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Abstract—Recent push for low-latency and high-reliability
systems requires derivation of fundamental trade-offs between
reliability and rates in multi-user systems with hard deadlines
and reliability constraints. Towards this goal, this paper provides
a second-order analysis of superposition coding and other orthog-
onal access schemes for the two-user static Gaussian broadcast
channel. Numerical evaluations show that, since reliability and
rates are intertwined when a hard-deadline is imposed, the
scheduling of resources among users, including the level of
reliability for each user, must be done jointly at the physical
layer in order to optimize the overall system performance.

I. INTRODUCTION

Internet of Things (IoT) promises to bring wireless connec-
tivity to various applications ranging from spectrum sharing to
autonomous vehicles and drones. A successful implementation
of this vision calls for wireless communication systems that
are able to support the exchange of short data bursts at
low-latency and high-reliability. The traditional information
theoretic perspective characterizes the largest rate region one
can support as the packet size (a proxy for delay) tends
to infinity and the probability of error vanishes. These as-
sumptions, inadequate for IoT, have motivated recent studies
aimed at understanding the finite blocklength, or second-order
analysis, of the (reliability, rate) trade-off, where
the packet size is large but finite and error rate is small but
finite [1], [2]. Second-order is a sharp characterization of how
fast the mutual information density concentrates around its
mean, which equals the Shannon capacity, as a function of
the block-length n, akin to the rate at which convergence takes
place in the central limit theorem.

Incorporating hard deadlines (i.e., finite blocklength) re-
quires re-thinking strategies commonly used in multiaccess
techniques. In this paper, we focus on the downlink, or Broad-
cast Channel (BC), where one transmitter simultaneously
sends independent messages to various users under a hard
deadline and a global error probability constraint. Currently,
many downlink systems orthogonalize the users, as in for
example Time Division Multiplexing (TDM) or conceptually
similar resource division techniques. These schemes are simple
and practically relevant but are not in general capacity achiev-
ing. For the single antenna, static Gaussian BC, it is known
that the superposition coding scheme is capacity achieving [3].
In this work, we study the behavior of these commonly used
schemes, well understood in terms of achievable rates, in the
non-asymptotic finite blocklength regime.

In this direction, we study the second-order region [4] of
TDM, Concatenate-and-Code Protocol (CCP) [5], and SUPer-
position coding (SUP) [3]. In TDM, the transmission time is
partitioned into subintervals, each assigned to one user in order
to avoid interference; the achieved rate for a user depends on
the SNR on its channel and the duration of its subinterval.
In CCP, the base station concatenates the users’ message bits
into a single data packet that is then broadcast to all users;
since each user decodes the whole CCP packet to extract its
own bits, the performance is dictated by the channel with the
lowest SNR, akin to the common message capacity of a BC [3,
Problem 5.9.(c)]. In SUP, codewords are overlaid on top on
one another, starting with the one for the user with the lowest
SNR to finish with the one for the user with the largest SNR;
here performance is determined by SINR as each user treats
users with better channel qualities as noise. The high level
question we ask is how to allocate resources, such as power
and channel uses, and how to set users’ reliability so as to
attain the largest possible second-order region.

Breakthroughs have been made in understanding the fi-
nite blocklength performance for various point-to-point chan-
nels [4], [6]. In the important multi-user setting, only a handful
of extensions exist for multiple-access [7], [8] and BCs [9],
[10], where more open than settled problems remain. Such
finite blocklength results often aim to derive approximations
to the rate region in the spirit of the so-called “normal
approximation,” that is, a refined analysis of how the mutual
information density concentrates to its mean which represents
the achievable rate [4]. Some communication-theoretic papers
investigated the reliability-rate trade-off for BC to be able
to compare various orthogonal and non-orthogonal access
schemes [11], [12]; we note that the approach of [11], [12],
based on a repeated use of point-to-point finite blocklength rate
expressions, is not precise for superposition coding. Because
of this, here we follow the second-order approach initiated
in [9], [10] and extend it to the Gaussian noise case.

Our main contributions are as follows.
• We provide a second-order analysis of SUP by combining

elements of the asymmetric BC [9] and Gaussian Multiple
Access Channel (MAC) with degraded message sets [10].
The work in [9] only considered the discrete memoryless
BC. To the best of our knowledge, this paper is thus the
first to investigate the problem in the continuous Gaussian
BC setting.

