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Abstract—Scientific computing applications are being increasingly de-
ployed on cloud computing platforms. Transient servers such as EC2 spot
instances and Google Preemptible VMs, can be used to lower the costs
of running applications on the cloud by up to 10x. However, the frequent
preemptions and resource heterogeneity of these transient servers
introduces many challenges in their effective and efficient use. In this
paper, we develop techniques for modeling and mitigating preemptions
of transient servers, and present SciSpot, a software framework that
enables low-cost scientific computing on the cloud. SciSpot deploys
applications on Google Cloud Preemptible Virtual Machines that exhibit
temporally constrained preemptions: VMs are always preempted in a
24 hour interval. Our empirical analysis shows that the preemption
rate is generally bathtub shaped, which raises multiple fundamental
challenges in performance modeling and policy design. We develop
a new reliability model for temporally constrained preemptions, and
use statistical mechanics to show why the bathtub shape is generally
exhibited.

SciSpot’s design is guided by our observation that many emerging
scientific computing applications that integrate machine learning with
simulations, can be deployed as “bags” of jobs, which represent multiple
instantiations of the same computation with different physical model
parameters. For a bag of jobs, SciSpot finds the optimal transient server
on-the-fly, by taking into account the price, performance, and preemption
rates of different servers. SciSpot reduces costs by 5x compared to
conventional cloud deployments, and reduces makespans by up to 10x
compared to conventional high performance computing clusters.

1 INTRODUCTION

Increasingly, cloud computing platforms have begun to
supplement and complement conventional high performance
computing (HPC) infrastructure to meet the large computing
and storage requirements of scientific computing applica-
tions. Public cloud platforms such as Amazon’s EC2, Google
Cloud Platform, and Microsoft Azure, offer multiple benefits
such as on-demand resource allocation, convenient pay-as-you-
go pricing models, ease of provisioning and deployment, and
near-instantaneous elastic scaling. However, the flexibility
offered by cloud platforms comes at a literal cost: the
price of deploying scientific computing applications can be
significant, and is a major hurdle towards adoption.
Conventionally, cloud VMs have been offered with “on-
demand” availability, such that the lifetime of the VM
is solely determined by the owner of the VM (i.e., the
cloud customer). Increasingly however, cloud providers have

begun offering low-cost VMs with transient, rather than
continuous on-demand availability. Transient VMs can be
unilaterally revoked and preempted by the cloud provider,
and applications running inside them face fail-stop failures.
Due to their volatile nature, transient VMs are offered at
steeply discounted rates. Amazon EC2 spot instances, Google
Cloud Preemptible VMs, and Azure Batch VMs, are all
examples of transient VMs, and are offered at discounts
ranging from 50 to 90%.

Deploying applications on such transient VMs requires
new mechanisms and policies for mitigating preemptions,
which also minimize the total running time and cost. In this
paper, we consider a new kind of transient availability, which
we call temporally constrained preemptions. In this availability
model, a transient VM has a fixed upper bound on its
lifetime. Google’s Preemptible VMs obey such a model:
they have a maximum lifetime of 24 hours, and can be
preempted at any point within the [0, 24] hour interval. While
these Preemptible VMs are 80% cheaper than their regular
non-preemptible counterparts, their effective use requires
overcoming several hurdles, which we seek to achieve.
Temporally Constrained Preemption Challenges. The first
major challenge lies in understanding and developing a pre-
emption model: when and how frequently do preemptions
occur, and what does their distribution look like? Developing
such a model is a vital precursor to time and cost minimizing
policies, which have been developed for other preemption
models (such as for Amazon EC2 spot instances). To this end,
we conduct a first-of-its-kind empirical study of observing
actual VM preemptions, and analyze the resulting data from
more than 850 preemption events. Our dataset is open-source
and available at [1]. Our findings indicate that due to the
temporal constraint, the distribution of preemptions is unlike
any other classical failure distribution (such as exponential or
Weibull). Instead, the failure distribution is “bathtub” shaped,
and has multiple distinct phases: preemptions are more likely
to occur at the start and end of the 24 hour interval. This has
serious implications for prior transient-computing software,
since they all assume exponentially distributed failures, and
are unable to efficiently deal with the time-varying failure
rates.

The second major challenge is developing an analytical
model for temporally constrained preemptions. Such a model
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is essential for characterizing failures and obtaining key
reliability metrics such as Mean-Time-To-Failure (MTTF),
hazard and survival rate, etc. We therefore develop a
simple, generalizable, and differentiable analytical model
for constrained preemptions, which provides new insights
into preemption/failure dynamics.

Given the prevalence of bathtub-shaped preemptions,
the third major challenge is to understand why they occur,
and what the fundamental causes could be. For this, we
find a surprising connection with Statistical Mechanics! We
show that constrained preemptions can be “mapped” to
the Tonks gas model [56], [41], which describes a system of
non-overlapping particles constrained to move within a line
segment. The bathtub shape arises naturally if we assume
non-overlapping preemptions.

The fourth challenge is reducing the cost and running time
of applications deployed on Preemptible VMs. We leverage
our analytical preemption model and develop new optimized
policies for scheduling and cost-optimization, that mitigate
preemptions using insights gleaned from our models.

Finally, we address the practical challenges of deploying
scientific computing batch applications on Preemptible VMs.
We identify a new simple abstraction, which we call “bags
of jobs”, which is common in many scientific simulation
workloads. This abstraction, combined with our optimized
policies, allows us to significantly reduce the cost of cloud
computing resources, by up to 5x. Our resultant system,
SciSpot, implements all our policies and abstractions, and
provides the first seamless and frictionless service for using
Preemptible VMs.

Novelty and Relevance. Spot markets (used by Amazon
EC2’s spot instances and others) are a popular transient
computing model, where preemptions are governed by
dynamic prices (which are in turn set using a continuous
second-price auction [15]). However, the temporally con-
strained preemption model is distinct from spot markets, and
presents fundamental challenges in preemption modeling
and effective use of transient VMs. Transiency-mitigation
techniques such as VM migration [48], checkpointing [45],
[42], diversification [47], all use price-signals to model the
availability and preemption rates of spot instances. With flat
pricing, these approaches are not applicable. Furthermore, no
other information about preemption characteristics is made
publicly available by the cloud operator, not even coarse-
grained metrics, which necessitates our empirical approach.

To expand the usability and appeal of transient VMs,
many systems and techniques have been proposed that
seek to ameliorate the effects of preemptions and reduce
the computing costs of applications. Fault-tolerance mecha-
nisms [48], [42], resource management policies [47], [60], and
cost optimization techniques [22], [49] have been proposed
for a wide range of applications—ranging from interactive
web services, distributed data processing, parallel computing,
etc. However, these prior works all assume classical expo-
nential failures, which we show to not be ideal for bathtub
preemptions.

We make significant analytical, theoretical, and practical
enhancements to our preliminary work on understanding
constrained preemptions [34]. We provide new empirical
insights about preemption dynamics by analyzing the data
along a larger number of dimensions. We enhance our
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analytical model to compute closed-form expressions for

MTTF and hazard rate, which are the key reliability metrics

used in our policies. We introduce the use of statistical

mechanics principles to elucidate the fundamental origins
of the bathtub shape of temporally constrained preemptions.

