in C and C++.

B. Graph Embedding

Learning embeddings on graphs has been extensively stud-
ied in recent years, which aims to learn a vector representation
for each node preserving its structural features. Inspired by the
success of using the skip-gram model on word embedding, a
plethora of methods such as DeepWalk [4] and node2vec [5]
have been proposed. These methods generate random walks on
graphs and feed them into a skip-gram model to learn node
embeddings. Another group of embedding methods are based
on matrix factorization, e.g., NetMF [3]. With the increasing
popularity of deep learning, recent works have switched to
leveraging deep neural networks to learn higher-order graph
structures. Methods from this group include SDNE [6] and
VAG [23].

Most embedding methods cannot efficiently scale to large-
scale networks. In addition to the aforementioned multi-level
framework, there are different attempts to improve the scalabil-
ity of graph embedding. GraphVite [24] is a CPU-GPU hybrid
system for faster training. LightNE [25] is a CPU-only parallel
embedding algorithm based on matrix factorization. However,
these algorithms are not model-agnostic and only designed
for a single machine. Facebook released a distributed large-
scale embedding system PyTorch-BigGraph [26] which is
optimized for efficient training without exceeding the memory
limit. However, our previous experiments show that PyTorch-
BigGraph is outperformed by our sequential implementation
of MILE in terms of efficiency and accuracy for the tasks of
node classification and link prediction [7]. We therefore do
not compare with it.

C. Distributed Machine Learning

Presently, the application of machine learning algorithms
often involves a huge volume of data, hence the demand for
high performance computing in machine learning has emerged.
One common way to enhance the computational power is to
add more computing nodes to the HPC system [27]. With an
increasing popularity, distributed learning has been supported
in various methodologies. Distributed ensemble learning is
available in popular ML libraries such as TensorFlow [28]
and PyTorch [29], which trains multiple models on distributed
machines and aggregates their outcome for prediction. Another
straightforward option is parallel synchronous training, which
relies on the MPI libraries for communication. Baidu Ring
Allreduce [18] and Horovod [17] exploit an efficient ring-like
algorithm for communication efficiency. DistBelief [19] and
DIANNE [30] are asynchronous alternatives for distributed
training.

III. PROBLEM STATEMENT

A graph is denoted as G = (V, E), where V is the set
of nodes and F is the set of edges in GG. Table I shows the
notations used in the paper. We formulate the problem of graph
embedding as follows:
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TABLE I
NOTATIONS USED IN THIS PAPER

Symbol | Definitions

G Input graph for embedding

V,E Node set, edge set

w Edge weights, Wy, ,, denotes the weight of edge (u,v)

N (u) Neighbors of node u

o(u) Degree of node u

d Embedding dimension

m Coarsen depth

M Number of machines

T Number of threads

h Number of hash functions

Ne Threshold for parallel coarsening

N, Threshold for the size of coarsened graph

P Large prime number used by F

F Hash functions for SEM

Q Node signatures for SEM

10} Matching results, ¢(u) denotes the node matched with u

b Batch size in GraphSAGE

s Number of sampled neighbors in GraphSAGE

Gy Gy Gy
Coarsening o0 T0, MO
(Parallel) T1, MO
: [
Embedding e
[ J
Refinement ® E‘:S Z pd— ® Mo
(Distributed) : 8 e[ Ml
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Fig. 1. Overview of DistMILE.

Definition 1 (Graph Embedding on Multiple Machines).
Given a graph G = (V, E) and a dimension d where d < |V/|,
graph embedding aims to learn a function f, : V — R?
that maps each node to a d-dimensional space and learn a
d-dimensional vector representation for each node in graph
G. The learned representations, known as embeddings, should
capture the structural properties of G. The similarity of em-
beddings of any two nodes should approximate their distance
in the graph. Using M machines each with 7’ threads, it should
learn the embeddings in an efficient and scalable manner.

IV. METHODOLOGY

In this section, we present a distributed multi-level embed-
ding framework DistMILE which leverages a hybrid of parallel
and distributed computing techniques to boost the embedding
efficiency. As a distributed version of MILE, DistMILE adopts
the same scheme consisting of three phases: graph coarsening,
base embedding, and refinement. Fig. 1 shows an example of
DistMILE running on two machines each with two threads.

