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Abstract

The eigenstate thermalisation hypothesis (ETH) is a statistical characterisation of eigen-
energies, eigenstates and matrix elements of local operators in thermalising quantum
systems. We develop an ETH-like ansatz of a partially thermalising system composed of
a spin-% coupled to a finite quantum bath. The spin-bath coupling is sufficiently weak
that ETH does not apply, but sufficiently strong that perturbation theory fails. We cal-
culate (i) the distribution of fidelity susceptibilities, which takes a broadly distributed
form, (ii) the distribution of spin eigenstate entropies, which takes a bi-modal form,
(iii) infinite time memory of spin observables, (iv) the distribution of matrix elements
of local operators on the bath, which is non-Gaussian, and (v) the intermediate entropic
enhancement of the bath, which interpolates smoothly between S = 0 and the ETH value
of S = log2. The enhancement is a consequence of rare many-body resonances, and is
asymptotically larger than the typical eigenstate entanglement entropy. We verify these
results numerically and discuss their connections to the many-body localisation transi-
tion.
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1 Introduction

The dynamics of a two-level quantum system coupled to a mesoscale thermal bath is a canoni-
cal problem in physics [ 1-6]. Examples include solid-state qubits coupled to nuclear spins [ 7-
10], trapped ions coupled to phonon modes [11-13], superconducting qubits coupled to mag-
netic defects [14-20], and many-body localised cold atoms coupled to ergodic inclusions [21,
22].

For infinite temperature random matrix baths, the relevant dimensionless parameter is the
reduced coupling g, [23-25]

—IPo
-V
Above J is the coupling strength between the two-level system (henceforth spin-%) and the
bath, and p, and d are respectively the density of states at maximum entropy and the Hilbert
space dimension of the bath. The reduced coupling sets the scale of the first-order (in J)
correction to an eigenstate, and is given by the ratio of a typical off-diagonal matrix element

J/4/d to the typical many-body energy level spacing in the bath 1/p,. For a bath that satisfies
the eigenstate thermalisation hypothesis (ETH), the same ratio is given by

g :=J+/V(hs)pg (ETH bath) . (1b)

Here 7(w) is the spectral function of the coupling operator on the bath, and hg is the energy
splitting of the spin at J = 0.

The strong coupling regime (g 2 1) is well-studied; here the combined system of the spin
and the bath is expected to obey ETH [26-34]". At late times, the spin reaches thermal equilib-
rium. At the opposite extreme, in the weak coupling regime (g < 1/d), the eigenstates of the
combined system are described by product states between the spin and bath up to perturbative
corrections, and the spin behaves as an isolated system that does not thermalise.

(random matrix bath). (1a)

)
~
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Figure 1: a) Model: a spin—% intermediately coupled to a many-body quantum bath.

b) A window of the spectrum: Energy levels in the two spin sectors o =1 / | of the de-
coupled Hamiltonian are denoted above/below the energy axis. Two levels strongly
hybridise if their energy separation is much smaller than the typical matrix element
connecting them (purple collar). Typical levels (blue) do not hybridise, while rare
pairs strongly hybridise and form cat states (red). c) Distribution of spin eigenstate
entanglement entropies fgg: fgp is bi-modal with a mode at S = 0 (S = log2) due to
the blue (red) states in (b).

!Formally holding g finite while taking d — oo recovers diagonal ETH and not off-diagonal ETH for spin
observables. See Sec. 4.1.3.
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We develop a statistical theory of spin observables in both eigenstates and dynamical ex-
periments the intermediate coupling regime 1/d < g < 1. Although the majority of eigenstates
are nearly product states (blue in Fig. 1b), eigenstate averaged properties are determined by
the minority of states involved in rare many-body resonances (red). These resonant states are
approximately cat states with spin entanglement entropy S close to log 2. The nearly product
and cat eigenstates determine two modes in the distribution of S across eigenstates (Fig. lc,
Sec. 4.1). In contrast, in an ETH system, the distribution has a single mode at S =log2. The
spin-bath system thus does not satisfy ETH in the intermediate coupling regime. It is however
partially thermalising, as spin observables only retain partial memory of initial conditions at
late times (Sec. 5).

The spin-bath system functions as a bath with a non-ETH (i.e. non-Gaussian) distribution
of off-diagonal matrix elements (Sec. 6) and an enhanced entropy as compared to the bare
bath (Sec. 7). The entropy of the spin-bath system probed by a second spin (Fig. 2a) smoothly
increases from S = log p, in the weak coupling regime, to S = log(2p,) in the strong cou-
pling regime. We calculate the entropic enhancement AS exactly throughout the intermediate
regime

(V7,11
AS(J)=2log m s (2)
af'/=

see Fig. 2b. Above, V' is the operator on the bath that appears in the probe-bath interaction,
v s is the off-diagonal matrix element of V' between the eigenstates |E,) and |Eg) of the
spin-bath system at coupling J, and [-] denotes an appropriate average over a, 3 within small
energy windows.

Our primary analytical tool in the characterisation of the spin-bath system are the distri-
bution of the fidelity susceptibility. The fidelity susceptibility y, of an initial spin-bath product
state |EY) = |o)|E,) quantifies the first-order correction when a weak spin-bath coupling is
switched on

Xa = (ajfala.]faﬂ.lzo . (3)

The distribution of fidelity susceptibilities frg( ) is determined by the spectral properties of the
bath alone. In Sec. 3, we compute the exact distribution fgg of several Poisson random matrix
ensembles, and for the Gaussian unitary ensemble. For the Gaussian orthogonal, Gaussian
symplectic and ETH cases, we obtain exact forms for the asymptotes of frg, and numerically
exact forms for the full distribution.

a) b)

O probe spin Hy'
Non—ETH effective bath #

spin Hg interaction 7’
interaction ETH bath Hp

IV

Figure 2: The Spin-ETH model as an ETH-like bath: a) at intermediate coupling, the
Spin-ETH model appears as an effective bath to a second ‘probe’ spin. b) The entropy
of the Spin-ETH model is enhanced from zero to log 2 as the coupling to the first spin
is tuned in the range 1/d SJ /¥, < 1.
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The distribution of fidelity susceptibilities frg has several universal features. One feature
that is central to our analysis is its heavy tail,

frs(x) ~ \l% )

The coefficient y, sets the typical value. For random matrix and ETH baths (Sec. 3), J 2 Xy 1S
equal to g2 up to an O(1) constant cp that depends on the symmetry class of the bath

Iy, =cpg’. (5)

More broadly, as the heavy tail is a consequence of near degeneracies in the uncoupled many-
body spectrum, Eq. (4) holds even if the bath does not satisfy ETH?, and the dimensionless
parameter J ,/y, identifies the relevant reduced coupling. We use J,/¥, as the reduced cou-
pling henceforth.

States that contribute to the heavy tail of frg are resonant with O(1) other product states.
We treat these resonances within a two level resonant model to obtain simple ‘cat-state’ ansatz
for these states (Sec. 4). Several analytical results follow, specifically: (i) the universal shape
of the spin entanglement entropy in eigenstates (Sec. 4.1), characterised by mean and typical
entropies

Smean = 27[J1/K+ te (6a)
Smedian = _Cm‘JZX* log Cm.JZX* +oe (6b)

(here c,, is an O(1) numerical constant), (ii) the infinite time-averaged spin-spin correlation

function (Sec. 5)
m=1—4’fﬂ\%+... %

and (iii) the intermediate enhancement of the bath entropy (Sec. 7)

AS =—8J /. log(J v/x.) + - (8)
(where in each case ... indicates the presence of corrections which are sub-leading for
JJx-<D.
2 Model

We consider a partially thermalising system that is composed of a single spin-% (S) that is
weakly coupled by 7 to a thermal bath (B)

H=Hy+ V. 9
Above #,, the Hamiltonian in the absence of S-E interactions, is given by,
Hy=Hg®1+1®Hjg, (10)
where Hg is single spin-% with level splitting hg

HS= %hsag, (11)

2Indeed, Eq. (4) holds for an ensemble of many-body localised systems.
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and Hy is the Hamiltonian of a finite many-body quantum bath with density of states p, and di-
mension d (we use calligraphic letters to denote global operators, and roman letters to denote
those local to the system or bath). See Fig. 1a.

We focus on two classes of well-thermalising baths: (i) random baths with Hamiltonians
drawn from Haar invariant random matrix ensembles (the Spin-RM model), and (ii) a spin
chain with local interactions which satisfies ETH (the Spin-ETH model). We describe these in
turn below.

At several points we will consider eigenstate averaged properties of mid spectrum states.
When numerically evaluating these properties, the average is performed over the middle 25%
of the spectrum obtained from exact diagonalisation.

2.1 Random matrix baths

In the Spin-RM model we consider six ensembles of random matrices: the three standard
Gaussian random ensembles (GRE), and three ensembles with the same symmetries, but which
lack level repulsion.

For the GRE case we take

Hp ~ GOE(d), or GUE(d), or GSE(d) (12)

to be a d x d Gaussian random matrix of either real, complex and quaternionic elements (with
Dyson indices 8 = 1,2,4 respectively). These distributions are extensively studied, see e.g.
Ref. [35]. The matrix elements of Hy are determined by the one and two point correlations

[HB,ij]:();
! 2—p (13)
[Hp,;jHg 1" 1= E5ik5jl+—dﬂ 8i10 ik »

where [-] denotes ensemble averaging. The eigenvalues Hg|E,) = E,|E,) have mean and
variance

[E,]=0, (14a)

[E2]= % [tr(HgH)]=1+0(d™). (14b)

More precisely, the density of states of the bath is set by the Wigner semi-circle law

2
p(E)=po\[ 1= = +0(™), (15)

with density of states at maximum entropy p, = d/ .

Throughout we assume that the dimension of the bath is large (d > 1), so that the mean
energy level spacing of the bath is much smaller than the splitting hg of the spin energy levels,
which is in turn smaller than the bandwidth of the bath

py ' < hsg < 4/[E2]. (16)

Eq. (16) holds for a locally interacting many-body quantum bath with L > 1 degrees of free-
dom (the bandwidth grows asymptotically as 1/[E2] o< VL and the density of states grows as
log pg o< L).

We additionally define three “Poisson” ensembles with the same symmetries as the GRE,
but which lack their characteristic level repulsion. These ensembles are of interest as we find
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similar results as in the GRE, but the calculations are significantly more tractable. Specifically,
we take

Hy=UAU", (17)

where A is a diagonal matrix with independent and identically distributed (iid) elements E,
drawn from the semi-circle distribution (15), and U drawn from the Haar invariant ensemble
of d x d unitary matrices with elements that are either real (U ~ CRE(d), the circular real en-
semble), complex (U ~ CUE(d), the circular unitary ensemble) or quaternionic (U ~ CQE(d),
the circular quaternionic ensemble). We refer to these distributions as PxCRE, PxCUE, and
PxCQE respectively. This construction yields ensembles of matrices with Poissonian level
statistics, but with the (i) same density of states (15), (ii) same marginal distribution of matrix
elements at large d, (iii) same symmetries, and (iv) same Haar invariance as GOE(d), GUE(d),
and GSE(d) respectively.

We ascribe the distributions PxCRE, PxCUE, and PxCQE indices 3 = 1, 2,4 respectively.
This labelling differs from the standard one of f = 0 in random matrix theory because the
marginal distribution of the matrix elements is the only relevant quantity here. Specifically,
in the limit of large d, the marginal distribution of the matrix elements for Poissonian Hy is
Gaussian with zero mean and the same two point correlations as the equivalent GRE.

2.2 A many-body quantum system as a bath

In the Spin-ETH model, the bath is a thermalising many-body quantum system with local in-
teractions. Specifically, we choose Hy to describe a weakly disordered Ising model with longi-
tudinal and transverse fields

L
Hy= ). ((—1)na;o—g+1 +h,0* + uFO'fl) : (18)
n=1

with open boundary conditions o7, ; = 0. The longitudinal fields h,, are iid random variables
drawn from a uniform distribution with mean [k, ] = h and variance [hfl] —[h,? =u?(1-T?).
Following Refs. [30,36] we set

(h, u, I') =(0.8090, 0.9045, 0.9950). (19)

The weak disorder breaks the inversion symmetry of the system, while the small disorder
bandwidth, |h,, —h| < 6h with 6h = u4/3(1 —T'2) ~ 0.14, is well below the interaction energy
scale ensuring that there are no presages to localisation.

