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Stress relaxation in network materials:
the contribution of the network
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Stress relaxation in network materials with permanent crosslinks is due to the transport of fluid within
the network (poroelasticity), the viscoelasticity of the matrix and the viscoelasticity of the network. While
relaxation associated with the matrix was studied extensively, the contribution of the network remains

unexplored. In this work we consider two and three-dimensional stochastic fiber networks with

viscoelastic fibers and explore the dependence of stress relaxation on network structure. We observe

that relaxation has two regimes — an initial exponential regime, followed by a stretched exponential
regime — similar to the situation in other disordered materials. The stretch exponent is a function of
density, fiber diameter and the network structure, and has a minimum at the transition between the

affine and non-affine regimes of network behavior. The relaxation time constant of the first, exponential

regime is similar to the relaxation time constant of individual fibers and is independent of network

density and fiber diameter. The relaxation time constant of the second, stretched exponential regime is
a weak function of network parameters. The stretched exponential emerges from the heterogeneity of
relaxation dynamics on scales comparable with the mesh size, with higher heterogeneity leading to

smaller stretch exponents. In composite networks of fibers whose relaxation time constant is selected

from a distribution with set mean, the stretch exponent decreases with increasing the coefficient of
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variation of the fiber time constant distribution. As opposed to thermal glass formers and colloids, in
these athermal systems the dynamic heterogeneity is introduced by the network structure and does not
evolve during relaxation. While in thermal systems the control parameter is the temperature, in this

athermal case the control parameter is a non-dimensional structural parameter which describes the

rsc.li/soft-matter-journal

1. Introduction

Many biological and soft man-made materials can be classified
as network materials. This class includes materials in which a
network of filaments provides structural integrity and controls
the mechanical behavior, such as in cartilage, tendons, various
membranes within the human body, gels, molecular networks
such as elastomers, paper and nonwovens. Most of these
materials exhibit time-dependent behavior. They may creep
under constant load, relax after an imposed deformation when
held at constant strain or, in general, exhibit strain rate-
dependent stress in a generic mechanical test.

Multiple mechanisms lead to time dependence of the
mechanical behavior of network materials, including: the time
dependence of the matrix (if the network is embedded in a
viscoelastic material), e. 2., the transport of solvent across, and
in and out of the network,>® viscous interactions between
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degree of non-affinity of the network.

filaments in contact,’ the time dependence of the fiber material
behavior, and the process of crosslink rupture or dissociation.>®
The last mechanism is inactive in permanently crosslinked
networks. Viscous friction between filaments is essential in
molecular networks with small free volume (i.e. when filaments
are densely packed) such as in elastomers.”” If the network is
embedded in a viscoelastic matrix, the matrix contributes to the
time dependence of the material behavior, an example being
connective tissue which has polar and hydrophilic glycosamino-
glycan molecules (GAG) embedded in the collagen network.® The
transport of viscous fluid across the network introduces strain
rate dependence, which is quantified by poroelastic models.”°
The characteristic time constant of relaxation within poroelasti-
city is proportional to the viscosity of the embedding fluid, 7, and
to the square of the sample size, and inversely proportional to
the network stiffness, E,. Finally, the time dependent behavior of
individual filaments is also expected to contribute to the time
dependence of the network response, but this aspect was not
studied extensively to date."""?

Collagen-based biological tissue is an intensely studied
system in which multiple mechanisms operate. Stress
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relaxation in reconstituted collagen was described with a
Prony series with three time constants."*® The values of
these constants vary from report to report, but fall in the
range 0.6-8 s, 13-40 s and 800-1300 s, respectively. Stress
relaxation of collagenous tissue may be also described using
a Prony series with three terms. In'® the time constants
reported for the rabbit periodontal ligament are 0.4 s, 4 s
and 400 s, while in'’ the time constants for fibroblast-seeded
collagen are approximately 10 s, 100 s and 2000 s. These
works do not associate the relaxation modes with specific
mechanisms. However, it is acknowledged that poroelasticity
operates in all cases and is responsible for at least one of the
relaxation modes.

An example in which one mechanism is clearly dominant is
provided by chemical gels, such as acrylamide. The large free
volume of chemical gels limits the direct interaction of
filaments which implies that poroelasticity is more important
than internal friction. A large number of publications present
data for various gels, e.g.***

The mechanisms associated with solvent transport and the
viscoelasticity of the embedding matrix do not operate in
nonwovens and hence such materials may provide a testbed
for the effectiveness of the other mechanisms causing time-
dependent behavior listed above. Unfortunately, the literature
on nonwovens does not support a unique conclusion in this
sense, as some reports indicate that the network exhibits
little or no time-dependent behavior despite the fact that
individual fibers have time-dependent response,”> while
some other reports indicate the opposite. For example, ref. 23
reports logarithmic relaxation for a network of polycaprolac-
tone fibers.

