
DistMILE: A Distributed Multi-Level Framework
for Scalable Graph Embedding

Yuntian He, Saket Gurukar, Pouya Kousha, Hari Subramoni, Dhabaleswar K. Panda, Srinivasan Parthasarathy
Dept. of Computer Science and Engineering

The Ohio State University

{he.1773, gurukar.1, kousha.2}@osu.edu, {subramon, panda, srini}@cse.ohio-state.edu

Abstract—Scalable graph embedding on large networks is
challenging because of the complexity of graph structures and
limited computing resources. Recent research shows that the
multi-level framework can enhance the scalability of graph
embedding methods with little loss of quality. In general, methods
using this framework first coarsen the original graph into a
series of smaller graphs then learn the representations of the
original graph from them in an efficient manner. However, to
the best of our knowledge, most multi-level based methods do
not have a parallel implementation. Meanwhile, the emergence of
high-performance computing for machine learning provides an
opportunity to boost graph embedding by distributed computing.

In this paper, we propose a Distributed MultI-Level
Embedding (DistMILE1) framework to further improve the
scalability of graph embedding. DistMILE leverages a novel
shared-memory parallel algorithm for graph coarsening and a
distributed training paradigm for embedding refinement. With
the advantage of high-performance computing techniques, Dist-
MILE can smoothly scale different base embedding methods over
large networks. Our experiments demonstrate that DistMILE
learns representations of similar quality with respect to other
baselines, while reduces the time of learning embeddings on
large-scale networks to hours. Results show that DistMILE can
achieve up to 28× speedup compared with a popular multi-level
embedding framework MILE and expedite existing embedding
methods with 40× speedup.

Index Terms—Graph Embedding, High-Performance Comput-
ing, Distributed Machine Learning, Multi-Level Framework

I. INTRODUCTION

Graph embedding aims to learn low-dimensional represen-

tations capturing the structural properties in the network. The

learned representations can be used as features in a variety

of machine learning tasks such as node classification and link

prediction. Graph embedding has been deployed in various

real-world applications including anomaly detection [1] and

e-commerce recommendation [2].

In recent years, many graph embedding methods have

been proposed using different methodologies such as matrix

factorization (NetMF [3]), random walk (DeepWalk [4] and

node2vec [5]), and deep neural network (SDNE [6]). These

algorithms usually either consume too much time or memory,

which prevents them from scaling to large datasets. To improve

the scalability of existing embedding methods, Liang et al. [7]

proposed a multi-level embedding framework MILE. MILE

first repeatedly coarsens the original graph, then applies an

1Our code is available at https://github.com/heyuntian/DistMILE

existing embedding method to the coarsened graph, and finally

uses graph neural networks (GNN) to refine the embeddings.

Experiments demonstrate that MILE can not only boost the

embedding methods but also scale them to large networks.

Methods using a similar framework include HARP [8] and

GOSH [9].

A benefit of MILE is that it is agnostic to the underlying

embedding methods, which is convenient for users. While

HARP and GOSH are designed for specific embedding meth-

ods, MILE is compatible with any existing methods. For

example, scientific or commercial projects [2], [10] usually

have their own customized embedding system, and the expense

of replacing it with a new one can be prohibitive. In contrast,

wrapping the current embedding system in MILE can preserve

the customized methodology and is relatively inexpensive.

Additionally, machine learning benefits from the usage of

high-performance computing techniques. One might think of

extending the multi-level embedding framework to parallel

or distributed settings. However, it is non-trivial to leverage

parallelism in graph algorithms due to the connectivity of

nodes in a graph, which can cause race conditions if processed

in parallel. For example, MILE and many multi-level graph

partitioning algorithms [11]–[13] adopt heavy edge matching

(HEM) and its variants for graph coarsening. HEM has dif-

ferent parallel implementations for distributed systems [12]

and shared-memory machines [13]. These implementations,

unfortunately, only emphasize handling race conditions rather

than reducing them. Moreover, some approaches used in multi-

level embedding do not have any parallel implementation,

such as the structural equivalent matching (SEM) approach

in MILE.

Another challenge of designing parallel multi-level embed-

ding methods lies in model training. For example, MILE trains

a GNN to learn embeddings on a finer-grained graph from a

coarser one. As the growing scale of network data exceeds

the limit of GPU memory, multiple GNN models [14]–[16]

use minibatch to train on GPU and enable parallel training.

On the other hand, distributed machine learning has attracted

much interest [17]–[19]. Horovod [17] is a distributed training

framework which scales the model training across multiple

machines with a high scaling efficiency. It is also compatible

with MPI implementations such as MVAPICH [20] for further

enhancement.

In this paper, we proposed a Distributed MultI-Level

282

2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/21/$31.00 ©2021 IEEE
DOI 10.1109/HiPC53243.2021.00042

20
21

 IE
EE

 2
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 H
ig

h
Pe

rf
or

m
an

ce
 C

om
pu

tin
g,

 D
at

a,
 a

nd
 A

na
ly

tic
s (

Hi
PC

) |
 9

78
-1

-6
65

4-
10

16
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

HI
PC

53
24

3.
20

21
.0

00
42

Authorized licensed use limited to: The Ohio State University. Downloaded on April 19,2022 at 16:56:45 UTC from IEEE Xplore. Restrictions apply.

Embedding framework DistMILE, which extends MILE to

a distributed setting. Our contributions can be summarized as

follows:

• We propose DistMILE, a distributed multi-level embed-

ding framework. To the best of our knowledge, this is

the first model-agnostic embedding framework designed

for distributed setting. DistMILE leverages a hybrid of

parallel and distributed computing techniques to expedite

the embedding process. It treats the base embedding

phase as a black box, hence it is generalizable to any

embedding method.

• We propose a parallel graph coarsening algorithm, which

includes a novel locality-sensitive-hashing (LSH) based

approach for node matching. We explore different design

choices in this algorithm to reduce the synchronization

costs and race conditions in parallel coarsening. The

proposed algorithm can also be used in other graph

problems such as graph partitioning.

• We propose a distributed training paradigm for the re-

finement of node embeddings. Specifically, this training

paradigm is built on Horovod and leverages distributed

learning and parallel computing technique for a maximum

speedup.