A. Graph coarsening

For graph coarsening, we present a new multi-threaded
shared-memory graph coarsening algorithm (see in Algorithm
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Algorithm 1 Parallel Graph Coarsening
Input: G = (V,E), T, h,p
Output: Coarsened graph G’
1: Initialize shared arrays W, Q, o
2: F < Create h hash functions using p
3: #pragma omp parallel
4: 1 +— omp_get_thread_num()
5: Vi{u|lu<|V|AumodT =i}
6
7
8
9

> Initialization

for all uw € V; do
for all edge (u,v) € E do

‘ Wu,v — Wuw/o(u)-o(v)
Qu] < {fN(w) | f € F}

Update ¢ for nodes with same signatures
#pragma omp parallel

> SEM

11:

12: 1 <— omp_get_thread_num()
13: Vie—{u|u<|V|Aumod T =i}
14: Sort V; by the number of neighbors in ascending order
15: for all u € V; do ~ > NHEM
16: V4= MaAXye N (u), d(v)=2 Wu,v
17: if #(u) = @ and ¢(v) = @ then
18: | o(u) v, ¢(v)  u
19: Barrier.wait()
20 Correct matching conflicts in ¢(V;)
21: Build G’ in parallel

return G’

T1 T2 T1 T2
Nodes.\llljlll [T TT 1]
\

Adjacency I |

List I I

(a)

Fig. 2. Two Ways of Workload Distribution.

1). This algorithm shrinks the graph via two matching ap-
proaches (SEM and NHEM), which are also used in MILE.
DistMILE extends both approaches to parallel execution with
reduced workload and synchronization costs.

Choice of Parallel Formulation: Graph coarsening has
been used in a variety of multi-level algorithms for other
problems. KMetis [11] is a multi-level graph partitioning
algorithm, which has two different parallel formulations,
namely, ParMetis [12] for distributed-memory systems and
mt-Metis [13] for shared-memory systems. Experiment results
demonstrate that mt-Metis is more efficient due to low syn-
chronization costs. We conduct a similar comparison in our
drilldown experiments, and thus we adopt the multi-threaded
shared-memory parallelism for coarsening.

Workload Distribution: A key problem for parallel com-
puting is how to distribute the workload among multiple
threads. Data tiling is commonly used for matrix computation.
However, the adjacency list and edge weights of a large graph
are usually stored in one-dimensional arrays. Note that the
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workload of SEM and HEM is proportional to the number
of edges. We examine two ways for partitioning (see in Fig.
2): (a) divide the nodes into 7' consecutive chunks, or (b)
divide the nodes into 7" interlaced chunks (lines 5 and 13 in
Algorithm 1). Theoretically, the second option has a lower
cache miss rate as the threads are likely to request the same
data block at a moment. Our analysis reveals that on Yelp, the
largest dataset in this work, the second option can save up to
27% of the running time than using the first one.

Initialization: Prior to coarsening, DistMILE first declares
three arrays in shared memory. These arrays can be accessed
and written by multiple threads at the same time. Specifically,
W is of size |E| for normalized edge weights which can be
used for NHEM, while @ is of size |V | x h for node signatures,
where h is the number of hash functions used for SEM. ¢ is
of size |V| containing the node matching results.

SEM: The goal of SEM is to collapse nodes with the
same neighbors. To perform SEM, MILE converts each node’s
neighbors into a string, then uses a dictionary with these
strings as the keys to cluster the nodes. A naive way to
parallelize SEM 1is to create a dictionary in each thread
then merge them. However, the overhead of merging multiple
dictionaries can be huge on large networks. For example, on
Yelp, this parallel scheme is even slower than sequential SEM,
while merging the dictionaries takes 70% of the execution
time.

In DistMILE, we adopt a new locality-sensitive-hashing
(LSH) based SEM approach to avoid the expensive synchro-
nization. LSH is an effective technique that can hash similar
items into same buckets with high probability, which has
been successfully applied in data clustering [31] and neighbor
similarity search [32]. To check if N'(u) = N (v) for nodes
u and v, we follow [33] and estimate the similarity of their
neighbors as:

Pricr [f(N(w) = FN(v))] = sim(N (u), N(v)) (1)

Here sim(-,-) € [0,1] is a similarity function and F is a
family of hash functions.