We introduce a new “tipping points” based VM scheduling

policy which has a key practical benefit of not requiring exact

job running times. Finally, we conduct extensive empirical
evaluation and show SciSpot’s performance and cost, and
compare it to the state of the art transient-computing systems.

Contributions. Towards our goal of harnessing temporally

constrained transient VMs for modern scientific computing

workloads, we make the following contributions:

1) Using a large-scale empirical study of Google’s Pre-
emptible VMs, we show a statistical analysis of preemp-
tions based on the VM type, temporal effects, geographical
regions, etc. Our analysis indicates that the 24-hour con-
straint is a defining characteristic, and that the preemption
rates are not uniform, but have distinct phases.

2) We develop a probability model of constrained preemp-
tions based on empirical and statistical insights that point
to distinct failure processes underpinning the preemption
rates. Our model captures the key effects resulting from
the 24 hour lifetime constraint associated with these VMs.

3) We analyze our probability model through the lens of
reliability theory, and demonstrate the use of the princi-
ples of statistical mechanics to examine the fundamental
behavior of constrained preemptions.

4) Based on our preemption model, we develop optimized
policies for job scheduling which minimize the total time
and cost of running applications. These policies reduce
job running times by up to 2x compared to existing
preemption models used for transient VMs.

5) We implement and evaluate our policies as part of a
batch computing service for Google Preemptible VMs.
SciSpot introduces the bags of jobs abstraction for scientific
simulation applications, and can reduce computing costs
by 5x compared to conventional cloud deployments, and
lower the performance overhead of preemptible VMs to
less than 3%.

2 BACKGROUND AND RELATED WORK

We now give an overview of transient cloud computing, and
preemption models.

2.1

Infrastructure as a service (IaaS) clouds such as Amazon
EC2, Google Public Cloud, Microsoft Azure, etc., typically
provide computational resources in the form of virtual ma-
chines (VMs), on which users can deploy their applications.
Conventionally, these VMs are leased on an “on-demand”
basis: cloud customers can start up a VM when needed, and
the cloud platform provisions and runs these VMs until they
are shut-down by the customer. Cloud workloads, and hence
the utilization of cloud platforms, shows large temporal
variation. To satisfy user demand, cloud capacity is typically
provisioned for the peak load, and thus the average utilization
tends to be low, of the order of 25% [57], [19].

To increase their overall utilization, large cloud oper-
ators have begun to offer their surplus resources as low-
cost servers'with transient availability. These servers can

Transient Cloud Computing
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be preempted by the cloud operator at any time (after a
small advance warning). These preemptible servers, such as
Amazon Spot instances [3], Google Preemptible VMs [6], and
Azure batch VMs [13], have become popular in recent years
due to their discounted prices, which can be 7-10x lower
than the conventional non-preemptible servers. Due to their
popularity among users, smaller cloud providers such as
Packet [7] and Alibaba [2] have also started offering transient
cloud servers.

However, effective use of transient servers is challenging
for applications because of their uncertain availability [52],
[60], [18]. Preemptions are akin to fail-stop failures, and
result in loss of the application memory and disk state,
leading to downtimes for interactive applications such as
web services, and poor throughput for batch-computing
applications. Consequently, researchers have explored fault-
tolerance techniques such as checkpointing [45], [42], [54]
and resource management techniques [47] to ameliorate the
effects of preemptions. The effect of preemptions depends
on the application’s delay insensitivity and fault model, and
mitigating preemptions for different applications remains an
active research area [33].

2.2 Modeling Preemptions of Transient VMs

The notion of using a probabilistic or even a deterministic
model of preemptions underlies all techniques and systems
in transient computing. Such a preemption model is then
used to quantify and analyze the impact of preemptions
on application performance and availability; and to de-
sign model-informed policies to minimize the effect of
preemptions. For example, the preemption rate or MTTF
(Mean Time To Failure) of transient servers has found
extensive use in selecting the appropriate type of transient
server for applications [47], [54], determining the optimal
checkpointing frequency [45], [42], [28], [25], etc.

Preemptions of spot market based VMs (such as EC2
spot instances) are based on their price, which is dynami-
cally adjusted based on the supply and demand of cloud
resources. Spot prices are based on a continuous second-price
auction, and if the spot price increases above a pre-specified
maximume-price, then the server may be preempted [15].
Thus, the time-series of these spot prices can be used
for understanding preemption characteristics such as the
frequency of preemptions and the “Mean Time To Failure”
(MTTEF) of the spot instances. Publicly available [31] historical
spot prices have been used to characterize and model spot
instance preemptions [48], [65], [50], [61], [62], [59], [55],
[26], [29]. For example, past work has analyzed spot prices
and shown that the MTTFs of spot instances of different
hardware configurations and geographical zones range from
a few hours to a few days [63], [43], [61], [14], [62]. Spot
instance preemptions can be modeled using memoryless
exponential distributions [65], [46], [45], [25], [64], which
permits optimized periodic checkpointing policies such as
Young-Daly [20].

However, using pricing information for preemption mod-
eling is not a generalizable approach, and is not applicable to
models of transient availability used by other transient VMs
like Google Preemptible VMs and Azure Low-priority batch

1. We use servers and VMs interchangeably throughout the paper.
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Fig. 1: CDF of lifetimes of Google Preemptible VMs. Our pro-
posed distribution for modeling the constrained preemption
dynamics provides a better fit to the empirical data compared
to other failure distributions. Inset shows the probability
density functions.

VMs. These VMs have flat pricing, and thus pricing cannot be
used to infer preemptions. Moreover, these cloud providers
(Google and Azure) do not expose any public information
about their preemption characteristics, even metrics like
MTTF that can be useful in mitigating preemptions [64],
[51]. In this paper, we propose an empirical approach for
modeling preemptions of temporally constrained VMs such
as Google Preemptible VMs. Our empirical data and the
resulting preemption model allows the development of
preemption mitigation policies. Google Preemptible VMs
have a maximum lifetime of 24 hours, and this constrained
preemption is not memoryless, and requires new modeling
approaches.

3 PREEMPTION ANALYSIS AND MODELING OF
GOOGLE PREEMPTIBLE VMSs

In our quest to understand temporally constrained preemp-
tions, we conduct an empirical study of preemptions of
Google Preemptible VMs. Based on our observations and
insights from the study, we develop a probability model for
temporally constrained preemptions, which we then interpret
using the framework of statistical mechanics.

3.1 Empirical Study Of Preemptions

Methodology. We launched 870 Google Preemptible VMs of
different types over a two month period (Feb-April 2019),
and measured their time to preemption (i.e., their useful
lifetime). VMs of different resource capacities were launched
in four geographical regions; during days and nights and
all days of the week; and running different workloads.
We launched VMs in their default resource configurations
(CPU and memory), and do not use custom VM sizes. To
ensure the generality of our empirical observations, VMs
were not launched during well-known peak utilization days
(such as Black Friday). The preemption data collection was
bootstrapped: a small amount of data points were used to
estimate and model the preemption CDF, which we then
used to run SciSpot (described and evaluated in Sections 5
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and 6), which generated the rest of the preemption data. Due
to the relatively high preemption rates compared to EC2 spot
instances, we were able to collect these data points for less
than $5,000.

