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Abstract

The eigenstate thermalisation hypothesis (ETH) is a statistical characterisation of eigen-

energies, eigenstates and matrix elements of local operators in thermalising quantum

systems. We develop an ETH-like ansatz of a partially thermalising system composed of

a spin-
1

2 coupled to a finite quantum bath. The spin-bath coupling is sufficiently weak

that ETH does not apply, but sufficiently strong that perturbation theory fails. We cal-

culate (i) the distribution of fidelity susceptibilities, which takes a broadly distributed

form, (ii) the distribution of spin eigenstate entropies, which takes a bi-modal form,

(iii) infinite time memory of spin observables, (iv) the distribution of matrix elements

of local operators on the bath, which is non-Gaussian, and (v) the intermediate entropic

enhancement of the bath, which interpolates smoothly between S = 0 and the ETH value

of S = log 2. The enhancement is a consequence of rare many-body resonances, and is

asymptotically larger than the typical eigenstate entanglement entropy. We verify these

results numerically and discuss their connections to the many-body localisation transi-

tion.
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1 Introduction

The dynamics of a two-level quantum system coupled to a mesoscale thermal bath is a canoni-
cal problem in physics [1–6]. Examples include solid-state qubits coupled to nuclear spins [7–
10], trapped ions coupled to phonon modes [11–13], superconducting qubits coupled to mag-
netic defects [14–20], and many-body localised cold atoms coupled to ergodic inclusions [21,
22].

For infinite temperature random matrix baths, the relevant dimensionless parameter is the
reduced coupling g, [23–25]

g :=
Jρ0p

d
(random matrix bath). (1a)

Above J is the coupling strength between the two-level system (henceforth spin-1
2) and the

bath, and ρ0 and d are respectively the density of states at maximum entropy and the Hilbert
space dimension of the bath. The reduced coupling sets the scale of the first-order (in J)
correction to an eigenstate, and is given by the ratio of a typical off-diagonal matrix element
J/
p

d to the typical many-body energy level spacing in the bath 1/ρ0. For a bath that satisfies
the eigenstate thermalisation hypothesis (ETH), the same ratio is given by

g := J
Æ

ṽ(hS)ρ0 (ETH bath) . (1b)

Here ṽ(ω) is the spectral function of the coupling operator on the bath, and hS is the energy
splitting of the spin at J = 0.

The strong coupling regime (g ¦ 1) is well-studied; here the combined system of the spin
and the bath is expected to obey ETH [26–34]1. At late times, the spin reaches thermal equilib-
rium. At the opposite extreme, in the weak coupling regime (g ≪ 1/d), the eigenstates of the
combined system are described by product states between the spin and bath up to perturbative
corrections, and the spin behaves as an isolated system that does not thermalise.

spin HS ETH bath HB

a)

interaction

σ = ↓ :
σ = ↑ :
b) ≈ product states

≈ maximally entangled states
Figure 1: a) Model: a spin-1

2 intermediately coupled to a many-body quantum bath.
b) A window of the spectrum: Energy levels in the two spin sectors σ =↑ / ↓ of the de-
coupled Hamiltonian are denoted above/below the energy axis. Two levels strongly
hybridise if their energy separation is much smaller than the typical matrix element
connecting them (purple collar). Typical levels (blue) do not hybridise, while rare
pairs strongly hybridise and form cat states (red). c) Distribution of spin eigenstate

entanglement entropies fEE: fEE is bi-modal with a mode at S = 0 (S = log 2) due to
the blue (red) states in (b).

1Formally holding g finite while taking d → ∞ recovers diagonal ETH and not off-diagonal ETH for spin
observables. See Sec. 4.1.3.
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We develop a statistical theory of spin observables in both eigenstates and dynamical ex-
periments the intermediate coupling regime 1/d ® g ≪ 1. Although the majority of eigenstates
are nearly product states (blue in Fig. 1b), eigenstate averaged properties are determined by
the minority of states involved in rare many-body resonances (red). These resonant states are
approximately cat states with spin entanglement entropy S close to log 2. The nearly product
and cat eigenstates determine two modes in the distribution of S across eigenstates (Fig. 1c,
Sec. 4.1). In contrast, in an ETH system, the distribution has a single mode at S = log 2. The
spin-bath system thus does not satisfy ETH in the intermediate coupling regime. It is however
partially thermalising, as spin observables only retain partial memory of initial conditions at
late times (Sec. 5).

The spin-bath system functions as a bath with a non-ETH (i.e. non-Gaussian) distribution
of off-diagonal matrix elements (Sec. 6) and an enhanced entropy as compared to the bare
bath (Sec. 7). The entropy of the spin-bath system probed by a second spin (Fig. 2a) smoothly
increases from S = logρ0 in the weak coupling regime, to S = log(2ρ0) in the strong cou-
pling regime. We calculate the entropic enhancement∆S exactly throughout the intermediate
regime

∆S (J) = 2 log

�

[|V ′
αβ
|]

[|V ′
αβ
|]J=0

�

, (2)

see Fig. 2b. Above, V ′ is the operator on the bath that appears in the probe-bath interaction,
V ′
αβ

is the off-diagonal matrix element of V ′ between the eigenstates |Eα〉 and |Eβ 〉 of the
spin-bath system at coupling J , and [·] denotes an appropriate average over α,β within small
energy windows.