• We show that, in terms of second-order regions, CCP
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not only beats TDM when the users have comparable
channel qualities, but also SUP. This is rather surprising
as SUP is capacity achieving, pointing out yet again that
conclusions drawn based on first order regions do not
necessarily hold for the second-order regions. A possible
solution could be to consider the rate splitting approach
for more capable BC as outlined in [3, Problem 6.18],
which is not pursued here for sake of space.

• Through numerical evaluations, we show that scheduling
of resources among users, including the level of reliabil-
ity, must be done at the physical layer itself and can not
be separated as in the capacity setting (where error rate
is vanishing and is decoupled from the blocklength).

Compared to our past work [5], here we are not interested
in deriving the probability of violating the hard deadline
constraint. Instead, we derive the largest possible rate region
for a fixed hard deadline such that the global (including all
users) error rate remains below a pre-determined constant.

II. CHANNEL MODEL AND PROBLEM FORMULATION

We consider the K-user complex-valued static Additive
White Gaussian Noise (AWGN) Broadcast Channel (BC),
where the channel between the base-station sending signal X
and the multiple users is modeled as Yi = hiX +Ni for user
i ∈ [K]. Here Ni ∼ N (0, 1) is the proper-complex Gaussian
noise at receiver i (assumed to be independent of all other
noises), and hi is the static channel state at receiver i. The
input X is subject to the power constraint E[|X|2] ≤ 1. The
SNR at receiver i ∈ [K] is γi := |hi|2. The definitions of
achievable rates and capacity region are as usual [3].

We are interested in the case where the base-station must
convey information to the users within n channel uses, where
n represents a hard deadline for the messages to be received,
after which they become obsolete. We are thus in the realm of
finite block length information theory, and in particular of the
so-called second-order regime [9], [10], where the blocklength
n is assumed to be large, but not infinite, and the global
average probability of error ε is small but not vanishing in n.
In this paper we fix the global probability of error to explore
the interdependence of reliability to each user in maximizing
the second-order region. For most memoryless point-to-point
channels, M∗(n, ε), defined as the largest number of messages
that can be sent within n channel uses and with error rate not
exceeding ε, behaves as [4], [13]

logM∗(n, ε) = nC(γ)−
√
nV(γ)Q−1(ε) +O (log n) . (1)

For the AWGN channel, C(γ) := log(1 + γ) is the capacity
(infinite blocklength and vanishing error) when the SNR is γ,
Q−1(.) is the inverse of the tail distribution function of the
standard normal random variable, and V(γ) := γ(2+γ)

(1+γ)2 is the
channel dispersion, or variance of the information density [4].

The term
√

V(γ)
n Q−1(ε) corresponds to the approximate ‘rate

penalty’ incurred by forcing decoding after n channel uses

and allowing error ε ∈ (0, 1/2). The first two terms in (1) are
termed the normal approximation that will be denoted by

κ(n, γ, ε) := C(γ)−
√

V(γ)

n
Q−1(ε). (2)

In the rest of this section we develop expressions akin to (1)
for the two-user AWGN BC. Without loss of generality, in the
following we let 0 < γw ≤ γs, and may refer to user with
SNR γw as the “weak user” and to user with SNR γs as the
“strong user.” We focus here on the case K = 2 for simplicity,
but our analysis can be extended to any number of users.

A. Cut-set Outer Bound (CUT)

The cut-set bound [3] tells us that the capacity region of the
Gaussian BC is within

R(cut-set) =

{
R1 ≤ C(γw)
R1 +R2 ≤ C(γs)

}
, (3)

since the weak user cannot receive at a higher rate than when
it is the only user being served by the base-station, and the
strong user can mimic the weak user (by adding extra noise
to its received signal) and thus must be able to decode both
messages. Following this same line of reasoning, one can show
that the second-order coding region must satisfy

M(cut-set)(n, ε) =

{
λ1 ≤ n κ(n, γw, ε)
λ2 + λ1 ≤ n κ(n, γs, ε)

}
. (4)

where λi is used to indicate the number of bits that must be
conveyed to user i ∈ [2].