• We conduct extensive experiments on real-world graph

datasets to compare DistMILE with MILE. Through the

task of node classification, our experiments show that

DistMILE can learn embeddings of comparable quality

with respect to MILE, but significantly reduce the run-

ning time. On YouTube, DistMILE achieves up to 28×
speedup. On the largest dataset Yelp, only DistMILE

is able to scale the embedding methods to learn the

representations.

• We also study the impact of different parameters on

DistMILE’s performance. The results not only show

that DistMILE performs well under different settings,

but also give an insight into the tradeoff between the

cost of computing resources and the performance of our

proposed framework.

The rest of this paper is organized as follows: Section 2

reviews previous work on distributed machine learning as

well as graph embedding, especially multi-level embedding

methods. Section 3 formulates the graph embedding problem

on multiple machines. Section 4 introduces the methodol-

ogy of DistMILE, including a shared-memory parallel graph

coarsening algorithm and a distributed training paradigm.

In Section 5, we evaluate DistMILE and MILE to observe

their performance in terms of efficiency and quality. We also

conduct drilldown experiments to understand how DistMILE

works under different settings. We conclude this paper in

Section 6.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce multi-level embedding,

including a popular framework MILE [7] and other works from

this group. We also review the related work of graph embed-

ding and high-performance computing for machine learning.

A. Multi-level Embedding

The multi-level embedding framework is a powerful tool

to mitigate the huge overhead of embedding large graphs.

In general, a method using this framework first coarsens the

input graph then learn the embeddings of the fine-grained

graph from the compressed ones. By shrinking the graph size,

the multi-level embedding framework can not only boost the

embedding but also preserve higher-order structural features

for a better quality.

One recent work adopting this framework is MILE [7].

MILE runs on a single machine with no parallel computing

involved. It consists of three phases: graph coarsening, base

embedding, and embedding refinement. Initially, given the

original graph G (or G0), MILE repeatedly coarsens the graph

m times and eventually obtains the coarsest graph Gm. At each

coarsen level, MILE merges groups of nodes into supernodes

in the coarser graph, and the edges of a supernode are the

union of edges incident to its nodes in the finer graph. MILE

adopts a hybrid of two methods for node matching: Structural

Equivalence Matching (SEM) and Normalized Heavy Edge

Matching (NHEM). SEM aims to find nodes which have the

same neighbors, while NHEM matches each unmatched node

u with its unmatched neighbor v such that the normalized

weight of edge (u, v) is maximized. In addition, NHEM visits

the nodes in the ascending order of their number of neighbors

in order to collapse more nodes.

After forming the coarse graph, MILE applies a graph

embedding method on Gm to learn the embeddings Em. Due to

the smaller size, embedding Gm is more efficient than directly

embedding G. MILE treats this phase as a black box, and it

is generalizable to any embedding method.

The final phase of MILE is embedding refinement. Given

the embeddings on the coarsest graph Em and the series of

graphs {Gm,Gm−1, . . . ,G1,G0}, MILE iteratively computes

embeddings of each graph and finally gets E0. Specifically,

MILE trains a GNN model (e.g., GraphSAGE [14] and

GCN [21]) that refines the embeddings Ei to Ei−1. At each

level, MILE projects the embeddings of supernodes in Gi to

their corresponding nodes in Gi−1, then applies the trained

model to refine the projected embeddings.

In addition to MILE, some other embedding methods us-

ing the multi-level framework have been proposed recently.

HARP [8] has a similar paradigm that coarsens the input

graph prior to embedding. Instead of directly refining Ei,
HARP learns Ei−1 by embedding Gi−1 with Ei used as

initialization. Unlike MILE and HARP which do not have a

parallel implementation, GOSH [9] is a multi-level embedding

approach that runs in parallel. GOSH benefits from the high

speed of GPU-based training and is able to embed large

networks with limited GPU memory. However, HARP and

GOSH are not model-agnostic because of their customized

embedding modules that cannot extend to other embedding

methods. Recently Deng et al. [22] proposed GraphZoom that

relies on the multilevel framework to learn node embeddings.

GraphZoom accelerated the coarsening process by utilizing the

283

Authorized licensed use limited to: The Ohio State University. Downloaded on April 19,2022 at 16:56:45 UTC from IEEE Xplore. Restrictions apply.

optimized MATLAB modules written in C and C++.

B. Graph Embedding

Learning embeddings on graphs has been extensively stud-

ied in recent years, which aims to learn a vector representation

for each node preserving its structural features. Inspired by the

success of using the skip-gram model on word embedding, a

plethora of methods such as DeepWalk [4] and node2vec [5]

have been proposed. These methods generate random walks on

graphs and feed them into a skip-gram model to learn node

embeddings. Another group of embedding methods are based

on matrix factorization, e.g., NetMF [3]. With the increasing

popularity of deep learning, recent works have switched to

leveraging deep neural networks to learn higher-order graph

structures. Methods from this group include SDNE [6] and

VAG [23].

Most embedding methods cannot efficiently scale to large-

scale networks. In addition to the aforementioned multi-level

framework, there are different attempts to improve the scalabil-

ity of graph embedding. GraphVite [24] is a CPU-GPU hybrid

system for faster training. LightNE [25] is a CPU-only parallel

embedding algorithm based on matrix factorization. However,

these algorithms are not model-agnostic and only designed

for a single machine. Facebook released a distributed large-

scale embedding system PyTorch-BigGraph [26] which is

optimized for efficient training without exceeding the memory

limit. However, our previous experiments show that PyTorch-

BigGraph is outperformed by our sequential implementation
of MILE in terms of efficiency and accuracy for the tasks of

node classification and link prediction [7]. We therefore do

not compare with it.

C. Distributed Machine Learning

Presently, the application of machine learning algorithms

often involves a huge volume of data, hence the demand for

high performance computing in machine learning has emerged.

One common way to enhance the computational power is to

add more computing nodes to the HPC system [27]. With an

increasing popularity, distributed learning has been supported

in various methodologies. Distributed ensemble learning is

available in popular ML libraries such as TensorFlow [28]

and PyTorch [29], which trains multiple models on distributed

machines and aggregates their outcome for prediction. Another

straightforward option is parallel synchronous training, which

relies on the MPI libraries for communication. Baidu Ring

Allreduce [18] and Horovod [17] exploit an efficient ring-like

algorithm for communication efficiency. DistBelief [19] and

DIANNE [30] are asynchronous alternatives for distributed

training.