It becomes apparent that the broad range of behaviors
reported in the literature on various network materials is due
to the concomitant operation of multiple mechanisms. This
makes difficult the evaluation of the contribution of individual
mechanisms to global relaxation exclusively based on experi-
mental data. As indicated above, of the various mechanisms,
the effect of the time-dependent fiber behavior is the least
studied and, in fact, rarely mentioned in discussions of the
viscoelasticity of network materials. In order to isolate the
contribution of the network to global relaxation, we construct
in this work models in which all other relaxation mechanisms
are absent. In these models fibers are viscoelastic and are
characterized by a single relaxation time. Fiber interaction at
sites which are not crosslinks is neglected. The crosslinks are
permanent. We observe that the stochastic structure of the
network introduces a slow relaxation regime of Kohlrausch type
and study the dependence of the slowdown on the structural
parameters of the network. It results that networks in the
transition regime between affine and non-affine exhibit the
most heterogeneous dynamics, which leads to maximum slow-
down. This behavior, which is broadly encountered in thermal
systems such as monatomic and polymeric glasses close to the
glass transition temperature (T,), is encountered here in a
purely athermal system and is due to the frozen structural
heterogeneity of the network.

This journal is © The Royal Society of Chemistry 2022
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2. Models and network structural
parameters

Two (2D) and three-dimensional (3D) networks of Mikado and
Voronoi type, respectively, are considered in this work. Such
networks are widely used in the literature as proxies for network
materials of 3D**® and quasi-2D*"*° types.

Mikado networks, Fig. 1a, are constructed by depositing
fibers of length L, in a square problem domain of dimensions
L. The fiber center of mass and their orientation are defined by
random variables uniformly distributed over the problem
domain and over the angular range [0, n], respectively. Fibers
are crosslinked at all points where they cross and the crosslinks
are assumed to transmit both forces and moments (weld type)
both along given fiber and from fiber to fiber. The connectivity
number, i.e. the number of fiber segments emerging from each
crosslink is z = 4. Dangling ends are eliminated since, as long as
inter-fiber contacts are neglected, they do not contribute to
the mechanics of the network. Since the crosslinks located at
the fiber ends have z = 3, the overall connectivity index of the
network is somewhat smaller than 4.

Voronoi networks, Fig. 1b, are constructed in cubic domains of
edge length L by starting with randomly distributed seed points,
which are used to tessellate the space using the Voronoi proce-
dure. The edges of the polyhedral domains of the tesselation are
retained as fibers. The fiber length is controlled by adjusting the
number density of seed points. Each fiber has 2 crosslinks, one at
each end. As in the Mikado network case, the crosslinks are of
welded type and transmit both forces and moments. The
connectivity of this network is z = 4.

In both Mikado and Voronoi networks, fibers have diameter,
d, and viscoelastic behavior described by a Maxwell model of
stiffness Er and relaxation time constant tz. With the exception
of the systems discussed in Section 3.4, all fibers in given
model have same E; and 7;. In these cases, 7; is considered
the unit of time of the relaxation problem (ie. it is used to
normalize all relevant times). The unit of stress is E.

In order to study their relaxation, networks are loaded in
uniaxial tension up to strain &, after which the global strain is
kept constant and the stress in the loading direction is mon-
itored, o(¢). Tractions in directions perpendicular to the loading
direction are kept zero. The network is forced to deform in a
linear elastic (although not necessarily affine) way up to ¢, such

Fig. 1 (a) Mikado and (b) Voronoi networks used in this study.
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to prevent relaxation during loading. To this end, the constitutive
behavior of fibers is taken linear elastic up to the end of the
loading period. The constitutive description is then switched to
viscoelastic to trace the subsequent relaxation. The stress at the
end of the loading period is denoted by ¢,. In most simulations
reported here, & = 3%. Larger &, up to 30%, are considered in
order to determine to what extent structural changes introduced
by the large imposed strains modify the relaxation behavior, and
the results are reported in Section 3.3.

Fibers are modeled using Timoshenko beam elements
(B22 in 2D and B32 in 3D) and the solution is obtained with
the commercial finite element software Abaqus/Standard
(version 62.3). In average 5 elements are used per fiber, discre-
tization which led in previous studies to adequate convergence
of the energy, and hence provides the best compromise between
accuracy and computational cost.