The alternating ferromagnetic and anti-ferromagnetic couplings ensure that the density
of states p(E) is Gaussian at small system sizes, and independent of the choice of h, u, T, L
(in contrast, the density of states has a marked asymmetry at accessible systems sizes for
homogeneous couplings). Specifically, Hg has density of states

p(E) = poe £ /1), (20)

with mean [E,] = 0 and variance [E2] = s = tr (H2) /2L = L(1 +u? +h?)). The Hilbert space
dimension dimension and density of states at maximum entropy are given by

d

27s

d:2L, Po =

. (21)
2
E

Throughout this manuscript, when considering the Spin-ETH model, we set the probe spin

field to
hg=+VvVh2+u2~1.21, 22)
so that the probe field is half the value of a typical local field in the Ising chain.
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2.3 Spin-Bath interactions

Throughout our analysis, the interaction may be considered to be generic,
V=J(otevVi+o;0V)+J0i0V, (23)

where J,J, > 0 are coupling constants of comparable size J, = O(J), 0"; and o are the usual
Pauli matrices on the spin, and V, V' are operators on the bath with tr (VV') = tr (V/'V’) = d.
For the purposes of specificity, in numerics, we choose V = V', V/ =0 to yield

V=Joi®V. (24)

In the Spin-RM model we set V to be the diagonal matrix V;; = 5ij(—1)j . In the Spin-ETH
model we choose set V = o, where m is the mid-chain site m = [ (L + 1)/2].

3 Weak coupling: J,/y, < 1/d

The late time properties of dynamical evolution are captured by the system’s steady states: the
eigenstates |’E,). In the weak coupling limit, we characterise each |’E,) by a single quantity,
its associated fidelity susceptibility y,. We subsequently obtain a statistical description of the
X o across eigenstates. In the weak coupling regime this may be used directly to obtain the
distribution of spin entanglement entropies across eigenstates in the Spin-RM and Spin-ETH
models.

3.1 The fidelity susceptibility

The change to each eigenstate upon deviating away from zero coupling is captured by its
fidelity susceptibility. At zero coupling, the eigenstates are simple product states of the spin
and bath

|E3) = |0)|E,), (25)

where a =(o,a), o € {1, |}, with associated energies
Ep = 30hs+Eq, (26)

using 7= +1 and |= —1. For small J,J,, corrections to the decoupled limit may be obtained
in perturbation theory

|Ey) = EQ) + 10y Ey) +J,10;, Eg) + ... (27)

We may associate a fidelity susceptibility y, to each state, given by the squared norm of the
first order correction in J

Va b

Xa = (0|0 Ey) = Z E.—F, + ohg
a

b

(28)

Here V,;, = (E,|V|E}) are the matrix elements of the coupling operator V.
When J # 0, the eigenstates are entangled states of the spin and bath. The von Neumann
entropy of the spin quantifies the entanglement between the spin and bath,

S, :=—tr(pglogp,) , (29)
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where p, is the reduced density matrix of the spin obtained from the eigenstate |E,). For
typical states, we obtain the entropy by expanding g, to leading order,

1—J2 o-=2- 2
ﬁf( gla (”"’“))W(g )+O(g3), (30)

o(35) I Pohs
which yields
2
Sy :sza(l—log(sza))-i-O( 4 )+O(g3), (31)
Pohs

where g is the reduced coupling (1a). Egs. (30) and (31) are obtained in Appendix A by
expanding to leading order in two small parameters: (i) the reduced coupling g, and (ii) the
ratio of level spacings to field strengths (oohg)™* = O(1/d). This provides the leading order
entanglement entropy, which is found to depend on J but not J,. Intuitively, this is because this
term generates hybridisation between states in the same spin sector and leaves the reduced
density matrix of the spin unaltered.

As (31) holds only in the perturbative limit J 2 1q < 1, it is useful to estimate the scale of
%« For typical states we find that J2y, = O(g?). This is seen by noting that y, is dominated
by the terms in the sum (28) with the smallest denominators miny |E, — Ej, + hg| ~ 1/pg,
whereas typical matrix elements are of size |V,,| ~ +/tr(VVT)/d = 1//d. Combining these
estimates with (28) we obtain

Jpo )2 2
J? ~ (— = g2, (32)

Eq. (32) describes typical values as defined by the median y,, = med, x,, or the geometric
mean y,, = exp[log y,]. However, we will see that the fidelity susceptibility y, is broadly dis-
tributed with no convergent arithmetic mean. As a result, y,, does not provide a satisfactory
characterisation of the distribution of values y, which we calculate in Sec. 3.2.

The fidelity susceptibility y, is a well known quantity, most often studied as a probe of
ground state phase transitions (see e.g. Refs. [37,38]). Recently, y, and closely related quan-
tities have been studied for mid-spectrum states in the context of quantum chaos [39-44]. The
fidelity susceptibility is named for its appearance when the fidelity between the eigenstates of
H and H,

Fo(J,J;) = |(‘£a|£2>| (33)

is expanded in powers of the coupling J. In this case, when J, = 0, y, sets the leading order
correction
Fo(J,0)=1—112y,+0(J*). (34)

As the spin-bath coupling is determined by two parameters, J and J,, similar susceptibilities
may be defined for the quadratic JJ, and Jz2 terms in the expansion of F,(J,J,). However,
as these terms do not contribute to the eigenstate entanglement of the spin, they are not of
interest in the present context.

The quantity y, is also relates closely to previous studies of the in the context of local-
isation. Operator expectation values on the spin can be calculated to leading order in the
coupling J using (30). This relates closely to the locator expansion in which local expectation
values in an extended system are expanded in the inter-site coupling. This was considered in
Anderson’s seminal analysis of a localised lattice system [45] and in many subsequent works,
for example [46-49].
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Figure 3: The distribution fgs(y) of the fidelity susceptibility in random matrix the-
ory ensembles: Numerically calculated distributions of the fidelity susceptibility (solid
colours, error bars indicate 68% confidence interval) are compared with analytic pre-
dictions (black, dotted). The numerical distributions are obtained by histogramming
the fidelity susceptibility (28) of mid-spectrum states obtained from exact diagonal-
isation. In each case the distribution has been re-scaled by the maximum entropy
value y,(0,hg). The dotted curves have no fitted parameters in the case of the Pois-
son (see (39)) and GUE (see (51a)) ensembles. For GOE and GSE the dashed line has
the exact limiting behaviour given by (47) and (49) whereas values of fgg at inter-
mediate values of y is obtained by a one parameter fit (details in text). Parameters:
hg = 0.1, d = 2048, N = 3000 realisations for GSE and PxCQE, N = 10° realisations
otherwise.

3.2 The distribution fy¢(y) in Haar invariant random matrix ensembles

In the weak coupling limit we have a one-to-one relationship between the fidelity susceptibility
X« and the entanglement entropy S, (31). Thus, to obtain the distribution of entanglement
entropies, a quantity of physical interest, it is sufficient to calculate the distribution of y,. In
this section we calculate the distribution of the fidelity susceptibility y,, of the state a = (o, a),
obtained by ensemble averaging

o [6()( _Xa)6(E_Ea)]
fes(x|E,oh) := [6(E—E)] . (35)

This distribution carries two dependencies: the initial energy E of the bath, and chg the en-
ergy transferred into the bath in order to flip the spin. We perform this calculation for the
Haar invariant ensembles of Sec. 2.1 in the limit of large bath dimension d. We confirm this
calculation with numerics for finite d (Fig. 3).

3.2.1 fps(y) for Haar random baths with Poisson level statistics

We begin with the simplest case, where Hy is a Haar random matrix with Poisson level statistics.
We obtain an explicit form for frg before discussing the key features of the distribution.
We first consider the cumulant generating function

K(t|E,ohg) :=log (J dy €7/ fos(x|E, Uhs))

[elt*e/d§(E — E,)]
[6(E—E,)]

(36)

=log

10
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and substitute in the definition of y, to obtain
2
)] 7

In the Poisson case, at large d, we may treat each matrix element V,; and each energy level
E, as iid random variables. The ensemble averaging is then straightforward (see Appendix B)
and yields

i V
K(tlE,w)zdlog[exp(E‘ ab

d E—Eb+6()

amitp(E + 0)[|Vay | P
: .

dlim K(t|E,w) = —\J (38)

Inverting the relation (36) we obtain a Levy distribution

fes(X|E, @) = exp (—ﬂ X*(i’w)) \ x*(f;w), (39)

with a characteristic scale set by

1 (E, ) = [V 1o (E + w)?. (40)

x1.(E, w) sets the typical values of y,. It is the scale obtained from the definition of y, (28), by
approximating the sum with its dominant term, and replacing the numerator and denominator
with their typical values [|V,;|]? and p(E + hg) 2 respectively.

We note that the Levy distribution may be related to the more familiar normal distribu-
tion. Precisely, ¥ has the same distribution as 2my, /22 for z drawn from the standard normal
distribution z ~ N(,u =0,02=1).

Further calculation relates y,(E, w) to the parameters of the Spin-RM model. Specifically,
we use that the matrix elements V,;, converge on a Gaussian distribution with mean [V, ] =0
and variance [|V,;|?] = 1/d. Thus the distribution of the absolute value |V,;| of the matrix
elements has distribution

Fue(Vap]) o< |V, [P~ exp (—3d BV, ?) (41)
and hence a mean Lo
2 T(50) cp
[Vapll=\ 7% - =\|—. (42)
b \J dp  r(by d

In (42) T'(-) is the gamma function, the Dyson index 8 = 1, 2,4 for real, complex and quater-
nionic matrix elements respectively, and we have defined the numerical constant cg whose
value depends only on the symmetry class of the matrix

2/m B=1 (GOE, PxCRE),
cgp=147/4 for p =2 (GUE, PxCUE), (43)
91/32 B =4 (GSE, PxCQE).

Thus, in terms of the bare properties of the Poissonian bath, we have explicit forms for both
the distribution fzg (39) and its typical values y,

p(E + w)?
—

In Fig 3 we compare these predictions with numerics. Eq. (40) is the left-most black-dashed
curve plotted in Fig 3. This curve shows good agreement with the corresponding numerically
calculated fidelity susceptibility distributions for the Spin-RM model for PxCRE, PxCUE, and
PxCQE baths (the red, purple and brown curves respectively which lie on top of each other).

X*(E, C()) = Cﬁ (44)

11
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3.2.2 fgg for other random matrix baths

We highlight three features of fgg, as calculated for the Poisson case (39). These feature of fgg
found for any choice of thermal bath Hy:

i) The heavy tail of the distribution, decaying as fzg ~ x*l/ 2/ 43/2 leads to rare, large values
of y, and prevents the convergence of the arithmetic mean.

ii) The rapid decay at small ¥y < y, is faster than any power law, to leading order

log frs o< —x 1.

iii) The scale of typical values y, is set by y,.

Elaborating on these points:
i) Rare large values: The large values of y, correspond to states where there is an unexpect-

edly close resonance which dominates the sum in (28). The effect of such close many-body

resonances gives rise to the y ~3/2 tail irrespective of the choice of random ensemble Hy. To

see this, let us approximate

2

Vab

— a 45
Ea_Eb+GhS ( )

Xa®

where in each case b is chosen to minimise the denominator. We then write fic(A,p) for
the distribution of the energy separation to the nearest level A,;, = |E, — E, + ohg| in the
opposite spin sector, and, as before, fy; for the distribution of matrix elements |V,;|. Within
this approximation, (which becomes exact for asymptotically large y)

o oo V
0 0 A
1 oo

%4
= 2){3/2 Jo dv|v|fME(V)fLS(ﬁ) .

The asymptotic behaviour
*(E’ w)
frs(Z|E, @) ~ || 222 P 47)

then follows from taking the limit

2
) fme(V)fis(A)
(46)

1(E,0)= lim y°f2(x)
y—00

2
= (% J dvlvlfME(V)fLS(O)) (48)
=[IVIPp(E+w)™

Here we have set E = E, and w = ohg. We have also used that lim,_,q fis(A) = 2p(E), which
holds irrespective of the level statistics with an sector. Note that (48) is in exact agreement
with (40). Naively one might expect to obtain different asymptotic behaviours for fz5 depend-
ing on the level statistics of the bath matrix, as the values of E,, E;, will be correlated. That we
recover the same form independent of the bath matrix ensemble follows from the fact that the
shift by ohg conceals the correlated nature of the energy levels. This point has been previously
noted in studies of the locator expansion in the context of localisation. [46,48,49]

ii) Fast decay at small y: Below the scale of the typical fidelity susceptibility ¥ < xp. the
distribution converges very quickly to zero log frs o< —x 1 + O(log x ).