III. PROBLEM STATEMENT

A graph is denoted as G = (V,E), where V is the set

of nodes and E is the set of edges in G. Table I shows the

notations used in the paper. We formulate the problem of graph

embedding as follows:

TABLE I
NOTATIONS USED IN THIS PAPER

Symbol Definitions
G Input graph for embedding
V , E Node set, edge set
W Edge weights, Wu,v denotes the weight of edge (u, v)
N (u) Neighbors of node u
σ(u) Degree of node u
d Embedding dimension
m Coarsen depth
M Number of machines
T Number of threads
h Number of hash functions
nc Threshold for parallel coarsening
nm Threshold for the size of coarsened graph
p Large prime number used by F
F Hash functions for SEM
Q Node signatures for SEM
φ Matching results, φ(u) denotes the node matched with u
b Batch size in GraphSAGE
s Number of sampled neighbors in GraphSAGE

Coarsening
(Parallel)

Embedding

Refinement
(Distributed)

M0

M1

T0, M0

T1, M0

Fig. 1. Overview of DistMILE.

Definition 1 (Graph Embedding on Multiple Machines).
Given a graph G = (V,E) and a dimension d where d � |V |,
graph embedding aims to learn a function fe : V → Rd

that maps each node to a d-dimensional space and learn a

d-dimensional vector representation for each node in graph

G. The learned representations, known as embeddings, should

capture the structural properties of G. The similarity of em-

beddings of any two nodes should approximate their distance

in the graph. Using M machines each with T threads, it should

learn the embeddings in an efficient and scalable manner.

IV. METHODOLOGY

In this section, we present a distributed multi-level embed-

ding framework DistMILE which leverages a hybrid of parallel

and distributed computing techniques to boost the embedding

efficiency. As a distributed version of MILE, DistMILE adopts

the same scheme consisting of three phases: graph coarsening,

base embedding, and refinement. Fig. 1 shows an example of

DistMILE running on two machines each with two threads.

A. Graph coarsening

For graph coarsening, we present a new multi-threaded

shared-memory graph coarsening algorithm (see in Algorithm

284

Authorized licensed use limited to: The Ohio State University. Downloaded on April 19,2022 at 16:56:45 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Parallel Graph Coarsening

Input: G = (V,E), T , h, p
Output: Coarsened graph G′

1: Initialize shared arrays W̃ ,Q, φ � Initialization

2: F ← Create h hash functions using p
3: #pragma omp parallel
4: i ← omp get thread num()

5: Vi ← {u | u < |V | ∧ u mod T = i}
6: for all u ∈ Vi do
7: for all edge (u, v) ∈ E do
8: W̃u,v ← Wu,v/

√
σ(u) · σ(v)

9: Q[u] ← {f(N (u)) | f ∈ F} � SEM

10: Update φ for nodes with same signatures

11: #pragma omp parallel
12: i ← omp get thread num()

13: Vi ← {u | u < |V | ∧ u mod T = i}
14: Sort Vi by the number of neighbors in ascending order

15: for all u ∈ Vi do � NHEM

16: v ← maxv∈N (u), φ(v)=∅ W̃u,v

17: if φ(u) = ∅ and φ(v) = ∅ then
18: φ(u) ← v, φ(v) ← u

19: Barrier.wait()

20: Correct matching conflicts in φ(Vi)
21: Build G′ in parallel

return G′

T1 T2
Nodes

Adjacency
List

T1 T2

(a) (b)

Fig. 2. Two Ways of Workload Distribution.

1). This algorithm shrinks the graph via two matching ap-

proaches (SEM and NHEM), which are also used in MILE.

DistMILE extends both approaches to parallel execution with

reduced workload and synchronization costs.

Choice of Parallel Formulation: Graph coarsening has

been used in a variety of multi-level algorithms for other

problems. KMetis [11] is a multi-level graph partitioning

algorithm, which has two different parallel formulations,

namely, ParMetis [12] for distributed-memory systems and

mt-Metis [13] for shared-memory systems. Experiment results

demonstrate that mt-Metis is more efficient due to low syn-

chronization costs. We conduct a similar comparison in our

drilldown experiments, and thus we adopt the multi-threaded

shared-memory parallelism for coarsening.

Workload Distribution: A key problem for parallel com-

puting is how to distribute the workload among multiple

threads. Data tiling is commonly used for matrix computation.

However, the adjacency list and edge weights of a large graph

are usually stored in one-dimensional arrays. Note that the

workload of SEM and HEM is proportional to the number

of edges. We examine two ways for partitioning (see in Fig.

2): (a) divide the nodes into T consecutive chunks, or (b)

divide the nodes into T interlaced chunks (lines 5 and 13 in

Algorithm 1). Theoretically, the second option has a lower

cache miss rate as the threads are likely to request the same

data block at a moment. Our analysis reveals that on Yelp, the

largest dataset in this work, the second option can save up to

27% of the running time than using the first one.

Initialization: Prior to coarsening, DistMILE first declares

three arrays in shared memory. These arrays can be accessed

and written by multiple threads at the same time. Specifically,

W̃ is of size |E| for normalized edge weights which can be

used for NHEM, while Q is of size |V |×h for node signatures,

where h is the number of hash functions used for SEM. φ is

of size |V | containing the node matching results.

SEM: The goal of SEM is to collapse nodes with the

same neighbors. To perform SEM, MILE converts each node’s

neighbors into a string, then uses a dictionary with these

strings as the keys to cluster the nodes. A naive way to

parallelize SEM is to create a dictionary in each thread

then merge them. However, the overhead of merging multiple

dictionaries can be huge on large networks. For example, on

Yelp, this parallel scheme is even slower than sequential SEM,

while merging the dictionaries takes 70% of the execution

time.

In DistMILE, we adopt a new locality-sensitive-hashing

(LSH) based SEM approach to avoid the expensive synchro-

nization. LSH is an effective technique that can hash similar

items into same buckets with high probability, which has

been successfully applied in data clustering [31] and neighbor

similarity search [32]. To check if N (u) = N (v) for nodes

u and v, we follow [33] and estimate the similarity of their

neighbors as:

Prf∈F [f(N (u)) = f(N (v))] = sim(N (u),N (v)) (1)

Here sim(·, ·) ∈ [0, 1] is a similarity function and F is a

family of hash functions.