Specifically, DistMILE adds h randomly sampled MinHash
functions to F in line 2. Each function f; € F is defined as
Ji (U) = mingep [(a; xv+b;) mod p] for U C V, where
p is a large prime number and a;,b; are randomly sampled
from [0,p). After applying these functions in line 9, each
node has a h-dimensional vector as its signature. If two nodes
have the same signature, they are very likely to be structurally
equivalent. Instead of performing O(|V'|?) pairwise queries
for similarity search in classic LSH, our proposed approach
divides the signature matrix by node degrees and matches the
nodes by comparing the signatures in parallel.

NHEM: Mt-Metis proposed a multi-threaded matching ap-
proach called unprotected matching. In this approach, each
thread updates the matching result ¢ simultaneously, followed
by checking if there is a matching conflict, i.e., p(d(u)) # u
for each node u. Nodes involved in a matching conflict will
not be collapsed with other nodes. Unprotected matching out-
performs the other two matching approaches in [13] in terms
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of efficiency due to reduced synchronization and memory
accesses.

To perform NHEM in parallel, DistMILE leverages unpro-
tected matching with several optimizations. Race conditions
that occur in line 18 of Algorithm 1 can cause matching
conflicts, which can further induce a larger coarsened graph
increasing the running time of base embedding. To reduce
the matching conflicts, DistMILE additionally checks the
matching status of both node w and its selected neighbor
v in line 17 before updating ¢. This optimization greatly
reduces the matching conflicts with little additional overhead.
For example, on Flickr, it helps decreasing the graph size by
13% after being coarsened 5 times.

To further avoid matching conflicts, we adopt a heuristic
strategy to choose the mode of NHEM. Specifically, when the
number of nodes in the graph is no less than a threshold 7.,
DistMILE performs NHEM in parallel, otherwise it runs the
serial version as MILE does.

B. Base Embedding

In the phase of base embedding, DistMILE calls a graph
embedding algorithm to learn the node representations on the
coarsened graph. Since the graph has been significantly shrunk
in the prior phase, this is more efficient than embedding the
original graph. Note that DistMILE is model-agnostic that
means the user is able to determine which method is exploited
for embedding and whether the model is trained on CPUs or
GPUs.

C. Refinement

Distributed deep learning recently became a popular so-
lution for machine learning on large graphs. By increasing
the number of processing units and their computation power,
GNN models can be trained on distributed machines effi-
ciently. For embedding refinement, we propose a distributed
training paradigm, as shown in Algorithm 2. It uses the base
embeddings from the second phase as input and leverages a
hybrid of distributed learning and parallel computing in order
to achieve the maximum speedup.

Minibatch Training and GraphSAGE: In MILE, a re-
finement model is trained with the entire node data in the
graph, which consumes too much memory and works only
for training on a single machine. In order to train the model
in parallel, it is necessary to adopt data parallelism and
split the data into multiple mini-batches. Mini-batch training
divides the training task into multiple sub-tasks that can be
assigned to distributed machines, reducing memory usage. In
our implementation of DistMILE, we use GraphSAGE as our
GNN model for refinement, which is compatible with mini-
batch training. A hyperparameter b is used to control the batch
size, which is always no more than the number of nodes
assigned to the current machine (see in line 4).

Distributed Learning with Horovod: In order to balance
the workload on each machine, DistMILE initially allocates
the equal number of nodes to the machines in line 3. Then
each machine partitions its nodes into minibatches of size b in
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Algorithm 2 Distributed Training
Input: G = (V,E), s, b
Qutput: Trained model

1: rank < horovod.rank()

2: procs < horovod.size()

3V, p‘r‘;ls - rank, plr‘gc‘s - (rank + 1))

4: b < min{|V;|, b}

5: N, < shared array > Sample neighbors
6: #pragma omp parallel for

7: for all u € V,. do

8: | Sample s neighbors for node u, update N, [u]

9: N < AllGather(N,)

10: B < Partition V,. into mini-batches of size b

11: for each batch in B do

12: ‘ Synchronously train the model with current batch

return model

line 10. During model training, each time the device fetches
one mini-batch and compute the gradients locally. To train
across a cluster of machines, DistMILE is incorporated with
Horovod for distributed training. Horovod provides an easy-to-
use interface to scale a single-machine training program to run
across multiple machines. Horovod can gather the gradients
from different devices and apply the averaged gradients to each
device, which follows [34] to normalize the loss on each ma-
chine by the total minibatch size. In addition to synchronizing
the model parameters distributed on each machine, Horovod is
able to achieve a high scaling efficiency which is appreciated
in distributed training.