B. Time Division Multiplexing (TDM)

The achievable rate region for TDM with power control is

R(tdm) =
⋃
eq(6)

{
R1 ≤ τC(α1γw)
R2 ≤ (1− τ)C(α2γs)

}
, (5)

where the union in (5) is over (α1, α2, τ) ∈ R3
+ such that

τα1 + (1− τ)α2 ≤ 1, (power constraint), (6a)
τ ∈ [0, 1], (time division). (6b)

Since the channel is memoryless and communication for each
user occurs on a separate time window, deriving the second-
order regionM(tdm) from R(tdm) in (5) is straightforward (i.e.,
two separate single-user decoding operations). We have

M(tdm)(n, ε) =
⋃

eq(6),eq(8)

{
λ1 ≤ n κ(τn, α1γw, ε1)
λ2 ≤ n κ((1− τ)n, α2γs, ε2)

}
(7)

where the union in (7) is over (α1, α2, τ, ε1, ε2) ∈ R5
+ such

that they satisfy the constraints in (6) and in addition

1− (1− ε1)(1− ε2) ≤ ε, (global error). (8)

The meaning of the global error constraint in (8) is as follows:
there are two decoding operations, one per user; user i ∈ [2]
is successful with probability 1− εi; since the noises are inde-
pendent, the error events are independent, and thus the overall
probability of success (equal to one minus the probability of
error) is the product of the two individual probabilities of
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success. Optimizing over the individual probabilities of errors
(ε1, ε2) subject to the constraint in (8) provides another degree
of freedom to boost the finite blocklength performance.

C. Concatenate-and-Code (CCP)

If we concatenate the bits of the two users in one single
message and send one codeword as a common message, we
obtain the following achievable rate region

R(ccp) =
{
R1 +R2 ≤ C(min(γw, γs))

}
, (9)

which at finite blocklength reads

M(ccp)(n, ε) =
⋃
eq(8)

{
λ1 + λ2 ≤ n κ(n, γw, ε1)
λ1 + λ2 ≤ n κ(n, γs, ε2)

}
, (10)

since there are two decoding operations, one per receiver,
which must satisfy the global error constraint in (8). We would
like to point out that the global error constraint for M(ccp)

in (10) is because we assumed that at each time instant the
noises on the two channels are independent.

D. Superposition Coding (SUP)

The capacity region of the two-user AWGN BC is attained
by SUP. The SUP region, as derived in [3] for the BC with
degraded message sets (which is capacity achieving for more
capable BC [3], and thus also for the stochastically degraded
AWGN BC considered here), is given by

R(sup) =
⋃

α∈[0,1]


R1 ≤ C

(
(1−α)γw
1+αγw

)
R2 ≤ C(αγs)
R2 +R1 ≤ C(γs)

 . (11)

Note that the last constraint in (11) is always redundant as far
as capacity is concerned. The second-order region with SUP
is derived in Appendix and can be expressed as

M(sup)(n, ε) =
⋃

eq(13)


λ1 ≤ nC

(
(1−α)γw
1+αγw

)
−
√
nV11Q

−1 (ε1)

λ2 ≤ n κ(n, αγs, ε2)
λ2 + λ1 ≤ n κ(n, γs, ε3)


(12)

where the union in (12) is over (α, ε1, ε2, ε3) ∈ R4
+ such that

α ∈ [0, 1], (power split), (13a)
1− (1− ε1)F(ε2, ε3) ≤ ε (global error SUP), (13b)

where (derivations can be found in Appendix) we have

F(ε2, ε3) (14)

=


(1− ε2)(1− ε3) r = 0

1−max(ε2, ε3) r = 1∫∞
Q−1(ε2)

Q
(
Q−1(ε3)−rx√

1−r2

)
e−x2/2
√
2π

dx − ε2, r ∈ (0, 1)

,

r =

√
α

2 + γs
2 + αγs

, (15)

V11 =
(1− α)γw(2αγ2w + γw +3αγw + 2)

(γw + 1)2(αγw + 1)2
. (16)

Note that the first constraint in (12) is not κ(n, (1−α)γw1+αγw
, ε1),

as one would be tempted to guess based on a repeated use
of the point-to-point normal approximation in (1); instead, the
dispersion term is V11 in (16) and not V( (1−α)γw1+αγw

). The term
r in (15) represents the correlation coefficient between the
equivalent noises in the stripping decoder at the strong receiver
with resulting error rate F(ε2, ε3) in (14).

