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Stress relaxation in network materials:

the contribution of the network

S. N. Amjad and R. C. Picu *

Stress relaxation in network materials with permanent crosslinks is due to the transport of fluid within

the network (poroelasticity), the viscoelasticity of the matrix and the viscoelasticity of the network. While

relaxation associated with the matrix was studied extensively, the contribution of the network remains

unexplored. In this work we consider two and three-dimensional stochastic fiber networks with

viscoelastic fibers and explore the dependence of stress relaxation on network structure. We observe

that relaxation has two regimes – an initial exponential regime, followed by a stretched exponential

regime – similar to the situation in other disordered materials. The stretch exponent is a function of

density, fiber diameter and the network structure, and has a minimum at the transition between the

affine and non-affine regimes of network behavior. The relaxation time constant of the first, exponential

regime is similar to the relaxation time constant of individual fibers and is independent of network

density and fiber diameter. The relaxation time constant of the second, stretched exponential regime is

a weak function of network parameters. The stretched exponential emerges from the heterogeneity of

relaxation dynamics on scales comparable with the mesh size, with higher heterogeneity leading to

smaller stretch exponents. In composite networks of fibers whose relaxation time constant is selected

from a distribution with set mean, the stretch exponent decreases with increasing the coefficient of

variation of the fiber time constant distribution. As opposed to thermal glass formers and colloids, in

these athermal systems the dynamic heterogeneity is introduced by the network structure and does not

evolve during relaxation. While in thermal systems the control parameter is the temperature, in this

athermal case the control parameter is a non-dimensional structural parameter which describes the

degree of non-affinity of the network.

1. Introduction

Many biological and soft man-made materials can be classified

as network materials. This class includes materials in which a

network of filaments provides structural integrity and controls

the mechanical behavior, such as in cartilage, tendons, various

membranes within the human body, gels, molecular networks

such as elastomers, paper and nonwovens. Most of these

materials exhibit time-dependent behavior. They may creep

under constant load, relax after an imposed deformation when

held at constant strain or, in general, exhibit strain rate-

dependent stress in a generic mechanical test.

Multiple mechanisms lead to time dependence of the

mechanical behavior of network materials, including: the time

dependence of the matrix (if the network is embedded in a

viscoelastic material), e.g.,1 the transport of solvent across, and

in and out of the network,2,3 viscous interactions between

filaments in contact,4 the time dependence of the fiber material

behavior, and the process of crosslink rupture or dissociation.5,6

The last mechanism is inactive in permanently crosslinked

networks. Viscous friction between filaments is essential in

molecular networks with small free volume (i.e. when filaments

are densely packed) such as in elastomers.4,7 If the network is

embedded in a viscoelastic matrix, the matrix contributes to the

time dependence of the material behavior, an example being

connective tissue which has polar and hydrophilic glycosamino-

glycan molecules (GAG) embedded in the collagen network.8 The

transport of viscous fluid across the network introduces strain

rate dependence, which is quantified by poroelastic models.9,10

The characteristic time constant of relaxation within poroelasti-

city is proportional to the viscosity of the embedding fluid, Z, and

to the square of the sample size, and inversely proportional to

the network stiffness, E0. Finally, the time dependent behavior of

individual filaments is also expected to contribute to the time

dependence of the network response, but this aspect was not

studied extensively to date.11,12

Collagen-based biological tissue is an intensely studied

system in which multiple mechanisms operate. Stress
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relaxation in reconstituted collagen was described with a

Prony series with three time constants.13–15 The values of

these constants vary from report to report, but fall in the

range 0.6–8 s, 13–40 s and 800–1300 s, respectively. Stress

relaxation of collagenous tissue may be also described using

a Prony series with three terms. In16 the time constants

reported for the rabbit periodontal ligament are 0.4 s, 4 s

and 400 s, while in17 the time constants for fibroblast-seeded

collagen are approximately 10 s, 100 s and 2000 s. These

works do not associate the relaxation modes with specific

mechanisms. However, it is acknowledged that poroelasticity

operates in all cases and is responsible for at least one of the

relaxation modes.