Our primary analytical tool in the characterisation of the spin-bath system are the distri-
bution of the fidelity susceptibility. The fidelity susceptibility χα of an initial spin-bath product
state |E0

α〉 = |σ〉|Ea〉 quantifies the first-order correction when a weak spin-bath coupling is
switched on

χα = 〈∂J Eα|∂J Eα〉|J=0 . (3)

The distribution of fidelity susceptibilities fFS(χ) is determined by the spectral properties of the
bath alone. In Sec. 3, we compute the exact distribution fFS of several Poisson random matrix
ensembles, and for the Gaussian unitary ensemble. For the Gaussian orthogonal, Gaussian
symplectic and ETH cases, we obtain exact forms for the asymptotes of fFS, and numerically
exact forms for the full distribution.

a) b)

Figure 2: The Spin-ETH model as an ETH-like bath: a) at intermediate coupling, the
Spin-ETH model appears as an effective bath to a second ‘probe’ spin. b) The entropy
of the Spin-ETH model is enhanced from zero to log 2 as the coupling to the first spin
is tuned in the range 1/d ® J

p
χ⋆≪ 1.
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The distribution of fidelity susceptibilities fFS has several universal features. One feature
that is central to our analysis is its heavy tail,

fFS(χ)∼
√

√χ⋆
χ3

. (4)

The coefficient χ⋆ sets the typical value. For random matrix and ETH baths (Sec. 3), J2χ⋆ is
equal to g2 up to an O(1) constant cβ that depends on the symmetry class of the bath

J2χ⋆ = cβ g2 . (5)

More broadly, as the heavy tail is a consequence of near degeneracies in the uncoupled many-
body spectrum, Eq. (4) holds even if the bath does not satisfy ETH2, and the dimensionless
parameter J

p
χ⋆ identifies the relevant reduced coupling. We use J

p
χ⋆ as the reduced cou-

pling henceforth.
States that contribute to the heavy tail of fFS are resonant with O(1) other product states.

We treat these resonances within a two level resonant model to obtain simple ‘cat-state’ ansatz
for these states (Sec. 4). Several analytical results follow, specifically: (i) the universal shape
of the spin entanglement entropy in eigenstates (Sec. 4.1), characterised by mean and typical
entropies

Smean = 2πJ
p
χ⋆ + · · · (6a)

Smedian = −cm.J
2χ⋆ log cm.J

2χ⋆ + · · · (6b)

(here cm. is an O(1) numerical constant), (ii) the infinite time-averaged spin-spin correlation
function (Sec. 5)

〈σz
P(t)σ

z
P(0)〉= 1− 4πJ

√

√χ⋆(0, hS)

6
+ · · · (7)

and (iii) the intermediate enhancement of the bath entropy (Sec. 7)

∆S = −8J
p
χ⋆ log(J

p
χ⋆) + · · · (8)

(where in each case . . . indicates the presence of corrections which are sub-leading for
J
p
χ⋆ < 1).

2 Model

We consider a partially thermalising system that is composed of a single spin-1
2 (S) that is

weakly coupled by V to a thermal bath (B)

H =H0 +V . (9)

Above H0, the Hamiltonian in the absence of S-E interactions, is given by,

H0 = HS⊗ ✶+ ✶⊗ HB , (10)

where HS is single spin-1
2 with level splitting hS

HS =
1
2hSσ

z
S , (11)

2Indeed, Eq. (4) holds for an ensemble of many-body localised systems.
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and HB is the Hamiltonian of a finite many-body quantum bath with density of states ρ0 and di-
mension d (we use calligraphic letters to denote global operators, and roman letters to denote
those local to the system or bath). See Fig. 1a.

We focus on two classes of well-thermalising baths: (i) random baths with Hamiltonians
drawn from Haar invariant random matrix ensembles (the Spin-RM model), and (ii) a spin
chain with local interactions which satisfies ETH (the Spin-ETH model). We describe these in
turn below.

At several points we will consider eigenstate averaged properties of mid spectrum states.
When numerically evaluating these properties, the average is performed over the middle 25%
of the spectrum obtained from exact diagonalisation.

2.1 Random matrix baths

In the Spin-RM model we consider six ensembles of random matrices: the three standard
Gaussian random ensembles (GRE), and three ensembles with the same symmetries, but which
lack level repulsion.

For the GRE case we take

HB ∼ GOE(d), or GUE(d), or GSE(d) (12)

to be a d×d Gaussian random matrix of either real, complex and quaternionic elements (with
Dyson indices β = 1, 2,4 respectively). These distributions are extensively studied, see e.g.
Ref. [35]. The matrix elements of HB are determined by the one and two point correlations

[HB,i j] = 0 ,

[HB,i jHB,kl
∗] =

1

d
δikδ jl +

2− β
dβ

δilδ jk ,
(13)

where [·] denotes ensemble averaging. The eigenvalues HB|Ea〉 = Ea|Ea〉 have mean and
variance

[Ea] = 0 , (14a)

[E2
a] =

1

d

�

tr
�

HBH
†
B

��

= 1+O(d−1) . (14b)

More precisely, the density of states of the bath is set by the Wigner semi-circle law

ρ(E) = ρ0

√

√

1− E2

4
+O(d−1) , (15)

with density of states at maximum entropy ρ0 = d/π.
Throughout we assume that the dimension of the bath is large (d ≫ 1), so that the mean

energy level spacing of the bath is much smaller than the splitting hS of the spin energy levels,
which is in turn smaller than the bandwidth of the bath

ρ−1
0 ≪ hS≪

q

[E2
a] . (16)

Eq. (16) holds for a locally interacting many-body quantum bath with L≫ 1 degrees of free-
dom (the bandwidth grows asymptotically as

Æ

[E2
a]∝

p
L and the density of states grows as

logρ0∝ L).
We additionally define three “Poisson” ensembles with the same symmetries as the GRE,

but which lack their characteristic level repulsion. These ensembles are of interest as we find
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similar results as in the GRE, but the calculations are significantly more tractable. Specifically,
we take

HB = UΛU† , (17)

where Λ is a diagonal matrix with independent and identically distributed (iid) elements Ea

drawn from the semi-circle distribution (15), and U drawn from the Haar invariant ensemble
of d × d unitary matrices with elements that are either real (U ∼ CRE(d), the circular real en-
semble), complex (U ∼ CUE(d), the circular unitary ensemble) or quaternionic (U ∼ CQE(d),
the circular quaternionic ensemble). We refer to these distributions as P×CRE, P×CUE, and
P×CQE respectively. This construction yields ensembles of matrices with Poissonian level
statistics, but with the (i) same density of states (15), (ii) same marginal distribution of matrix
elements at large d, (iii) same symmetries, and (iv) same Haar invariance as GOE(d), GUE(d),
and GSE(d) respectively.