One of the main goals of the present work is to establish the
relation between network structural parameters and the relaxation
behavior. Therefore, it is necessary to review the parameters used
to describe the structure. The network density, p, is defined as the
total length of fiber per unit area (in 2D) or volume (in 3D).
In both Mikado and Voronoi networks, the segment lengths are
Poisson distributed; the mean value, [, is the only parameter of
this distribution. I, is related to p as pl. = /2 in the Mikado case,*
and as pl> = ¢ in the Voronoi case, where ¢ = 0.95 for the
unperturbed Voronoi network of straight fibers.>" If fibers are
not straight, ¢ depends on fiber crimp,* as well as on any
geometric perturbation applied to the basic Voronoi structure.

At constant [, increasing the fiber diameter, d, increases
the bending rigidity faster than the axial rigidity, which makes
the axial mode gradually energetically less expensive than the
bending mode. It is broadly reported in the literature on
network mechanics®”**?* that dense networks of fibers with
large d store most of the strain energy in the axial deformation
mode of fibers. Consequently, such structures deform approxi-
mately affinely. Decreasing p and/or d leads to networks whose
deformation is controlled by the bending mode of fibers and
which exhibit non-affine deformation patterns. Network
stiffness scales linearly with the density (E, ~ p) and is
proportional to EA (where E¢ is Young’s modulus of the fiber
material and A ~ d” is the area of the fiber cross-section) in the
affine regime. In the non-affine regime E, ~ EIp?, where g = 2
for the Voronoi structures®*®> and ¢ = 8 for 2D Mikado
networks,?>”*?*¢ while I is the axial moment of inertia of the
fiber cross-section (I ~ d*). These scaling relations hold
provided p is well above the transport percolation threshold
for the respective stochastic geometry.

The degree of non-affinity is defined by a non-dimensional
structural parameter, w, which combines the effect of p and d.
In the Mikado case, w = logo[(pLo)’(d/4L)*], while in the
Voronoi case, w = log;o[p(d/4)*]. The non-affine to affine transi-
tion takes place in Mikado and Voronoi networks in the vicinity
of Wya_a = 4.5 and of wys_a = —1.2, respectively.>**” In this work
we construct networks with a broad range of w values such to
span the non-affine range and the non-affine to affine
transition. We note that the majority of network materials,
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particularly the biological collagen-based networks, have
parameters that place them in the non-affine category.

3. Results and discussion
3.1 Relaxation of networks with identical fibers

We consider first networks of fibers made from the same
viscoelastic material, represented by a Maxwell model with
relaxation time constant, 7. Stress relaxation following an
imposed uniaxial strain of & = 3% is evaluated for Mikado
and Voronoi networks with a broad range of w values in the
non-affine and affine regimes. w is varied by changing p and d
and we confirm that networks with different p and d, but with
same w identically. Hence,
parameter w provides a sufficient representation of the
structure in this problem and for this type of networks. Given
the duality between linear elasticity and viscoelasticity, this is
expected; note that w is also the unique parameter that controls

relax the non-dimensional

the small strain stiffness, E,, in networks of fibers made from
the same material.

Fig. 2a shows stress relaxation curves for Mikado networks
of w = 3.47 and 4.38, which correspond to the non-affine
regime, W < Wya-a, and w = 5.47 in the initial range of the
affine regime. The time-dependent stress, (t), is normalized by
the stress at the onset of relaxation, o,. It is observed that
relaxation is exponential at early times, regime in which
networks with different w relax identically, but becomes slower
at later times. To test whether the data conforms to a stretched
exponential function (Kohlrausch relaxation) of the form

a(t) = aoexp[—(t/r)ﬁ], €))

we replot the curves in Fig. 2a as y = In[—In(a(¢)/go)] vs. In t/7¢, in
Fig. 2b. If the stretched exponential is an adequate representation
of the data, the plot must become linear, of slope equal to the
stretch exponent, f3, and intercept fln t/zs

Fig. 2b confirms the existence of two relaxation regimes: the
first (regime I) is exponential (ff = 1), while the second (regime
II) is described by eqn (1), as also shown schematically in
Fig. 2d. Mikado networks with different w lead to overlapping
curves in regime I, that enter regime II at different transition
times ¢, marked by point O in Fig. 2d. For w in the affine regime,
exponent 5 of regime II increases with w, as shown schemati-
cally in Fig. 2d, line OC. A similar behavior is observed for
Voronoi networks, Fig. 2c.