An example in which one mechanism is clearly dominant is

provided by chemical gels, such as acrylamide. The large free

volume of chemical gels limits the direct interaction of

filaments which implies that poroelasticity is more important

than internal friction. A large number of publications present

data for various gels, e.g.18–21

The mechanisms associated with solvent transport and the

viscoelasticity of the embedding matrix do not operate in

nonwovens and hence such materials may provide a testbed

for the effectiveness of the other mechanisms causing time-

dependent behavior listed above. Unfortunately, the literature

on nonwovens does not support a unique conclusion in this

sense, as some reports indicate that the network exhibits

little or no time-dependent behavior despite the fact that

individual fibers have time-dependent response,22 while

some other reports indicate the opposite. For example, ref. 23

reports logarithmic relaxation for a network of polycaprolac-

tone fibers.

It becomes apparent that the broad range of behaviors

reported in the literature on various network materials is due

to the concomitant operation of multiple mechanisms. This

makes difficult the evaluation of the contribution of individual

mechanisms to global relaxation exclusively based on experi-

mental data. As indicated above, of the various mechanisms,

the effect of the time-dependent fiber behavior is the least

studied and, in fact, rarely mentioned in discussions of the

viscoelasticity of network materials. In order to isolate the

contribution of the network to global relaxation, we construct

in this work models in which all other relaxation mechanisms

are absent. In these models fibers are viscoelastic and are

characterized by a single relaxation time. Fiber interaction at

sites which are not crosslinks is neglected. The crosslinks are

permanent. We observe that the stochastic structure of the

network introduces a slow relaxation regime of Kohlrausch type

and study the dependence of the slowdown on the structural

parameters of the network. It results that networks in the

transition regime between affine and non-affine exhibit the

most heterogeneous dynamics, which leads to maximum slow-

down. This behavior, which is broadly encountered in thermal

systems such as monatomic and polymeric glasses close to the

glass transition temperature (Tg), is encountered here in a

purely athermal system and is due to the frozen structural

heterogeneity of the network.

2. Models and network structural
parameters

Two (2D) and three-dimensional (3D) networks of Mikado and

Voronoi type, respectively, are considered in this work. Such

networks are widely used in the literature as proxies for network

materials of 3D24–26 and quasi-2D27–29 types.

Mikado networks, Fig. 1a, are constructed by depositing

fibers of length L0 in a square problem domain of dimensions

L. The fiber center of mass and their orientation are defined by

random variables uniformly distributed over the problem

domain and over the angular range [0, p], respectively. Fibers

are crosslinked at all points where they cross and the crosslinks

are assumed to transmit both forces and moments (weld type)

both along given fiber and from fiber to fiber. The connectivity

number, i.e. the number of fiber segments emerging from each

crosslink is z = 4. Dangling ends are eliminated since, as long as

inter-fiber contacts are neglected, they do not contribute to

the mechanics of the network. Since the crosslinks located at

the fiber ends have z = 3, the overall connectivity index of the

network is somewhat smaller than 4.

Voronoi networks, Fig. 1b, are constructed in cubic domains of

edge length L by starting with randomly distributed seed points,

which are used to tessellate the space using the Voronoi proce-

dure. The edges of the polyhedral domains of the tesselation are

retained as fibers. The fiber length is controlled by adjusting the

number density of seed points. Each fiber has 2 crosslinks, one at

each end. As in the Mikado network case, the crosslinks are of

welded type and transmit both forces and moments. The

connectivity of this network is z = 4.

In both Mikado and Voronoi networks, fibers have diameter,

d, and viscoelastic behavior described by a Maxwell model of

stiffness Ef and relaxation time constant tf. With the exception

of the systems discussed in Section 3.4, all fibers in given

model have same Ef and tf. In these cases, tf is considered

the unit of time of the relaxation problem (i.e. it is used to

normalize all relevant times). The unit of stress is Ef.

In order to study their relaxation, networks are loaded in

uniaxial tension up to strain e0, after which the global strain is

kept constant and the stress in the loading direction is mon-

itored, s(t). Tractions in directions perpendicular to the loading

direction are kept zero. The network is forced to deform in a

linear elastic (although not necessarily affine) way up to e0, such

Fig. 1 (a) Mikado and (b) Voronoi networks used in this study.
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to prevent relaxation during loading. To this end, the constitutive

behavior of fibers is taken linear elastic up to the end of the

loading period. The constitutive description is then switched to

viscoelastic to trace the subsequent relaxation. The stress at the

end of the loading period is denoted by s0. In most simulations

reported here, e0 = 3%. Larger e0, up to 30%, are considered in

order to determine to what extent structural changes introduced

by the large imposed strains modify the relaxation behavior, and

the results are reported in Section 3.3.