III. NUMERICAL EVALUATIONS

In this section, we numerically compare the performance of
the schemes in Section II, as analytical closed-form solutions
for the largest second-order regions remains elusive. The
figures are for hard-deadline equal to n = 100 channels uses
and global reliability ε = 10−5. We also show the optimal
values of some of the parameters in each second-order region.

Second-Order Regions: In terms of first-order rate re-
gions we know that: (a) SUP attains the capacity region and
coincides with TDM only for equal SNRs, (b) the cut-set
bound is loose, and (c) CCP is always the worst among
the three achievable strategies. We see that this ‘ordering’
does not hold in general for the second-order regions. From
Fig. 1(left side) for equal SNRs γw = γs = 10, we surprisingly
observe that CCP uniformly, i.e., over the whole range of rates,
outperforms TDM and SUP. We observe an ordering as in the
first order rate regions only when the SNRs are sufficiently
different, as in Fig. 1(right side) for γw = 10 � γs = 100.
This suggests that optimal second-order regions must include
a common message, a codeword that is decoded by both users.
Another way to look at this phenomena is to think of CCP as
another form of ‘multiple access’ where the users are allocated
distinct positions in the binary information codeword before
being encoded by the same error correcting code; this is
instead of occupying distinct resources in the same domain
(as in TDM) after being encoded by different error correcting
codes. The advantage of CCP can be easily understood as
follows: the resulting codeword is longer (compared to each
of the TDM codewords) and thus suffers less of the second-
order penalty (quantified by the dispersion) that vanishes with
the codeword length. It should be noted that for TDM the first
user would receive its message earlier as compared to having
to wait for the combined codeword as in CCP, but from the
transmitter’s point of view all users are served within the same
global deadline.

TDM: Fig. 2 shows the optimal values of the parameters
in (7) vs. the rate of the weak user, that is, the optimal power
allocation (α1, α2) (left side) and reliability allocation (ε1, ε2)
(right side) attaining the largest λ2 in Fig 1(right side) vs
λ1 ∈ [0, κ(n, γw, ε)]. While the optimal power allocation does
not appear to have a monotonic behavior as a function of rate
in general, the optimal reliability allocation does. In particular,
the error rate εu monotonically increases with rate λu, for
each user u ∈ [2], while the global error rate does not exceed
ε = 10−5. This can be understood from (1) since the second-
order penalty decreases when εu increases.

CCP: The region M(ccp)(n, ε) in (10) is equivalent to

{λ1 + λ2 ≤ n κ(n, γw, ε1)} for (17)
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Fig. 1: Second-order regions. Left: same SNR γw = γs = 10. Right: different SNRs γw = 10� γs = 100.

Fig. 2: TDM optimal parameters vs. λ1 for γw = 10� γs = 100. Left: power allocation. Right: reliability allocation.

ε1 ∈ [0, ε] : κ(n, γw, ε1) = κ

(
n, γs,

ε− ε1
1− ε1

)
. (18)

The optimal ε1 and ε2 = ε−ε1
1−ε1 in (18) only depend on

(n, γs, γw) but not on the actual rate pair (λ1, λ2); this implies
that the optimal reliability allocation is constant across the
entire second-order region with εw ≥ εs for γs ≥ γw.
The overall CCP performance is determined by that of the
bottleneck weak user, so it intuitively makes sense to relax
the error rate constraint for the weak user as much as possible
so as to make the second-order rate as large as possible.

SUP: Here the information for the strong user is overlaid
as perturbations about the codeword intended for the weak
user. The parameter α represents the fraction of the total
available power allocated to the codeword for the strong user.
In Fig. 3 we show the optimal values of the parameters in (12)
vs. the rate of the weak user, that is, the optimal power
split and resulting correlation coefficient (α, r) (left side) and
reliability allocation (ε1, 1−F(ε2, ε3), ε3) (right side) attaining
the largest λ2 in Fig 1(right side) vs λ1 ∈ [0, κ(n, γw, ε)].
As the correlation coefficient r in (15) is close to one
for the whole range of rates (left side), from (14) we get
1− F(ε2, ε3) ≈ max(ε2, ε3) = ε2 (right side).