Optimizations: The implementation of DistMILE has been
optimized for training on different hardwares, especially for
GPU training. Although training on GPU is efficient, the small
GPU memory usually limits the training performance. For
example, MILE needs to transfer data of all nodes between
CPU and GPU, which could be a bottleneck when the model is
trained on a large graph. In order to reduce the memory usage,
DistMILE is able to remove the unnecessary training data
(i.e., embeddings and sampled neighbors) for the current batch
in addition to leveraging mini-batch training. Furthermore,
for CPU computations such as neighbor sampling (in lines
6-8), DistMILE leverages a multi-threaded shared-memory
parallelism when it runs on multi-core machines. With these
optimizations, DistMILE can scale better across different
systems.

V. EXPERIMENTS

A. Experiment setup

1) Datasets: We use datasets that have been used in MILE
and other prior work of network embedding. Statistics of these
datasets are shown in Table II.

2) Baselines: Our experiments evaluate the performance of
different multi-level model-agnostic embedding frameworks,
namely, MILE and DistMILE.
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TABLE II
DATASET INFORMATION
Dataset | # Nodes | # Edges | # Classes
Blog 10.3K 334.0K 39
Flickr 80.5K 5.9M 195
Youtube 1.1IM 3.0M 47
Yelp 8.9M 39.8M 22

MILE: We run
methods as follows:

e NetMF [3]: NetMF is a representative matrix-
factorization based method for network embedding.
In our experiment, NetMF is trained on CPU with the
rank set to 1024 and the window size set to 10.

e DeepWalk [4]: DeepWalk is a popular random-walk
based embedding method. It runs on CPU with paral-
lelism available for sampling random walks. We set the
length of random walks as 80, the number of walks for
each node to 10, and the window size to 10.

o SDNE [6]: SDNE utilizes deep neural networks to per-
form graph embedding. The model is trained with 5
epochs with the sizes of hidden layers set to [300, 500].
We set @ = 0.2 and § = 10.0. In this experiment, the
model is trained and applied on a single GPU.

MILE with multiple graph embedding

The experiments of MILE are conducted on a single ma-
chine. MILE only utilizes CPU parallelism to train the refine-
ment model. As MILE treats the phase of base embedding as a
black box, the selected base embedding method can determine
whether it is trained on CPU or GPU and whether or not to
run in parallel. For GraphSAGE, we set s = 10%, b = 10°,
and the learning rate to 1072 if not specified.

DistMILE: Following the setup for MILE, DistMILE runs
with the three embedding methods above and utilizes inher-
ent parallelism. The differences are that DistMILE leverages
shared-memory CPU parallelism for graph coarsening on
a single machine, and it uses both CPUs and GPUs on
all machines for embedding refinement. We empirically set
ne = 10*, h = 16, and p = 23! — 1 for coarsening. we use
the same parameters of GraphSAGE in MILE.

Fair comparison of MILE and DistMILE: To study
and compare the performance of both frameworks in a fair
situation, several adaptions are made in our experiments. In
the phase of embedding refinement, we add the mini-batch
technique into MILE. The benefits are two-fold: it reduces
the memory usage for refinement so MILE can scale to larger
dataset, and MILE with mini-batch training is equivalent to the
serial version of DistMILE which makes the comparison more
fair. Furthermore, we adopt a new comparison paradigm. Due
to matching conflicts caused by the multi-threaded coarsening,
the coarsened graph in DistMILE is consequently larger than
that in MILE. Therefore, we use a new threshold coarsen depth
to control graph coarsening. Specifically, both DistMILE and
MILE repeatedly coarsen the graph until the number of nodes
is no more than a given threshold n,,. In our experiment, we
set n,, = |V|-27™ where m is the coarsen depth varying
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within different ranges depending on the network size.