Fibers are modeled using Timoshenko beam elements

(B22 in 2D and B32 in 3D) and the solution is obtained with

the commercial finite element software Abaqus/Standard

(version 62.3). In average 5 elements are used per fiber, discre-

tization which led in previous studies to adequate convergence

of the energy, and hence provides the best compromise between

accuracy and computational cost.

One of the main goals of the present work is to establish the

relation between network structural parameters and the relaxation

behavior. Therefore, it is necessary to review the parameters used

to describe the structure. The network density, r, is defined as the

total length of fiber per unit area (in 2D) or volume (in 3D).

In both Mikado and Voronoi networks, the segment lengths are

Poisson distributed; the mean value, lc, is the only parameter of

this distribution. lc is related to r as rlc = p/2 in the Mikado case,30

and as rlc
2 = c in the Voronoi case, where c = 0.95 for the

unperturbed Voronoi network of straight fibers.31 If fibers are

not straight, c depends on fiber crimp,32 as well as on any

geometric perturbation applied to the basic Voronoi structure.31

At constant lc, increasing the fiber diameter, d, increases

the bending rigidity faster than the axial rigidity, which makes

the axial mode gradually energetically less expensive than the

bending mode. It is broadly reported in the literature on

network mechanics27,33,34 that dense networks of fibers with

large d store most of the strain energy in the axial deformation

mode of fibers. Consequently, such structures deform approxi-

mately affinely. Decreasing r and/or d leads to networks whose

deformation is controlled by the bending mode of fibers and

which exhibit non-affine deformation patterns. Network

stiffness scales linearly with the density (E0 B r) and is

proportional to EfA (where Ef is Young’s modulus of the fiber

material and A B d2 is the area of the fiber cross-section) in the

affine regime. In the non-affine regime E0 B EfIr
q, where q = 2

for the Voronoi structures25,35 and q = 8 for 2D Mikado

networks,27,29,36 while I is the axial moment of inertia of the

fiber cross-section (I B d4). These scaling relations hold

provided r is well above the transport percolation threshold

for the respective stochastic geometry.

The degree of non-affinity is defined by a non-dimensional

structural parameter, w, which combines the effect of r and d.

In the Mikado case, w = log10[(rL0)
7(d/4L0)

2], while in the

Voronoi case, w = log10[r(d/4)
2]. The non-affine to affine transi-

tion takes place in Mikado and Voronoi networks in the vicinity

of wNA–A = 4.5 and of wNA–A = �1.2, respectively.29,37 In this work

we construct networks with a broad range of w values such to

span the non-affine range and the non-affine to affine

transition. We note that the majority of network materials,

particularly the biological collagen-based networks, have

parameters that place them in the non-affine category.

3. Results and discussion
3.1 Relaxation of networks with identical fibers

We consider first networks of fibers made from the same

viscoelastic material, represented by a Maxwell model with

relaxation time constant, tf. Stress relaxation following an

imposed uniaxial strain of e0 = 3% is evaluated for Mikado

and Voronoi networks with a broad range of w values in the

non-affine and affine regimes. w is varied by changing r and d

and we confirm that networks with different r and d, but with

same w relax identically. Hence, the non-dimensional

parameter w provides a sufficient representation of the

structure in this problem and for this type of networks. Given

the duality between linear elasticity and viscoelasticity, this is

expected; note that w is also the unique parameter that controls

the small strain stiffness, E0, in networks of fibers made from

the same material.