In the Poisson case, the strong suppression of frg at small y reflects that atypically small
values of y, occur only when each of the iid terms in the sum y, (28) is independently small.
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Small values of y occur because large numbers of the matrix elements V,; are atypically small,
or because large numbers of the energy levels are atypically far from E, + ohg.

For the GRE baths the terms in y, are not mutually independent. Instead, spectral rigidity
suppresses the fluctuations on the energy levels so that small y, values occur only due to small
matrix elements. This distinction in the GRE leads only to an O(1) quantitative change to the
small y behaviour

( ) T Poisson,

JE, w

log fis(x|E, ) ~ £ x £ g o 49)
—— GRE.
2C/5

We show how (49) is obtained in Sec. 3.2.3.
iii) Typical value of y,: The scale of typical values y is set by the peak of the distribution
and unaffected by the heavy tail. Specifically, the geometric mean is given by

Xiyp.(E, ) = exp U dy fes(x |E, w)logx)

= Cyp. X+ (E, ),

(50)

where ¢y, = O(1) is a numerical constant. For example, in the Poisson ensembles this constant
has value ¢y, = 4me” where y = 0.57721... is the Euler-Mascheroni constant.

3.2.3 fps(y) for Gaussian random matrix baths

We extend our analysis to obtain forms for the distribution of fidelity susceptibilities fgg for
Hp drawn from one of the GRE ensembles. This extension is desirable as GRE matrices predict
the eigenstate properties of thermalising many body quantum systems.

In Appendix C we calculate fgg exactly for a GUE ensemble (3 = 2)

Ay, . 8y,
fFGSUE()() = exp (——X) X_3 (1 + —X) . (51a)
X X X

Above, we suppress the (E, w) dependency of fzg and y, for brevity. We further calculate fgg
for the GOE (3 = 1) or GSE (3 = 4) cases up to some undetermined numerical constants

(Cl,ZJ C{,z)
3 _ 3/2
oo B Gt oz] ) o
4x X X X X

2
oY, X ya X
GSE 1 A* rrx
S —exp( 64y )\ e (1+C1 Y +C2%2 . (51¢)

The number of undetermined parameters is reduced by enforcing the normalisation condition

dest()() =1
41Cy 4+ 4Cy—(m—2)1° =0,

(52)
8192C; + 7687nC, +1357> =0,

where we have neglected sub-leading O(y, / )()3/ 2 corrections in the GOE case. Throughout
the rest of this paper we use the GOE values C; = 5.29..., C, = 11.19... determined by a
least square numerical fit.

We compare (51) with numerics in Figure 3. As with the Poisson case, frg is numerically
calculated by averaging over the mid-spectrum states for hg = 0.1 and d = 2048. In each
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case there is convincing agreement between the analytic forms (black, dotted) and numerical
calculations (solid colours). These analytic forms are specified with no free parameters in the
case of Poisson (39) and GUE (51a). In the case of GOE and GSE the parameters C,, Cé are
fixed by the normalisation condition (52), whereas the remaining free parameters C;, C; are
determined by a one-parameter least squares fit. For this numerical analysis we neglect the
sub-leading O(y, /x)/? corrections in the GOE case.

The full derivation of (51) (Appendix C) is involved, however the asymptotic forms may
be derived in a few lines. The large y form is obtained exactly as in (47). The the small y
form, given by (49), we obtain here. We start from the definition of the cumulant generating
function (36). In the GRE case, for d > 1, the matrix elements may be treated as iid drawn
from the distribution (41). The corrections resulting from this approximation are O(1/d) [50-
52], and we neglect them throughout this section. Thus, integrating over the matrix elements

yields
. 2
1t Vb
K(t|E,0)=1 - 2
(t|E,0) og[exp(d; P-E, )]
Vab-Ep
_ (53)
=log “(1__2it[|va2b|] ) o
b BA|E — Ey|?
Ep
We use the identity log[],g(E;) = >, logg(E,) to replace the sum over

levels with an integration over the ensemble averaged density of states
25 logg(Ey) — [ dE'p(E")logg(E") +0(1/d)

B

K(t|E,0)=—= | dE’p(E")log (1 (54)

2it[|V3]
2 )

~ BA|IE—E'|2

This replacement is only valid if the density of states is smooth on the scale on which the
summand in (53) varies. That is, if the width of the peak of the summand is much greater than
the level spacing. Note (i) the summand has a single peak with a width AE ~ 2t[|Va2b|]/ Bd
(where [|V2|] = 1/d); (ii) the level spacing is on a scale p(E)™' o< d~'. Thus the sum-to-
integral replacement is valid in the limit ¢t > 1. The integral may be further simplified by
assuming the peak of the integrand is much narrower than the bandwidth (requiring t < d?).
In this limit the integrand is sharply peaked at E’ &~ E allowing use to substitute p(E") — p(E)
and integrate

22t Bp(EX[|V ]
d

As the large t behaviour of K(t|E, 0) sets the small y behaviour of fyg, by inverting the Fourier
transform we obtain the low y asymptote

K(tIE,0)~—\J— (1< t<d?). (55)

m2BpEPIVAI] _ priy,

s 56
2y 2cpx (56)

—log frs(x |E,0) ~

where ~ indicates asymptotic equality in the small y limit. Combining this GRE result, with
the Poisson result (39) we obtain (49). This shows that the lower tail is sensitive to both
symmetry class, and level statistics.

We make a comment on the scope of this derivation. In obtaining (54), we replaced the
density of states of Hy with the ensemble averaged density of states. This replacement assumes
fluctuations on the density of states are negligible. For Poisson level statistics this assumption is
invalid, as samples in which p(E + w) is atypically small make a significant contribution to the
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lower tail, and thus (56) does not agree with the previously derived behaviour of Poissonian
Spin-RM models (39). However, this replacement is justified for GRE matrices exhibit much
smaller instance to instance variation on the density of states.

3.2.4 The distribution of y, over states within a sample

The distribution fgg is self averaging. That is, in the limit of large d, the distributions obtained
in this section hold for y, obtained for states within a small energy window of a single Spin-
RM Hamiltonian (specifically an energy window much smaller than the bandwidth, but much
larger than the level spacing). Intuitively, the fidelity susceptibility of each state is dominated
by its coupling to nearby states (which generate large terms in y,), and is uncorrelated with
the properties of energetically distant states [50-52].

3.3 The distribution f;¢ in ETH systems

We extend our calculation of fpg to the more physical case of a bath that is a locally inter-
acting, many body quantum system. Specifically, we use eigenstate thermalisation hypothesis
(ETH) to adapt the GRE calculation of frg (Sec. 3.2) to this setting, and numerically verify the
predicted form of fgg in the Spin-ETH model.

3.3.1 Statement of ETH

ETH describes how isolated quantum systems approach an equilibrium described by quantum
statistical mechanics [26-29] (for an overview see Ref. [31] and references therein). Let Hy
be a generic, locally interacting, thermalising quantum system. For specificity we assume Hy
to be a length L chain of interacting spins-%, such as the Ising chain (18). ETH provides an
ansatz for the matrix elements of a local operator V evaluated in the eigenbasis of Hy

_ (E,, Ey —E,
V= V(E,) 80y + | SLwEo—Ed) p 57)
p(Ep)

where R, are iid Gaussian random numbers with zero mean [R,;,] = 0 and unit variance
[IRg12]1 = 1, V(E) and #(E, w) are real functions smooth in their arguments, and 7(E, w) is
non-negative. V(E) and ¥(E, w) are further determined by physical considerations: Hermitic-
ity enforces

V(E, w)p(E)=V(E+ w,—w)p(E + w), (58)

while the one and two-time correlation functions evaluated in the micro-canonical ensemble
are given by

tr(Vpg) = V(E), (59a)
tr(eHve Mtvp,)=V(E)? + J dw ¥(E, w)e®t, (59b)

up to O(1/d) = 0(27%) corrections. Here py is a micro-canonical ensemble of energy E and
window width A

R 1
pe = D LB (El. (60)
E g
where indicator function 1;(E,) is given by

1 |[E—E'|<A/2
].E(E/) = { | | < / > (61)

0 otherwise,
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and Ng := Y, 15(E,) enforces normalisation. The micro-canonical window width A is chosen
to be much smaller than the scale on which p(E), V(E) or #(E, w) vary, but much greater than
level spacing

1059 (E, )| =o(@)<<A—l<<p(E). (62)

3.3.2 The distribution fig

The GRE results (Sec. 3.2) are adapted to the ETH setting by repeating the derivations with

the relationship
ﬁ(E :Eb_Ea)
[V |1 = cpllVap ] = cp =2 25— (63)
Ol T T T o)

The resulting distributions are as in GRE case (51) but with a typical scale set by
X+(E, ) =cg V(E, w)p(E + w). (64)

The cases 8 = 1,2, 4, (corresponding to R, € R,C,H) correspond naturally to the GOE,
GUE and GSE ensembles. Physically these cases describe systems with time reversal symmetry
[T,H] =0 (B =1,4), or without (8 = 2). The time reversal symmetric cases are distin-
guished by whether the anti-unitary time reversal symmetry operator squares to positive unity
T2 =1 (B =1) or negative unity 72 = —1 (8 = 4) [53].

In Fig 4 we numerically verify the form of fig in the Spin-ETH model with Hy given by the
weakly disordered interacting Ising chain (18). The y, are obtained from the mid-spectrum
states of N = 1000 realisations with hg = vh? +u? ~ 1.21, and V = o7 for m = [(L +1)/2].
The numerically calculated distribution (solid colours) agrees with the corresponding theoret-
ical predictions (dashed colour) for all values of bath size I (legend inset). The correct large
x behaviour (47) is observed for all L, whereas there is discrepancy at small y between the
data and prediction which is disappearing at large L. The small y discrepancy is a finite size
effect which causes the asymptotic log fzs ~ —x./x decay at small y to be cut off by a slower

10 == 11 == 12 =— 13 —— 14
101.

100.

101/

Ses(p) - 2F

10—2 3

103}

10° 10! 102 103 10* 103

X

Figure 4: fgg in thermalising quantum systems: Numerically calculated distributions
of fgs in the Spin-ETH model (solid points, colour) are compared with analytic pre-
dictions for an ETH system (dotted lines, colour). Each numerical distribution was
produced by histogramming values of y, obtained from the mid-spectrum states.
Error-bars indicate standard error on the mean. The legend shows the bath sizes
L, the other parameters are as in the main text. N = 300 realisations for L = 14,
N = 1000 otherwise.
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power law behaviour fzg ~ ¥ with an exponent k that grows exponentially in the system size
L (see Appendix C). The theory curves are given by (51b) with y,(0, hg) given by (64), and

1
p(E+w) = [A—NEZb 1E(Ea)1Ea+w(Eb)]+O(A), (65)
H(E, ) = [ A}VE Zb] 1E(Ea)1Ea+w(Eb)|Vab|2]+ o(a), (66)

and micro-canonical window width A = 0.1. This yields

2.(0,0hg) = ¢19(0, ochg)p(ohg) ~ 2L x 0.0052. (67)

3.4 The extent of the weak coupling regime

A given spin-bath Hamiltonian is in the weak coupling regime if the perturbative correction of
every eigenstate is small J2y, < 1. Due to the heavy tail of fgg this is a much more stringent
condition than requiring the typical eigenstates to be in the perturbative regime. Specifically
we find

exp [log max xa:| ~d?%y,, (68)
a
so that the weak coupling regime corresponds to
1
J,/)(*%g<<g. (69)

4 Eigenstate entanglement entropies

We now show how fig may be used to characterise the statistical properties of the eigenstates
in the intermediate and strong coupling regimes. Specifically, we obtain the distribution of
entanglement entropies frz(S) and we numerically verify this claim. This is possible as (i) y,
accurately determines the entanglement entropy in both limit of J2y, < 1, where the entropy
S, may be calculated in perturbation theory, and J2y, > 1, where S, = log2 (ii) the broad
distribution of y, ensures only a negligible fraction of states are in neither of these limits.