For both Mikado and Voronoi cases, networks of increasing
size were considered to check for size effects. With the models
used to evaluate the data reported here being of edge size L
(the total number of fibers in a typical Voronoi and Mikado
network used is approximately 120 000 and 700, respectively),
we considered models of size 2L and 4L and observed no
difference in the relaxation curves, which indicates that the
reported results are free of model size effects.

Similar phenomenology, including an initial exponential
relaxation followed by slowing down of relaxation dynamics, is
generally observed in glass forming systems in the vicinity of Tg;

This journal is © The Royal Society of Chemistry 2022
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(a) Semi-logarithmic representation of normalized stress vs. time relaxation curves for Mikado networks with w = 3.47, 4.38 and 5.47; (b) The data

in (a) replotted as y = In[—In(a(t)/ao)] vs. Int/z; (c) similar data for Voronoi networks with w = —2.22, —1.96 and —1.01. Panel (d) shows a schematic of the
curves in (b) and (c) emphasizing the two relaxation regimes and the associated parameters.

see reviews in ref. 38 and 39. The origin of the slowing down was
debated in a large number of publications and was captured by
models.*® The control parameter in these cases is the tempera-
ture. For T » Ty, relaxation is exponential, while the stretched
exponential function becomes dominant as T approaches Tj.
The stretch exponent  was placed in relation to the fragility
parameter, m = dlog (t)/d(T,/T), which represents the departure
of the temperature dependence of the mean relaxation time t
from the prediction of the Arrhenius function.*! This establishes
the common physical origin of the slowing down of relaxation
and of fragility. The stretched exponent was also related to the
dynamic free volume.** The non-equilibrium physics perspective
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on this phenomenon is based on the concept that spatial
correlations of dynamics appear in disordered systems as they
approach jammed states. Correlated local dynamics leads to
slowing down of relaxation probed on scales larger than the
correlation length, which itself increases in time.*’

Similar phenomenology is observed here in an entirely
athermal system and is introduced by the intrinsic structural
heterogeneity of the network. This issue is discussed further in
Section 3.2. The control parameter in this case is w, which
represents the degree of heterogeneity. As opposed to thermal
systems in the vicinity of the glass transition, here the hetero-
geneity is structural and does not evolve during relaxation.
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(a) Variation of the stretch exponent with w for (a) Mikado and (b) Voronoi networks. Triangles represent single replica simulations. Squares

indicate conditions for which 4 replicas (different realizations of the network) are considered and the bars represent standard error of 8. The dashed lines

represent fits with a polynomial of order 3 to the entire data set.
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Fig. 3 shows the variation of the stretch exponent with w for
Mikado (Fig. 3a) and Voronoi (Fig. 3b) networks. The triangles
show all systems studied and the bars represent the standard
error of a set of 4 replicas for each of the conditions indicated
by square symbols. The data indicates well-defined minima at
the transition between the non-affine and affine regimes, i.e. at
W = Wyna-a. The smallest f is approximately 0.14 in the 2D
Mikado case, and 0.3 in the 3D Voronoi case. f§ values for a large
number of glass-forming polymers in the vicinity of glass
transition are presented in.'' § at T, is generally larger than
0.5, but several systems exhibit low f8, such as poly vinylchloride
which has f§ = 0.24.

Lower values of f indicate that relaxation is more con-
strained by heterogeneity. The problem has two theoretical
limits: in the limit of very small w, filaments have negligible
bending stiffness. Since the bending mode is the softest, the
axial mode is not engaged. This implies that interactions in the
network are weak and hence fibers relax independently. In this
limit, relaxation of the network should be identical to that of
individual fibers, i.e. regime II in Fig. 2d is absent and ff = 1
throughout the entire relaxation history. In the limit of large w,
deformation is affine, which is equivalent to saying that
the correlation length of the local relaxation modes diverges.
The network is forced to relax as a homogeneous continuum.
Hence, in this limit f = 1 and relaxation becomes exponential.
This physical picture indicates that in the non-affine range, as
w increases and the cooperativity of relaxation increases, f
should decrease, while as the system moves into the affine
regime, f# should increase towards 1. This argument does not
predict the value of w at which f reaches its minimum. The
numerical study reported here indicates that, interestingly, the
minimum f results at the transition between the non-affine
and affine regimes, W = Wya_a.