Fig. 2a shows stress relaxation curves for Mikado networks

of w = 3.47 and 4.38, which correspond to the non-affine

regime, w o wNA–A, and w = 5.47 in the initial range of the

affine regime. The time-dependent stress, s(t), is normalized by

the stress at the onset of relaxation, s0. It is observed that

relaxation is exponential at early times, regime in which

networks with different w relax identically, but becomes slower

at later times. To test whether the data conforms to a stretched

exponential function (Kohlrausch relaxation) of the form

s(t) = s0exp[�(t/t)b], (1)

we replot the curves in Fig. 2a as y = ln[�ln(s(t)/s0)] vs. ln t/tf, in

Fig. 2b. If the stretched exponential is an adequate representation

of the data, the plot must become linear, of slope equal to the

stretch exponent, b, and intercept bln t/tf.

Fig. 2b confirms the existence of two relaxation regimes: the

first (regime I) is exponential (b = 1), while the second (regime

II) is described by eqn (1), as also shown schematically in

Fig. 2d. Mikado networks with different w lead to overlapping

curves in regime I, that enter regime II at different transition

times tt marked by point O in Fig. 2d. For w in the affine regime,

exponent b of regime II increases with w, as shown schemati-

cally in Fig. 2d, line OC. A similar behavior is observed for

Voronoi networks, Fig. 2c.

For both Mikado and Voronoi cases, networks of increasing

size were considered to check for size effects. With the models

used to evaluate the data reported here being of edge size L

(the total number of fibers in a typical Voronoi and Mikado

network used is approximately 120 000 and 700, respectively),

we considered models of size 2L and 4L and observed no

difference in the relaxation curves, which indicates that the

reported results are free of model size effects.

Similar phenomenology, including an initial exponential

relaxation followed by slowing down of relaxation dynamics, is

generally observed in glass forming systems in the vicinity of Tg;
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see reviews in ref. 38 and 39. The origin of the slowing down was

debated in a large number of publications and was captured by

models.40 The control parameter in these cases is the tempera-

ture. For T c Tg, relaxation is exponential, while the stretched

exponential function becomes dominant as T approaches Tg.

The stretch exponent b was placed in relation to the fragility

parameter, m = dlog hti/d(Tg/T), which represents the departure

of the temperature dependence of the mean relaxation time t

from the prediction of the Arrhenius function.41 This establishes

the common physical origin of the slowing down of relaxation

and of fragility. The stretched exponent was also related to the

dynamic free volume.42 The non-equilibrium physics perspective

on this phenomenon is based on the concept that spatial

correlations of dynamics appear in disordered systems as they

approach jammed states. Correlated local dynamics leads to

slowing down of relaxation probed on scales larger than the

correlation length, which itself increases in time.39

Similar phenomenology is observed here in an entirely

athermal system and is introduced by the intrinsic structural

heterogeneity of the network. This issue is discussed further in

Section 3.2. The control parameter in this case is w, which

represents the degree of heterogeneity. As opposed to thermal

systems in the vicinity of the glass transition, here the hetero-

geneity is structural and does not evolve during relaxation.

Fig. 3 (a) Variation of the stretch exponent with w for (a) Mikado and (b) Voronoi networks. Triangles represent single replica simulations. Squares

indicate conditions for which 4 replicas (different realizations of the network) are considered and the bars represent standard error of b. The dashed lines

represent fits with a polynomial of order 3 to the entire data set.

Fig. 2 (a) Semi-logarithmic representation of normalized stress vs. time relaxation curves for Mikado networks with w = 3.47, 4.38 and 5.47; (b) The data

in (a) replotted as y = ln[�ln(s(t)/s0)] vs. ln t/tf; (c) similar data for Voronoi networks with w = �2.22, �1.96 and �1.01. Panel (d) shows a schematic of the

curves in (b) and (c) emphasizing the two relaxation regimes and the associated parameters.
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Fig. 3 shows the variation of the stretch exponent with w for

Mikado (Fig. 3a) and Voronoi (Fig. 3b) networks. The triangles

show all systems studied and the bars represent the standard

error of a set of 4 replicas for each of the conditions indicated

by square symbols. The data indicates well-defined minima at

the transition between the non-affine and affine regimes, i.e. at

w = wNA–A. The smallest b is approximately 0.14 in the 2D

Mikado case, and 0.3 in the 3D Voronoi case. b values for a large

number of glass-forming polymers in the vicinity of glass

transition are presented in.41 b at Tg is generally larger than

0.5, but several systems exhibit low b, such as poly vinylchloride

which has b = 0.24.