We ascribe the distributions P×CRE, P×CUE, and P×CQE indices β = 1,2, 4 respectively.
This labelling differs from the standard one of β = 0 in random matrix theory because the
marginal distribution of the matrix elements is the only relevant quantity here. Specifically,
in the limit of large d, the marginal distribution of the matrix elements for Poissonian HB is
Gaussian with zero mean and the same two point correlations as the equivalent GRE.

2.2 A many-body quantum system as a bath

In the Spin-ETH model, the bath is a thermalising many-body quantum system with local in-
teractions. Specifically, we choose HB to describe a weakly disordered Ising model with longi-
tudinal and transverse fields

HB =

L
∑

n=1

�

(−1)nσx
nσ

x
n+1 + hnσ

x
n + uΓσz

n

�

, (18)

with open boundary conditions σz
L+1 = 0. The longitudinal fields hn are iid random variables

drawn from a uniform distribution with mean [hn] = h and variance [h2
n]−[hn]

2 = u2(1−Γ 2).
Following Refs. [30,36] we set

(h, u, Γ ) = (0.8090, 0.9045, 0.9950) . (19)

The weak disorder breaks the inversion symmetry of the system, while the small disorder
bandwidth, |hn−h| ≤ δh with δh= u

p

3(1− Γ 2)≈ 0.14, is well below the interaction energy
scale ensuring that there are no presages to localisation.

The alternating ferromagnetic and anti-ferromagnetic couplings ensure that the density
of states ρ(E) is Gaussian at small system sizes, and independent of the choice of h, u, Γ , L

(in contrast, the density of states has a marked asymmetry at accessible systems sizes for
homogeneous couplings). Specifically, HB has density of states

ρ(E) = ρ0e−E2/(2s2
E) , (20)

with mean [Ea] = 0 and variance [E2
a] = s2

E = tr
�

H2
B

�

/2L = L(1+u2+h2)). The Hilbert space
dimension dimension and density of states at maximum entropy are given by

d = 2L , ρ0 =
d

q

2πs2
E

. (21)

Throughout this manuscript, when considering the Spin-ETH model, we set the probe spin
field to

hS =
p

h2 + u2 ≈ 1.21 , (22)

so that the probe field is half the value of a typical local field in the Ising chain.
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2.3 Spin-Bath interactions

Throughout our analysis, the interaction may be considered to be generic,

V = J
�

σ+S ⊗ V † +σ−S ⊗ V
�

+ Jzσ
z
S⊗ V ′ , (23)

where J , Jz > 0 are coupling constants of comparable size Jz = O(J), σ±S and σz
S are the usual

Pauli matrices on the spin, and V, V ′ are operators on the bath with tr
�

V V †
�

= tr
�

V ′V ′
�

= d.
For the purposes of specificity, in numerics, we choose V = V †, V ′ = 0 to yield

V = Jσx
S ⊗ V . (24)

In the Spin-RM model we set V to be the diagonal matrix Vi j = δi j(−1) j . In the Spin-ETH
model we choose set V = σx

m where m is the mid-chain site m= ⌊(L + 1)/2⌋.

3 Weak coupling: J
p
χ⋆≪ 1/d

The late time properties of dynamical evolution are captured by the system’s steady states: the
eigenstates |Eα〉. In the weak coupling limit, we characterise each |Eα〉 by a single quantity,
its associated fidelity susceptibility χα. We subsequently obtain a statistical description of the
χα across eigenstates. In the weak coupling regime this may be used directly to obtain the
distribution of spin entanglement entropies across eigenstates in the Spin-RM and Spin-ETH
models.

3.1 The fidelity susceptibility

The change to each eigenstate upon deviating away from zero coupling is captured by its
fidelity susceptibility. At zero coupling, the eigenstates are simple product states of the spin
and bath

|E0
α〉= |σ〉|Ea〉 , (25)

where α= (σ, a), σ ∈ {↑,↓}, with associated energies

E0
α =

1
2σhS+ Ea , (26)

using ↑= +1 and ↓= −1. For small J , Jz , corrections to the decoupled limit may be obtained
in perturbation theory

|Eα〉= |E0
α〉+ J |∂J Eα〉+ Jz |∂Jz

Eα〉+ . . . . (27)

We may associate a fidelity susceptibility χα to each state, given by the squared norm of the
first order correction in J

χα := 〈∂J Eα|∂J Eα〉=
∑

b

�

�

�

�

Vab

Ea − Eb +σhS

�

�

�

�

2

. (28)

Here Vab = 〈Ea|V |Eb〉 are the matrix elements of the coupling operator V .
When J 6= 0, the eigenstates are entangled states of the spin and bath. The von Neumann

entropy of the spin quantifies the entanglement between the spin and bath,

Sα := −tr (ρ̂α log ρ̂α) , (29)
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where ρ̂α is the reduced density matrix of the spin obtained from the eigenstate |Eα〉. For
typical states, we obtain the entropy by expanding ρ̂α to leading order,

ρ̂α =

 

1− J2χα O
�

g

ρ0hS

�

O
�

g

ρ0hS

�

J2χα

!