Naively y, provides a characterisation of the entanglement entropies S, only in the per-
turbative limit, J ,/y, < 1/d, where the series expansion (31) applies. Whilst, at the opposite
extreme, typical eigenstates are strongly hybridised by the interaction when typical values of
J2y, become comparable to unity. This defines the strong coupling regime, J /7, 2 1, in
which the combined system of spin and bath approaches ETH. Between the strong and weak
coupling regimes is the intermediate regime

% SIVEK1, (70)
in which the coupling is strong enough to successfully “compete” with the energetic scale of
the unperturbed model (specifically the level spacing), but the coupling remains too weak
to induce the system to full thermalisation. In this regime a finite fraction of levels are par-
ticipating in strong “accidental” resonances, with J2y, 2 1, despite typical levels satisfying
J2pe < 1.

Accidental resonances occur when two neighbouring levels from opposite sectors, a = (T, a)
and 8 = (l, b), have, by chance, a level separation A, := Zg - Zg which is atypically small
|Agpl < oy L. In such a situation, this two-level resonance dominates the values of the ¥, B>
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thus we approximate by treating them as equal J?y, ~ J? 1p~ \‘Vaﬁ /Dap \2. These sparse
resonances may be treated individually by diagonalising the two level effective Hamiltonian

— [ Bap rVaﬁ — 1 JVXa

We refer to this approximation scheme as the two level resonance model. Within this model,
the eigenstates |£,) may be exactly calculated

|Za) = VD) + VBal ). 72)
where we have defined the “transition probability”
Pa=p(%2a)s 9a=9("1a) (73)
where
p(x):=1—¢q(x):= 1(1—;) . (74)
2\ VI+4x

The exact eigenstates of the Spin-ETH model are not given by (72) due to hybridisation with
other states IES) at first order and higher order corrections. However, these corrections do
not significantly correct the statistics of transition probabilities. We discuss the validity of the
two level resonance model in Sec. 8.
Within the two-level resonance model the eigenstate entanglement entropies may be ex-
actly calculated
Se=50%x), (75)

where we have defined

S(x) :==—p(x)logp(x) —q(x)logq(x). (76)

To build confidence in this picture of the eigenstates we make some sanity checks. We note
that (75) reproduces (31) in the weak coupling limit, and approaches S, = log2 for strong
hybridisation J2y, > 1. As frg decays rapidly for ¥ < y,, for J2y, > 1 that all mid-spectrum
eigenstates will have S, ~ log 2 consistent with the spin-bath system approaching ETH in this
limit.

For further affirmation we look to numerics. To numerically verify (75) using the Spin-ETH
model: (i) we diagonalise the decoupled Hamiltonian #4, and calculate the fidelity suscepti-
bility y, for each state; (ii) we then diagonalise H = #;+ 1V and calculate the von Neumann
entropy of the probe spin S, for each state; and (iii) we identify eigenstates |E,) of # and
the eigenstates | E0) of #, by globally maximising the objective function [ |, \(‘Zamg) |23. The
pairs (J2y,,S,) we obtain are plotted in Fig 5 (coloured points, J values inset), each series
of data consists of N = 200 mid spectrum states from a single diagonalisation. These points
are to be compared with the function S(J 2 o) as given by (76) (black dashed line). As ex-
pected the agreement is exact in the limits of large and small J2y,, corresponding to ETH
value S, = log2 and the perturbative limit respectively. The deviation of S, from S(J2y,) is
only apparent over a small O(1) region highlighted by the grey box.

The inset in Fig 5 is a density plot of f(S,|Jx,), the conditional probability of obtaining
a value of the von-Neumann entanglement entropy S, given a fixed value of J?y,. From the
density plot it is apparent that the typical deviation of S,, from S(J2y,,) is significantly smaller
than a single decade, and thus, to a reasonable degree of approximation, we may take S, to
be given by S(J2y,), as in (75). The distribution f(S,|J?y,) shown in this plot is calculated
using (J2x,,S,) aggregated from the mid-spectrum states of N = 100 diagonalisations with
logJ drawn uniformly and iid from the interval logJ € [—10, 2].

3This is a “maximum-weight-matching” problem which can be solved in O(d®) time by e.g. the Blossom algo-
rithm
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4.1 Distribution of eigenstate entanglement entropies

Using the distribution of fidelity susceptibility frs(y), and the two level resonance model for
the entanglement entropy S, = S(J?y,), we now calculate the distribution of entanglement
entropies

fee(SJ,E, hg) = f dy fes(x|E, hs) 8(S —S(J%x)) (77)

and show it to agree well with numerical calculations of fzz. We analyse this distribution
highlighting two quantitative features. The first is a simple universal form at entropies above
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Figure 5: Values of (S,, x.): The entanglement entropy of S, of a eigenstate of the
Spin-ETH model as a function of the fidelity susceptibility of the corresponding eigen-
states of H, (J = 0). For each value of the coupling J (coloured points, J values in
legend), N = 200 points corresponding to randomly selected mid-spectrum eigen-
states are shown. Inset a histogram of data aggregated across many diagonalisations
showing the distribution within the grey boxed region of the main plot. Each col-
umn of cells in the inset is normalised to sum to unity. Parameters L = 12, other
parameters as in Fig. 4.
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Figure 6: Distribution of entanglement entropies: The distribution of spin entangle-
ment entropies in the L = 12 Spin-ETH model is numerically extracted for coupling
strengths (values of J4/y,(0,hg) inset in right panel). a) data for each coupling
strength is plotted (solid colours) together with the predicted analytic form (78)
(dashed line). b) data from the left panel is collapsed in accordance with (80), and
plotted with the theoretical curve (black dashed line). N = 800 realisations per data
series.
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Figure 7: Mean and median eigenstate entanglement entropy of the spin as a function
of coupling strength: three panels of the same data which plot the analytic form (81a)
(no fit parameters) for the mean entanglement entropy (black dashed) with numeri-
cal data (coloured solid points). The panels (a), (b) and (c) are plotted to emphasise
the lower tail, crossover region, and upper tail respectively (note the change in y-axis
for (c)). As the median is asymptotically separated from the mean in the lower tail
we additionally plot this quantity in the left panel. The analytic form for the me-
dian (82a) is shown (black dotted) together with numerical data (coloured hollow
points). N = 2000 realisations per data point for L < 10, N = 300 for L = 11,12,
N =10 for L =13.

the typical value S > S(J2y,). The second is a separation of mean and typical entanglement
entropies, which is due rare resonances dominating the mean.

4.1.1 Universal form for fgg

We extract the distribution of entanglement entropies by performing the integral (77)

% E, hs) __ (78)

fEE(SU;E:hS):fFS( T25(x(5)°

The typical entanglement entropy S > S(J2y,), the distribution of fidelity susceptibilities is
well approximated by its limiting form

frs =\ X_;+O(X_;)’ (79)
4 4

yielding a correspondingly simplified distribution of entanglement entropies

IV x
x(8)%/28'(x(8))

fer(SW, E, hs) = +0(J%2.). (80)
We comment on the shape of the distribution fzz. The bi-modality of the distribution follows
from the compression of the long tail of fzg onto the bounded interval S, € [0,log 2], producing
a second mode at maximal entropy S = log2. This is in addition to the dominant mode at
S ~ 0, which contains the median, and corresponds to the single mode of fzg. Secondly we
note that (80) implies a scaling collapse of fgzr(S|J, E, hg) upon dividing by J /7.

In Fig. 6 we numerically verify (78) and (80). We plot the distribution fgy of spin eigenstate
entanglement entropies in the Spin-ETH model for bath size L = 12. In Fig. 6a a histogram of
numerically calculated S, values is plotted (solid lines) for mid-spectrum states for various val-
ues of J /.. The values of, J+/ x,(0, hg) (inset, right panel) are calculated using (67). These
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Figure 8: Variance of the eigenstate entanglement entropies of the spin: the numerically
ensemble averaged variance (coloured points) is plotted as a function of J 4/ ¥ (0, hg)
for mid-spectrum states of the Spin-ETH model for different L (legend inset). Data
corresponds to the same realisations as Fig. 7. The theoretical curve (black dashed)
is calculated from the distribution (78).

numerical estimates of fg; are compared with the analytic form (78) (dotted lines) calculated
using fpg as in (51b). The predicted and measured curves agree exactly in the intermedi-
ate coupling regime (J+4/,(0,hg) < 1), whereas there is some discrepancy associated with
crossover into the strong coupling regime (J 4/ x,(0,hg) % 1) due to the inexact nature of the
two-level resonance model. In Fig. 6b we show the predicted scaling collapse by plotting the
same data but vertically re-scaled by J 4/ x,(0, hg). The re-scaled data collapses onto the form
predicted by (80) (black, dashed line) for entropies above the typical value S > S(J ,/x,). As
the typical value becomes comparable to S = log 2 the lower mode disappears, and fg; has a
single mode close to the thermal entropy S = log 2.

In Figs. 7 and 8 we compare the analytic and numerical calculations of the mean, median
and variance of the entanglement entropy (using the same diagonalisations as Fig 6). The
three panels of Fig. 7 show the same [S,] data plotted to emphasise the agreement at small,
intermediate and large values of J /Y, respectively. Good agreement is found between the
analytic (dashed lines) and numerically calculated values of [S, ] (solid colour points) across
all values of J ,/x,. There is deviation at large J ./, (Fig 7), where the numerical data peels off
from the theoretical curve. The magnitude of this deviation decreases exponentially decreasing
with L.

4.1.2 Limit of weak coupling J%y, < 1: separation of mean and typical behaviour

We now extract the analytical form of the limiting behaviours of the mean [S,], median
med, S,, and variance Var(S,) of the entanglement entropies within the two level resonance
model.

We first consider the mean entanglement entropy in the weak coupling limit. In the limit
of small J ./, we may replace frs with its large y asymptotic form (79) and expand in powers

of J/xx

[Sa]= f a7 fes(x|E.hs) SU7) (812)
=21J /7, +0(3x.). (81b)

The behaviour of the mean in the weak coupling limit may be contrasted by the asymptotically
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faster decay of the median

med, S, = S(J®med, y,) (82a)
= (1—logcm.J2x*)cm_J2)(* +O(J4)(*2), (82b)

where ¢, :=med, x,/x. is some O(1) constant. The asymptotic separation of the mean (solid
coloured circles) and median (hollow coloured circles) is visible in Fig. 7a.

We may also obtain the variance from the same approach. First we calculate the second
moment of the entanglement entropy

[S2]1= f dy fes(x1E, w)S*(J*x) = ¢, J /Zr + O(J22.), (83)

where ¢, = fooo dxS(x)x~3/2 =1.91755.... This yields a variance
var(S,) = [S5]1—[So)* = e, /7. + 0% 2.). 84

4.1.3 Limit of strong coupling J%y, > 1

The distribution fpg decays rapidly for y < y., as such we may expand
S(x) =1log2—1/(8x)+ O(x~?) yielding

[Sa] = 10g2—

Ca. 2 —2
+0(J%y, ), 85
872y, J*x.) (85)

where ¢, = y,[ xgl] is an O(1) numerical constant. Following the same approach for the

variance yields
/

v & 2. =3

where ¢, = y 2Var(y 1) is again an O(1) constant.

We note that (85) agrees with ETH; in contrast Var(S,) is smaller than the ETH prediction
of Var(S,) o< (J2x,)"!. This discrepancy follows from the O(1/d) scale of the off-diagonal
elements of the density matrix (30), which holds in the limit of fixed J /¥, as d — o0. In this
limit we do not recover the off-diagonal ETH for spin observables. The fluctuations predicted
by ETH are obtained only in the regime J/hg held fixed as d — oo, when the off-diagonal
elements of the density matrix g, are O(1/vd).

5 Infinite time memory in dynamical evolution

The Spin-ETH model consists of a few level system weakly coupled to a thermal bath, and is
thus a prototypical setting for applying Fermi’s Golden Rule (FGR), which predicts the expo-
nential decay two-time correlators. However, in the weak and intermediate coupling regime,
the spin maintains appreciable memory of its initial conditions even at infinite time, a feature
not captured by FGR. We show that the two-level resonance model provides a quantitative
description of this infinite time memory.