A sample of over 100 such preemption events are shown
in Figure 1, which shows cumulative distribution function
(CDF) of the lifetime of the n1-highcpu-16 VMs in the
us—east1l-b zone. The overall rate of preemptions is “bath-
tub” shaped as shown by the solid black line in the inset of
Figure 1. Empirically, our main observations are:
Observation 1: The lifetimes of VMs are not uniformly dis-
tributed, but have three distinct phases.

In the first (initial) phase, characterized by VM lifetime
t € [0,3] hours, we observe that many VMs are quickly
preempted after they are launched, and thus have a steep
rate of failure. The rate of failure (preemption rate) is the
derivative of the CDFE. The early high rate of failure reflects
that the cloud service provider takes into account VM
liftetime in prioritizing preempting “younger” VMs, in other
words, the number of simultaneous VMs launched does have
an effect on their failure rate. In the second phase, VMs that
survive past 3 hours enjoy a relatively low preemption rate
over a relatively broad range of lifetime (characterized by
the slowly rising CDF in Figure 1). The third and final phase
exhibits a steep increase in the number of preemptions as
the preemption deadline of 24 hours approaches. The overall
rate of preemptions is “bathtub” shaped as shown by the
solid black line in the inset of Figure 1 (discussed in detail
below).

Observation 2: The preemption behavior, imposed by the con-
straint of the 24 hour lifetime, is substantially different from
conventional failure characteristics of hardware components and
EC2 spot instances.

In “classical” reliability analysis, the rate of failure usually
follows an exponential distribution f(t) = Ae~*, where
A = 1/MTTF. Figure 1 shows the CDF (= 1 — e~*) of
the exponential distribution when fitted to the observed
preemption data, by finding the distribution parameter A
that minimizes the least squares error. The classic exponential
distribution is unable to model the observed preemption
behavior because it assumes that the rate of preemptions is
independent of the lifetime of the VM, i.e., the preemptions
are memoryless. This assumption breaks down when there is
a fixed upper bound on the lifetime.

Observation 3: The three preemption phases and associated
bathtub shaped preemption probability, can be seen as general
characteristics of Preemptible VMs.

Our empirical study looked at preemptions of VMs of
different sizes (Figure 2a), at different times of the day
(Figure 2b), in different geographical zones (Figure 2c),
and running different workloads. We also analyzed VMs
launched at different days (Figure 3a) and also analyzed the
effect of concurrent VM launches (Figure 3b). In all cases,
we find that there are three distinct phases associated with
the preemption dynamics giving rise to the bathtub-shaped
preemption probability.

Observation 4: Larger VMs have a higher rate of preemptions.

Figure 2a shows the preemption data from
five different types of VMs in the Google Cloud
nl-highcpu-{2,4,8,16,32}, where the number
indicates the number of CPUs. All VMs are running in
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the us-centrall-c zone. We see that the larger VMs (16
and 32 CPUs) have a higher probability of preemptions
compared to the smaller VMs. While this could be simply
due to higher demand for larger VMs, it can also be
explained from a cluster management perspective. Larger
VMs require more computational resources (such as CPU
and memory), and when the supply of resources is low,
the cloud operator can quickly reclaim a large amount of
resources by preempting larger VMs. This observed behavior
aligns with the guidelines for using preemptible VMs that
suggests the use of smaller VMs when possible [6].
Observation 5: Preemptions exhibit diurnal variations, and are
also affected by the workload inside the VM.

From Figure 2b, we can see that VMs have a slightly

longer lifetime during the night (8 PM to 8 AM) than during
the day?. This is expected because fundamentally, the pre-
emption rates are higher during periods of higher demand.
We also notice that completely idle VMs have longer lifetimes
than VMs running some workload, presumably because idle
VMs are easier for resource overcommittment [44], [24], and
thus have a lower preemption probability.
Significance of bathtub preemptions. The bathtub shaped
preemption distribution is not a coincidence. It is a result of
fundamental characteristics of constrained preemptions that
benefit applications. For applications that do not incorporate
explicit fault-tolerance (such as checkpointing), early preemp-
tions result in less wasted work than if the preemptions were
uniformly distributed over the 24 hour interval. Furthermore,
the low rate of preemptions in the middle periods allows jobs
that are smaller than 24 hours to finish execution with only a
low probability of failure, once they survive the initial pre-
emption phase. We compare application performance with
bathtub preemptions and uniformly distributed preemptions
later in Section 6, and find that bathtub preemptions can
reduce the performance overheads of preemptions by up to
10x. However, effective policies for constrained preemptions
require a probability model of preemptions, which must
incorporate the temporal constraint and the steep bathtub
behavior. Existing preemption models are not applicable, and
we present our new model next.

3.2 Failure Probability Model

We now develop an analytical probability model for finding
a preemption at a given time that is faithful to the empir-
ically observed data and provides a basis for developing
running-time and cost-minimizing optimizations. Modeling
the dynamics of preemptions constrained by a finite deadline
raises many challenges for existing preemption models that
have been used for other transient servers such as EC2
spot instances. We first discuss why existing approaches to
preemption modeling are not adequate, and then present
our probability model and associated reliability theory
connections.

3.2.1

Our failure probability model seeks to address the drawbacks
of existing reliability theory models for modeling constrained
preemptions. The presence of three distinct phases exhibiting
non-differentiable transition points (sudden changes in CDF

Our model

2. Time-zone local to the VM's location.
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near the deadline, for example) suggests that for accurate
results, models that treat the probability as a step function
(CDF as a piecewise-continuous function) could be employed.
However, this limits the range of model applicability and
general interpretability of the underlying preemption behav-
ior. Our goal is to provide a broadly applicable, continuously
differentiable, and informative model built on reasonable
assumptions.

We begin by making a key assumption: the preemption
behavior arises from the presence of two distinct failure pro-
cesses. The first process dominates over the initial temporal
phase and yields the classic exponential distribution that
captures the high rate of early preemptions. The second
process dominates over the final phase near the 24 hour
maximum VM lifetime and is assumed to be characterized
by an exponential term that captures the sharp rise in
preemptions that results from this constrained lifetime.

Based on these observations, we propose the following

where t is the time to preemption, 1/7; is the rate of preemp-
tions in the initial phase, 1/72 is the rate of preemptions
in the final phase, b denotes the time that characterizes
“activation” of the final phase where preemptions occur at a
very high rate, and A is a scaling constant. The model is fit
to data for 0 < t < L, where L =~ 24 hours represents
the temporal interval (deadline). Combination of the 4
fit parameters (11, 72,b, and A) are chosen to ensure that
boundary condition F'(0) ~ 0 is satisfied. In practice, typical
fit values yield b = 24 hours, 7; € [0.5,1,5], 72 =~ 0.8, and
A €[0.4,0.5].