We turn now to the relaxation times, 7y and 7y, of regimes I
and II, respectively. During regime I, o(¢) = opexp[—t/7y], and 7y is
independent of w for both 2D and 3D networks. This is
expected since the initial exponential regime corresponds to
the independent relaxation of small networks subdomains.
In the limit in which the size of these subdomains is equal to
l., fibers relax independently and hence 7; = 74 This limit is

Paper

recovered in the present study for all Mikado networks considered.
In the Voronoi case, 1y is somewhat larger than ¢ (tr; & 21¢), but it is
independent of w, which supports the idea that regime I is not
controlled by the network structure and parameters.

Fig. 4a shows the variation of the relaxation time constant in
regime II, 7y, with w, for all Mikado and Voronoi networks
considered in Fig. 3. 7y is normalized by t; and the horizontal
axis represents w — wya-a. Just like 5, 7;; has a minimum at
W = Wya-a. Fig. 4b shows the transition time between regimes
I and II, ¢, function of w — wya_a. The transition time is
normalized by t; of the respective network. The transition time
increases for w in the non-affine regime, while in the affine
regime it remains approximately constant. At W = Wya-a, & & 371
in the Voronoi case and ¢, &~ 4rt; in the Mikado case.

3.2 Network-scale dynamics

In order to understand the mechanism of relaxation, it is useful
to observe the local relaxation dynamics. To this end, we work
with Mikado networks (such to facilitate visualization) and
compute the velocity of each crosslink throughout the relaxation
history. The domain is divided in square patches of size 4/. and
the crosslink velocities are averaged over each patch. Fig. 5
shows the resulting velocity field for a non-affine network with
w = 3.47 at time t/t, = 8.3, i.e. into regime II. This network is
loaded in tension to &, = 3% in the horizontal direction, after
which the vertical boundaries of the model are held fixed, while
the upper and lower boundaries are kept traction free. The field
shown in Fig. 5 is normalized by the mean ¥ of the distribution
of velocity magnitudes v = |v|.

Fig. 5 shows a complex relaxation pattern which demon-
strates that the structure is strongly mechanically heterogeneous.
Based on field v we compute the symmetric component of the
velocity gradient tensor Vv, ie & = (Vv + Vv')/2, and further
compute the hydrostatic and deviatoric components of é. The
hydrostatic component is é,1, where

én = (611 T €22)/2 = (V)11 + (VV)22)/2 @

The deviatoric component, ¢ — é,1, has two eigenvalues of
equal magnitude and opposite sign. We take the positive
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Fig. 4

(a) Variation of the relaxation time constant in regime Il, 7, with w for all Mikado and Voronoi networks considered in Fig. 3. (b) Transition time

between regimes | and Il, t, function of w — wya-a. Triangles represent single replica simulations. Squares indicate conditions for which 4 replicas
(different realizations of the network) are considered and the bars represent standard error. The lines connect the square symbols.
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41,
Fig. 5 Velocity field for a non-affine network with w = 3.47 at time t/t; =

8.3. The velocities are coarse grained on the scale of square sub-domains
of size 4l..

eigenvalue which, in terms of components of Vv is given by

b = %\/((V")u - (VV)22)2+((VV)12 + (Vv)21)2 (3)

to be representative for the shear strain rate of the relaxation
field. Further, we evaluate the spin, which is the only nonzero
component of the anti-symmetric part of the velocity gradient,
S = (V)1 — (VV)1)/2.

We use the scalar quantities &, s and S to characterize the
rates of volumetric and shear relaxation strains and the angular
velocity of the relaxation field, respectively. Let &, & and S
represent the averages of the respective fields over the entire
problem domain, and o, 0; and os be the corresponding
standard deviations. The coefficients of variation of these fields
are computed as CV;, = a;, /én, CVp, = 03, /&, and CVs = og/S.

Fig. 6a show the variation of the means of the three scalar
measures during the relaxation of the network whose velocity
field is shown in Fig. 5 (w = 3.47); &, & and S are rendered non-
dimensional by normalization with ¥/l[.. We observe that, while
all three fields &, é& and S are non-zero, relaxation is controlled
by the shear mode, as & is one order of magnitude larger than
the dilatational and spin components, &, and S, at all times.
This observation is not unexpected since the shear mode is

if v v
Mikado (a)
0.8 w=3.47
0.6F ?b lu/V_
0.4} £ /v
0.2F ©
0
0

Fig. 6
CV;.