+O

�

g2

ρ0hS

�

+O(g3) , (30)

which yields

Sα = J2χα(1− log(J2χα)) +O

�

g2

ρ0hS

�

+O
�

g3
�

, (31)

where g is the reduced coupling (1a). Eqs. (30) and (31) are obtained in Appendix A by
expanding to leading order in two small parameters: (i) the reduced coupling g, and (ii) the
ratio of level spacings to field strengths (ρ0hS)

−1 = O(1/d). This provides the leading order
entanglement entropy, which is found to depend on J but not Jz . Intuitively, this is because this
term generates hybridisation between states in the same spin sector and leaves the reduced
density matrix of the spin unaltered.

As (31) holds only in the perturbative limit J2χα ≪ 1, it is useful to estimate the scale of
χα. For typical states we find that J2χα = O(g2). This is seen by noting that χα is dominated
by the terms in the sum (28) with the smallest denominators minb |Ea − Eb + hS| ≈ 1/ρ0,
whereas typical matrix elements are of size |Vab| ≈

p

tr (V V †)/d = 1/
p

d. Combining these
estimates with (28) we obtain

J2χtyp. ≈
�

Jρ0p
d

�2

= g2 . (32)

Eq. (32) describes typical values as defined by the median χtyp. = medαχα, or the geometric
mean χtyp. = exp[logχα]. However, we will see that the fidelity susceptibility χα is broadly dis-
tributed with no convergent arithmetic mean. As a result, χtyp. does not provide a satisfactory
characterisation of the distribution of values χα which we calculate in Sec. 3.2.

The fidelity susceptibility χα is a well known quantity, most often studied as a probe of
ground state phase transitions (see e.g. Refs. [37,38]). Recently, χα and closely related quan-
tities have been studied for mid-spectrum states in the context of quantum chaos [39–44]. The
fidelity susceptibility is named for its appearance when the fidelity between the eigenstates of
H and H0

Fα(J , Jz) := |〈Eα|E0
α〉| (33)

is expanded in powers of the coupling J . In this case, when Jz = 0, χα sets the leading order
correction

Fα(J , 0) = 1− 1
2 J2χα +O(J4) . (34)

As the spin-bath coupling is determined by two parameters, J and Jz , similar susceptibilities
may be defined for the quadratic JJz and J2

z terms in the expansion of Fα(J , Jz). However,
as these terms do not contribute to the eigenstate entanglement of the spin, they are not of
interest in the present context.

The quantity χα is also relates closely to previous studies of the in the context of local-
isation. Operator expectation values on the spin can be calculated to leading order in the
coupling J using (30). This relates closely to the locator expansion in which local expectation
values in an extended system are expanded in the inter-site coupling. This was considered in
Anderson’s seminal analysis of a localised lattice system [45] and in many subsequent works,
for example [46–49].
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S
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Figure 3: The distribution fFS(χ) of the fidelity susceptibility in random matrix the-

ory ensembles: Numerically calculated distributions of the fidelity susceptibility (solid
colours, error bars indicate 68% confidence interval) are compared with analytic pre-
dictions (black, dotted). The numerical distributions are obtained by histogramming
the fidelity susceptibility (28) of mid-spectrum states obtained from exact diagonal-
isation. In each case the distribution has been re-scaled by the maximum entropy
value χ⋆(0, hS). The dotted curves have no fitted parameters in the case of the Pois-
son (see (39)) and GUE (see (51a)) ensembles. For GOE and GSE the dashed line has
the exact limiting behaviour given by (47) and (49) whereas values of fFS at inter-
mediate values of χ is obtained by a one parameter fit (details in text). Parameters:
hS = 0.1, d = 2048, N = 3000 realisations for GSE and P×CQE, N = 105 realisations
otherwise.

3.2 The distribution fFS(χ) in Haar invariant random matrix ensembles

In the weak coupling limit we have a one-to-one relationship between the fidelity susceptibility
χα, and the entanglement entropy Sα (31). Thus, to obtain the distribution of entanglement
entropies, a quantity of physical interest, it is sufficient to calculate the distribution of χα. In
this section we calculate the distribution of the fidelity susceptibility χα of the state α= (σ, a),
obtained by ensemble averaging

fFS(χ|E,σh) :=
[δ(χ −χα)δ(E − Ea)]

[δ(E − Ea)]
. (35)

This distribution carries two dependencies: the initial energy E of the bath, and σhS the en-
ergy transferred into the bath in order to flip the spin. We perform this calculation for the
Haar invariant ensembles of Sec. 2.1 in the limit of large bath dimension d. We confirm this
calculation with numerics for finite d (Fig. 3).

3.2.1 fFS(χ) for Haar random baths with Poisson level statistics

We begin with the simplest case, where HB is a Haar random matrix with Poisson level statistics.
We obtain an explicit form for fFS before discussing the key features of the distribution.

We first consider the cumulant generating function

K(t|E,σhS) := log

�∫

dχ ei tχ/d fFS(χ|E,σhS)

�

= log
[ei tχα/dδ(E − Ea)]

[δ(E − Ea)]

(36)

10
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and substitute in the definition of χα to obtain

K(t|E,ω) = d log

�

exp

�

it

d

�

�

�

�

Vab

E − Eb +ω

�

�

�

�

2
��

. (37)

In the Poisson case, at large d, we may treat each matrix element Vab and each energy level
Ea as iid random variables. The ensemble averaging is then straightforward (see Appendix B)
and yields

lim
d→∞

K(t|E,ω) = −
√

√

−4πitρ(E +ω)2[|Vab|]2
d

. (38)

Inverting the relation (36) we obtain a Levy distribution

fFS(χ|E,ω) = exp
�

−π χ⋆(E,ω)

χ

�
√

√χ⋆(E,ω)

χ3
, (39)

with a characteristic scale set by

χ⋆(E,ω) = [|Vab|]2ρ(E +ω)2 . (40)