Specifically, DistMILE adds h randomly sampled MinHash

functions to F in line 2. Each function fi ∈ F is defined as

fi (U) = minv∈U [(ai ∗ v + bi) mod p] for U ⊆ V , where

p is a large prime number and ai, bi are randomly sampled

from [0, p). After applying these functions in line 9, each

node has a h-dimensional vector as its signature. If two nodes

have the same signature, they are very likely to be structurally

equivalent. Instead of performing O(|V |2) pairwise queries

for similarity search in classic LSH, our proposed approach

divides the signature matrix by node degrees and matches the

nodes by comparing the signatures in parallel.

NHEM: Mt-Metis proposed a multi-threaded matching ap-

proach called unprotected matching. In this approach, each

thread updates the matching result φ simultaneously, followed

by checking if there is a matching conflict, i.e., φ(φ(u)) 	= u
for each node u. Nodes involved in a matching conflict will

not be collapsed with other nodes. Unprotected matching out-

performs the other two matching approaches in [13] in terms

285

Authorized licensed use limited to: The Ohio State University. Downloaded on April 19,2022 at 16:56:45 UTC from IEEE Xplore. Restrictions apply.

of efficiency due to reduced synchronization and memory

accesses.

To perform NHEM in parallel, DistMILE leverages unpro-

tected matching with several optimizations. Race conditions

that occur in line 18 of Algorithm 1 can cause matching

conflicts, which can further induce a larger coarsened graph

increasing the running time of base embedding. To reduce

the matching conflicts, DistMILE additionally checks the

matching status of both node u and its selected neighbor

v in line 17 before updating φ. This optimization greatly

reduces the matching conflicts with little additional overhead.

For example, on Flickr, it helps decreasing the graph size by

13% after being coarsened 5 times.

To further avoid matching conflicts, we adopt a heuristic

strategy to choose the mode of NHEM. Specifically, when the

number of nodes in the graph is no less than a threshold nc,

DistMILE performs NHEM in parallel, otherwise it runs the

serial version as MILE does.

B. Base Embedding

In the phase of base embedding, DistMILE calls a graph

embedding algorithm to learn the node representations on the

coarsened graph. Since the graph has been significantly shrunk

in the prior phase, this is more efficient than embedding the

original graph. Note that DistMILE is model-agnostic that

means the user is able to determine which method is exploited

for embedding and whether the model is trained on CPUs or

GPUs.

C. Refinement

Distributed deep learning recently became a popular so-

lution for machine learning on large graphs. By increasing

the number of processing units and their computation power,

GNN models can be trained on distributed machines effi-

ciently. For embedding refinement, we propose a distributed

training paradigm, as shown in Algorithm 2. It uses the base

embeddings from the second phase as input and leverages a

hybrid of distributed learning and parallel computing in order

to achieve the maximum speedup.

Minibatch Training and GraphSAGE: In MILE, a re-

finement model is trained with the entire node data in the

graph, which consumes too much memory and works only

for training on a single machine. In order to train the model

in parallel, it is necessary to adopt data parallelism and

split the data into multiple mini-batches. Mini-batch training

divides the training task into multiple sub-tasks that can be

assigned to distributed machines, reducing memory usage. In

our implementation of DistMILE, we use GraphSAGE as our

GNN model for refinement, which is compatible with mini-

batch training. A hyperparameter b is used to control the batch

size, which is always no more than the number of nodes

assigned to the current machine (see in line 4).

Distributed Learning with Horovod: In order to balance

the workload on each machine, DistMILE initially allocates

the equal number of nodes to the machines in line 3. Then

each machine partitions its nodes into minibatches of size b in

Algorithm 2 Distributed Training

Input: G = (V,E), s, b
Output: Trained model

1: rank ← horovod.rank()

2: procs ← horovod.size()

3: Vr ←
[
|V |

procs · rank, |V |
procs · (rank + 1)

)

4: b ← min{|Vr|, b}
5: Ñr ← shared array � Sample neighbors

6: #pragma omp parallel for
7: for all u ∈ Vr do
8: Sample s neighbors for node u, update Ñr[u]

9: Ñ ← AllGather(Ñr)
10: B ← Partition Vr into mini-batches of size b
11: for each batch in B do
12: Synchronously train the model with current batch

return model

line 10. During model training, each time the device fetches

one mini-batch and compute the gradients locally. To train

across a cluster of machines, DistMILE is incorporated with

Horovod for distributed training. Horovod provides an easy-to-

use interface to scale a single-machine training program to run

across multiple machines. Horovod can gather the gradients

from different devices and apply the averaged gradients to each

device, which follows [34] to normalize the loss on each ma-

chine by the total minibatch size. In addition to synchronizing

the model parameters distributed on each machine, Horovod is

able to achieve a high scaling efficiency which is appreciated

in distributed training.

Optimizations: The implementation of DistMILE has been

optimized for training on different hardwares, especially for

GPU training. Although training on GPU is efficient, the small

GPU memory usually limits the training performance. For

example, MILE needs to transfer data of all nodes between

CPU and GPU, which could be a bottleneck when the model is

trained on a large graph. In order to reduce the memory usage,

DistMILE is able to remove the unnecessary training data

(i.e., embeddings and sampled neighbors) for the current batch

in addition to leveraging mini-batch training. Furthermore,

for CPU computations such as neighbor sampling (in lines

6-8), DistMILE leverages a multi-threaded shared-memory

parallelism when it runs on multi-core machines. With these

optimizations, DistMILE can scale better across different

systems.

V. EXPERIMENTS

A. Experiment setup

1) Datasets: We use datasets that have been used in MILE

and other prior work of network embedding. Statistics of these

datasets are shown in Table II.

2) Baselines: Our experiments evaluate the performance of

different multi-level model-agnostic embedding frameworks,

namely, MILE and DistMILE.

286

Authorized licensed use limited to: The Ohio State University. Downloaded on April 19,2022 at 16:56:45 UTC from IEEE Xplore. Restrictions apply.

TABLE II
DATASET INFORMATION

Dataset # Nodes # Edges # Classes
Blog 10.3K 334.0K 39
Flickr 80.5K 5.9M 195

Youtube 1.1M 3.0M 47
Yelp 8.9M 39.8M 22

MILE: We run MILE with multiple graph embedding

methods as follows:

• NetMF [3]: NetMF is a representative matrix-

factorization based method for network embedding.

In our experiment, NetMF is trained on CPU with the

rank set to 1024 and the window size set to 10.