5.1 Strong coupling limit J,/y, >1

Let us recall the predictions of FGR. Consider a system prepared in an eigenstate |Z2) =|MIE,)
of the decoupled Hamiltonian #;. Dynamical evolution under the full Hamiltonian # will
cause population to leak from |E?) into a set of target states |£[g) = | |)|E,) at the target
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energy E, ~ E, + hg (and subsequently on-wards into states |£$) =| 1)|E.)). FGR states that

the rate T}, of population leakage out of the state IZS) is set by the size of the typical matrix
element, and the density of states at the target energy

Ty(E,) = 27lJ Vg [ (Eq + hs)

87
= 21 *V(Eq, hg), (©7)

using ETH ansatz (57).

The decay of the initial state populations causes a decay in two-time correlations. For speci-
ficity we consider the connected zz correlator evaluated with an initial infinite-temperature
state

— 1 1,’7-[ —iH
Ca(t) = 5ot (0P @ 1)e (07 01)) . 88)

The FGR does not account for the finite nature of the bath, and thus predicts indefinite expo-
nential decay of correlations

log C,,(t) = —yt + O(t*/L), (89)

with an exponential decay rate (derived in Appendix D)

2
_ ZZJ > J dEp(E)V(E, ohs). (90)

For the Spin-ETH model studied in the manuscript, evaluating (90) numerically yields
y/J?=1.64....

5.2 Intermediate and weak coupling J /7, < 1

In contrast to the indefinite exponential decay predicted by the FGR, in the the weak and inter-
mediate coupling regime J ./, < 1 many eigenstates of the system are only weakly entangled.
These cause the spin to maintain appreciable memory of its initial state at infinite time. This
infinite memory can be quantified in the infinite time average of the spin-spin correlator

t—oo t 2d

a

t
Ez = lim lf dt,sz(t/)ziZ(ZOJO-ZlZa)Z) (91)
0

where the second equality is obtained by expanding in the eigenbasis. Only eigenstates which
are close to product states contribute to C,,, which is thus approximately proportional to the
fraction of eigenstates in the lower mode of fzz. More precisely, we may evaluate (91) within
the two level resonance model

1
(Eulo*|Ey)? = (1— ZP(JZXa)) = 14ty (92)

We obtain an analytic form for the infinite time correlator by first ensemble averaging

Z 27 _ 1_
[(Ealo™| E,)?] = f a2 Gt Eos RS (93)

(where a = (a, 0)), and subsequently summing over possible states a to obtain

sz GGT lJ dEp(E)J d% fFS(XlE UhS) 1+ 4J2)( (94)
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Figure 9: Finite time correlations in the Spin-ETH model for coupling strength J = 0.1
and different system sizes L (legend). The correlator C,,(t) initially decays exponen-
tially with FGR setting the decay rate (black dashed line). For a finite bath, the en-
semble averaged correlations (coloured solid lines) saturate to a finite value which
we extract numerically (coloured dashed lines). Individual trajectories (coloured
translucent lines) exhibit small oscillations around this value. The numerically ex-
tracted saturation values are compared with theoretical values in Fig 10.

The weak coupling behaviour of C,, is given by

C,=1—4mJ\ @ +0(J2%x,(0,hs)) + O(L™Y?). (95)

To recover (95) we consider the following quantity K which must be shown to have value
K =4mn/V/6: _
_1-C,,
J—»O J+/ X*(O hs)
fes(x|E,ohg) 4Ty

= hm — | dE p(E)f
ocel,l V X*(O’ hS 1+4J2X

( ) (96)
Xx E o A\ YIS

J EpE) 21\ 7 0o

27'5 p(E) 1/2

= dE p(E) 2(0) +O(L™°).

Here, in the second line we have substituted (94), and in the third line we have used that
frs ~ ;(*1/2/)(3/2 at large y, and performed the resulting integral f dx x73/24x /(1+4x) = 2m.
To obtain the final line we have then used
X*(E, O-hS) = Cﬁ{}(EJ O'hS)P (E + hS)

= ¢4¥(0,hg)p(E) + O(L™?) (97)

= 2.(0,hs)p(E)/p(0) +0(L /).
Performing the Gaussian integral in the final line of (96) we obtain the desired result
K = 4m1/+4/6, and hence (95) follows. _

In Figs 9 and 10 we numerically verify the saturation values C,, of the two-time spin corre-

lator, (94) and (95) in the Spin-ETH model. In Fig 9, for bath of size L (legend inset) we show
a sub-sample of N = 4 trajectories (translucent colours) and the sample mean value of C,,(t)
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Figure 10: Infinite time correlations: The infinite time spin correlations C,, are plot-
ted for the Spin-ETH model. The predicted theoretical form (black dashed) crosses
over from C,, — 1 asJ — 0 to C,, — 0 as J4/x,(0,hp) > 1. The small J asymp-
tote (95) is also shown (black dotted). The theoretical forms show good agreement
with numerically extracted values (coloured solid lines, L values on legend, inset).
The region enclosed within the grey box where C,, crosses over between its limit-
ing values is shown (plot inset). N = 1000, 100, 10 realisations per data point for
L =11,12,13 repsectively and N = 3000 for L < 10.

(solid colours),. These trajectories track the FGR prediction (89) at early times (black dashed)
before converging to the ensemble averaged infinite time value (dashed colour). The conver-
gence from below is related to the well known ‘dip’ and ‘ramp’ features of the spectral form
factor in Gaussian random matrices systems [35]. In Fig. 10 the numerically calculated infi-
nite time saturation values C,, (solid colours) are compared with theoretical predictions (94)
(black dashed). The agreement is good throughout the plot range. The weak coupling ap-
proximation (95) (black dotted), also shows good agreement for J ,/y, < 1.

6 Off-diagonal matrix elements of operators on the bath

In the weak and intermediate regimes, the spin-bath system does not satisfy ETH. However,
operators on the bath do satisfy an ETH-like ansatz in which off-diagonal matrix elements
within a small spectral window have a non-Gaussian distribution. This distribution deforms
smoothly between the weak coupling limit (J,/¥, < 1/d), wherein ETH is satisfied on the
bath (but not the combined spin-bath system), and the strongly coupled limit (J,/x, % 1)
where the entire spin-bath system approaches ETH.

Consider the weak coupling regime. A local operator V on the bath satisfies ETH (57) with
the random numbers R,; being Gaussian distributed [54-59]. Two arguments help see why
the R, are Gaussian distributed in ETH: (i) the distribution of the R, is constrained only
by [R,p] = 0 and [Rib] = 1, and the standard normal distribution is the maximum entropy
distribution with this property (i.e. deviation from normality would imply the existence of
additional constraints) and (ii) under fairly weak assumptions (violated in the case of e.g.
localisation), Gaussian distributed elements represent the only perturbatively stable situation.
To see this consider a weak perturbation to the bath Hy — Hy = Hy + AH. Let the energy
scale |AH| of this perturbation be much larger than the level spacing, but much smaller than
the local bandwidth so that only states for which V(E) and #(E, w) have essentially the same
value hybridise. Consider the matrix elements of V in the new eigenbasis: the functions V (E)
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and V(E, w) are unaltered from (57), but the R, coefficients linearly superpose:

Rap =Ry =D UgeReqUl, - (98)
cd

Above, U, the unitary which maps from the unperturbed to the perturbed eigenbasis, super-
poses unperturbed levels with small energy separations |E, —Ep| < |AH|. AsR); is a weighted
sum of the R}, by the central limit theorem, it is normally distributed.

At zero coupling the bath satisfies ETH. However, the combined spin-bath system does
not, as the off-diagonal matrix are not Gaussian distributed. The matrix elements of 1 ® V
evaluated between eigenstates a = (a,o) and 3 = (b, 7) of # are given by

Vaﬁ :<Za|]]_®V|£ﬂ>

V(Ew, Es — Eqy) (99)

V(Eq)Sqp + \l 2p(£ﬂ) B
Above 2p(E) is the density of states of the combined spin-bath system. In (99), and throughout
this section, we neglect the O(L™!) correction to the energy density of the system from the spin
so that V(E,) = V(E,) + O(L™!). In decoupled limit J — 0, the random matrix elements are
given by

Rap = V265:Rep - (100)

The R, are strongly non Gaussian: half the elements X4 are exactly zero, whereas half are
Gaussian distributed with twice the variance predicted by ETH. In the strong coupling regime
the R, will be Gaussian distributed with [R 5] =0, [|R4s |2]=1 as required.

We characterise the crossover between the strong and weak coupling regimes by evaluating
the distribution of off-diagonal matrix elements on the bath within the two-level resonance
model. Consider the matrix element V, 5 between the two eigenvectors of the first spin and

bath o o
IE,) = VA Q) + VBl EY),
|Eg) = \/qﬁlf,‘b + \/P/s|f§>‘

Here the |E°) are product states of the spin and bath, with the subscripts a = (o, a), 8 = (7, b),
y =(—o,c)and 6 = (—7,d).

There are two distinct cases of off-diagonal elements to consider: the even case o = 7,
and the odd case 0 = —7. Taking the even case first, we use the ETH ansatz (57) to obtain
the matrix element

(101)

Ve = (El1® V| Ep)
qaqﬁ(féflmvlf,?H Papp(E; |1 ® V|ES)

(102)
_ v(fﬁ ﬂ{f)
where the random coefficient
RE) = Rap/244dp +Reay/2Pabp (103)
has mean and variance
[R51=0, [IRS)P]=2[quqp +Pappl- (104)
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Figure 11: Distribution fop(R) of the off-diagonal matrix elements of operators on the
bath: Eq. (107) is plotted for different values of J ./, from the intermediate regime
(values in legend, inset). The dotted lines show the limiting cases of weak coupling,

where fop(R) — 3fu(RI0,2) + 36(R), and strong coupling fop(R) — fy(R]0,1)
(where fy(R]|u,o?) is the normal distribution).

We now obtain the distribution for ‘]{S/; Let fy(R|u, 02) denote the usual normal distribution

of mean u and variance o2. The R, are distributed as fy(R|0, 1), while p, = p(J?y,) with
X distributed according to frs(y). Thus,

foR) = J J dxdy’ fes(0) fas(r IN(RIO VO U2 2, 7221), (105)

where for brevity we have defined v(®)(x, y) = 2q(x)q(y) + 2p(x)p(y). It is readily verified
that this distribution has the mean and variance in (104).
Repeating this calculation for the odd case, we obtain ‘Rg)/;

[R1=0, [IRS)1*]=2[qupp +Padp], (106)

and corresponding distribution

with mean and variance

fRER) =ff dydy’ frs(x ) frs(x W (RI0, VO, 21 "), (107)

with v©(x, ) = 2q(x)p(y) + 2p(x)q(y).
In sum, the distribution of off-diagonal elements &4 is given by,

Fon(R) =3 (£ + £R)) (108

The distribution fop is plotted for different values of J,/y, in Fig. 11. As J is tuned
through the intermediate regime f,p interpolates smoothly between the weak coupling limit
of fop(R) — % fn(R]0,2) + %5 (R) where ETH is satisfied within each spin sector, and the
strong coupling limit of fop(R) — fN(R]0,1) where the combined system approaches ETH.
At intermediate values, fqp is visibly non-Gaussian.

7 The entropy of the bath

In the intermediate regime, the effective density of states of the bath is enhanced by the partial
thermalisation of the spin, p(E) < pegs < 2p(E). We characterise this smooth enhancement
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with the matrix element entropy AS = log(peg/p(E)) which describes the effective entropy of
the bath as felt by a second, weakly coupled, probe spin.

Introduce a second ‘probe’ spin with field hg coupled to the bath in the same manner as the
first, with a weak coupling constant J’ and bath operator V' (here and throughout this section
primed variables relate to the second spin). This second spin sees an “effective bath” composed
of Hy together with the first spin, see Fig. 2a. Applying the results of Secs. 3.2 and 3.3, the
hybridisation of the states at energy ‘E is quantitatively characterised by the scalar quantity
J’Zx:(J, E,hg) where

2 E 0) =V P (E+ w). (109)

Here p’(‘E) = 2p(‘E) + O(L™!) is the density of states of the combined (first) spin+bath. We
may also use (64) to define an effective density of states

1 (J,E, ) =cp V' (J,E, 0)peg(E + w), (110)

where ¥’ is the spectral function of V.