3) Metrics: Following the experiment setting of MILE, we
evaluate the quality of the embeddings through the task of node
classification. More specifically, we use the node embeddings
as the features for classification, and report the average F1-
scores after a 10-fold cross validation.

4) System specification: We conduct the experiments on
a cluster of four Linux machines with a 28-core Intel Xeon
E5-2680 CPU, an NVIDIA Tesla v100 GPU, and 128GB of
RAM on each machine. Our method is implemented in Python,
where we use the pymp? and horovod® packages for parallel
computing and distributed learning, respectively. In addition,
we use MVAPICH2-GDR* for MPI communication. Our code

B. Analysis

This section of experiments compares DistMILE with MILE
through node classification to see their quality and running
time at different coarsen depths. Fig. 3 shows the results,
where we assign dark/light colors to DistMILE/MILE with the
same base embedding method. Note that setting coarsen depth
m = 0 means that it directly applies the original embedding
method with no coarsening and refinement. We report the
running time in seconds.

Both DistMILE and MILE expedite embedding: Multi-
level embedding framework can help existing embedding
methods scale to larger networks. For example, NetMF cannot
be applied directly on YouTube/Yelp due to memory con-
straints. However, by using the coarsening-refinement strategy,
DistMILE and MILE can overcome the limitation of CPU
memory and embed large networks, which demonstrates that
DistMILE and MILE have a relatively lower demand of com-
puting hardware compared to the original embedding methods.

In addition, DistMILE and MILE are able to reduce the
time for embedding on large networks. For example, the
execution of SDNE on Flickr cannot finish within 2 days,
while DistMILE and MILE using SDNE with coarsen depth
m = 1 can finish in 5 hours. Increasing the coarsen depth
can further boost both frameworks. For m = 6 on Flickr,
the execution of MILE(SDNE) takes around 12 minutes, and
DistMILE(SDNE) can even finish in only 3 minutes. Similar
improvements are also observed in the results on YouTube and
Yelp.

DistMILE has comparable quality: The embedding qual-
ities of both frameworks with various embedding methods are
evaluated through Micro-F1 scores in the node classification
task, as shown in Fig. 3(a)-3(d). It can be seen that the impact
of embedding on coarsened graphs varies with different combi-
nations of base embedding methods and datasets. For example,
the quality of MILE/DistMILE with DeepWalk declines a little
after each time of coarsening (mm > 0 on Blog/Flickr), while
the Micro-F1 scores of SDNE in both frameworks are still
comparable (/m > 1 on all graphs) with respect to the original
version.

Zhttps://github.com/classner/pymp
3https://github.com/horovod/horovod
“https://mvapich.cse.ohio-state.edu
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Fig. 3. Comparison of Overall Performance of MILE and DistMILE

In comparison of DistMILE and MILE, we observe that
DistMILE and MILE with the same base embedding method
always have similar Micro-F1 scores. For example, on Flickr,
the distance of any two lines denoting the same base embed-
ding method is at most 0.01. This demonstrate that the em-
ployment of hybrid high-performance computing techniques
in DistMILE does not hurt the embedding quality while
effectively boosting the embedding process.

DistMILE is significantly faster: In Fig. 3(e)-3(h), we
plot the running time of all baselines in a logarithmic scale.
This includes the running time of all three phases, and we
later compare MILE and DistMILE’s time in the phases
of coarsening and refinement respectively. The results show
that DistMILE is faster than MILE in almost every case.
Compared to MILE, DistMILE achieves up to 3x speedup
on Blog with little loss of quality. On Flickr, DistMILE’s
speedup is up to 8x (NetMF, m 6). On small datasets,
the speedup of DistMILE is mainly contributed by parallel
coarsening and distributed training of refinement model, but
limited by the data volume. When it comes to larger datasets,
DistMILE is able to completely show the advantage of high-
performance computing. On YouTube (m = 6), the speedup
of DistMILE using NetMF with respect to MILE increases to
28. The speedup on large networks comes from the distributed
parallel computing for sampling neighbors during the training
of GraphSAGE.