• DeepWalk [4]: DeepWalk is a popular random-walk

based embedding method. It runs on CPU with paral-

lelism available for sampling random walks. We set the

length of random walks as 80, the number of walks for

each node to 10, and the window size to 10.

• SDNE [6]: SDNE utilizes deep neural networks to per-

form graph embedding. The model is trained with 5

epochs with the sizes of hidden layers set to [300, 500].
We set α = 0.2 and β = 10.0. In this experiment, the

model is trained and applied on a single GPU.

The experiments of MILE are conducted on a single ma-

chine. MILE only utilizes CPU parallelism to train the refine-

ment model. As MILE treats the phase of base embedding as a

black box, the selected base embedding method can determine

whether it is trained on CPU or GPU and whether or not to

run in parallel. For GraphSAGE, we set s = 102, b = 105,

and the learning rate to 10−3 if not specified.

DistMILE: Following the setup for MILE, DistMILE runs

with the three embedding methods above and utilizes inher-

ent parallelism. The differences are that DistMILE leverages

shared-memory CPU parallelism for graph coarsening on

a single machine, and it uses both CPUs and GPUs on

all machines for embedding refinement. We empirically set

nc = 104, h = 16, and p = 231 − 1 for coarsening. we use

the same parameters of GraphSAGE in MILE.

Fair comparison of MILE and DistMILE: To study

and compare the performance of both frameworks in a fair

situation, several adaptions are made in our experiments. In

the phase of embedding refinement, we add the mini-batch

technique into MILE. The benefits are two-fold: it reduces

the memory usage for refinement so MILE can scale to larger

dataset, and MILE with mini-batch training is equivalent to the

serial version of DistMILE which makes the comparison more

fair. Furthermore, we adopt a new comparison paradigm. Due

to matching conflicts caused by the multi-threaded coarsening,

the coarsened graph in DistMILE is consequently larger than

that in MILE. Therefore, we use a new threshold coarsen depth
to control graph coarsening. Specifically, both DistMILE and

MILE repeatedly coarsen the graph until the number of nodes

is no more than a given threshold nm. In our experiment, we

set nm = |V | · 2−m where m is the coarsen depth varying

within different ranges depending on the network size.

3) Metrics: Following the experiment setting of MILE, we

evaluate the quality of the embeddings through the task of node

classification. More specifically, we use the node embeddings

as the features for classification, and report the average F1-

scores after a 10-fold cross validation.

4) System specification: We conduct the experiments on

a cluster of four Linux machines with a 28-core Intel Xeon

E5-2680 CPU, an NVIDIA Tesla v100 GPU, and 128GB of

RAM on each machine. Our method is implemented in Python,

where we use the pymp2 and horovod3 packages for parallel

computing and distributed learning, respectively. In addition,

we use MVAPICH2-GDR4 for MPI communication. Our code

B. Analysis

This section of experiments compares DistMILE with MILE

through node classification to see their quality and running

time at different coarsen depths. Fig. 3 shows the results,

where we assign dark/light colors to DistMILE/MILE with the

same base embedding method. Note that setting coarsen depth

m = 0 means that it directly applies the original embedding

method with no coarsening and refinement. We report the

running time in seconds.

Both DistMILE and MILE expedite embedding: Multi-

level embedding framework can help existing embedding

methods scale to larger networks. For example, NetMF cannot

be applied directly on YouTube/Yelp due to memory con-

straints. However, by using the coarsening-refinement strategy,

DistMILE and MILE can overcome the limitation of CPU

memory and embed large networks, which demonstrates that

DistMILE and MILE have a relatively lower demand of com-

puting hardware compared to the original embedding methods.

In addition, DistMILE and MILE are able to reduce the

time for embedding on large networks. For example, the

execution of SDNE on Flickr cannot finish within 2 days,

while DistMILE and MILE using SDNE with coarsen depth

m = 1 can finish in 5 hours. Increasing the coarsen depth

can further boost both frameworks. For m = 6 on Flickr,

the execution of MILE(SDNE) takes around 12 minutes, and

DistMILE(SDNE) can even finish in only 3 minutes. Similar

improvements are also observed in the results on YouTube and

Yelp.

DistMILE has comparable quality: The embedding qual-

ities of both frameworks with various embedding methods are

evaluated through Micro-F1 scores in the node classification

task, as shown in Fig. 3(a)-3(d). It can be seen that the impact

of embedding on coarsened graphs varies with different combi-

nations of base embedding methods and datasets. For example,

the quality of MILE/DistMILE with DeepWalk declines a little

after each time of coarsening (m > 0 on Blog/Flickr), while

the Micro-F1 scores of SDNE in both frameworks are still

comparable (m > 1 on all graphs) with respect to the original

version.

2https://github.com/classner/pymp
3https://github.com/horovod/horovod
4https://mvapich.cse.ohio-state.edu

287

Authorized licensed use limited to: The Ohio State University. Downloaded on April 19,2022 at 16:56:45 UTC from IEEE Xplore. Restrictions apply.

(a) Blog (Micro-F1) (b) Flickr (Micro-F1) (c) YouTube (Micro-F1) (d) Yelp (Micro-F1)

(e) Blog (Time) (f) Flickr (Time) (g) YouTube (Time) (h) Yelp (Time)

Fig. 3. Comparison of Overall Performance of MILE and DistMILE

In comparison of DistMILE and MILE, we observe that

DistMILE and MILE with the same base embedding method

always have similar Micro-F1 scores. For example, on Flickr,

the distance of any two lines denoting the same base embed-

ding method is at most 0.01. This demonstrate that the em-

ployment of hybrid high-performance computing techniques

in DistMILE does not hurt the embedding quality while

effectively boosting the embedding process.
DistMILE is significantly faster: In Fig. 3(e)-3(h), we

plot the running time of all baselines in a logarithmic scale.

This includes the running time of all three phases, and we

later compare MILE and DistMILE’s time in the phases

of coarsening and refinement respectively. The results show

that DistMILE is faster than MILE in almost every case.