For most of its life, a VM sees failures according to the
classic exponential distribution with failure-rate equal to 1/7;
— this behavior is captured by the 1—e =%/t term in Equation 1.
As VMs get closer to their maximum lifetime imposed by
the cloud operator, they are reclaimed (i.e., preempted) at a
high rate 1/75, which is captured by the second exponential
term, e(*~%)/72 of Equation 1. Shifting the argument (t) of this
term by b ensures that the exponential reclamation is only
applicable near the end of the VM’s maximum lifetime and
does not dominate over the entire temporal range.

The analytical model and the associated distribution
function .# introduced above provides a much better fit to
the empirical data (Figure 1) compared to other models, and
captures the different phases of the preemption dynamics
through parameters 7, 72, b, and A. These parameters can be
obtained for a given empirical CDF using least squares func-
tion fitting methods (we use scipy’s optimize.curve_£fit
with the dogbox technique [8]). The failure or preemption
rate can be derived from the CDF in Equation 1 as:

dF(t) 1 1 =
ty=—"L=A(—eV" 4 —em .
1= T = A (e 2R
f(t) vs. t yields a bathtub type failure rate function for the

associated fit parameters (inset of Figure 1).

@

3.2.2 Reliability Analysis

We now analyze and place our model in a reliability theory
framework.

Expected Lifetime. Our analytical model helps crystallize
the differences in VM preemption dynamics, by allowing us
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to easily calculate their expected lifetime. More formally, we
define the expected lifetime of a VM (.Z) as:

—t/m + A(t - Tg)e%
&)
where f(t) is the rate of preemptions of the VM (Equation 2).
This expected lifetime can be used in lieu of MTTE, for
policies and applications that require a “coarse-grained”
comparison of the preemption rates of servers of different
types, which has been used for cost-minimizing server
selection [45].
Hazard Rate. The hazard rate \(t) governs the dynamics of
the failure (or survival) processes. It is generally defined as
At) = ggig and often expressed via the following differential
equation (rate law):

L
ELZ] :/0 FF(E) dE = —A(t+71)e

ds(t)
Cdt

where S(t) = 1—F(¢) is the survival function associated with
a CDF F(t), and f(t) = dF(t)/dt is the failure probability
function (rate) at time t. The survival function indicates the
amount of VMs that have survived at time ¢. The hazard rate
can also be directly expressed in terms of the CDF as follows:
1—F(t) = exp fo ) dx. The exponential distribution
has a constant hazard rate A. The Gompertz-Makeham
distribution has an increasing failure rate to account for
the increase in mortality, and its hazard rate is accordingly
time-dependent and given by A(¢) = A + ae’t.

Since we model multiple failure rates and deadline-
induced preemptions, our hazard rate is expected to increase
with time. Defining the survival function for our model:
S =1—F, and using Eq. 4 yields the hazard rate associated
with our model:

= —A)S(), )

Tle_rlt +T2€T2(t_b)
C1/A— 1+ et — era(t=b)

©)

where we have introduced 1 = 1/71, 72 = 1/73 to denote
the rates of preemptions associated with initial and final
phases respectively.

Recall that the sharp increase in preemption rate only
happens close to the deadline, which means that b < L. Thus,
when 0 < t < b, we get A(t) =~ r;, mimicking the hazard
rate for the classic exponential distribution. As ¢ approaches
and exceeds b (i.e., b <t < L), the increase in the hazard rate
due to the second failure process kicks in, accounting for the
deadline-induced rise in preemptions. Note that our hazard
rate satisfies A(t) > 0 for 0 < ¢ < L.

3.3 Statistical mechanics of constrained preemptions

For constrained preemptions, one might expect to see
uniformly distributed preemptions with a probability 1/L
over [0, L]. However, as our empirical analysis shows, the
preemption distribution is bathtub-shaped. Interestingly, we
can show using exact analytical arguments that non-uniform,
bathtub distributions are in fact an emergent characteristic
of systems with constrained preemptions, modulo some
assumptions.

Lemma 1. Consider N randomly distributed preemptions over
an interval [0, L]. Assume that each preemption takes w > 0

6

time-units to perform, and preemptions cannot overlap, i.e, they
occur in a mutually exclusive manner. Then, there exists € > 0
such that P(L — €) > +, where P(t) is the probability of finding
a preemption at time t.

Proof. We first make some preliminary remarks and intro-
duce concepts necessary to complete the proof.

Firstly, mutual exclusion of preemptions implies that
there is a finite non-zero waiting time w > 0 between
preemptions. For N preemptions to occur within L interval,
evidently, we must have Nw < L. Also, while w > 0,
the time to perform the preemption is generally expected
to be much smaller than the total time interval L (i.e.,
w < L). N preemptions occupy a “temporal volume” of
Nw (volume here represents the one-dimensional volume).
We assume that while a preemption may start at ¢ = 0, the
last preemption must finish by ¢ = L. Thus, the amount of
free or excluded “temporal volume” available within the
constrained system is L, = L —w — (N — 1)w = L — Nw.
We note that the concept of excluded volume is routinely
employed in the analysis of physical systems such as liquids
and polymers, where the excluded volume of particles acts
as a constraint that gives rise to steric forces and structural
changes in material behavior [41], [32], [53].

Secondly, we observe that the system of N preemptions
within a constrained deadline of interval L maps exactly to
a well known and analytically solvable system in classical
statistical mechanics, the one-dimensional Tonks gas model
[56]. The Tonks gas model describes a system of N non-
overlapping particles of finite size w that are constrained
to move within a line segment of length L. The structural
quantities associated with this system, including the prob-
ability of finding a particle at position x within the spatial
confinement of length L, are computed by evaluating the
partition function of the system, which essentially measures
the number of valid system configurations [41]. Employing
this mapping, we consider a system of N non-overlapping
preemptions constrained within a “time confinement” of size
L. Each preemption has access to an excluded volume of
L. within this constrained system. The number of ways N
preemptions can occur within the interval L is equivalent to
the number of valid configurations for this system, which is
given by its partition function: Zy = LY = (L — Nw)¥

We are interested in calculating the probability that a
preemption starts at time ¢t = L — w, i.e.,, P(L — w). Given
w < L, P(L — w) is the probability of finding a preemption
near the deadline. The assumption of mutually exclusive
preemptions implies that no other preemption can be found
for ¢ > L — w, that is, P(t > L — w) = 0. Hence, the
remaining N — 1 preemptions must occur such that the last
of those finish by ¢ = L — w. In other words, the preemption
at time L — w essentially sets an effective deadline for the
other N — 1 preemptions. The number of ways those N — 1
preemptions can happen within the time interval of L — w
is given by the partition function Z N1 = LY-1 = (L -
2w — (N —2)w)¥ ! = (L — Nw)N~!, where L, = L — Nw
is the corresponding excluded temporal volume available
to each of the N — 1 preemptions. It is interesting to note
that this excluded volume is the same as that of the original
N preemption system: this fortuitous result arises because
the decrease in the available volume (“time confinement”)
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Fig. 4: Preemption probability computed using the partition
function defined for a simple constrained system is also
bathtub shaped.

to place the preemptions is commensurate with the need to
place fewer (N — 1) preemptions.