At weak coupling, y/(0,E, w) is given by (44). At strong coupling to the first spin, the
typical fidelity susceptibility is twice its J = O value y/(J, E, w) = 2x/(0, E, w). Recalling (64),
we understand the factor two growth of ! as an enhancement of the effective bath density of
states p.¢ due to strong hyrbidisation with the first spin, or equivalently as a log 2 enhancement
of bath entropy § = log p.g [25,60,61]. It is thus natural to define the entropic enhancement
of the bath at intermediate values by the matrix element entropy

AS(J,E,h.) :=log M (111a)
TS x.(0, E, hg)
21 [V (111b)
=2log| ——7— | .
S\ IV, 1=

As before, [|V; s |] is the mean absolute value of the matrix elements averaged over levels a
and f taken from small windows about the energies £ and ‘E + hg respectively. [|V/ 5 |17=o is
the same quantity evaluated for zero coupling to the first spin J = 0.

We recast the matrix element entropy AS in terms of more familiar objects: it is the
Renyi entropy of order n = 1/2 associated to the ®,5. Specifically, as the &, square to
one [|R,p 2] = 1, we may define the normalised “probability distribution” Pup = |1Rop 12/N
where A is a normalisation constant, and a, 3 are restricted to the aforementioned energy
windows. The Renyi entropy of order n associated to this distribution is

1
H, () = —log (Z Ta”ﬁ>. (112)
ap

Comparing (112), (111a) and (99) we see that

AS(J: Z3]”’-5): Hl/Z(?)_ Hl/Z(?)|J:0 . (113)
We now evaluate the matrix element entropy. Starting from (113) with Z,5 = |R 12/ N

we may perform the X-average using distribution of off-diagonal matrix elements (107) to
obtain

AS = 2log (ff dXdX/st(X)fFS(X/)k(JZX:JZX/)), (114)
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where, for brevity, we have suppressed the dependencies of AS and fgg, and defined the kernel

k(x,y) :=/p()p()+q(x)q(y) ++/p(x)g(»)+q()p(y). (115)

Eq. (114) is exact within the two level resonance model, but cannot be straightforwardly
simplified to a closed form expression. However, in the asymptotic limits of weak and strong
coupling simpler forms may be extracted (see Appendix E), yielding respectively

AS =—8Jyx. log(Jvx.)+O0UUv7.), (116a)
AS =log2+0((J%x,)7?). (116b)

The matrix element entropy AS calculated here determines y/, which in turn sets the large
x tail of the distribution of the fidelity susceptibilities )((’a 0 of the product states |7)|E,) to

switching on the coupling J'. x(’a 0 is defined in precise analogue to (28)

2

V/

/ af
= _ 117
q{CR) ; T, — Eg + TH, (17

The )((’a’T) have distribution fs with asymptotic tail

frs(x') ~ ;,3 : (118)

As AS increases, this tail shifts to larger y. By direct application of the results of Secs. 4
and 5, x(’a 0 determines the universal shape of the distribution of entanglement entropies of

the second spin at weak and intermediate coupling (80) (J 2 %, < 1), and the saturation value

of two time correlators of the second spin (95). As we have set the second spin to be in the
weak coupling regime, there is no corresponding enhancement of the bath felt by the first
spin due to the presence of the second spin. If both spins are intermediately coupled, a self
consistent treatment is required.

In Fig 12 we numerically verify that the fidelity susceptibilities of the second spin (117)
are distributed as (118) with the enhancement to the typical fidelity susceptibility
2. = exp(AS) x! j—o determined by the matrix element entropy (114). We do this in two
equivalent ways one less direct measure with low statistical noise, and one more direct mea-
sure with greater statistical noise. In each case we find good agreement with the theoretical
prediction. In Fig 12a we plot AS as defined by (111b) with [IV(; 5 |] extracted by diagonalis-
ing the spin-ETH model for different values of coupling J to the first spin and averaging over
realisations and mid-spectrum states. Statistical error bars are smaller than plot points. The
deviation from the theoretical curve is decreasing with L. The AS > log2 seen at small L
reflects the deviation from ETH exhibited by particularly small baths.

In Fig 12b we extract AS as defined by (111a) directly from the distribution of fidelity
susceptibilities x(’aﬁ). We extract the tail coefficient estimate y!(J,E,hg), in accordance

with (118), by aggregating values of x(’a 0 from the mid-spectrum states of many realisations

into a large data set (of size N). We sort this sample into descending order y; > x5 > ...> xy.»
and use the identity (derived in App. F)

M
1 M M 1
logy’ =— > logy’ +2log| — — —_— 11
0g X, M; ogx,+ og(ZeN)+O(N)+O(m), (119)

which holds for any M < N. The corrections are minimised by restricting the partial sum
to the M = O(N?/3) largest values, specifically we use M = [N%/3/10]. Eq. (111a) converts
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Figure 12: Entropic enhancement of the bath: two numerical measures of the en-
tropic enhancement of the bath (coloured points, L values inset) are compared with
the theoretical prediction (114) (solid black). Left panel: we extract AS as defined
by (111b). Right panel: we extract AS as defined by (111a) with y, extracted us-
ing (119). For very small sizes (right panel L = 6, 7) there is significant disagreement
once the coupling J becomes large. Number of realisations per data point: in the left
panel N = 10,1000,2000 and N = 6000 for L =13,12,11 and L < 10 respectively;
in the right panel N = 100, 1000, 3000, 104, and N = 10° for L = 13,12,11,10 and
L < 9 respectively.

the extracted values of y, into values of the matrix element entropy, AS, which are plotted
(coloured points) for different systems size (legend inset). The numerically extracted values of
AS show good agreement with the theoretical prediction (114) (black solid line). The theory
curve is calculated using frg(y) as extracted for the ETH bath in Sec. 3.3, specifically fgg given
by (51b), with y, (0, chg) given by (67).

8 Discussion

We have developed an ETH-like ansatz of a spin coupled to a finite quantum bath (the Spin-
ETH model), this applies in the weak and intermediate regimes where the spin only partially
thermalises with the bath. In the intermediate regime, the fraction of states that form many-
body resonances determines eigenstate-averaged properties such as the mean spin entangle-
ment entropy, as well as physical observables, such as infinite-time memory and the combined
entropy of the spin-bath system as probed by a second spin. Previous analyses of small systems
interacting with mesoscopic quantum baths [25,60,62-65] overlooked these important effects
of many-body resonances.

Applicability of the two level resonance model: Our results hinge on the two level reso-
nance model. It may be surprising that the predictions of this model agree closely with exact-
diagonalisation numerics, as it assumes the eigenstates of the Spin-ETH model to be given by
a superposition of two eigenstates in the decoupled (J = 0) limit,

|Ea) = VPalo)|Eq) + v/Qa|—0) |Ep) , (120)

and estimates the coefficients p,,q, within first order degenerate perturbation theory. Ac-
counting for hybridisation with other states at first order, as well as higher order terms, corrects
the bath states, and leads to a more refined ansatz

|Eo) = vPalo)Ey) + VAol —0)|Ey) . (121)
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However, providing J < hg, the cross term

Vpaqa(Ea|Eb> <pa<Ea|Ea>)qa<Eb|Eb> (122)

is negligible due to conservation of energy. Thus, this more refined ansatz yields the same
results as presented in the main text.

Connections to the many-body localisation finite-size crossover: Refs. [32,58] found that
an ETH-like ansatz (specifically the matrix elements of local operators satisfying (57) but with
non-Gaussian R,;) applied on the thermal side of the finite-size many-body localisation (MBL)
crossover. The authors argued that this violation of Berry’s conjecture [54] was a consequence
of the sub-diffusive thermalising behaviour.

Our results in Sec. 6 indicate a different origin for the non-Gaussianity unrelated to the
presence, or otherwise, of sub-diffusion. Specifically, as each spin is coupled to an external
environment made up of the remaining spins, the spin-environment coupling may be charac-
terised by a quantity J ,/x,. WhenJ /¥, < 1 the spins are in the intermediate coupling regime,
and operators on the spin have off diagonal matrix elements which follow a non-Gaussian dis-
tribution. The distribution we predict (see Fig. 11, and Sec. 6) reproduces the qualitative
features observed in Refs. [32,58].

Non-Gaussianity is present in the intermediate coupling regime of the spin-ETH model,
where it appears concurrently with the spin entanglement entropy becoming bi-modally
distributed—being either close to the thermal (S = log2) or localised (S = 0) value. Further-
more, the distribution of the R, will approach a Gaussian when J,/, is taken sufficiently
large J /¥, % 1. In the context of numerical studies on spin chains, this may be achieved by
increasing the system size. Within the disorder regime studied by Refs. [32, 58], subsequent
analyses have verified both the bi-modal distribution of spin entanglement entropies [66], and
tendency towards Gaussian R,; upon increasing system size [67]. This indicates that the ther-
mal side of the numerically observed MBL crossover is in the intermediate coupling regime.

We note that this resonance based explanation of the physics in small system numerics is
in line with recent proposals that the numerical MBL-thermal crossover occurs when the MBL
phase is destabilised by many-body resonances [68,69], and not by rare thermal regions, as
has largely been assumed [23, 25,60, 61, 63,70-72].

Connections to the Rosenzweig-Porter model: Our results also connect to the Rosenzweig-
Porter (RP) model, though they do not correspond to the well-studied delocalisation tran-
sitions [73-77]. Instead, they correspond most closely to RP models in which the typical
off-diagonal matrix element and typical level spacing scale together (as 1/d, where d is the
dimension). Thus, within the RP terminology, the intermediate regime of the Spin-ETH model
is localised, as the exact eigenstates |E,) have significant overlap with only a finite number
of the J = 0 eigenstates |Z2). However, as we have shown, in the Spin-ETH model this is
sufficient to lead to the entropic enhancement of the bath.

Extensions to this work: We have focused on the infinite time properties of the system,
characterised by eigenstate properties, time averaged correlations, and the properties of the
system as an effective bath. It would be interesting to extend our analysis to describe the finite
bath corrections to the finite time decay of correlation functions, providing a link between our
work and previous random matrix models of decoherence [78-81], and Loschmidt echos [82—
88].

A particularly relevant direction for future investigation is extending our analysis to the
problem of multiple spins coupled to the bath. We treated the simplified case in Sec. 7 in
which the second spin is in the weak coupling regime. However, extension to the case where
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the ‘effective bath’ seen by the second spin is enhanced by the presence of the first spin and vice
versa is necessary to study the regime where multiple spins are coupled in the intermediate
regime.

Moreover, while we have focused on coupling a two-level system, or spin-1/2, to a bath,
it would be useful to obtain results for higher dimensional qudits, and even pairs of large
weakly coupled baths. The latter case in particular could prove relevant to the RG studies
of the MBL transition [89-95], which currently treat pairs of thermal regions as either in the
weak or strong coupling regimes. This is a poor approximation at large d where these regimes
are asymptotically separated.

Finally, while we have focused on infinite temperature properties of the Spin-ETH system,
we expect our results are generalisable to the finite temperature. A subtlety which must be
accounted for is the distinct density of states available in the T and | sectors. When this feature
is correctly accounted for, at the crossover from the intermediate to strong coupling regimes,
the two modes of fz;(S) should combine into a single mode at the thermal entropy S;;, < log2.
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A Calculation of p, in perturbation theory

In this appendix we provide a step by step derivation of the reduced density matrix in (30)
which is calculated to quadratic order in perturbation theory.
Recall the unperturbed Hamiltonian #,. Consider an arbitrary eigenstate projector of this
Hamiltonian
0 ._ [0\ /F0
P = |ENE,I. (123)

Upon introducing a perturbation H, — H = H, + V the perturbed eigenstate projectors are
given to infinite order in perturbation theory by

o0 o0
P, = Z Tén) — Z(_l)nﬂ Z SékO)(VSékl)(VSékZ) . .Sc(tknfl) rVSékn) i (124)
n=0 n=0 k;j=0:ko+ki+...+k,=n

where the sum is taken over non negative integers k; such that Z?:o k; = n, and we have
denoted

SO=—p0  and SMO=g", (125)

where R, is the projected resolvent

PO
1 0y _ B
_Z(n—fa)_[gé —,?— - (126)

— i _ @0
Ra_zl—lf%g(]l Epa)
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Eq. (124) is a corollary of the more general results derived in Chapter 2 of Ref. [96], results
which are here simplified by restricting to the case that # is Hermitian and all eigenvalues
are non-degenerate (i.e. that each ng has rank 1).