Compared to MILE, DistMILE achieves up to 3× speedup

on Blog with little loss of quality. On Flickr, DistMILE’s

speedup is up to 8× (NetMF, m = 6). On small datasets,

the speedup of DistMILE is mainly contributed by parallel

coarsening and distributed training of refinement model, but

limited by the data volume. When it comes to larger datasets,

DistMILE is able to completely show the advantage of high-

performance computing. On YouTube (m = 6), the speedup

of DistMILE using NetMF with respect to MILE increases to

28. The speedup on large networks comes from the distributed

parallel computing for sampling neighbors during the training

of GraphSAGE.
The speedup of DistMILE with respect to MILE is af-

fected by the running time of base embedding. Since both

frameworks provides the user with full control of this phase,

DistMILE’s speedup decreases when the graph is not suffi-

ciently coarsened. When we decrease the coarsen depth, each

pair of lines corresponding to the same embedding method

becomes closer. We notice that on Flickr with m = 2 or 3,

TABLE III
COMPARISON OF SHARED-MEMORY

AND DISTRIBUTED-MEMORY COARSENING.

m
Time for Coarsening (sec)

Shared-Memory Distributed-Memory

1 8.39 120.60
2 12.07 172.91
3 15.46 214.72
4 26.70 243.59
5 33.84 258.11
6 37.83 264.35

DistMILE using SDNE is slightly slower than MILE because

the coarsened graph in DistMILE is much larger and SDNE is

inefficient for large graphs. However, in most cases, DistMILE

is much faster than MILE.

DistMILE scales better over Yelp: With the employment

of high-performance computing techniques, DistMILE has

an improved scalability than MILE on the largest dataset

Yelp. Considering the huge amount of time for sampling in

MILE, we reduce the number of sampled neighbors s to 10.

Unfortunately, MILE is unable to finish within the time limit

even under the relaxed setting due to the extremely long time

on sampling. In contrast, DistMILE can embed Yelp with all

embeding methods. The running time of DeepWalk on Yelp

is about 4 days, while DistMILE reduces it to only 4 hours

with coarsen depth 8. Furthermore, the embedding quality

of DistMILE does not decline much when we increase the

coarsen depth, which demonstrates that DistMILE can learn

embeddings with a comparable quality while significantly

reducing the running time.

Choice of Parallel Formulation for Coarsening: In addi-

288

Authorized licensed use limited to: The Ohio State University. Downloaded on April 19,2022 at 16:56:45 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
SPEEDUP FOR COARSENING

Dataset m MILE (sec) DistMILE (sec) Speedup

Flickr

1 81.40 8.39 9.70
2 112.52 12.07 9.32
3 135.19 15.46 8.74
4 152.50 26.70 5.71
5 163.22 33.84 4.82
6 164.32 37.83 4.34

Yelp

1 731.46 105.84 6.91
2 2099.41 339.17 6.19
3 2988.71 474.86 6.29
4 3593.85 496.04 7.25
5 3990.16 533.19 7.48
6 4292.87 574.92 7.47
7 4446.70 624.47 7.12
8 4869.37 653.31 7.45

TABLE V
SPEEDUP FOR REFINEMENT

Dataset m MILE (sec) DistMILE (sec) Speedup

Flickr

1 567.91 30.90 18.38
2 525.58 27.40 19.18
3 517.26 24.98 20.70
4 509.94 25.24 20.20
5 506.80 30.18 16.79
6 490.62 30.87 15.89

YouTube

1 16973.99 582.04 29.16
2 15512.14 355.87 43.59
3 14836.22 277.62 53.44
4 14541.72 252.90 57.50
5 14608.88 249.96 58.44
6 14851.52 264.16 56.22

tion to the shared-memory formulation of parallel graph coars-

ening, we implement a distributed-memory version to explore

different choices of parallel formulations. In the distributed-

memory formulation, the graph is initially partitioned into M
subgraphs, where M is the number of machines. During the

matching process, each machine communicates the matching

information of nodes they share with other machines.

Table III shows the running time of shared-memory and

distributed-memory formulations on Flickr, respectively. We

observe that the shared-memory formulation is always faster

than the distributed version regardless of coarsen depths. At

coarsen depth m = 1, distributed coarsening finishes in

120 seconds, while shared-memory coarsening only needs 8

seconds. Hence we adopt the shared-memory parallelism on a

single machine in the phase of coarsening.

DistMILE’s speedup in different phases: Next we study

the improvements in running time of DistMILE with respect

to MILE in the phase of graph coarsening and embedding

refinement. In this experiment, we use DeepWalk as the base

embedding method for both frameworks. Note that as the

first phase, graph coarsening is not affected by the choice of

embedding method. Although the phase of refinement takes

the learned embeddings as its input, the workload in this phase

does not vary. Therefore, the choice of base embedding method

has little impact on the speedup of DistMILE in these two

TABLE VI
IMPACT OF VARYING T ON COARSENING AND FOLLOW-UP EMBEDDING

Dataset T
Coarsening

Graph Size
Embedding Total

(sec) (sec) (sec)

Flickr

1 162.35 5043.0 189.60 351.95
2 88.20 5071.4 199.40 287.60
4 48.84 5164.2 211.10 259.94
8 29.73 5312.4 217.69 247.43

16 19.07 5510.0 224.37 243.44
28 15.46 5727.8 225.95 241.38

Yelp

1 5553.74 30985.0 849.85 6403.60
2 3099.86 30080.2 714.39 3814.25
4 1753.55 30290.0 734.23 2487.78
8 1076.99 31918.2 874.68 1951.67
16 743.54 30885.6 834.03 1577.57
28 653.31 30247.4 730.36 1383.64

phases.

Table IV shows the running time of both frameworks and

the speedup of DistMILE for coarsening. We can observe that

DistMILE achieves up to 10× speedup with respect to MILE.

For coarsen depth m = 1 on Flickr, both DistMILE and

MILE coarsen the original network twice, as MILE spends

81 seconds and DistMILE only takes 8 seconds. On Yelp,

the speedup of DistMILE is up to 7.5×. It can decrease to

around 5× when the dataset is sparse or the graph has been

coarsened multiple times (m ≥ 4 on Flickr) since there is

relatively less parallel computation on these networks. On the

other hand, given a time limit for coarsening, DistMILE is

able to coarsen the original network more times, which can

boost the following two phases. For example, MILE coarsens

Flickr into a graph containing 20000 nodes (m = 1) within

81 seconds, while DistMILE can reduce the number of nodes

to 715 (m = 6) using only half of the time.

DistMILE has a more considerable speedup in the phase

of refinement (see in Table V). The speedup of DistMILE

is up to 21× on Flickr and increases to 58× on YouTube.