The probability P(L — w) is obtained as the ratio of the
valid configurations given by the two partition functions
computed above. Thatis, P(L — w) = Zn_1/ZN = 7=
Because N > 1 and w > 0, we find P(L —w) > +. Choosing
€ = w completes the proof. O

By symmetry arguments, the above lemma is in fact
valid for both the end points of the interval, i.e., P (e) > %
In other words, the probability of preemption is higher
near the end points (deadline) than the average preemption
probability of 1/L, and we get a bathtub shaped distribution.
For the above proof, we assumed that each preemption event
occurs over a timespan of w, which is determined by the
preemption warning that the cloud platform provides (which
is 30 seconds for Google Preemptible VMs and 120 seconds
for Amazon EC2 spot instances). Preempting a VM and
reclaiming its resources involves manipulating the cluster-
management state, and mutually exclusive preemptions may
be convenient for cluster management, since serializing VM
preemptions makes accounting and other cluster operations
easier. From an application standpoint, non-overlapping
preemptions are also beneficial, since handling multiple con-
current preemptions is significantly more challenging [47].

Thus, statistical mechanics indicates that the bathtub dis-
tribution follows from the constrained and non-overlapping
nature of preemptions, if we assume no other external factors
or cloud policies influencing the preemptions. Figure 4 shows
the preemption probability computed using the partition
function. We find that this probability also follows the bathtub
shape that is found in the empirical data.

3.4 Model Validity and Generalizability

In the absence of any prior work on constrained preemption
dynamics, our aim is to provide an interpretable model
with a minimal number of parameters, that provides a
sufficiently accurate characterization of features present in
the preemption data. Extension of this model to include
more failure processes would introduce more parameters
and reduce the generalization power. Further, this model
as well as the optimization policies derived from it offer
pathways to quantify additional effects arising due to the
inclusion of more failure processes.

In Section 6.1, we show that constant failure rate as-
sumptions can be severely detrimental to the application

7

failures and performance. We show that our bathtub model,
even with poorly fitted parameters, can provide significant
improvement in job running times, compared to existing
exponential models.

4 PoLiclEs FOR AMELIORATING CONSTRAINED
PREEMPTIONS

Having analyzed the statistical behavior of constrained
preemptions and presented our probability model, we now
examine how the bathtub shape of the failure rate impacts
applications. Based on insights drawn from our statistical
analysis and the model, we develop various policies for ame-
liorating the effects of preemptions. Prior work in transient
computing has established the benefits of such policies for a
broad range of applications. However, the constrained nature
of preemptions introduces new challenges that do not arise
in other transient computing environments such as Amazon
EC2 spot instances, and thus new approaches are required.
In this section, we first analyze the impact of constrained
preemptions on job running time, and then develop new
constrained-preemption aware policies for job scheduling
and cost optimization.

Workload Assumptions. Our primary focus is on long-
running batch jobs that arise in many scientific computing
applications. Our scheduling policy assumes that approximate
job running times are known: which is often the case with
“bags of jobs”, as described in the next section. Specifically,
we only require knowledge of whether the job running time
is above or below a threshold.

4.1

SciSpot uses our bathtub probability model to predict the
total running time (i.e., the makespan) of the job. When
a preemption occurs during the job’s execution, it results
in wasted work, assuming there is no checkpointing. This
increases the job’s total expected running time, since it
must restart after a preemption. The expected wasted work
depends on two factors:

1) The probability of the job being preempted during its

execution.

2) When the preemption occurs during the execution.

We can analyze the wasted work due to a preemption
using the failure probability model. We first compute the
expected amount of wasted work assuming the job faces a
single preemption, which we denote by E[W;(T")], where T
is the original job running time (without preemptions):

Job Running Time Modeling

T
E[W,(T)] = /O ¢ P(t|t < T) dt. ©)

Here, P(tlt < T) = P(t)/P(t < T). P(t < T) is the
probability that there is a preemption within time 7' and
is given by P(t < T) = F(T), where F(T) is the CDF
(Equation 1). P(t) is the probability of a preemption at time
t, and is given by P(t) = f(t), where f(t) is the preemption
rate (Equation 2). We can therefore write the above equation
as:

E[W:(T)] :/OTtP(t|t§T) dt = F(lT)/Oth(t) dt. (7)

We note that the integral is the same as the “expected
lifetime”, given by Equation 3. The above expression for the
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expected waste due to a single preemption can be used by
users and application frameworks to estimate the increase
in running time due to preemptions. The total running time
(also known as makespan) of a job with preemptions is given

by:
E[T] = P(no failure) T+ P(1 failure) (T + E[W1(T)]),
®)
where P(no failure) = P(t > T) = 1 — F(T) and

P(1 failure) = P(t < T) = F(T). Expanding out these
terms and using Equation 7, we get

E[T]= (1 - F(T) T+ F(T) (T + EW.(T)))

:T+/th(t)dt.
0

This expression for the expected running time assumes that
the job will be preempted at most once. An expression which
considers multiple (> 1) job failures easily follows from this
base case, but presents relatively low practical value.
Consequences for applications. Based on our analysis, both
the increase in wasted time (E[W1(T')]/T) and expected
running time (E[T"]/T) depend on the length of the job for
non-memoryless constrained preemptions. For memoryless
exponential distributions, the expected waste is simply 7'/2,
but this assumption is not valid for constrained preemptions,
and thus job lengths must be considered when evaluating
the suitability of Preemptible VMs.

Users and transient computing systems can use the ex-
pected running time analysis for scheduling and monitoring
purposes. Since the preemption characteristics are dependent
on the type of the VM and temporal effects, this analysis
also allows principled selection of VM types for jobs of a
given length. For instance, VMs having a higher initial rate
of preemptions are particularly detrimental for short jobs,
because the jobs will see high rate of failure and are not
long enough to run during the VM’s stable period with low
preemption rates. We evaluate the expected wasted time and
running time for Google Preemptible VMs later in Section 6.

©)

4.2 Transition-Points based Job Scheduling and VM
Reuse Policy

Our bathtub probability model also allows us to develop
optimized job-scheduling policies for reducing job-failures
in the bag of jobs execution model. In the case of deadline-
constrained bathtub preemptions, we face a choice: we can
either run a new job on an already running VM, or relinquish
the VM and run the job on a new VM. This choice is important
in the case of non-uniform failure rates, since the job’s failure
probability depends on the “age” of the VM. Because of
the bathtub failure distribution, VMs enjoy a long period of
low failure rates during the middle of their total lifespan.
Thus, it is beneficial to reuse VMs for multiple jobs, and
relinquishing VMs after every job completion may not be an
optimal choice.

However, jobs launched towards the end of VM life face
a tradeoff. While they may start during periods of low
failure rate, the 24 hour deadline-imposed sharp increase
in preemptions poses a high risk of preemptions, especially
for longer jobs. The alternative is to discard the VM and run
the job on a new VM. However, since newly launched VMs
also have high preemption rates (and thus high job failure
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(b) Transition boundary de-
pends on job length and
when the job starts on the VM.