Lower values of b indicate that relaxation is more con-

strained by heterogeneity. The problem has two theoretical

limits: in the limit of very small w, filaments have negligible

bending stiffness. Since the bending mode is the softest, the

axial mode is not engaged. This implies that interactions in the

network are weak and hence fibers relax independently. In this

limit, relaxation of the network should be identical to that of

individual fibers, i.e. regime II in Fig. 2d is absent and b = 1

throughout the entire relaxation history. In the limit of large w,

deformation is affine, which is equivalent to saying that

the correlation length of the local relaxation modes diverges.

The network is forced to relax as a homogeneous continuum.

Hence, in this limit b = 1 and relaxation becomes exponential.

This physical picture indicates that in the non-affine range, as

w increases and the cooperativity of relaxation increases, b

should decrease, while as the system moves into the affine

regime, b should increase towards 1. This argument does not

predict the value of w at which b reaches its minimum. The

numerical study reported here indicates that, interestingly, the

minimum b results at the transition between the non-affine

and affine regimes, w = wNA–A.

We turn now to the relaxation times, tI and tII, of regimes I

and II, respectively. During regime I, s(t) = s0exp[�t/tI], and tI is

independent of w for both 2D and 3D networks. This is

expected since the initial exponential regime corresponds to

the independent relaxation of small networks subdomains.

In the limit in which the size of these subdomains is equal to

lc, fibers relax independently and hence tI = tf. This limit is

recovered in the present study for all Mikado networks considered.

In the Voronoi case, tI is somewhat larger than tf (tIE 2tf), but it is

independent of w, which supports the idea that regime I is not

controlled by the network structure and parameters.

Fig. 4a shows the variation of the relaxation time constant in

regime II, tII, with w, for all Mikado and Voronoi networks

considered in Fig. 3. tII is normalized by tI and the horizontal

axis represents w � wNA–A. Just like b, tII has a minimum at

w = wNA–A. Fig. 4b shows the transition time between regimes

I and II, tt, function of w � wNA–A. The transition time is

normalized by tI of the respective network. The transition time

increases for w in the non-affine regime, while in the affine

regime it remains approximately constant. At w = wNA–A, tt E 3tI
in the Voronoi case and tt E 4tI in the Mikado case.

3.2 Network-scale dynamics

In order to understand the mechanism of relaxation, it is useful

to observe the local relaxation dynamics. To this end, we work

with Mikado networks (such to facilitate visualization) and

compute the velocity of each crosslink throughout the relaxation

history. The domain is divided in square patches of size 4lc and

the crosslink velocities are averaged over each patch. Fig. 5

shows the resulting velocity field for a non-affine network with

w = 3.47 at time t/tt = 8.3, i.e. into regime II. This network is

loaded in tension to e0 = 3% in the horizontal direction, after

which the vertical boundaries of the model are held fixed, while

the upper and lower boundaries are kept traction free. The field

shown in Fig. 5 is normalized by the mean %v of the distribution

of velocity magnitudes v = |v|.

Fig. 5 shows a complex relaxation pattern which demon-

strates that the structure is strongly mechanically heterogeneous.

Based on field v we compute the symmetric component of the

velocity gradient tensor rv, i.e. _e = (rv + rvT)/2, and further

compute the hydrostatic and deviatoric components of _e. The

hydrostatic component is _ehI, where

_eh = ( _e11 + _e22)/2 = ((rv)11 + (rv)22)/2 (2)

The deviatoric component, _e � _ehI, has two eigenvalues of

equal magnitude and opposite sign. We take the positive

Fig. 4 (a) Variation of the relaxation time constant in regime II, tII, with w for all Mikado and Voronoi networks considered in Fig. 3. (b) Transition time

between regimes I and II, tt, function of w � wNA–A. Triangles represent single replica simulations. Squares indicate conditions for which 4 replicas

(different realizations of the network) are considered and the bars represent standard error. The lines connect the square symbols.
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eigenvalue which, in terms of components of rv is given by

_es ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrvÞ
11
� ðrvÞ

22

� �2
þ ðrvÞ

12
þ ðrvÞ

21

� �2

q

(3)

to be representative for the shear strain rate of the relaxation

field. Further, we evaluate the spin, which is the only nonzero

component of the anti-symmetric part of the velocity gradient,

S = ((rv)12 � (rv)21)/2.