Writing out the two leading corrections in (124) explicitly we have

PV == R,V — PVR,,,
PO =R, VR,V Py+ R, VOV R, +P'VR, VR, (127)
— RV POV P — POV REY PO — POV PO Y R
As we are interested only in the reduced density matrix on the spin, we will now trace out the
bath g, := trg (£,). In order simplify the explicit expressions we obtain we denote

2
=0(g?/J?). (128)

2
=0(g2/0%), L=,
b#a

/
Vab
Ea _Eb

Vab
Ea _Eb + O'hs

Xa =

We then substitute in form of the interaction ‘V (23) and simplify. We consider a state a = (1,a)
as in the main text

trg (22) = N1, (129a)
e (2 VRo) = Jﬁm(u
= b
o(pohs)nx J (129b)
0 o Vab Vg V. Vha
trg (B2 VR VR,) =77 (Z R +bz7é;hs(Eb—Ea) (LI
=o(p0hs)m< J (1290
/ 2
0 12 Vab 72 ab
tr (R VPO VR, ) = J ; T F, | MW+ ;} g | M
V., V’
JJ’'
G E BBy i O
V! Vg
! 129d
+JJ ;( 53— gy M (129d)
2 2
—rrui+ o Lo Jui+o( £-mui
Polts Pofts
trg (POVPOVR2) = trg (PO VRZ) tr (P2V) 1) (U
/Vaza
=JJ h—ém(ﬂ
gZ
=O(p§h§)m<il, (129e)
2 / 2
0 2 0) _ 2 Vab 72 ab
trE(?a‘Vﬂ{aWa)—(J Zb] e I ; o )mm
=72+ M1 (129f)
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Combining the above terms as in (127) provides an explicit form for g, given in (30)

1-J%y, O(=2- 2

0 (Pohs) JZXa Pohs

and hence the entanglement entropy

g2

Pohs

Sa = _tr(p\alogp\a) = _(1_‘]2%05)log(l_JZXa)_JZXa logJZXa+O( )+O(g3); (131)

expanding to leading order yields (31) in the main text.

B Calculation of the distribution f¢ for a Poisson bath

In this appendix we provide a step-by-step derivation showing in detail how (39) is obtained
from the starting from (36). Our starting point is the definition of the fidelity susceptibility

a=D,

where a = (a, o). In the case of a Poisson bath we may treat each of the energy levels as iid
drawn from the density of states, and each of the matrix elements as iid drawn from some
distribution. Thus we obtain the cumulant generation function (37)

2
):| . (133)
V.Ep

Writing this out explicitly as an energy integral, and using that K(t|E, w) = K(t,E + w,0) to
set w = 0 without loss of generality, we obtain
2
H . (139
14

We then change variables to x = |V|?/(d|E — E’|?); Taylor expand the density of states about
E; and collect the V averages. Step by step this gives

2

\%
ab , (132)

Ea_Eb+o-hS

it %4
d E—Eb+co

K(t|E, w) :=dlog [exp(

1 o
K(t|E,0)=d 10g|:gf dE'p(E")exp ( 5=

—0Q0

it‘ 1%

K(tIE)—dlog[i v { (E+L)+ (E—L)}] (135)
2d J, Voo P Tk TP T ma,
1 veitx { Vzp”(E))}]
=dlog| = dx (E)+O(— (136)
g[d o Tvae P xd .
oo
iex | IVIIP(E) [IVI*1p"(E)
_ itx
=dlog (J; dxe { (xd P2 +0 (xd 572 . (137)
To make further progress we use the following result of Fourier analysis (see e.g. Ref [97])
N pitx ) 1
JO dXW = F(z — n)(—it)”_Z for neN, (138)

to obtain

(139)

4nip(E)2[|V]]%t [IVIP]p"(E)t*2
ETTCiN ()]

K(t|E,0)= dlog(l —\J
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Above, the unity term in the argument of the logarithm follows from the requirement that
K(t = 0|E) = 0. Expanding to leading order provides the desired result (38)

(140)

K(t|E.0) :_\J _Amip(EPOVIPE O(tp(E)Z[IVIJZ) |

d d

C Calculation of the distribution f;5 for a GUE bath

C.1 Set-up

In this appendix we adapt the approach of Ref. [39] to calculate the distribution of the fidelity
susceptibility fgs, defined in (35), of the fidelity susceptibility, defined in (28).

Specifically we assume the matrix elements V,; in (28) are the elements of a d x d Gaussian
Random matrix V drawn with Dyson index 3. Specifically V,;, € R,C,H for =1, 2,4 respec-
tively, and the matrix V is drawn from a distribution o< exp (—gtr(V2) /402) with o2 =1/d.
The matrix elements of V are Gaussian random numbers with mean [V,; ] = 0 and two-point
correlations

2_
[VipVed*ly = 02 (5ac5bd + Tﬁ 5ad5bc) . (141)

For now f3 is left general, and we proceed in generality as far as possible, but ultimately we only
complete calculation is only in the cases § = 2. The eigenvalues E, in (28) are the eigenvalues
of a separate random matrix, the “bath hamiltonian” in the main text, here denoted R. R is
drawn iid from the same distribution as V. As the target energy E, + ohg is arbitrary, for the
purposes of simplifying the calculation we set it to zero. We will discuss afterwards how the
result we obtain is generalised to different target energies.

According to the arguments presented in the main text, we expect that at asymptotically
large y the distribution decays as

1/2

Xs
frs(x|E, w) ~ W where 1.(E, ) = p(E + 0)*[|Vyp|1?, (142)

with p(E) and a given by (15) and (42) respectively.

As the upper tail of fgg, set by y,, flows off to infinity in the limit of large d, we will calculate
the distribution of the reduced susceptibility x = y /., providing a well behaved large d limit.
Specifically we calculate

fRS(X):X*fFS(XX*lE;_E); (143)

where for simplicity, additionally set «w = —E so that E + w is a mid-spectrum energy, however
the calculation below is easily extended to generic energies to obtain the result (142).

C.2 Calculation of fpg(x)

The distribution of fzg(x) can be written as
X 1 |Vab|2
frs(x)=|o| x—= =0 x——Z—Z
Xx/JAEy X3 |Ep| EV

1 1 Vapl?
=—fdt exp | —it x——z% ,
2n X« b |Eb| EV
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where in the final equality we have substituted the integral representation of the &-function.
Performing the integration over the Gaussian distributed matrix elements V,; we obtain

1 i 2ite? \ P72
f“(x)zﬁj dee [lz[(l_x*ﬁlb"blz) L

N

1 J dee-ic rl(L)
2ito2 ’
2 b \UEl2 =% .

where 8 = 1, 2, 4 for matrix elements V,;, which are real, complex and quaternion respectively.
We then use that detR = [ [, E;, for a Gaussian random matrix R, and swap the average over
eigenvalues, for an ensemble averaging of R

(145)

B/2
detR2

frs(x) = % J dre itx (146)

R

We next use the Gaussian integral result

B )ﬁ/ZJ‘
1= (— dz; exp(—522 (147)
o0 M ( 2 )

where for = 1,2,4 the integral is over real M = R, complex M = C, and quaternion
M = H respectively. This integral is well known for real and complex z;, and holds also for
quaternions [98]. From this relation we obtain

1 B \4h/2 b
(detA)B/2 (ﬂ) fMd ds exp(—55'z) (148)

for any positive definite matrix A. Inserting (148) into (146) one obtains

_ 1 e (B ilz|2t02 /. 2\8/2 Bt p2
fRS(X)—EJdte ‘x-(z—) y dze'*to/x [(detR) eXp(—Ez'R z)]R

T

s (149)
=(_) fM dz 5 (x — 2202/ 7.) [ (detR?)P2 exp (—557R%)]

21

where in the second line we have performed the t integral. As the ensemble of R is Haar
invariant, the integrand depends only on |z|, thus we may use the relation perform the angu-
lar/phase part of the z-integral. Specifically:

©o oo
J dz'g(lzl)=J rdﬂ_ldr-fd§2~g(r)=5d/5—1 J rdf=1dr
Md 0 0

2. qdh/2
- T(dp/2)

where S,, = 2" 1)/2/T(2E) is the surface are of an n-sphere, which lives in n+1 dimensional
space. Using (150) to simplify (149) we obtain

o (150)
rif=ldr-g(r),

dp/
frs(x) = % drr?f715 (x —r?0?/y,) [(detRz)ﬁ/2 exp (—grzu"‘Rzu)]R
dp/2 ( / 2)61/5/2 (51
:2(F/Z;)/2) ' xx*;x .[(detRz)ﬁ/zeXp( Bx X*uRZ )]R
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where is u is an arbitrary fixed unit vector which we set to u =(1,0,0, - -), and in the second
line we have then subsequently performed the radial integral.

To make further progress we decompose R into: a scalar y € R, a d — 1 element vector
ve M¥anda(d—1)x(d—1) random matrix R, which is of the same symmetry class as R

R= [i’ ;',} (152)

We may correspondingly decompose the average over R into and average over y,v,R’

(8=~ J are” i ). g(®)

B / B+ B T
:%JdR’e_w_ztr(Rz)-Jdve_w_zvv'fdye 40”2'8([{ ;’D (153)
y v
[« #)
[ v R YR

where Z is a normalisation constant. In addition we use the relation
e 182
detR? = detR?*(y —v/R"'v)". (154)

Inserting (152), (153), (154) into (151) we then obtain

2B/ 2 (xp./o?)"
fes() =q5 73y 2x
[(detR’z)ﬁ/2 ‘y viIR'™ 1v e p( Px X*(y +v v))] . (155)
y,V

The exponential terms in (155) can be scaled out by using the property

[f(y)e—“y2]y=[ ! f( 4 )] (156)
Yy

V1+4aoc2/B” \\/1+4ac2/p

which is obtained using the substitution y — y’ = y+/1+ 4ac2/f3, and similarly

—aviye 1 v
H0eT = [(1 + 202 pypare! ( \/m)]v ' w7
Using (156) and (157) to simplify (155) we obtain

28/ (xr./o?)"” 4 1

T =G T Jiing. (Ut xg)pa e

o+ _1
y VIR ™y

V1+2xy, l1+xx.
Y,VR’
dp/2
_(dB/2) "> 1 (xcpd/n2)"
~ T(dB/2) x4/1+2xcpd/m? 1+ xcﬁd/nz)ﬁ(d—l)/z

y ViR Ly

V1+2xcpd/n2  1+xcpd/m?

X (detR’z)ﬂ/2 .

(158)

B
X (detR'Z)ﬁ/2 .

y,VR/

37



Scil SciPost Phys. 12, 103 (2022)

where in the second line we have simply subsitituted 02 = 1/d and y, = cpd/ 2 We can
simplify this slightly by noting that in the limit of large d

(xcﬁd/n2)ﬁ(d_l)/2 B 2 (159)
(1 + xcpd/m2)Pd-1)/2 xp 2cpx
and by Stirling’s formula
4m (dp )dﬁ/z
r@ap/2)~\|—|— 160
wp~\15 (%) - 160)
where in all cases ~ denotes asymptotic equality in the limit of large d. Thus
dp/2 2 T
e 1 pr 2 y VIR ™y
(x) ~—— - ex (——) (detRHP2. | L - = T 161
fes van  x,/2xcpd/m? P 2cpx V2 /xcpd/n2 (161)

Y,VR’

As argued in the main text, large values of y, are dominated by the “most resonant” term in
the sum. To make this statement precise, let

Va b

_— 162
Ea—Eb +O'hs ( )

R, =

where a = (0,a) and b is chosen as to minimise the denominator. Exactly analogous to (35)
we define the distribution of this quantity as

[6(R—Ry)6(E—E,)]
[6(E—Eq)]p ’

fR(R|E, O-hs) = (163)

which is related precisely to fzg by

I frs(x|E,ohg)
im =22 0T —
x—=00 fp(x|E,chg)

From this it follows, by the arguments in the main text, that

fr(0) ~\ X—g (165)
x

Flx)~x32, (166)
Using (166) to simplify the x-independent constants in (161) we find

(164)

and thus

B
tp/—1
(detRlz)ﬁ/Z' y— v'iR™ v :|
)~ .exp(—ﬁ“z)[ L dyom a67)
RS 3/2 2 B '
X 2cpx [(detrR)P2- |y P ] o

To make further progress we consider the cases = 1, 2,4 individually.