(a) Difference in expected running
times vs. job length T for different VM
age s. All times are in hours.

Fig. 5: Reusing vs. running on a new VM.

probability), the choice of running the job on an existing VM
vs. a new VM is not obvious.

Our job scheduling policy uses the preemption model
to determine the preemption probability of jobs of a given
length T'. Assume that the running VM’s age (time since
launch) is s. The intuition is to reuse the VM only if the
expected running time is lower, compared to running on a
new VM. To compute the expected running time of a job
of length T starting at vm-age s, we modify our earlier
expression for running time (Equation 9) to:

s+T

ET)|=T —i—/ t f(t) dt (10)
The alternative is to discard the VM and launch a new VM,
in which case the expected running time is E[Tg]. Our job-
scheduling policy is simple: When a job of running time T
attempts to start on a VM of age s, if E[Ts] < E[Tp], then
we run the job on the existing VM. Otherwise, a new VM is
launched.

Transition Points Policy. SciSpot builds on the above insight
and determines the job-scheduling and VM-reuse decision.
Based on different job lengths within a bag of jobs and the
age of the VM, we minimize the total expected running time
of a job. For any job running time (T), and VM age (s), we
compute 6(s,T) = E[Ty] — E[T]. If 6(s,T) > 0, then a new
VM is used, as illustrated in Figure 5a.

Figure 5a shows that reusing VMs is preferred for shorter
job lengths, and the range of jobs for which reusing is good
depends on the current age of the VM: younger VMs (s = 1
hour) can be used for longer job lengths compared to older
VMs. For a given VM type, we precompute this function
for different (s,7") values, and find the transition points
where launching a new VM is suitable. The precomputed
d(s,T) can be seen in Figure 5b. We analytically compute
the transition point “frontier” which is deliniates the re-use
vs. new VM portion of the figure. Given the VM age s, we
only need to determine whether the job length is greater or
smaller than the transition point. This policy has the practical
advantage that accurate job running times are not needed—
we only require running times relative to the transition point.
Using this figure, SciSpot, and users in general, can simply
lookup the job and VM attributes, and determine the optimal
decision.
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4.3 Cost-aware VM Selection

VM-selection is an important optimization in cloud envi-
ronments, because VMs have different tradeoffs of cost,
performance, and preemption characteristics. Application
performance is affected by the size of the VM (due to network
communication and parallel scaling overheads), and the
preemption rates. Our policy selects the “right” type of VMs
that minimizes the expected job failure probability and cost
by using the analytical preemption models.

We assume that the total resource requirement for a job,
R, is provided by the user based on prior speedup data, the
user’s cloud budget, and the deadline for job completion.
Assume that the cloud provider offers N server types, with
the price (per unit time) of a server type equal to c;. The
overall expected cost of running a job is:

E[C(l,ﬂl)] =nNn; X ¢ X E[7—(’L,7lb)] (11)

Here, E[T(; n,)] denotes the expected makespan of the job
(accounting for preemptions) on n; servers of type <. This
turnaround time depends on whether the job needs to
be recomputed because of preemptions, and is given by
Equation 9. SciSpot searches over all available and acceptable
VM types (modulo any resource constraints on minimum
memory/CPUs/GPUs), and picks the VM type which yields
the lowest expected cost. The search process is aided by the
bag of jobs abstraction: initial jobs are used for determining
the lowest-cost VM, on which the remaining jobs are run.

5 ScISpPOT DESIGN AND IMPLEMENTATION

We have developed SciSpot as a prototype batch computing
service that implements various policies for constrained
preemptions. We use it to examine the effectiveness and
practical utility of our model and policies in real-world
settings. SciSpot is implemented as a light-weight, extensible
framework that makes it convenient and cheap to run batch
jobs in the cloud. We have implemented our prototype in
Python in about 2,000 lines of code, and currently support
running VMs on the Google Cloud Platform [5].

We use a centralized controller (Figure 6), which im-
plements the VM selection and job scheduling policies
described in Section 4. The controller can run on any machine
(including the user’s local machine, or inside a cloud VM),
and exposes an HTTP API to end-users. Users submit either
a bag or individual jobs to the controller via the HTTP API,
which then launches and maintains a cluster of cloud VMs,
and maintains the job queue and metadata in a local database.

SciSpot integrates, and interfaces with two primary
services. First, it uses the Google cloud API [4] for launching,
terminating, and monitoring VMs. Once a cluster is launched,
it then configures a cluster manager such as Slurm [9]
or Torque [10], to which it submits jobs. SciSpot uses the
Slurm cluster manager, with each VM acting as a Slurm
“cloud” node, which allows Slurm to gracefully handle VM
preemptions. The Slurm master node runs on a small, 2 CPU
non-preemptible VM, which is shared by all applications
and users. We monitor job completions and failures (due to
VM preemptions) through the use of Slurm call-backs, which
issue HTTP requests back to the central service controller.
Policy Implementation. SciSpot creates and manages clus-
ters of transient cloud servers, manages all aspects of the

User

Service Controller

Google Cloud
Fig. 6: Architecture and system components of SciSpot.

VM lifecycle and costs, and implements the model-based
policies. It manages a cluster of VMs, and parameterizes the
bathtub model based on the VM type, region, time-of-day,
and day-of-week. When a new batch job is to be launched,
SciSpot finds a “free” VM in the cluster that is idle, and uses
the job scheduling policy to determine if the VM is suitable
or a new VM must be launched. Due to the bathtub nature
of the failure rate, VMs that have survived the initial failures
are “stable” and have a very low rate of failure, and thus are
“valuable”. We keep these stable VMs as “hot spares” instead
of terminating them, for a period of one hour.

Bag of Jobs Abstraction For Scientific Simulations. While
SciSpot is intended for general batch jobs, we incorporate
a special optimization for scientific simulation workloads
that improves ease-of-use, and also helps in our policy
implementation. Our insight is that many scientific simu-
lations involve launching a series of jobs that explore a large
parameter space that results from different combinations of
physical and computational parameters. These workloads
can be abstracted as a “bag of jobs”, with each job running
the same application with different parameters. Bags of
jobs are increasingly common in emerging applications that
combine Machine Learning (ML) techniques with scientific
simulations to enhance the predictive power or reduce the
computational costs of simulations [23], [58], [17], [36], [38].

We allow users to submit entire bags of jobs, which
permits us to estimate the running time of jobs based on
previous jobs in the bag. These running time estimates can
then be used for the transition-points based policy described
in Section 4.2.

Having a large sequence of jobs is also particularly useful
with bathtub-shaped preemption rates, because we can re-use
“stable” VMs with low preemption probability for running
new jobs from a bag. Thus, SciSpot maintains a pool of these
idle VMs as hot-spares. Idle VMs are retained for one hour.