For coarsen depth m ≥ 3 on YouTube, MILE needs 4 hours

to train and apply the GraphSAGE model for embedding

refinement, but DistMILE only takes about 4 minutes. Thanks

to the leverage of distributed learning and parallel sampling in

the GraphSAGE model, DistMILE is able to learn the refined

representations within minutes.

C. DistMILE Drilldown

This section of experiments explores the performance of

DistMILE under different setups. We first evaluate the coars-

ening performance with different numbers of used threads and

observe its impact on follow-up embedding. In addition, we

study how DistMILE works on different computing clusters

by varying the size of machines. We also explore the impact

of learning rate and batch size on distributed learning for

refinement. Without loss of generality, here we use DeepWalk

as the base embedding method.

Varying the Number of Threads for Coarsening: Dist-

MILE leverages multi-threading shared-memory parallel com-

puting for graph coarsening. Now we vary the number of

289

Authorized licensed use limited to: The Ohio State University. Downloaded on April 19,2022 at 16:56:45 UTC from IEEE Xplore. Restrictions apply.

TABLE VII
IMPACT OF VARYING THE NUMBER OF MACHINES ON REFINEMENT

M
Training Refinement Total Scaling

(sec) (sec) (sec) Efficiency

1 1060.92 62369.38 63430.30 100
2 558.29 31557.25 32115.54 98.75
3 371.61 21267.34 21638.95 97.71
4 286.54 16324.09 16610.64 95.47
5 259.92 13226.12 13486.04 94.07
6 217.01 11131.82 11348.83 93.15
7 186.70 9506.89 9693.59 93.48
8 184.97 8795.72 8980.69 88.22

threads T used for coarsening to see how it affects the first

phase and the follow-up base embedding. With increasing T
from 1 to 28, we measure the running time of coarsening and

embedding as well as the size of coarsened graph, as shown

in Table VI. Note that we keep the 28-core parallelism in

DeepWalk unchanged for fair comparison.

We first observe that using more threads results in faster

graph coarsening, which is expected. For example, coarsening

Flickr with only one thread takes 162 seconds, while increas-

ing T to 28 can reduce the running time to only 15 seconds,

which is an 11-fold speedup. On Yelp, using 28 threads can

save 1.4 hours over single-threaded coarsening.

On the other hand, increasing the number of used threads

may lead to slower base embedding by increasing the size of

the coarsened graph. This is because matching conflicts are

more likely to happen when we use more threads, hence more

nodes remain unmatched after coarsening. With varying T
from 1 to 28 on Flickr, the graph size increases by 700, which

leads to 35 more seconds in the follow-up embedding. We

notice that the sizes of coarsened graphs do not always strictly

decrease with the increasing T , which is because DistMILE

coarsens the graph for different times when T varies. Using

less threads can reduce matching conflicts so DistMILE can

more quickly meet the requirement of coarsening. Examples

include T = 8 and 16 (one more time of coarsening) on Yelp.

To better understand the tradeoff between the efficiencies

of coarsening and base embedding, Table VI shows the total

running time of both phases. We observe that using less than

28 threads is relatively inefficient on both datasets, therefore

we recommend setting the number of threads equal to the

number of CPU cores for maximum overall speedup.

Varying the Number of Machines: DistMILE exploits

distributed learning to train the refinement model across mul-

tiple machines. To learn how DistMILE leverages computing

resources, we measure the running time and scaling efficiency

of the refinement phase on Yelp, as shown in Table VII.

We first observe that the phase of refinement in DistMILE

is dramatically accelerated thanks to the leverage of high-

performance computing techniques. On a single machine,

DistMILE needs around 18 hours to learn the representations

for the fine-grained graph. With four machines used, it finishes

within 4.7 hours. The running time is further reduced to 2.4

hours when 8 machines are used. Additionally, DistMILE

TABLE VIII
IMPACT OF VARYING THE LEARNING RATE ON MICRO-F1

Learning Rate Blog Flickr YouTube Yelp

0.01 0.228 0.234 0.427 0.623
0.001 0.243 0.260 0.439 0.633
0.0001 0.212 0.237 0.409 0.626

TABLE IX
IMPACT OF VARYING THE BATCH SIZE

b
Training Applying Memory

Micro-F1
(sec) (sec) Usage

500 284.05 12132.22 1.20 0.627
1,000 334.12 6443.27 1.46 0.627
2,000 328.80 4288.91 1.96 0.629
5,000 323.21 2929.13 2.97 0.631
10,000 311.44 2468.45 3.18 0.631
20,000 302.98 2249.71 4.98 0.631
50,000 292.15 2019.47 16.99 0.632
100,000 279.90 1868.11 30.82 0.632

achieves a high scaling efficiency. With 4 machines or less,

its scaling efficiency is at least 95%. Even when 8 machines

are used, the scaling efficiency declines only slightly to 88%.

Varying the Learning Rate: We evaluate the quality

of learned embeddings with different learning rates from

{0.01, 0.001, 0.0001} that are also used by the authors of

GraphSAGE [14]. In Table VIII, we observe that setting the

learning rate to 0.001 outperforms the other two choices on

Flickr by 11% in terms of Micro-F1. While the three options

achieve similar Micro-F1 scores on Yelp, using 0.001 is

slightly better. Similar results are shown on Blog and YouTube.

Varying the Batch Size: Moving the batch size b from

500 to 100000 on Yelp, we observe that large batch sizes can

reduce the exact time of training and applying the refinement

model (see in Table IX). Our choice of b = 100, 000 in

the main experiment achieves the best efficiency among all

choices. More specifically, the change in batch sizes has lim-

ited impact on the training time, which ranges from 280 to 330

seconds. However, using large batch sizes can dramatically

reduces the time of applying the model. By increasing the

batch size, the time of applying can be reduced from 3.4 hours

(b = 500) to only 30 minutes (b = 100, 000).

On the other hand, using a large batch size leads to a higher

memory usage. For example, when b ≤ 10, 000, the refinement

phase uses up to 3GB GPU memory, while the usage increase

to about 30 GB if the batch size increase to 100, 000. This is

because most GPU memory is consumed by the embeddings

of sampled neighbors, which is O(bsd). We observe that there

is no quality loss when the model is trained with large batch

sizes, which is consistent with previous work [34].