χ⋆(E,ω) sets the typical values of χα. It is the scale obtained from the definition of χα (28), by
approximating the sum with its dominant term, and replacing the numerator and denominator
with their typical values [|Vab|]2 and ρ(E + hS)

−2 respectively.
We note that the Levy distribution may be related to the more familiar normal distribu-

tion. Precisely, χ has the same distribution as 2πχ⋆/z
2 for z drawn from the standard normal

distribution z ∼N
�

µ= 0,σ2 = 1
�

.
Further calculation relates χ⋆(E,ω) to the parameters of the Spin-RM model. Specifically,

we use that the matrix elements Vab converge on a Gaussian distribution with mean [Vab] = 0
and variance [|Vab|2] = 1/d. Thus the distribution of the absolute value |Vab| of the matrix
elements has distribution

fME(|Vab|)∝ |Vab|β−1 exp
�

−1
2 dβ |Vab|2

�

(41)

and hence a mean

[|Vab|] =
√

√ 2

dβ
·
Γ (

1+β
2 )

Γ (
β
2 )
=:

√

√ cβ

d
. (42)

In (42) Γ (·) is the gamma function, the Dyson index β = 1, 2,4 for real, complex and quater-
nionic matrix elements respectively, and we have defined the numerical constant cβ whose
value depends only on the symmetry class of the matrix

cβ =









2/π β = 1 (GOE, P×CRE) ,

π/4 for β = 2 (GUE, P×CUE) ,

9π/32 β = 4 (GSE, P×CQE) .

(43)

Thus, in terms of the bare properties of the Poissonian bath, we have explicit forms for both
the distribution fFS (39) and its typical values χ⋆

χ⋆(E,ω) = cβ
ρ(E +ω)2

d
. (44)

In Fig 3 we compare these predictions with numerics. Eq. (40) is the left-most black-dashed
curve plotted in Fig 3. This curve shows good agreement with the corresponding numerically
calculated fidelity susceptibility distributions for the Spin-RM model for P×CRE, P×CUE, and
P×CQE baths (the red, purple and brown curves respectively which lie on top of each other).

11
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3.2.2 fFS for other random matrix baths

We highlight three features of fFS, as calculated for the Poisson case (39). These feature of fFS

found for any choice of thermal bath HB:

i) The heavy tail of the distribution, decaying as fFS ∼ χ1/2
⋆ /χ

3/2 leads to rare, large values
of χα and prevents the convergence of the arithmetic mean.

ii) The rapid decay at small χ ® χ⋆ is faster than any power law, to leading order
log fFS∝−χ−1.

iii) The scale of typical values χα is set by χ⋆.

Elaborating on these points:
i) Rare large values: The large values of χα correspond to states where there is an unexpect-

edly close resonance which dominates the sum in (28). The effect of such close many-body
resonances gives rise to the χ−3/2 tail irrespective of the choice of random ensemble HB. To
see this, let us approximate

χα ≈
�

�

�

�

Vab

Ea − Eb +σhS

�

�

�

�

2

, (45)

where in each case b is chosen to minimise the denominator. We then write fLS(∆ab) for
the distribution of the energy separation to the nearest level ∆ab = |Ea − Eb + σhS| in the
opposite spin sector, and, as before, fME for the distribution of matrix elements |Vab|. Within
this approximation, (which becomes exact for asymptotically large χ)

fFS =

∫ ∞

0

dV

∫ ∞

0

d∆δ

�

χ −
�

�

�

�

V

∆

�

�

�

�

2
�

fME(V ) fLS(∆)

=
1

2χ3/2

∫ ∞

0

dV |V | fME(V ) fLS

�

V
p
χ

�

.

(46)

The asymptotic behaviour

fFS(χ|E,ω)∼
√

√χ⋆(E,ω)

χ3
(47)

then follows from taking the limit

χ⋆(E,ω) = lim
χ→∞

χ3 f 2
FS(χ)

=

�

1

2

∫

dV |V | fME(V ) fLS(0)

�2

= [|V |]2ρ(E +ω)2.

(48)

Here we have set E = Ea andω = σhS. We have also used that lim∆→0 fLS(∆) = 2ρ(E), which
holds irrespective of the level statistics with an sector. Note that (48) is in exact agreement
with (40). Naively one might expect to obtain different asymptotic behaviours for fFS depend-
ing on the level statistics of the bath matrix, as the values of Ea, Eb will be correlated. That we
recover the same form independent of the bath matrix ensemble follows from the fact that the
shift by σhS conceals the correlated nature of the energy levels. This point has been previously
noted in studies of the locator expansion in the context of localisation. [46,48,49]

ii) Fast decay at small χ: Below the scale of the typical fidelity susceptibility χ ® χtyp. the
distribution converges very quickly to zero log fFS∝−χ−1 +O(logχ).

In the Poisson case, the strong suppression of fFS at small χ reflects that atypically small
values of χα occur only when each of the iid terms in the sum χα (28) is independently small.

12
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Small values of χ occur because large numbers of the matrix elements Vab are atypically small,
or because large numbers of the energy levels are atypically far from Ea +σhS.

For the GRE baths the terms in χα are not mutually independent. Instead, spectral rigidity
suppresses the fluctuations on the energy levels so that small χα values occur only due to small
matrix elements. This distinction in the GRE leads only to an O(1) quantitative change to the
small χ behaviour

log fFS(χ|E,ω)∼ −χ⋆(E,ω)

χ
×









π Poisson ,

βπ2

2cβ
GRE .

(49)

We show how (49) is obtained in Sec. 3.2.3.
iii) Typical value of χα: The scale of typical values χ is set by the peak of the distribution

and unaffected by the heavy tail. Specifically, the geometric mean is given by

χtyp.(E,ω) = exp

�∫

dχ fFS(χ|E,ω) logχ

�

= ctyp.χ⋆(E,ω) ,

(50)

where ctyp. = O(1) is a numerical constant. For example, in the Poisson ensembles this constant
has value ctyp. = 4πeγ where γ= 0.57721... is the Euler-Mascheroni constant.