6 ScISPOT EXPERIMENTAL EVALUATION

In this section, we present analytical and empirical evaluation
of SciSpot. We have already presented the statistical analysis
of our model in Section 3, and we now focus on answering
the following questions:
1) How do constrained preemptions impact the total
running time of applications?
2) What is the effect of our model-based policies when
compared to existing transient computing approaches?
3) What is the cost and performance of SciSpot for real-
world workloads?
Environment and Workloads: All our empirical evaluation
is conducted on the Google Cloud Platform using our batch
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computing service described in Section 5. All the experiments
are conducted in the same time period, and have the same
preemption characteristics, as described in our data collection
methodology in Section 3. We ran more than 800 VMs
running different bags of jobs in a “closed-loop” manner,
such that SciSpot always launched a replacement VM to
replenish preempted VMs. Since most bags of jobs take
several hours to run, this gave us good temporal coverage of
VM launches. All VMs of a bag of jobs were either run in the
us-eastl-b or the us-centrall-c region.

We run each workload atleast five times and report the
average running times and costs. We use three scientific
computing workloads that are representative of applications
in the broad domains of physics and materials science:
Nanoconfinement. The nanoconfinement application
launches molecular dynamics (MD) simulations of ions in
nanoscale confinement created by material surfaces [32],
[37], [12]. The running time is 14 minutes on a 64 CPU core
cluster (4 nl-highcpu-16 VMs).

Shapes. The Shapes application runs an MD-based simu-
lated annealing procedure to predict the optimal shape of
deformable nanoparticles [30], [16], [35]. The running time is
9 minutes on a 64 CPU core cluster (4 nl-highcpu-16 VMs).

LULESH. Livermore Unstructured Lagrangian Explicit
Shock Hydrodynamics (LULESH) is a popular benchmark
for hydrodynamics simulations of continuum models of
materials [39], [40]. The running time is 12.5 minutes on 8
nl-highcpu-8 VMs.

Wherever applicable, we compare against policies de-
signed for EC2 spot instances [27], [54] that have memoryless
preemptions. Specifically, we compare against the policies
of ExoSphere [47], which is a state of the art system for
EC2 spot instances, and uses portfolio-theory to minimize
application revocations and cost. We ported its policies to
use SciSpot’s preemption model—specifically, ExoSphere
requires the MTTFs of all VM types. However, we also
note that certain resource management challenges such as
the preemption-rate aware job scheduling are inherent to
constrained preemptions, and no existing equivalent policies
can be found for memoryless techniques.

6.1 Job Scheduling

In many scenarios, a server may be used for running a
long-running sequence of jobs, such as in a batch-computing
service. SciSpot’s job scheduling policy is model-driven and
decides whether to request a new VM for a job or run it on
an existing VM. A new VM may be preferable if the job starts
running near the VM’s 24 hour preemption deadline.
Figure 7 shows the effect our job scheduling policy for
a six hour job, for different job starting times (relative to
the VM'’s starting time). We compare against a baseline of
memoryless job scheduling that is not informed by con-
strained preemption dynamics. Such memoryless policies are
the default in existing transient computing systems such as
SpotOn [54]. In the absence of insights about bathtub-shaped
preemption probability, the memoryless policy continues
to run jobs on the existing VM. As the figure shows, the
empirical job failure probability is bathtub shaped. However,
because the job is 6 hours long, it will always fail with the
memoryless policy when launched after 24—6 = 18 hours. In
contrast, SciSpot’s model-based policy determines that after

10

18 hours, we will be better off running the job on a newer VM,
and results in a constant lower job failure probability (= 0.4).
The failure probability is constant because the jobs will
always be launched on a new VM after 18 hours, resulting in
a failure probability at time = 0. Thus, SciSpot can reduce job
failure probability by taking into account the time-varying
failure rates of VMs, which is not considered by existing
systems that use memoryless scheduling policies.

The job failure probability is determined by the job length
and the job starting time. We examine the failure proba-
bility for jobs of different lengths (uniformly distributed)
in Figure 8, in which we average the failure probability
across different start times. We again see that our policy
results in significantly lower failure probability compared to
memoryless scheduling. For all but the shortest and longest
jobs, the failure probability with our policy is half of that of
existing memoryless policies. This reduction is primarily due
to how the two policies perform for jobs launched near the
end of the VM preemption deadline, which we examined
previously in Figure 7.

Sensitivity to model fitting. The effectiveness of any model-
based policy depends on the goodness of fit of the preemp-
tion model—i.e., how accurately it captures empirical data.
We now evaluate the impact on our scheduling policy if
incorrect/suboptimal model parameters with high goodness-
of-fit (r?) error are used. That is, we seek to understand how
sensitive our policies are when the underlying preemption
behavior does not match the model, which can occur due
to changes in supply/demand, minor cloud policy changes,
etc. Figure 9 compares the job failure probability with the
optimal bathtub model that best fits the empirical data,
and a suboptimal bathtub model intentionally chosen to
have a bad fit. Specifically, the suboptimal case models the
nl-highcpu-16 VMs for nl1-highcpu-32 VMSs, which
from Figure 2a we can see are significantly different. How-
ever, even with the suboptimal model, the increase in job
failure probability is less than 2% compared to the best-fit
model. This negligible difference is due to the fact that even
a suboptimal model captures the bathtub shape, and this
is enough for the policy to make the “right” scheduling
decision.

Result: SciSpot’s policies are not particularly sensitive to the exact
model parameters, so long as a bathtub distribution is used. Even
a suboptimal bathtub model can reduce failure probability by 15%
compared to the memoryless policy.

6.2

When an application (i.e., bag of jobs) requests a total
number of CPUs to run each of its jobs, SciSpot first runs its
exploration phase to find the “right” VM for the application.
SciSpot searches for the VM that minimizes the total expected
cost E[C(; ,,,)] of running the application. Thus, even if the
total amount of resources (i.e., number of CPUs) per job is
held constant, the total running time (i.e., turnaround time)
of an application depends on the choice of the VM type (7),
and the associated number of VMs (n;) required to meet the
allocation constraint.

Figure 10 shows the running times of the Nanoconfine-
ment, Shapes, and LULESH applications, when they are
deployed on different VM sizes. In all cases, the total number

Impact of VM Selection
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Fig. 10: Running times of applications on different VMs. Total

number of CPUs is 64, yielding different number of VMs
in each case. We see different tradeoffs in the base running
times and recomputation times.

of CPUs per job is set to 64, and thus the different VM sizes
yield different cluster sizes (e.g., 16 VMs with 4 CPUs or 32
VMs with 2 CPUs). This experiment does not measure scaling
behavior, but instead highlights the differences between
choices of VMs. LULESH requires CPUs to be cube of an
integer, which limits the valid cluster configurations.

For Nanoconfinement and LULESH, we observe that the
base running times (without preemptions) reduce when mov-
ing to larger VMs, because this entails lower communication
costs. For Nanoconfinement, the running time on the “best”
VM (i.e., with 32 CPUs) is nearly 40% lower as compared to
the worst case. On the other hand, the Shapes application
can scale to a larger number of VMs, because the application
does not have any significant communication overheads, and
thus does not see any significant change in its running time
when deployed on different kind of VMs.