We find that, in a manner similar to TDM in Fig. 3(right
side), the error requirement for the weak user must be relaxed
as the rate of the weak user increases. As expected, the value
of ε3 (the error rate for decoding the message of the weak user
by the strong receiver) is the most stringent; this is so because
a decoding error at this stage implies that the weak codeword
cannot be stripped from the received signal and the intended
message will be decoded in error with very high probability.

IV. CONCLUSION

In this paper we provided a second-order analysis of
superposition coding for the two user Gaussian broadcast
channel. We showed that, in terms of second-order regions,
concatenate-and-code is superior to both superposition coding
and time division when the users experience comparable
channel qualities. Through numerical evaluation, we showed
that resource scheduling must happen at the physical layer,
including also the amount of reliability allocated to the users.

This work was supported in part by NSF Award 1900911.

APPENDIX

We aim to find the covariance matrix for the second-order
approximation of SUP for the two-user Gaussian BC [9],
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Fig. 3: SUP optimal parameters vs. λ1 for γw = 10� γs = 100. Left: power split. Right: reliability allocation.

[10]. The results are derived for the real-valued case; for the
complex-valued case, the rates and the dispersions need to
be multiplied by two. In order to introduce the reader to the
notation, we first revisit the point-to-point case in [4].

A. Digression on the point-to-point AWGN channel

For the real-valued single-user AWGN Y = X + Z with
input X ∼ N (0, P ) independent of the noise Z ∼ N (0, σ2),
the mutual information density random variable is

i(y;x) =
1

2
ln

(
1 +

P

σ2

)
− (z)2

2σ2
+

(x+ z)2

2(P + σ2)

∣∣∣∣
z:=y−x

; (19)

define the following zero-mean random variable conditioned
on X = x

T := i(Y ;x)− E [i(Y ;x)|X = x] (20)

=
2Nsign(x)

√
t(x)s+ (1−N2)s

2(s+ 1)
, (21)

t(x) :=
x2

P
, s :=

P

σ2
, N :=

Z

σ
∼ N (0, 1), (22)

whose conditional (on X = x) variance is

V (x) := E
[
T 2|X = x

]
=

(2t(x) + s)s

2(s+ 1)2
; (23)

finally, by picking the codewords on the power shell [10],
which implies Pr[t(X) = 1] = 1 in (23), we get

V = E [V (X)] =
(2 + s)s

2(s+ 1)2
= V(s), (24)

which is the channel dispersion in [4].

B. Two-user AWGN BC

Let σ2
1 > σ2

2 (i.e., user 1 is the weak receiver and user 2
the strong receiver). From the “ABC achievable region” in [9]
with Gaussian inputs we have for k ∈ [1 : 2]

U = U1 ∼ N (0, ξ21), (cloud center); (25)

X = U1 + U2, U2 ∼ N (0, ξ22), (superposition); (26)

Yk|U = u,X = x ∼ N (x, σ2
k); (27)

Yk|U = u ∼ N (u, ξ22 + σ2
k); (28)

Yk ∼ N (0, ξ21 + ξ22 + σ2
k), P := ξ21 + ξ22 . (29)

We aim to find the covariance matrix of mutual information
density random vector [i(Y1;u), i(Y2;x|u), i(Y2;x, u)], whose
mean values are the achievable rates given by

I
(k)
3 =

1

2
ln

(
1 +

ξ21 + ξ22
σ2
k

)
(sum-rate, user k = 2), (30)

I
(k)
2 =

1

2
ln

(
1 +

ξ22
σ2
k

)
(R2, user k = 2), (31)

I
(k)
1 = I

(k)
3 − I(k)2 , (R1, user k = 1). (32)

Similarly to the single-user case in Section A, we write

i
(k)
3 (y;x, u) = I

(k)
3 − (z)2

2(σ2
k)

+
(x+ z)2

2(ξ21 + ξ22 + σ2
k)
|z=y−x;

(33)

i
(k)
2 (y;x|u) = I

(k)
2 − (z)2

2(σ2
k)

+
(x− u+ z)2

2(ξ22 + σ2
k)
|z=y−x, (34)

i
(k)
1 (y;u) = i

(k)
3 (y;x, u)− i(k)2 (y;x|u). (35)