We use the scalar quantities _eh, _es and S to characterize the

rates of volumetric and shear relaxation strains and the angular

velocity of the relaxation field, respectively. Let _eh, _es and %S

represent the averages of the respective fields over the entire

problem domain, and s _eh, s _es and sS be the corresponding

standard deviations. The coefficients of variation of these fields

are computed as CV_eh ¼ s_es

�

_eh, CVDs
¼ s_es

�

_eh and CVS = sS/%S.

Fig. 6a show the variation of the means of the three scalar

measures during the relaxation of the network whose velocity

field is shown in Fig. 5 (w = 3.47); _eh, _es and %S are rendered non-

dimensional by normalization with %v/lc. We observe that, while

all three fields _eh, _es and S are non-zero, relaxation is controlled

by the shear mode, as _es is one order of magnitude larger than

the dilatational and spin components, _eh and %S, at all times.

This observation is not unexpected since the shear mode is

softer than the dilatational mode. We observe that the contribution

of the spin is similar to that of the dilatational mode. Further, we

observe (not shown in Fig. 6a) that the time variation of _es is similar

to that of the stress shown in Fig. 2b, i.e. it exhibits a stretched

exponential time dependence at times larger than tt. Based on these

observations, we use further the shear component to characterize

the relaxation.

The coefficient of variation of the shear rate, CV _es
, provides a

measure of the magnitude of dynamic heterogeneity during

relaxation. Fig. 6b shows the time and w dependence of CV _es
.

Each curve represents CV _es
(w) computed at a given time, t/tf.

The main observation is that all curves have a maximum at w =

wNA–A = 4.5. This demonstrates that dynamic heterogeneity

reaches a maximum at the non-affine to affine transition, and

provides a physical justification for the presence of a minimum

in the stretch exponent b at w = wNA–A, Fig. 3. Comparing the

three curves indicates the evolution of the shear rate field

heterogeneity during relaxation. We observe that for t 4 tt,

the fluctuation magnitude, as measured by CV _es
, does not vary

in time. This depicts a physical picture quite different from that

of thermal glass formers close to Tg. The heterogeneity of the

relaxation field emerges from the structural heterogeneity of

the network, which does not change in time. Since parameter w

represents the degree of structural disorder, it also controls the

magnitude of dynamic heterogeneity, much like the temperature

is the control parameter in thermal systems.

It is interesting to put this result in relation with polymeric

glass formers with network structure. Relaxation in these

systems is controlled by the dynamic heterogeneity which

becomes more pronounced close to the glass transition. In

general terms, relaxation is thought to be controlled by packing.

However, the structure of the network is expected to play a role.

One may modify w of these networks by increasing the stiffness

of the polymer backbone (equivalent to increasing d in athermal

networks). Considering that such networks belong to the non-

affine range, the present results indicate that increasing the

chain stiffness should lead to the decrease of the stretch

exponent, b. Based on the results in,41 decreasing b should be

associated with an increase of fragility, which implies a shift of

the temperature dependence of relaxation (and viscosity) from

Fig. 5 Velocity field for a non-affine network with w = 3.47 at time t/tt =

8.3. The velocities are coarse grained on the scale of square sub-domains

of size 4lc.

Fig. 6 (a) Variation of _eh, _es and %S during the relaxation of the network whose velocity field is shown in Fig. 5 (w = 3.47). (b) Time and w dependence of

CV _es
.
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Arrhenius to Vogel–Fulcher–Tammann-type. Such dependence

of fragility on the chain stiffness was observed recently in a

vitrimer system,43 which provides support of the conjecture

introduced here that both the dynamic heterogeneity (as in

monatomic glasses) and the structural heterogeneity (as in

athermal networks) control relaxation in network-like, thermal

polymeric glass formers.

3.3 Effect of pre-strain

Networks are usually subjected to large strains. Since their

elasticity is non-linear, their viscoelasticity is also expected to

be non-linear. In both cases, non-linearity is of geometric type

and emerges from the structural re-organization of the network

under large strains. For example, ref. 13 and 44 report that in

collagen networks the time-dependent modulus E(t)/E(0) is

independent of the initial strain at relatively small strain levels,

but the relaxation time constants decrease (relaxation becomes

faster) with increasing e0.