This journal is © The Royal Society of Chemistry 2022

Soft Matter

softer than the dilatational mode. We observe that the contribution
of the spin is similar to that of the dilatational mode. Further, we
observe (not shown in Fig. 6a) that the time variation of & is similar
to that of the stress shown in Fig. 2b, ie. it exhibits a stretched
exponential time dependence at times larger than ¢. Based on these
observations, we use further the shear component to characterize
the relaxation.

The coefficient of variation of the shear rate, CV;, provides a
measure of the magnitude of dynamic heterogeneity during
relaxation. Fig. 6b shows the time and w dependence of CV;.
Each curve represents CV; (w) computed at a given time, t/ty.
The main observation is that all curves have a maximum at w =
Wna-a = 4.5. This demonstrates that dynamic heterogeneity
reaches a maximum at the non-affine to affine transition, and
provides a physical justification for the presence of a minimum
in the stretch exponent f§ at w = wya_a, Fig. 3. Comparing the
three curves indicates the evolution of the shear rate field
heterogeneity during relaxation. We observe that for ¢ > ¢,
the fluctuation magnitude, as measured by CV;, does not vary
in time. This depicts a physical picture quite different from that
of thermal glass formers close to T,. The heterogeneity of the
relaxation field emerges from the structural heterogeneity of
the network, which does not change in time. Since parameter w
represents the degree of structural disorder, it also controls the
magnitude of dynamic heterogeneity, much like the temperature
is the control parameter in thermal systems.

It is interesting to put this result in relation with polymeric
glass formers with network structure. Relaxation in these
systems is controlled by the dynamic heterogeneity which
becomes more pronounced close to the glass transition. In
general terms, relaxation is thought to be controlled by packing.
However, the structure of the network is expected to play a role.
One may modify w of these networks by increasing the stiffness
of the polymer backbone (equivalent to increasing d in athermal
networks). Considering that such networks belong to the non-
affine range, the present results indicate that increasing the
chain stiffness should lead to the decrease of the stretch
exponent, f. Based on the results in,"" decreasing  should be
associated with an increase of fragility, which implies a shift of
the temperature dependence of relaxation (and viscosity) from

W-Wyaa

(a) Variation of &, & and S during the relaxation of the network whose velocity field is shown in Fig. 5 (w = 3.47). (b) Time and w dependence of
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Fig. 7 Variation of the (a) stretch exponent and (b) relaxation time constant, 1;,, with the pre-strain, ¢o, for a 3D Voronoi network with w = —1. The bars
represent standard error for 4 replicas of the respective networks. 1), is normalized by the relaxation time of regime |, ;.

Arrhenius to Vogel-Fulcher-Tammann-type. Such dependence
of fragility on the chain stiffness was observed recently in a
vitrimer system,** which provides support of the conjecture
introduced here that both the dynamic heterogeneity (as in
monatomic glasses) and the structural heterogeneity (as in
athermal networks) control relaxation in network-like, thermal
polymeric glass formers.

3.3 Effect of pre-strain

Networks are usually subjected to large strains. Since their
elasticity is non-linear, their viscoelasticity is also expected to
be non-linear. In both cases, non-linearity is of geometric type
and emerges from the structural re-organization of the network
under large strains. For example, ref. 13 and 44 report that in
collagen networks the time-dependent modulus E(t)/E(0) is
independent of the initial strain at relatively small strain levels,
but the relaxation time constants decrease (relaxation becomes
faster) with increasing é.

To test the effect of large strains on relaxation we consider a
Voronoi network with w = —1 and vary the pre-strain parameter
& from 3% to 30%. The two relaxation regimes reported in
Fig. 2 are observed for all values of ¢, considered, with the stress
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Fig. 8 Variation of the stretch exponent with the coefficient of variation
of the distribution of fiber relaxation times, CV;. The stretch exponent of
composite networks is normalized by that of networks in which all fibers
have the same relaxation time constant (denoted here by fo), equal to the
mean of the distribution of fiber relaxation time constants in the composite
network case, 7;.

452 | Soft Matter, 2022,18, 446-454

being described by exponential and stretched exponential
functions in regimes I and II, respectively. The stretch exponent
becomes a weakly decreasing function of ¢,, as shown in Fig. 7a.
The relaxation time constant of regime II also decreases with &,
as shown in Fig. 7b, and in agreement with experimental
observations in collagen networks.

3.4 Relaxation of networks with non-identical fibers

Many network materials are composite, in the sense that
material properties of fibers vary from fiber to fiber. Such
variability adds to the intrinsic structural stochasticity of the
network, increasing the degree of heterogeneity. Therefore, it
becomes of interest to determine to what extent the results
presented in the preceding sections apply to composite
networks.