3.2.3 fFS(χ) for Gaussian random matrix baths

We extend our analysis to obtain forms for the distribution of fidelity susceptibilities fFS for
HB drawn from one of the GRE ensembles. This extension is desirable as GRE matrices predict
the eigenstate properties of thermalising many body quantum systems.

In Appendix C we calculate fFS exactly for a GUE ensemble (β = 2)

f GUE
FS (χ) = exp

�

−4πχ⋆
χ

�√

√χ⋆
χ3

�

1+
8πχ⋆
χ

�

. (51a)

Above, we suppress the (E,ω) dependency of fFS and χ⋆ for brevity. We further calculate fFS

for the GOE (β = 1) or GSE (β = 4) cases up to some undetermined numerical constants
(C1,2, C ′1,2)

f GOE
FS = exp

�

−π
3χ⋆
4χ

�√

√χ⋆
χ3

�

1+ C1

√

√χ⋆
χ
+ C2

χ⋆
χ
+O

�

χ⋆
χ

�3/2 �

, (51b)

f GSE
FS = exp

�

−9πχ⋆
64χ

�√

√χ⋆
χ3

�

1+ C ′1
χ⋆
χ
+ C ′2

χ2
⋆

χ2

�

. (51c)

The number of undetermined parameters is reduced by enforcing the normalisation condition
∫

dχ fFS(χ) = 1:
4πC1 + 4C2 − (π− 2)π3 = 0 ,

8192C ′1 + 768πC ′2 + 135π2 = 0 ,
(52)

where we have neglected sub-leading O(χ⋆/χ)
3/2 corrections in the GOE case. Throughout

the rest of this paper we use the GOE values C1 = 5.29 . . ., C2 = 11.19 . . . determined by a
least square numerical fit.

We compare (51) with numerics in Figure 3. As with the Poisson case, fFS is numerically
calculated by averaging over the mid-spectrum states for hS = 0.1 and d = 2048. In each
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case there is convincing agreement between the analytic forms (black, dotted) and numerical
calculations (solid colours). These analytic forms are specified with no free parameters in the
case of Poisson (39) and GUE (51a). In the case of GOE and GSE the parameters C2, C ′2 are
fixed by the normalisation condition (52), whereas the remaining free parameters C1, C ′1 are
determined by a one-parameter least squares fit. For this numerical analysis we neglect the
sub-leading O(χ⋆/χ)

3/2 corrections in the GOE case.
The full derivation of (51) (Appendix C) is involved, however the asymptotic forms may

be derived in a few lines. The large χ form is obtained exactly as in (47). The the small χ
form, given by (49), we obtain here. We start from the definition of the cumulant generating
function (36). In the GRE case, for d ≫ 1, the matrix elements may be treated as iid drawn
from the distribution (41). The corrections resulting from this approximation are O(1/d) [50–
52], and we neglect them throughout this section. Thus, integrating over the matrix elements
yields

K(t|E, 0) = log

�

exp

�

it

d

∑

b

�

�

�

�

Vab

E − Eb

�

�

�

�

2
��

Vab ,Eb

= log





∏

b

�

1−
2i t[|V 2

ab
|]

βd|E − Eb|2

�−β/2




Eb

.

(53)

We use the identity log
∏

b g(Eb) =
∑

b log g(Eb) to replace the sum over
levels with an integration over the ensemble averaged density of states
∑

b log g(Eb)→
∫

dE′ρ(E′) log g(E′) +O(1/d)

K(t|E, 0) = −β
2

∫

dE′ρ(E′) log

�

1−
2i t[|V 2

ab
|]

βd|E − E′|2

�

. (54)

This replacement is only valid if the density of states is smooth on the scale on which the
summand in (53) varies. That is, if the width of the peak of the summand is much greater than

the level spacing. Note (i) the summand has a single peak with a width ∆E ≈
q

2t[|V 2
ab
|]/βd

(where [|V 2
ab
|] = 1/d); (ii) the level spacing is on a scale ρ(E)−1 ∝ d−1. Thus the sum-to-

integral replacement is valid in the limit t ≫ 1. The integral may be further simplified by
assuming the peak of the integrand is much narrower than the bandwidth (requiring t ≪ d2).
In this limit the integrand is sharply peaked at E′ ≈ E allowing use to substitute ρ(E′)→ ρ(E)
and integrate

K(t|E, 0)∼ −

√

√

√

−
2π2itβρ(E)2[|V 2

ab
|]

d
(1≪ t ≪ d2) . (55)

As the large t behaviour of K(t|E, 0) sets the small χ behaviour of fFS, by inverting the Fourier
transform we obtain the low χ asymptote

− log fFS(χ |E, 0)∼
π2βρ(E)2[|V 2

ab
|]

2χ
=
βπ2χ⋆
2cβχ

, (56)

where ∼ indicates asymptotic equality in the small χ limit. Combining this GRE result, with
the Poisson result (39) we obtain (49). This shows that the lower tail is sensitive to both
symmetry class, and level statistics.

We make a comment on the scope of this derivation. In obtaining (54), we replaced the
density of states of HB with the ensemble averaged density of states. This replacement assumes
fluctuations on the density of states are negligible. For Poisson level statistics this assumption is
invalid, as samples in which ρ(E+ω) is atypically small make a significant contribution to the
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lower tail, and thus (56) does not agree with the previously derived behaviour of Poissonian
Spin-RM models (39). However, this replacement is justified for GRE matrices exhibit much
smaller instance to instance variation on the density of states.