In order to characterize the second-order region we need to
evaluate, conditioned on (X = x, U = u), the covariance
matrix of [i

(1)
1 (Y1;u), i

(2)
2 (Y2;x|u), i(2)3 (Y2;x, u)]; then we

need to average over (X,U) which we pick as for the MAC
with degraded message sets in [10]. Now, let

Nk :=
Zk
σk
∼ N (0, 1), k ∈ [1 : 2]; (36)

t3 :=
x2

ξ21 + ξ22
, s

(k)
3 :=

ξ21 + ξ22
σ2
k

= s
(k)
1 + s

(k)
2 , (37)

t2 :=
(x− u)2

ξ22
, s

(k)
2 :=

ξ22
σ2
k

, (38)

t1 :=
u2

ξ21
, s

(k)
1 :=

ξ21
σ2
k

, (39)

then

T
(k)
3 =

2Nk

√
s
(k)
3 sign(x)

√
t3 + (1−N2

k )s
(k)
3

2(s
(k)
3 + 1)

; (40)
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T
(k)
2 =

2Nk

√
s
(k)
2 sign(x− u)

√
t2 + (1−N2

k )s
(k)
2

2(s
(k)
2 + 1)

; (41)

T
(k)
1 = T

(k)
3 − T (k)

2 . (42)

Define the “noise correlation coefficient”

ρ =

{
E [NiNj ] i 6= j

1 i = j
. (43)

Then, the expectations conditioned on (X,U) = (x, u) (not
explicitly indicated for sake of notation compactness) are

E[T (i)
3 T

(j)
3 ]=ρ

t33(x, u)

√
s
(i)
3 s

(j)
3

(s
(i)
3 + 1)(s

(j)
3 + 1)

+
ρ2

2

s
(i)
3 s

(j)
3

(s
(i)
3 + 1)(s

(j)
3 + 1)

(44)

E[T (i)
2 T

(j)
2 ]=ρ

t22(x, u)

√
s
(i)
2 s

(j)
2

(s
(i)
2 + 1)(s

(j)
2 + 1)

+
ρ2

2

s
(i)
2 s

(j)
2

(s
(i)
2 + 1)(s

(j)
2 + 1)

(45)

E[T (i)
3 T

(j)
2 ]=ρ

t23(x, u)

√
s
(i)
2 s

(j)
2

(s
(i)
3 + 1)(s

(j)
2 + 1)

+
ρ2

2

s
(i)
3 s

(j)
2

(s
(i)
3 + 1)(s

(j)
2 + 1)

(46)

t33(x, u) =
x2

ξ21 + ξ22
, t22(x, u) =

(x− u)2

ξ22
, (47)

t23(x, u) =
x(x− u)

ξ22
(48)

note sign(x)sign(x − u)

√
t3t2

s
(i)
3

s
(i)
2

= x(x−u)
ξ22

. Finally, by

averaging over (X,U) and picking codes on the power shells
as for the MAC with degraded message sets [10]. (i.e., the
terms in (47) and (48) are equal to one, we get

V = Cov

T
(1)
3 − T (1)

2

T
(2)
2

T
(2)
3

 =:

V11 V12 V13
V12 V22 V23
V12 V23 V33

 , (49)

where, with sk = s
(k)
3 = P/σ2

k, s(k)2 = αsk, s(k)1 = (1−α)sk,
α ∈ [0 : 1], k ∈ [1 : 2], we get

V22 =
(2 + αs2)αs2
2(αs2 + 1)2

= V(αs2), (50)

V33 =
(2 + s2)s2
2(s2 + 1)2

= V(s2), (51)

V23 =
(2 + s2) αs2

2(s2 + 1)(αs2 + 1)
, (52)

for the terms relating to the strong user; for the weak user
terms (that may include noises from both channels) we get

V11 =
(1− α)s1(2αs21 + s1 + 3αs1 + 2)

2(s1 + 1)2(αs1 + 1)2
6= V(

(1−α)s1
1 + αs1

),

(53)

V12 =

[
−ρ
√
s1
s2

+
ρ2

2

]
(1− α)s1

(s1 + 1)(αs1 + 1)

αs2
αs2 + 1

, (54)