To test the effect of large strains on relaxation we consider a

Voronoi network with w = �1 and vary the pre-strain parameter

e0 from 3% to 30%. The two relaxation regimes reported in

Fig. 2 are observed for all values of e0 considered, with the stress

being described by exponential and stretched exponential

functions in regimes I and II, respectively. The stretch exponent

becomes a weakly decreasing function of e0, as shown in Fig. 7a.

The relaxation time constant of regime II also decreases with e0,

as shown in Fig. 7b, and in agreement with experimental

observations in collagen networks.

3.4 Relaxation of networks with non-identical fibers

Many network materials are composite, in the sense that

material properties of fibers vary from fiber to fiber. Such

variability adds to the intrinsic structural stochasticity of the

network, increasing the degree of heterogeneity. Therefore, it

becomes of interest to determine to what extent the results

presented in the preceding sections apply to composite

networks.

To this end, we consider Mikado networks of w = 3.47

in which all fibers have the same Young’s modulus, Ef, but the

relaxation time constant, tf, is selected from a Gamma distribu-

tion, p(tf). The mean of the distribution, �tf, is kept fixed and

equal to the value considered above for the analysis of networks

composed from fibers with identical material properties. The

coefficient of variation of the distribution, CVtf, is kept as

parameter and varied in the interval [0, 0.8].

A similar analysis pertaining to elastic networks was

reported in,45 where the fiber material was linear elastic and

fiber Young’s modulus was selected from a distribution. The

mean of the distribution was kept constant and the variance

was increased such to evaluate the effect of increasing hetero-

geneity on network modulus. It was concluded that the overall

network stiffness decreases with increasing variance, a result

which also applies to the elasticity of continuum composites.46

We observe that relaxation preserves the two regimes shown

in Fig. 2, with the first regime being exponential and the second

being described by a stretched exponential with exponent b.

Fig. 8 shows the variation of b with the magnitude of the pre-

strain, e0; b is normalized by the stretch exponent b0 of the

same network in which all fibers have the same relaxation time

constant, equal to �tf. The stretch exponent decreases with

increasing the variability of the relaxation time of individual

fibers. This is expected, since increasing CVtf leads to increased

structural heterogeneity. The result underlines, once again, the

Fig. 7 Variation of the (a) stretch exponent and (b) relaxation time constant, tII, with the pre-strain, e0, for a 3D Voronoi network with w = �1. The bars

represent standard error for 4 replicas of the respective networks. tII is normalized by the relaxation time of regime I, tI.

Fig. 8 Variation of the stretch exponent with the coefficient of variation

of the distribution of fiber relaxation times, CVtf
. The stretch exponent of

composite networks is normalized by that of networks in which all fibers

have the same relaxation time constant (denoted here by b0), equal to the

mean of the distribution of fiber relaxation time constants in the composite

network case, �tf.
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causal relationship between the stretched exponential and the

structural heterogeneity of the network.

4. Conclusions

In this work we study the component of the relaxation behavior

of network materials associated with the viscoelasticity of the

fiber material. We focus on athermal 2D and 3D stochastic

networks and observe that relaxation has two regimes, of which

the first is exponential, while the second is of Kohlrausch type.

The relationship between the stretch exponent and the struc-

tural parameter w, which defines the degree of non-affinity of

the network, is established. It is seen that relaxation is slowest

(smallest stretch exponent) for networks at the transition

between the affine and non-affine regimes. The physical origin

of the slowdown is related to the structural heterogeneity of the

network. In composite networks in which the relaxation time of

individual fibers is different from fiber to fiber, relaxation slows

down further due to the enhanced structural heterogeneity.

We discuss that these findings are similar to observations made

in glass forming systems. However, while the dynamic hetero-

geneity in such systems evolves during relaxation, the hetero-

geneity in networks is structural and is not evolving in time.

The control parameter of the relaxation process, which in

thermal system is the temperature, is identified in athermal

networks to be the non-dimensional structural parameter w.
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