3.2.4 The distribution of χα over states within a sample

The distribution fFS is self averaging. That is, in the limit of large d, the distributions obtained
in this section hold for χα obtained for states within a small energy window of a single Spin-
RM Hamiltonian (specifically an energy window much smaller than the bandwidth, but much
larger than the level spacing). Intuitively, the fidelity susceptibility of each state is dominated
by its coupling to nearby states (which generate large terms in χα), and is uncorrelated with
the properties of energetically distant states [50–52].

3.3 The distribution fFS in ETH systems

We extend our calculation of fFS to the more physical case of a bath that is a locally inter-
acting, many body quantum system. Specifically, we use eigenstate thermalisation hypothesis
(ETH) to adapt the GRE calculation of fFS (Sec. 3.2) to this setting, and numerically verify the
predicted form of fFS in the Spin-ETH model.

3.3.1 Statement of ETH

ETH describes how isolated quantum systems approach an equilibrium described by quantum
statistical mechanics [26–29] (for an overview see Ref. [31] and references therein). Let HB

be a generic, locally interacting, thermalising quantum system. For specificity we assume HB

to be a length L chain of interacting spins-1
2 , such as the Ising chain (18). ETH provides an

ansatz for the matrix elements of a local operator V evaluated in the eigenbasis of HB

Vab = V̄ (Ea)δab +

√

√

√ ṽ(Ea, Eb − Ea)

ρ(Eb)
Rab , (57)

where Rab are iid Gaussian random numbers with zero mean [Rab] = 0 and unit variance
[|Rab|2] = 1, V̄ (E) and ṽ(E,ω) are real functions smooth in their arguments, and ṽ(E,ω) is
non-negative. V̄ (E) and ṽ(E,ω) are further determined by physical considerations: Hermitic-
ity enforces

ṽ(E,ω)ρ(E) = ṽ(E +ω,−ω)ρ(E +ω) , (58)

while the one and two-time correlation functions evaluated in the micro-canonical ensemble
are given by

tr (V ρ̂E) = V̄ (E) , (59a)

tr
�

eiH t Ve−iH t V ρ̂E

�

= V̄ (E)2 +

∫

dω ṽ(E,ω)eiωt , (59b)

up to O(1/d) = O(2−L) corrections. Here ρ̂E is a micro-canonical ensemble of energy E and
window width ∆

ρ̂E =
1

NE

∑

a

1E(Ea)|Ea〉〈Ea| , (60)

where indicator function 1E(Ea) is given by

1E(E
′) :=

¨

1 |E − E′|<∆/2 ,

0 otherwise ,
(61)
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and NE :=
∑

a 1E(Ea) enforces normalisation. The micro-canonical window width∆ is chosen
to be much smaller than the scale on which ρ(E), V̄ (E) or ṽ(E,ω) vary, but much greater than
level spacing

|∂E ṽ(E,ω)|= O

�

ṽ(E,ω)

L

�

≪∆−1≪ ρ(E) . (62)

3.3.2 The distribution fFS

The GRE results (Sec. 3.2) are adapted to the ETH setting by repeating the derivations with
the relationship

[|Vab|]2 = cβ[|Vab|2] = cβ
ṽ(Ea, Eb − Ea)

ρ(Eb)
. (63)

The resulting distributions are as in GRE case (51) but with a typical scale set by

χ⋆(E,ω) = cβ ṽ(E,ω)ρ(E +ω) . (64)

The cases β = 1, 2,4, (corresponding to Rab ∈ R,C,H) correspond naturally to the GOE,
GUE and GSE ensembles. Physically these cases describe systems with time reversal symmetry
[T , H ] = 0 (β = 1, 4), or without (β = 2). The time reversal symmetric cases are distin-
guished by whether the anti-unitary time reversal symmetry operator squares to positive unity
T 2 = 1 (β = 1) or negative unity T 2 = −1 (β = 4) [53].

In Fig 4 we numerically verify the form of fFS in the Spin-ETH model with HB given by the
weakly disordered interacting Ising chain (18). The χα are obtained from the mid-spectrum
states of N = 1000 realisations with hS =

p
h2 + u2 ≈ 1.21, and V = σx

m for m = ⌊(L + 1)/2⌋.
The numerically calculated distribution (solid colours) agrees with the corresponding theoret-
ical predictions (dashed colour) for all values of bath size L (legend inset). The correct large
χ behaviour (47) is observed for all L, whereas there is discrepancy at small χ between the
data and prediction which is disappearing at large L. The small χ discrepancy is a finite size
effect which causes the asymptotic log fFS ∼ −χ⋆/χ decay at small χ to be cut off by a slower
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Figure 4: fFS in thermalising quantum systems: Numerically calculated distributions
of fFS in the Spin-ETH model (solid points, colour) are compared with analytic pre-
dictions for an ETH system (dotted lines, colour). Each numerical distribution was
produced by histogramming values of χα obtained from the mid-spectrum states.
Error-bars indicate standard error on the mean. The legend shows the bath sizes
L, the other parameters are as in the main text. N = 300 realisations for L = 14,
N = 1000 otherwise.
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power law behaviour fFS ∼ χk with an exponent k that grows exponentially in the system size
L (see Appendix C). The theory curves are given by (51b) with χ⋆(0, hS) given by (64), and

ρ(E +ω) =

�

1

∆NE

∑

ab

1E(Ea)1Ea+ω
(Eb)

�

+O(∆) , (65)

ṽ(E,ω) =

�

1

∆NE

∑

ab

1E(Ea)1Ea+ω
(Eb)|Vab|2

�

+O(∆) , (66)

and micro-canonical window width ∆ = 0.1. This yields

χ⋆(0,σhS) = c1 ṽ(0,σhS)ρ(σhS)≈ 2L × 0.0052 . (67)