C.2.1 fyg for GUE

The simplest case is GUE matrices (8 = 2). Expanding the quadratic in (167), noting that the
cross term, which is odd in y thus integrates to zero, and substituting cg_, = /4 one finds

frs(x) =exp (_4_71) . %/2 . (1 + 8_71) , (168)
X X X

where the coefficient 87t on the second term in the brackets is determined by enforcing that
the distribution is normalised f dx frs(x) = 1.
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C.2.2 fpg for GSE

Following the same approach for ( = 4), expanding (167) and performing the y-integrals,
and substituting cg_, = 97/32 one finds

on 1 c c
f%(x)zexp(—m—x)m(l+;+;) 5 (169)

where by normalisation we determine that 8192C’ + 768Cn + 13512 = 0. However this
leaves the remaining degree of freedom undetermined. Unfortunately we have been unable
to determine the values of C,C’ exactly.

C.2.3 fpg for GOE

For GOE (8 = 1), we set cg_; = 2/, however the terms inside the brackets are not easily
expanded

+o—1
detR’| - __VR v
3 1 [| € | Y W :|_y VR’
frs(x) =exp (——) . — (170)
RS 4x x3/2 [|d€tR/| : |y|]y,vR’

however by performing the y—integral we obtain

fp/—1
detR’|-g VR v
3 1 |:| /Xﬁ/ 3 VR
frs() = exp| ——— |- 1 LR 171)
4x ) x3/2 [|detR’|],

where g(z) = e =t 1+ (v/7z/2)Erf(z/2). As we expect the R average to be dominated by
the cases where R’ is close to singular, (i.e. |R7!| large), in which regime g(z) o< |z| + 0(2?),
we anticipate that the sub-leading terms come in powers of x~1/2

3 /
T 1 C C

D Fermi’s Golden Rule

In this appendix we show that Fermi’s Golden rule (FGR) predicts an exponential decay of the
infinite temperature correlator two-time connected correlator

Cy(t):=tr (e”{taze_”{tazéo) =e 7, (173)

The calculation is a little more complex than simply resolving the trace over the initial states
|Z2) and asserting that each one has an amplitude which is decaying at the FGR rate. By
conservation of probability one must also consider the influx of amplitude generated by states
from the opposite spin sector, this correction leads to an O(1) pref factor on the FGR.

The decay rate we calculate in this section sets the exponential decay of correlations. We
note that the same value of y is obtained for a treatment of the spin dynamics using the
Lindblad equation of motion.

To apply FGR we first rearrange the correlator into the form

sz(t)Z(Z O'TPU|TPT) - (Z opalfpf)(z Tpf), (174)
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where the sum is over 0,7 € {1,l} where T,| are taken to have numerical values +1,—1
respectively, and the probabilities are given by the expectation values

P, = (T15(0))g, » (175a)
Py (t) = (5 ()T1:(0)) 5, /{11:(0)) 5, » (175b)

where T1;(t) is the projector onto a spin sector in the Heisenberg picture. By rearranging (174)
is recast as

To apply Fermi’s Golden rule we decompose this into their different energy contributions
Py (t) = de Po|-(t, E) where p.(t, E)AE is the probability that the spin is in state o with
bath energy in the range [E, E + dE], given the boundary condition p.(0,E) = 05, p(E)/d.
Fermi’s golden rule states that

atpalr(t:E) = F—U(E + O.hS)p—olf(t:E + O'hs) - FO'(E)po'lT(t’E) 5 Q77)

where the decay rate I,(E) = 2nJ%%(E, ohg) is determined by (87), and the two terms re-
spectively account for the decays of —o states into the o sector and vice versa. The solution is

given by
_ p(E+ohg) I5 (E) —T*H(E)t
Pai-o(t,E) = == 1 (1—eTo®x), (178)

where we have denoted F;(E )=T,(E)*T_,(E + ohg) (note F;c (E—ohg) = iF_ig (E)). Thus
we obtain

1 CEY
sz(t) =1- EZJ dEp(E + O'hs)(]_ — F;'(E)) (]_ —e I (E) )

=1-— %;f dEp(E) (1 + gi;) (1 —e—r;(E)t) .

Expanding log C,,(t) in powers of t we obtain

179

Kot"

log sz(t) = Z oy
~ |

= C, ()t + 5 (CLL(0) = CL,(0) ¢
+2(C”(0)—3c(0)C. (0)+2C (0%) 3 +...,

(180)

where ,
x,=C,,(0),

k= (CL(0) = C,(0)),

k3 = (C/(0)—3C/.(0)C.,(0) +2C.(0)%) , (181)

One finds k; = O(L?), whereas higher order terms are suppressed, this follows as the density
of states p(E) is asymptotically narrower than the scale on which T (E) varies, specifically,
Kk, = O(L™Y) and k,~, = O(L™). We may thus neglect the sub-leading terms in the large
system limit. Thus we have

log C,,(t) = —yt + O(t%/L), (182)
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where

2mJ?

y=—C.(0)= % > f dEp(E) (TH(E) + T, (E)) = > f dEp(E)¥(E,ohs), (183)

which is the value (90) quoted in the main text. For the Spin-ETH model studied in the main
text we find numerically
y=J%x1.64.... (184)

E Asymptotic form of the matrix element entropy

In this appendix we show the matrix element entropy has the limiting small J behaviour

ASW,E,hy) ~ =87/ 1.(E,hp)log(Jy/1.(E, hY)) (185)

given as (116a) in the main text. Here and throughout this section ~ is used to denote asymp-
totic equality, and we assume we have already taken the limit of large dimension d — oo
while holding y, fixed i.e. J?y, may be tuned arbitrarily small without leaving the intermedi-
ate regime. Here the matrix element entropy is defined by

AS = 2log (f dy J dX/st(X)st(X/)K(JZX’JZX/)) > (186a)
K(x,y) :=y/p()p(y) +q(x)q(y) + v/p(x)g(y) + q(x)p(¥), (186b)
p(x):=1—q(x):= % (1 — ‘/ﬁ) . (186¢)

(114) in the main text, where for brevity we have suppressed dependency on Z, hg.
In the limit of J — O the integral converges to unity, and hence AS = 0. It is useful to
separate off this limiting value

AS =2log (1 + %1) =1+0(1)?, (187a)
I:= ZJ dXJ Ay’ fes() fes(x) (K x, 0% 2") —1) . (187b)

We then proceed by making a substitution s = 24/ y,/x to obtain

=2 f dsf dsfs(s)fs(s)( (4J2X*4JZX*)—1), (188)
5

where the distribution of the s is given by

-1 ()

‘ =1+0(s) (189)

and decaying —log f (s) ~ s? at large s.

Consider the integral I, we note two properties of its integrand K—1: (i) in the limit of small
J the integrand K —1 tends to zero everywhere except for the neighbourhood of the liness =0
and s’ = 0; (ii) in the limit of small J the derivative d,K is non zero only in the neighbourhood
of s = 0, and similarly the derivative J,K is non zero only in the neighbourhood of s’ = 0.
With these properties, one can see that the small J limit of I is the same for any choice of
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distribution f,(s) which is smooth in the vicinity of 0, and preserves the value of f,(0). As a
result we are at liberty to choose a much “nicer” distribution to work with. We choose

fs) = {1 for s€[0,1] (190)

0 otherwise

2 2
I~T —2f dsf ( (4J X*‘”/ZX*) 1). (191)
S

From here we continue by substituting p = p(4J2y, /s?) and p, = p(4J2,) to obtain

to obtain

1/2 1/2
I—ZJ fdpfp(p)fp(p’)(w/pp’+(1—p)(1—p’)+x/p(l—p’)+p’(1—p)—1)- (192)

Where the distribution of p is given by

Cds| . Ty
fo(p) = a| = - pyi (193)
and we have set
po=4J%y, +0(J*y?). (194)

1/2

We then consider the limit ¢ := hrnpo_mI (p, logpcl)/z) writing ¢ := 1—p, ¢ :=1—p/,

qo := 1—p, for brevity

e fim Y2 (12 dme dp,( VP’ +qq") + v/pq’ +qp’ — 1) (195a)
Po=0 p 1/2 log(Pl/Z) Jpo Po p3/2q3/2p/3/2q/3/2
~ lim 2 rl/zdp(\/PPO'Hl%"'\/PQO"‘Poq—l) (195b)
P00 3/2 log(pl/z) L, D3/2q312p 372,312
_ lim 2 1/Gro) dr ( \/rpo +(1=7po)go + v/7Podo + Po(1 —TPo) — 1)
Po—0 p55/2 1og(p1/2)J r3/2p / (1—1pg)3/2py3/2qy3/2

—_

(195¢)
. 2 prer o yiEr

= H%'——EZ;————E7§— dr ————?ﬁi (195d)

Po= log(py') J1 r3/2pg
2 1

= lim ST 20 (195¢)
=0 pi > log(py™™) Py

=4, (1959)

where: in the second line we have applied 'Hopitals rule, differentiating with respect to pg; in
the third line substituted p = rpy; in the fourth line expanded the integrand to leading order
term in pg; in the fifth line performed the integral and kept the result to leading order in p,
before taking the limit.

Combining (187), (191), (194) and (195) we obtain the desired result in the limit of small
J

AS~I~I ~4,/pylog+/po~8Jx.logJ /1, - (196)
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F Estimator for y,

In this appendix we give a statistical estimator for obtaining y, from a sample of N values y,
drawn iid from the distribution fgg. Specifically we show that

M
1 M M 1
logz,=— > log yu+2log( — | +0( = |+ — ), 197
8% M;ngn Og(ZeN) (N) (\/M) (197

where y; > y, > ... > yy are the rank ordered y,, and setting M = O(N?/®) minimises the
sub-leading corrections. This estimator has asymptotic error O(N?/3) which we believe may
be the minimum possible asymptotic error.

The y, are drawn from the distribution fgg, which is given to leading and first sub-leading
order by

1/2 3/2
_ X* X* X*
fes(2) = R +0 (_XS/Z) : (198)

Consider the quantities v; < v, < ... < vy defined by

1/2 -1
Xn c
v, = - = . 199
" (2)(3/2 4) (15

The v, are distributed according to

d
fv(V)=st(X)"£‘ =1+0(%). (200)
Intuitively, in the vicinity of v = 0 the distribution f, behaves like the uniform distribution

1 for uel0,1]

. (201)
0 otherwise

fu(u) = {

This can be made precise in the sense of the following result

1< 1< M2
— > logv, |=|— ) logu, |+0| — |, 202
3 2oen = 5 23| o (5 @0
where the u; <u, <... <uy are a rank ordered sample of values drawn iid from f,.

Using (202) to relate to expectation values of calculated under the uniform distribution is

useful, as it is significantly more simple to work with. In particular the mariginal distribution
of the smallest M values of a sample of size N is given by

M

— N! n—1¢q _,\N—"n
fu,M(u)—;M(n_l)!(N_n)!u -, (203)

(this is a standard result of Order statistics, see for example, Section 5.4 of Ref. [99]) from
which it is readily calculated that

1 M 1 M 1
[Mglogun]zfo logufu’M(u)du:HM—HN—l:log(ﬁ)+0(ﬁ), (204)
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where H, = ZZ:1 1/k = y +logn + O(1/n) is the nth harmonic number, and y the Euler-
Mascheroni constant. Lastly we note that while (204) describes the ensemble averaged value,
for any individual sample there will additionally be statistical noise

lﬁ:lo u, = lﬁ:lo u +O(L) (205)
Mn:1 g n— Mn:1 g n m .
We are now able to arrive at our desired result
1< 1< 1
— 1 =|— | +0| — 206
M
2 2 < 1
=1 L= | —+—=|[+0| — 206b
o8 x [M;()g(vn 2)] (M) (206
2 & 1[& 1
=logy, +2log2—| — logv, |[+0| — % +O(—) (206¢)
e 22| Soan | 0 {5 30 | o
M
2 M 1
=1 ,+2log2—| — 1 Al +O| —=|+0| — 206d
S 5 1 8 e
M M 1
=1 . +2log2—21 — |+2+0(—=|+0|—]. 206
ou.+210g221og {7 ) +2+0( ) +o( ) 2060

Where in the second line we have substituted v,, (199); in the third line we have expanded the
argument of the logarithm in powers of c; in the fourth line we have substituted Eq. (202) and
evaluated the summation in the correction term; in the fifth line we have substituted Eq. (204).
It is then a matter of simple rearrangement to obtain Eq. (197).
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