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a distributed multi-level embed-

ding framework DistMILE to further enhance the scalability

of graph embedding. First, we present a new multi-threaded

290

Authorized licensed use limited to: The Ohio State University. Downloaded on April 19,2022 at 16:56:45 UTC from IEEE Xplore. Restrictions apply.

parallel algorithm for graph coarsening which reduces both

synchronization cost and race conditions in coarsening. Sec-

ond, DistMILE keeps the follow-up phase of base embedding

a black box, and it is compatible with any embedding method

trained on CPUs or GPUs. Third, DistMILE adopts a dis-

tributed training paradigm for embedding refinement with a

high scaling efficiency, which takes full advantages of high-

performance computing techniques. Our framework can learn

the representations of comparable quality while achieving a

high speedup with respect to MILE, significantly improving

the scalability of graph embedding methods. An interesting

direction for future research is implement other distributed

refinement models to further enhance the efficiency.

ACKNOWLEDGEMENTS

This material is supported by the National Science Foun-

dation (NSF) under grants OAC-2018627, CCF-2028944, and

CNS-2112471. Any opinions, findings, and conclusions in this

material are those of the author(s) and may not reflect the

views of the respective funding agency.

REFERENCES

[1] R. Hu, C. C. Aggarwal, S. Ma, and J. Huai, “An embedding approach
to anomaly detection,” in 2016 IEEE 32nd International Conference on
Data Engineering (ICDE). IEEE, 2016, pp. 385–396.

[2] J. Wang, P. Huang, H. Zhao, Z. Zhang, B. Zhao, and D. L. Lee,
“Billion-scale commodity embedding for e-commerce recommendation
in alibaba,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018, pp. 839–
848.

[3] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network
embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec,” in Proceedings of the eleventh ACM international conference
on web search and data mining, 2018, pp. 459–467.

[4] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 701–710.

[5] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–
864.

[6] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, 2016, pp. 1225–1234.

[7] J. Liang, S. Gurukar, and S. Parthasarathy, “Mile: A multi-level frame-
work for scalable graph embedding,” In ICWSM, also available as arXiv
preprint:1802.09612, 2021.

[8] H. Chen, B. Perozzi, Y. Hu, and S. Skiena, “Harp: Hierarchical repre-
sentation learning for networks,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32, no. 1, 2018.

[9] T. A. Akyildiz, A. A. Aljundi, and K. Kaya, “Gosh: Embedding big
graphs on small hardware,” in 49th International Conference on Parallel
Processing-ICPP, 2020, pp. 1–11.

[10] R. Ramanath, H. Inan, G. Polatkan, B. Hu, Q. Guo, C. Ozcaglar,
X. Wu, K. Kenthapadi, and S. C. Geyik, “Towards deep and
representation learning for talent search at linkedin,” in Proceedings of
the 27th ACM International Conference on Information and Knowledge
Management, ser. CIKM ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 2253–2261. [Online]. Available:
https://doi.org/10.1145/3269206.3272030

[11] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for
irregular graphs,” Journal of Parallel and Distributed computing, vol. 48,
no. 1, pp. 96–129, 1998.

[12] G. Karypis and V. Kumar, “Parallel multilevel series k-way partitioning
scheme for irregular graphs,” Siam Review, vol. 41, no. 2, pp. 278–300,
1999.

[13] D. LaSalle and G. Karypis, “Multi-threaded graph partitioning,” in
2013 IEEE 27th International Symposium on Parallel and Distributed
Processing. IEEE, 2013, pp. 225–236.

[14] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, ser. NIPS’17.
Red Hook, NY, USA: Curran Associates Inc., 2017, p. 1025–1035.

[15] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax,” in International Conference on Learning
Representations, 2019.

[16] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
saint: Graph sampling based inductive learning method,” in International
Conference on Learning Representations, 2020.

[17] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

[18] A. Gibiansky, “Bringing hpc techniques to deep learning,” http://
research.baidu.com/bringing-hpc-techniques-deep-learning/, 2017.

[19] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker et al., “Large scale distributed
deep networks,” 2012.

[20] D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, “The mva-
pich project: Transforming research into high-performance mpi library
for hpc community,” Journal of Computational Science, p. 101208,
2020.

[21] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings, 2017.

[22] C. Deng, Z. Zhao, Y. Wang, Z. Zhang, and Z. Feng, “Graphzoom: A
multi-level spectral approach for accurate and scalable graph embed-
ding,” in The International Conference on Learning Representations
(ICLR), 2020.

[23] N. Kipf Thomas and W. Max, “Variational graph auto-encoders,” in
NeurIPS Workshop on Bayesian Deep Learning, 2016.

[24] Z. Zhu, S. Xu, J. Tang, and M. Qu, “Graphvite: A high-performance
cpu-gpu hybrid system for node embedding,” in The World Wide Web
Conference, 2019, pp. 2494–2504.

[25] J. Qiu, L. Dhulipala, J. Tang, R. Peng, and C. Wang, “Lightne:
A lightweight graph processing system for network embedding,” in
Proceedings of the 2021 International Conference on Management of
Data (SIGMOD 2021), June 2021.

[26] A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and
A. Peysakhovich, “Pytorch-biggraph: A large-scale graph embedding
system,” arXiv preprint arXiv:1903.12287, 2019.

[27] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen,
and J. S. Rellermeyer, “A survey on distributed machine learning,”
ACM Comput. Surv., vol. 53, no. 2, Mar. 2020. [Online]. Available:
https://doi.org/10.1145/3377454

[28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[29] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[30] E. De Coninck, S. Bohez, S. Leroux, T. Verbelen, B. Vankeirsbilck,
P. Simoens, and B. Dhoedt, “Dianne: a modular framework for de-
signing, training and deploying deep neural networks on heterogeneous
distributed infrastructure,” Journal of Systems and Software, vol. 141,
pp. 52–65, 2018.

[31] H. Koga, T. Ishibashi, and T. Watanabe, “Fast agglomerative hierarchical
clustering algorithm using locality-sensitive hashing,” Knowledge and
Information Systems, vol. 12, no. 1, pp. 25–53, 2007.

[32] V. Satuluri and S. Parthasarathy, “Bayesian locality sensitive hashing for
fast similarity search,” arXiv preprint arXiv:1110.1328, 2011.

[33] M. S. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, 2002, pp. 380–388.

[34] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: Training
imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

291

Authorized licensed use limited to: The Ohio State University. Downloaded on April 19,2022 at 16:56:45 UTC from IEEE Xplore. Restrictions apply.