To this end, we consider Mikado networks of w = 3.47
in which all fibers have the same Young’s modulus, E, but the
relaxation time constant, t, is selected from a Gamma distribu-
tion, p(t). The mean of the distribution, T, is kept fixed and
equal to the value considered above for the analysis of networks
composed from fibers with identical material properties. The
coefficient of variation of the distribution, CV, is kept as
parameter and varied in the interval [0, 0.8].

A similar analysis pertaining to elastic networks was
reported in,*> where the fiber material was linear elastic and
fiber Young’s modulus was selected from a distribution. The
mean of the distribution was kept constant and the variance
was increased such to evaluate the effect of increasing hetero-
geneity on network modulus. It was concluded that the overall
network stiffness decreases with increasing variance, a result
which also applies to the elasticity of continuum composites.*®

We observe that relaxation preserves the two regimes shown
in Fig. 2, with the first regime being exponential and the second
being described by a stretched exponential with exponent f.
Fig. 8 shows the variation of § with the magnitude of the pre-
strain, &; f is normalized by the stretch exponent f, of the
same network in which all fibers have the same relaxation time
constant, equal to 7r. The stretch exponent decreases with
increasing the variability of the relaxation time of individual
fibers. This is expected, since increasing CV,, leads to increased
structural heterogeneity. The result underlines, once again, the

This journal is © The Royal Society of Chemistry 2022
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causal relationship between the stretched exponential and the
structural heterogeneity of the network.

4. Conclusions

In this work we study the component of the relaxation behavior
of network materials associated with the viscoelasticity of the
fiber material. We focus on athermal 2D and 3D stochastic
networks and observe that relaxation has two regimes, of which
the first is exponential, while the second is of Kohlrausch type.
The relationship between the stretch exponent and the struc-
tural parameter w, which defines the degree of non-affinity of
the network, is established. It is seen that relaxation is slowest
(smallest stretch exponent) for networks at the transition
between the affine and non-affine regimes. The physical origin
of the slowdown is related to the structural heterogeneity of the
network. In composite networks in which the relaxation time of
individual fibers is different from fiber to fiber, relaxation slows
down further due to the enhanced structural heterogeneity.
We discuss that these findings are similar to observations made
in glass forming systems. However, while the dynamic hetero-
geneity in such systems evolves during relaxation, the hetero-
geneity in networks is structural and is not evolving in time.
The control parameter of the relaxation process, which in
thermal system is the temperature, is identified in athermal
networks to be the non-dimensional structural parameter w.

Conflicts of interest

The authors have no competing interests to declare.

Acknowledgements

This work was supported by the National Science Foundation
through grants CMMI-2007909 and CMMI-2022489.

References

1 B. Babaei, S. D. Abramowitch, E. L. Elson, S. Thomopoulos
and G. M. Genin, J. R. Soc., Interface, 2015, 12, 20150707.

2 P. de Buhan, X. Chateau and L. Dormieux, European Journal
of Mechanics - A/Solids, 1998, 17, 909-921.

3 V. C. Mow, S. C. Kuei, W. M. Lai and C. G. Armstrong,
J. Biomech. Eng., 1980, 102, 73-84.

4 K. L. Ngai, S. Capaccioli and D. J. Plazek, in The Science and
Technology of Rubber, ed. B. Erman, J. E. Mark and
C. M. Roland, Academic Press Elsevier Science & Technol-
ogy, Waltham, MA, USA, 4th edn, 2013, pp. 193-284.