The speedup of DistMILE with respect to MILE is af-
fected by the running time of base embedding. Since both
frameworks provides the user with full control of this phase,
DistMILE’s speedup decreases when the graph is not suffi-
ciently coarsened. When we decrease the coarsen depth, each
pair of lines corresponding to the same embedding method
becomes closer. We notice that on Flickr with m = 2 or 3,
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TABLE IIT
COMPARISON OF SHARED-MEMORY
AND DISTRIBUTED-MEMORY COARSENING.

m Time for Coarsening (sec)
Shared-Memory  Distributed-Memory
1 8.39 120.60
2 12.07 172.91
3 15.46 214.72
4 26.70 243.59
5 33.84 258.11
6 37.83 264.35

DistMILE using SDNE is slightly slower than MILE because
the coarsened graph in DistMILE is much larger and SDNE is
inefficient for large graphs. However, in most cases, DistMILE
is much faster than MILE.

DistMILE scales better over Yelp: With the employment
of high-performance computing techniques, DistMILE has
an improved scalability than MILE on the largest dataset
Yelp. Considering the huge amount of time for sampling in
MILE, we reduce the number of sampled neighbors s to 10.
Unfortunately, MILE is unable to finish within the time limit
even under the relaxed setting due to the extremely long time
on sampling. In contrast, DistMILE can embed Yelp with all
embeding methods. The running time of DeepWalk on Yelp
is about 4 days, while DistMILE reduces it to only 4 hours
with coarsen depth 8. Furthermore, the embedding quality
of DistMILE does not decline much when we increase the
coarsen depth, which demonstrates that DistMILE can learn
embeddings with a comparable quality while significantly
reducing the running time.

Choice of Parallel Formulation for Coarsening: In addi-
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TABLE 1V
SPEEDUP FOR COARSENING

Dataset m | MILE (sec) DistMILE (sec)  Speedup
1 81.40 8.39 9.70

2 112.52 12.07 9.32

Flickr 3 135.19 15.46 8.74
4 152.50 26.70 5.71

5 163.22 33.84 4.82

6 164.32 37.83 4.34

1 731.46 105.84 6.91

2 2099.41 339.17 6.19

3 2988.71 474.86 6.29

Yelp 4 3593.85 496.04 7.25
5 3990.16 533.19 7.48

6 4292.87 574.92 7.47

7 4446.70 624.47 7.12

8 4869.37 653.31 7.45

TABLE V
SPEEDUP FOR REFINEMENT

Dataset m | MILE (sec) DistMILE (sec)  Speedup
1 56791 30.90 18.38

2 525.58 27.40 19.18

Flickr 3 517.26 24.98 20.70
4 509.94 25.24 20.20

5 506.80 30.18 16.79

6 490.62 30.87 15.89

1 16973.99 582.04 29.16

2 15512.14 355.87 43.59

YouTube 3 14836.22 277.62 53.44
4 14541.72 252.90 57.50

5 14608.88 249.96 58.44

6 14851.52 264.16 56.22

tion to the shared-memory formulation of parallel graph coars-
ening, we implement a distributed-memory version to explore
different choices of parallel formulations. In the distributed-
memory formulation, the graph is initially partitioned into M
subgraphs, where M is the number of machines. During the
matching process, each machine communicates the matching
information of nodes they share with other machines.

Table III shows the running time of shared-memory and
distributed-memory formulations on Flickr, respectively. We
observe that the shared-memory formulation is always faster
than the distributed version regardless of coarsen depths. At
coarsen depth m 1, distributed coarsening finishes in
120 seconds, while shared-memory coarsening only needs 8
seconds. Hence we adopt the shared-memory parallelism on a
single machine in the phase of coarsening.

DistMILE’s speedup in different phases: Next we study
the improvements in running time of DistMILE with respect
to MILE in the phase of graph coarsening and embedding
refinement. In this experiment, we use DeepWalk as the base
embedding method for both frameworks. Note that as the
first phase, graph coarsening is not affected by the choice of
embedding method. Although the phase of refinement takes
the learned embeddings as its input, the workload in this phase
does not vary. Therefore, the choice of base embedding method
has little impact on the speedup of DistMILE in these two
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TABLE VI
IMPACT OF VARYING 7" ON COARSENING AND FOLLOW-UP EMBEDDING

Dataset T Coarsening Graph Size Embedding Total
(sec) (sec) (sec)
1 162.35 5043.0 189.60 351.95
2 88.20 5071.4 199.40 287.60
Flickr 4 48.84 5164.2 211.10 259.94
8 29.73 5312.4 217.69 24743
16 19.07 5510.0 224.37 243.44
28 15.46 5727.8 225.95 241.38
1 5553.74 30985.0 849.85 | 6403.60
2 3099.86 30080.2 714.39 | 3814.25
Yelp 4 1753.55 30290.0 734.23 | 2487.78
8 1076.99 31918.2 874.68 | 1951.67
16 743.54 30885.6 834.03 | 1577.57
28 653.31 30247.4 730.36 | 1383.64
phases.