V13 =

[
ρ

1
√
s1s2

+
ρ2

2

]
(1− α)s1

(s1 + 1)(αs1 + 1)

s2
s2 + 1

. (55)

The second-order region, akin to [10, eq(34)], is the set of
(R1, R2) such that

 R1

R2

R1 +R2

 ∈
I

(1)
1

I
(2)
2

I
(2)
3

− 1√
n
S(V, ε) +O(log n)

 (56)

where the set S(V, ε) is defined as

S(V, ε) :=
{
a ∈ R3 : Pr[Z ≤ a] ≥ 1− ε Z ∼ N (0,V)

}
(57)

where V is given in (49).
In our model the noises on different channels are assumed

independent, thus we use ρ = 0 in (54) and (55). We write
the correlated noises Z ∼ N (0,V) in (57) as a the following
linear combination of three iid standard noises Gi, i ∈ [3]

Z1 =
√
V11G1, Z2 =

√
V22G2, (58)

Z3 =
√
V33

(
rG2 +

√
1− r2G3

)
, (59)

for r := V23√
V22V33

. We also parameterize ai :=
√
ViiQ

−1(εi)
in (57) to get the expression in (13b).

REFERENCES

[1] G. Durisi, T. Koch, and P. Popovski, “Toward massive, ultrareliable, and
low-latency wireless communication with short packets,” Proceedings of
the IEEE, vol. 104, no. 9, pp. 1711–1726, Sept 2016.

[2] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey
on low latency towards 5g: Ran, core network and caching solutions,”
https://arxiv.org/abs/1708.02562, Jul. 2017.

[3] A. El Gamal and Y.-H. Kim, Network Information Theory. UK:
Cambridge University Press, 2011.

[4] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307–2359, May 2010.

[5] D. Tuninetti, B. Smida, N. Devroye, and H. Seferoglu, “Scheduling
on a gaussian broadcast channel with hard deadlines,” International
Conference on Communication (ICC)., May 2018.

[6] P. Popovski, J. J. Nielsen, C. Stefanovic, E. d. Carvalho, E. Strom, K. F.
Trillingsgaard, A. Bana, D. M. Kim, R. Kotaba, J. Park, and R. B.
Sorensen, “Wireless access for ultra-reliable low-latency communica-
tion: Principles and building blocks,” IEEE Network, vol. 32, no. 2, pp.
16–23, March 2018.

[7] Y. W. Huang and P. Moulin, “Finite blocklength coding for multiple
access channels,” in 2012 IEEE International Symposium on Information
Theory Proceedings, July 2012, pp. 831–835.

[8] E. MolavianJazi and J. N. Laneman, “A second-order achievable rate
region for gaussian multi-access channels via a central limit theorem for
functions,” IEEE Transactions on Information Theory, vol. 61, no. 12,
pp. 6719–6733, Dec 2015.

[9] V. Y. F. Tan and O. Kosut, “On the dispersions of three network in-
formation theory problems,” IEEE Transactions on Information Theory,
vol. 60, no. 2, pp. 881–903, Feb 2014.

[10] J. Scarlett and V. Y. F. Tan, “Second-order asymptotics for the gaussian
mac with degraded message sets,” IEEE Transactions on Information
Theory, vol. 61, no. 12, pp. 6700–6718, Dec 2015.

[11] Y. Yu, H. Chen, Y. Li, Z. Ding, and B. Vucetic, “On the performance of
non-orthogonal multiple access in short-packet communications,” IEEE
Communications Letters, vol. 22, no. 3, pp. 590–593, 2018.

[12] X. Sun, S. Yan, N. Yang, Z. Ding, C. Shen, and Z. Zhong, “Short-
packet downlink transmission with non-orthogonal multiple access,”
IEEE Transactions on Wireless Communications, vol. 17, no. 7, pp.
4550–4564, 2018.

[13] M. Hayashi, “Information-spectrum approach to second-order coding
rate in channel coding,” IEEE Trans. Inf. Theory, vol. 55, no. 11, pp.
4947 – 4966, Nov. 2009.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 13,2022 at 20:19:47 UTC from IEEE Xplore.  Restrictions apply. 


		2021-08-02T15:30:33-0400
	Preflight Ticket Signature