5 L. G. Baxandall, Macromolecules, 1989, 22, 1982-1988.

6 O. Lieleg, M. M. A. E. Claessens, Y. Luan and A. R. Bausch,
Phys. Rev. Lett., 2008, 101, 108101.

7 R. A. Pethrick, Polym. Int., 2004, 53, 1394-1395.

8 G. ]J. Tortora and B. Derrickson, Principles of anatomy &
physiology, Wiley, Danvers, MA, 2014.

9 M. A. Biot, J. Appl. Phys., 1941, 12, 155-164.

This journal is © The Royal Society of Chemistry 2022

Soft Matter

10 Y. Hu and Z. Suo, Acta Mech. Solida Sin., 2012, 25,
441-458.

11 N. Zolfaghari, M. Moghimi Zand and M. R. K. Mofrad, Soft
Mater., 2020, 18, 373-385.

12 R.Y. Dhume and V. H. Barocas, Acta Biomater., 2019, 87, 245-255.

13 B. Xu, H. Li and Y. Zhang, J. Biomech. Eng., 2013,
135, 054501.

14 K. M. Pryse, A. Nekouzadeh, G. M. Genin, E. L. Elson and
G. L. Zahalak, Ann. Biomed. Eng., 2003, 31, 1287-1296.

15 B. Babaei, A. Davarian, K. M. Pryse, E. L. Elson and
G. M. Genin, J. Mech. Behav. Biomed. Mater., 2016, 55,
32-41.

16 K. Komatsu, J. Dent. Biomech., 2010, 1, 1-18.

17 J. E. Wagenseil, T. Wakatsuki, R. J. Okamoto, G. I. Zahalak
and E. L. Elson, J. Biomech. Eng., 2003, 125, 719-725.

18 C. Y. Hui and V. Muralidharan, J. Chem. Phys., 2005,
123, 154905.

19 W. C. Lin, K. R. Shull, C. Y. Hui and Y. Y. Lin, J. Chem. Phys.,
2007, 127, 094906.

20 M. Galli, K. S. C. Comley, T. A. V. Shean and M. L. Oyen,
J. Mater. Res., 2009, 24, 973-979.

21 Y. Hu, X. Zhao, J. J. Vlassak and Z. Suo, Appl. Phys. Lett.,
2010, 96, 121904.

22 R. Jubera, A. Ridruejo, C. Gonzalez and J. Llorca, Mech.
Mater., 2014, 74, 14-25.

23 R. R. Duling, R. B. Dupaix, N. Katsube and ]J. Lannutti,
J. Biomech. Eng., 2008, 130, 011006.

24 C. P. Broedersz, M. Sheinman and F. C. MacKintosh, Phys. Rev.
Lett., 2012, 108, 078102.

25 M. R. Islam and R. C. Picu, J. Appl. Mech., 2018, 85, 081011.

26 R. C. Picu, S. Deogekar and M. R. Islam, J. Biomech. Eng.,
2018, 140, 021002.

27 D. A. Head, A. J. Levine and F. C. MacKintosh, Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys., 2003, 68, 061907.

28 C. Heussinger and E. Frey, Phys. Rev. E: Stat, Nonlinear, Soft
Matter Phys., 2007, 75, 011917.

29 A.S. Shahsavari and R. C. Picu, Int. J. Solids Struct., 2013, 50,
3332-3338.

30 O. Kallmes and H. Corte, Tappi J., 1960, 43, 737-752.

31 S. Deogekar, Z. Yan and R. C. Picu, J. Appl. Mech., 2019,
86, 081010.

32 S. Deogekar, M. R. Islam and R. C. Picu, Int. J. Solids Struct.,
2019, 168, 194-202.

33 R. C. Picu, Soft Matter, 2011, 7, 6768-6785.

34 C. P. Broedersz and F. C. Mackintosh, Rev. Mod. Phys., 2014,
86, 995-1036.

35 L. Gibson and M. F. Ashby, Cellular solids: structure and
properties, Cambridge Univ. Press, Cambridge, 1988.

36 S. Deogekar and R. C. Picu, Phys. Rev. E, 2017, 95, 10-20.

37 S. Deogekar and R. C. Picu, J. Mech. Phys. Solids, 2018, 116,
1-16.

38 A. K. Rajagopal, K. L. Ngai and S. Teitler, J. Non-Cryst. Solids,
1991, 131-133, 282-288.

39 D. Chandler and J. P. Garrahan, Annu. Rev. Phys. Chem.,
2010, 61, 191-217.

40 L. M. C. Janssen, Front. Phys., 2018, 6, 97.

Soft Matter, 2022,18, 446-454 | 453



Soft Matter Paper

41 R. Bohmer, K. L. Ngai, C. A. Angell and D. J. Plazek, J. Chem. 44 S. Nam, K. H. Hu, M. J. Butte and O. Chaudhuri, Proc. Natl.

Phys., 1993, 99, 4201-4209. Acad. Sci. U. S. A., 2016, 113, 5492-5497.
42 V. P. Privalko, J. Non-Cryst. Solids, 1999, 255, 259-263. 45 E. Ban, V. H. Barocas, M. S. Shephard and R. C. Picu,
43 R. G. Ricarte and S. Shanbhag, Macromolecules, 2021, 54, J. Mech. Phys. Solids, 2016, 87, 38-50.

3304-3320. 46 E. Ban, Mech. Mater., 2019, 129, 139-147.

454 | Soft Matter, 2022, 18, 446-454 This journal is © The Royal Society of Chemistry 2022