Table IV shows the running time of both frameworks and
the speedup of DistMILE for coarsening. We can observe that
DistMILE achieves up to 10x speedup with respect to MILE.
For coarsen depth m 1 on Flickr, both DistMILE and
MILE coarsen the original network twice, as MILE spends
81 seconds and DistMILE only takes 8 seconds. On Yelp,
the speedup of DistMILE is up to 7.5x. It can decrease to
around 5x when the dataset is sparse or the graph has been
coarsened multiple times (m > 4 on Flickr) since there is
relatively less parallel computation on these networks. On the
other hand, given a time limit for coarsening, DistMILE is
able to coarsen the original network more times, which can
boost the following two phases. For example, MILE coarsens
Flickr into a graph containing 20000 nodes (m = 1) within
81 seconds, while DistMILE can reduce the number of nodes
to 715 (m = 6) using only half of the time.

DistMILE has a more considerable speedup in the phase
of refinement (see in Table V). The speedup of DistMILE
is up to 21x on Flickr and increases to 58x on YouTube.
For coarsen depth m > 3 on YouTube, MILE needs 4 hours
to train and apply the GraphSAGE model for embedding
refinement, but DistMILE only takes about 4 minutes. Thanks
to the leverage of distributed learning and parallel sampling in
the GraphSAGE model, DistMILE is able to learn the refined
representations within minutes.

C. DistMILE Drilldown

This section of experiments explores the performance of
DistMILE under different setups. We first evaluate the coars-
ening performance with different numbers of used threads and
observe its impact on follow-up embedding. In addition, we
study how DistMILE works on different computing clusters
by varying the size of machines. We also explore the impact
of learning rate and batch size on distributed learning for
refinement. Without loss of generality, here we use DeepWalk
as the base embedding method.

Varying the Number of Threads for Coarsening: Dist-
MILE leverages multi-threading shared-memory parallel com-
puting for graph coarsening. Now we vary the number of
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TABLE VII
IMPACT OF VARYING THE NUMBER OF MACHINES ON REFINEMENT

M Training  Refinement Total Scaling
(sec) (sec) (sec) Efficiency
1 1060.92 62369.38  63430.30 100
2 558.29 31557.25  32115.54 98.75
3 371.61 21267.34  21638.95 97.71
4 286.54 16324.09  16610.64 95.47
5 259.92 13226.12  13486.04 94.07
6 217.01 11131.82  11348.83 93.15
7 186.70 9506.89 9693.59 93.48
8 184.97 8795.72 8980.69 88.22

threads 7" used for coarsening to see how it affects the first
phase and the follow-up base embedding. With increasing 7'
from 1 to 28, we measure the running time of coarsening and
embedding as well as the size of coarsened graph, as shown
in Table VI. Note that we keep the 28-core parallelism in
DeepWalk unchanged for fair comparison.

We first observe that using more threads results in faster
graph coarsening, which is expected. For example, coarsening
Flickr with only one thread takes 162 seconds, while increas-
ing T to 28 can reduce the running time to only 15 seconds,
which is an 11-fold speedup. On Yelp, using 28 threads can
save 1.4 hours over single-threaded coarsening.

On the other hand, increasing the number of used threads
may lead to slower base embedding by increasing the size of
the coarsened graph. This is because matching conflicts are
more likely to happen when we use more threads, hence more
nodes remain unmatched after coarsening. With varying 7'
from 1 to 28 on Flickr, the graph size increases by 700, which
leads to 35 more seconds in the follow-up embedding. We
notice that the sizes of coarsened graphs do not always strictly
decrease with the increasing 7", which is because DistMILE
coarsens the graph for different times when 7" varies. Using
less threads can reduce matching conflicts so DistMILE can
more quickly meet the requirement of coarsening. Examples
include T' = 8 and 16 (one more time of coarsening) on Yelp.