Figure 10 also shows the expected recomputation time
which depends on the expected lifetimes of the VM and
the number of VMs. This recomputation time is roughly
proportional to the original running time, in accordance
with Equation 7. While selecting larger VMs may reduce
communication overheads and thus improve performance,
it is not an adequate policy in the case of preemptible
VM, since the preemptions can significantly increase the
turnaround time. Therefore, even though the base running
time of Nanoconfinement is lower on a 64 CPU VM, the
recomputation time on the 64 CPU VM is almost 4x higher
compared to a 2x32-CPU cluster, due to the much lower
expected lifetime of the larger VMs. Thus, on preemptible
servers, there is a tradeoff between the base running time

by up to 5x compared to conventional cloud deployments,
and 20% compared to the state of the art EC2 spot instance
selection (ExoSphere [47]).

which only considers parallelization overheads, and the
recomputation time. By considering both these factors, SciS-
pot’s server selection policy can select the best VM for an
application.

Result: SciSpot’s server selection, by considering both the base
running time and recomputation time, can improve performance
by up to 40%, and can keep the increase in running time due to
preemptions to less than 5%.

6.3 Cost

The primary motivation for using preemptible VMs is their
significantly lower cost compared to conventional “on-
demand” cloud VMs that are non-preemptible. Figure 11
compares the cost of running different applications with
different cloud VM deployments. SciSpot, which uses both
cost-minimizing server selection, and preemptible VMs,
results in significantly lower costs across the board, even
when accounting for preemptions and recomputations. We
also compare against ExoSphere [47], a state of the art
system for transient server selection. ExoSphere implements
a portfolio-theory approach using EC2 spot prices to bal-
ance average cost saving and risk of revocations using
diversification and selecting VMs with low price correlation.
However, this approach is ineffective for the flat prices of
Google Preemptible VMs. Unlike SciSpot, ExoSphere does
not consider application performance when selecting servers,
and thus is unable to select the best server for parallel
applications. Since the Google highcpu VMs have the same
price per CPU, ExoSphere picks an arbitrary “median” VM
to break ties, which may not necessarily yield the lowest
running times. This results in 20% cost increase over SciSpot.
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clusters is significantly higher than the recomputation time
for SciSpot, except for very long and rare jobs (see inset).

Result: SciSpot reduces computing costs by up to 5x compared
to conventional on-demand cloud deployments.

6.4 Comparison with HPC Overhead

Scientific computing applications are typically run on large-
scale HPC clusters, where different performance and cost
dynamics apply. While there are hardware differences be-
tween cloud VMs and HPC clusters that can contribute to
performance differences, we are interested in the perfor-
mance “overheads”. In the case of SciSpot, the job failures
and recomputations increase the job turnaround time, and
are thus the main source of overhead.

On HPC clusters, jobs enjoy significantly lower recom-
putation probability, since the hardware on these clusters
has MTTFs in the range of years to centuries [21]. However,
we emphasize that there exist other sources of performance
overheads in HPC clusters. In particular, since HPC clusters
have high resource utilization, they also have significant
waiting times. On the other hand, cloud resource utilization
is low [57] and there is usually no need to wait for resources,
which is why transient servers exist in the first place.

Thus, we compare the performance overhead due to pre-
emptions for SciSpot, and job waiting times in conventional
HPC deployments. To obtain the job waiting times in HPC
clusters, we use the LANL Mustang traces published as part
of the Atlas trace repository [11]. We analyze the waiting
time of over two million jobs submitted over a 5 year period,
and compute the increase in running time of the job due to
the job waiting or queuing time.

Figure 12 compares the overhead (as percentage increase
in running time) of SciSpot and HPC clusters for jobs of
different lengths. We see that the average performance
overhead due to waiting can be significant in the case of HPC
clusters, and the job submission latency and queuing time
dominate for smaller jobs, increasing their total turnaround
time by more than 2.5x. This waiting is amortized in the
case of longer running jobs, and the overhead for longer jobs
is around 30%.

On the other hand, SciSpot’s performance overhead is
significantly smaller for jobs of up to 8 hours in length. For
longer jobs, the limited lifetime of Google Preemptible VMs
(24 hours) begins to significantly increase the preemption
probability and expected recomputation time. We emphasize
that these are individual job lengths, and not the running time
of entire bag of jobs. We note that these large single jobs are
rare, accounting for less than 5% of all HPC jobs (see inset in
Figure 12). For smaller jobs (within a much larger bag), both

12

the preemption probability and recomputation overhead is
much smaller.

Result: SciSpot’s overhead of recomputation due to preemptions is
small, and is up to 10x lower compared to the overhead of waiting
in conventional HPC clusters.

We emphasize that our goal is to compare the expected
waiting time in HPC clusters vs. SciSpot’s preemption over-
heads. The exact waiting time and performance is dependent
on the specific HPC scheduler and hardware: we merely want
to highlight that the performance overhead of preemptible
VMs is reasonable if users do not wish to wait for HPC
resources.

7 DISCUSSION

Constrained preemptions are a relatively unexplored phe-
nomenon and challenging to model. Our model and the
associated data expand transient cloud computing to beyond
EC2-spot. However, many questions and avenues of future
investigation remain open:

What if preemption characteristics change? Our model
allows detecting policy and phase changes by comparing
observed data with model-predictions and detect change-
points, and a long-running cloud service can continuously
update the model based on recent preemption behavior.
However, changes are rare: Google’s preemption policy has
not changed since its inception in 2015. We have also shown
that our policies are not particularly sensitive to the model
parameters, and even using a poorly-fitted or outdated
model can provide significant benefits compared to existing
memoryless models. Our modeling approach works across
a wide range of instance types and is able to model CDFs
of instances with both very high and very low failure rates,
and thus is general. Moreover, because bathtub preemptions
are good for the applications, they will continue to remain
a good choice for constrained preemptions making our
approach generalizable to other system environments beyond
the Google cloud computing systems. Finally, the principle
adopted to break down the problem into the superposition
of processes characterized by different failure rates can also
be considered as a general framework to understand and
guide policies for mitigating preemption-induced effects in
other cloud environments.

For robust long-term relevance of the preemption model,
we envision a community-driven approach. An increase in
SciSpot use by the research community will provide more
preemption data, which can then be used to constantly refine
the model when preemption characteristics change due to
cloud policies or supply/demand fluctuations.
Generalizability to other Transient VMs. In this paper, we
focus on constrained preemptions. Other cloud transient VMs
such as spot instances do not have the temporal constraint,
and their preemption modeling can be performed with
classical distributions (such as exponential distribution for
modeling EC2 spot instance preemptions [65], [45], [46]).
However, we have shown that an empirical approach of
collecting actual preemption data is feasible and effective,
and a principled approach can be used even without spot-
market price signals.
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8 CONCLUSION

The effective use of transient computing relies on under-
standing the preemption characteristics. While past work on
transient computing has developed techniques and systems
for Amazon’s EC2 spot instances, ours is the first work to
understand the behavior of Google’s Preemptible VMs, that
have a unique characteristic of having a maximum 24 hour
lifetime. Our large-scale empirical study shows that the
constraint imposes a bathtub failure distribution, and we
develop a new preemption probability model for capturing
its three distinct temporal phases. Our insights and model-
based policies can reduce the preemption overheads by more
than 5x compared to existing preemption models, and our
batch computing service can reduce computing costs by over
oX.
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