To better understand the tradeoff between the efficiencies
of coarsening and base embedding, Table VI shows the total
running time of both phases. We observe that using less than
28 threads is relatively inefficient on both datasets, therefore
we recommend setting the number of threads equal to the
number of CPU cores for maximum overall speedup.

Varying the Number of Machines: DistMILE exploits
distributed learning to train the refinement model across mul-
tiple machines. To learn how DistMILE leverages computing
resources, we measure the running time and scaling efficiency
of the refinement phase on Yelp, as shown in Table VII.

We first observe that the phase of refinement in DistMILE
is dramatically accelerated thanks to the leverage of high-
performance computing techniques. On a single machine,
DistMILE needs around 18 hours to learn the representations
for the fine-grained graph. With four machines used, it finishes
within 4.7 hours. The running time is further reduced to 2.4
hours when 8 machines are used. Additionally, DistMILE
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TABLE VIII
IMPACT OF VARYING THE LEARNING RATE ON MICRO-F1

Learning Rate | Blog  Flickr ~ YouTube  Yelp
0.01 0.228 0.234 0.427 0.623
0.001 0.243  0.260 0.439 0.633
0.0001 0212 0.237 0.409 0.626
TABLE IX
IMPACT OF VARYING THE BATCH SI1ZE
b Training  Applying | Memory Micro-F1
(sec) (sec) Usage
500 284.05  12132.22 1.20 0.627
1,000 334.12 6443.27 1.46 0.627
2,000 328.80 428891 1.96 0.629
5,000 323.21 2929.13 2.97 0.631
10,000 311.44 2468.45 3.18 0.631
20,000 302.98 2249.71 4.98 0.631
50,000 292.15 2019.47 16.99 0.632
100,000 279.90 1868.11 30.82 0.632

achieves a high scaling efficiency. With 4 machines or less,
its scaling efficiency is at least 95%. Even when 8 machines
are used, the scaling efficiency declines only slightly to 88%.

Varying the Learning Rate: We evaluate the quality
of learned embeddings with different learning rates from
{0.01,0.001,0.0001} that are also used by the authors of
GraphSAGE [14]. In Table VIII, we observe that setting the
learning rate to 0.001 outperforms the other two choices on
Flickr by 11% in terms of Micro-F1. While the three options
achieve similar Micro-F1 scores on Yelp, using 0.001 is
slightly better. Similar results are shown on Blog and YouTube.

Varying the Batch Size: Moving the batch size b from
500 to 100000 on Yelp, we observe that large batch sizes can
reduce the exact time of training and applying the refinement
model (see in Table IX). Our choice of b = 100,000 in
the main experiment achieves the best efficiency among all
choices. More specifically, the change in batch sizes has lim-
ited impact on the training time, which ranges from 280 to 330
seconds. However, using large batch sizes can dramatically
reduces the time of applying the model. By increasing the
batch size, the time of applying can be reduced from 3.4 hours
(b =500) to only 30 minutes (b = 100, 000).

On the other hand, using a large batch size leads to a higher
memory usage. For example, when b < 10, 000, the refinement
phase uses up to 3GB GPU memory, while the usage increase
to about 30 GB if the batch size increase to 100, 000. This is
because most GPU memory is consumed by the embeddings
of sampled neighbors, which is O(bsd). We observe that there
is no quality loss when the model is trained with large batch
sizes, which is consistent with previous work [34].

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a distributed multi-level embed-
ding framework DistMILE to further enhance the scalability
of graph embedding. First, we present a new multi-threaded
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parallel algorithm for graph coarsening which reduces both
synchronization cost and race conditions in coarsening. Sec-
ond, DistMILE keeps the follow-up phase of base embedding
a black box, and it is compatible with any embedding method
trained on CPUs or GPUs. Third, DistMILE adopts a dis-
tributed training paradigm for embedding refinement with a
high scaling efficiency, which takes full advantages of high-
performance computing techniques. Our framework can learn
the representations of comparable quality while achieving a
high speedup with respect to MILE, significantly improving
the scalability of graph embedding methods. An interesting
direction for future research is implement other distributed
refinement models to further enhance the efficiency.
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