3.4 The extent of the weak coupling regime

A given spin-bath Hamiltonian is in the weak coupling regime if the perturbative correction of
every eigenstate is small J2χα ≪ 1. Due to the heavy tail of fFS this is a much more stringent
condition than requiring the typical eigenstates to be in the perturbative regime. Specifically
we find

exp
h

log max
α
χα

i

≈ d2χ⋆ , (68)

so that the weak coupling regime corresponds to

J
p
χ⋆ ≈ g ≪ 1

d
. (69)

4 Eigenstate entanglement entropies

We now show how fFS may be used to characterise the statistical properties of the eigenstates
in the intermediate and strong coupling regimes. Specifically, we obtain the distribution of
entanglement entropies fEE(S) and we numerically verify this claim. This is possible as (i) χα
accurately determines the entanglement entropy in both limit of J2χα≪ 1, where the entropy
Sα may be calculated in perturbation theory, and J2χα ≫ 1, where Sα = log 2 (ii) the broad
distribution of χα ensures only a negligible fraction of states are in neither of these limits.

Naively χα provides a characterisation of the entanglement entropies Sα only in the per-
turbative limit, J

p
χ⋆≪ 1/d, where the series expansion (31) applies. Whilst, at the opposite

extreme, typical eigenstates are strongly hybridised by the interaction when typical values of
J2χα become comparable to unity. This defines the strong coupling regime, J

p
χ⋆ ¦ 1, in

which the combined system of spin and bath approaches ETH. Between the strong and weak
coupling regimes is the intermediate regime

1

d
® J
p
χ⋆≪ 1 , (70)

in which the coupling is strong enough to successfully “compete” with the energetic scale of
the unperturbed model (specifically the level spacing), but the coupling remains too weak
to induce the system to full thermalisation. In this regime a finite fraction of levels are par-
ticipating in strong “accidental” resonances, with J2χα ¦ 1, despite typical levels satisfying
J2χα≪ 1.

Accidental resonances occur when two neighbouring levels from opposite sectors, α= (↑, a)

and β = (↓, b), have, by chance, a level separation ∆αβ := E0
α −E0

β
which is atypically small

|∆αβ | ≪ ρ−1
0 . In such a situation, this two-level resonance dominates the values of the χα,χβ ,
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thus we approximate by treating them as equal J2χα ≈ J2χβ ≈
�

�Vαβ/∆αβ
�

�
2
. These sparse

resonances may be treated individually by diagonalising the two level effective Hamiltonian

Heff. :=

�

∆αβ Vαβ
Vαβ 0

�

=∆αβ

�

1 J
p
χα

J
p
χα 0

�

. (71)

We refer to this approximation scheme as the two level resonance model. Within this model,
the eigenstates |Eα〉 may be exactly calculated

|Eα〉=
p

qα|E0
α〉+
p

pα|E0
β 〉 , (72)

where we have defined the “transition probability”

pα = p
�

J2χα
�

, qα = q
�

J2χα
�

, (73)

where

p(x) := 1− q(x) :=
1

2

�

1− 1p
1+ 4x

�

. (74)

The exact eigenstates of the Spin-ETH model are not given by (72) due to hybridisation with
other states |E0

γ 〉 at first order and higher order corrections. However, these corrections do
not significantly correct the statistics of transition probabilities. We discuss the validity of the
two level resonance model in Sec. 8.

Within the two-level resonance model the eigenstate entanglement entropies may be ex-
actly calculated

Sα = S(J2χα) , (75)

where we have defined

S(x) := −p(x) log p(x)− q(x) log q(x) . (76)

To build confidence in this picture of the eigenstates we make some sanity checks. We note
that (75) reproduces (31) in the weak coupling limit, and approaches Sα = log 2 for strong
hybridisation J2χα≫ 1. As fFS decays rapidly for χ ® χ⋆, for J2χ⋆≫ 1 that all mid-spectrum
eigenstates will have Sα ≈ log 2 consistent with the spin-bath system approaching ETH in this
limit.

For further affirmation we look to numerics. To numerically verify (75) using the Spin-ETH
model: (i) we diagonalise the decoupled Hamiltonian H0 and calculate the fidelity suscepti-
bility χα for each state; (ii) we then diagonalise H =H0+V and calculate the von Neumann
entropy of the probe spin Sα for each state; and (iii) we identify eigenstates |Eα〉 of H and

the eigenstates |E0
α〉 of H0 by globally maximising the objective function

∏

α

�

�〈Eα|E0
α〉
�

�
23. The

pairs (J2χα, Sα) we obtain are plotted in Fig 5 (coloured points, J values inset), each series
of data consists of N = 200 mid spectrum states from a single diagonalisation. These points
are to be compared with the function S(J2χα) as given by (76) (black dashed line). As ex-
pected the agreement is exact in the limits of large and small J2χα, corresponding to ETH
value Sα = log 2 and the perturbative limit respectively. The deviation of Sα from S(J2χα) is
only apparent over a small O(1) region highlighted by the grey box.

The inset in Fig 5 is a density plot of f (Sα|J2χα), the conditional probability of obtaining
a value of the von-Neumann entanglement entropy Sα given a fixed value of J2χα. From the
density plot it is apparent that the typical deviation of Sα from S(J2χα) is significantly smaller
than a single decade, and thus, to a reasonable degree of approximation, we may take Sα to
be given by S(J2χα), as in (75). The distribution f (Sα|J2χα) shown in this plot is calculated
using (J2χα, Sα) aggregated from the mid-spectrum states of N = 100 diagonalisations with
log J drawn uniformly and iid from the interval log J ∈ [−10,2].

3This is a “maximum-weight-matching” problem which can be solved in O(d3) time by e.g. the Blossom algo-
rithm
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4.1 Distribution of eigenstate entanglement entropies

Using the distribution of fidelity susceptibility fFS(χ), and the two level resonance model for
the entanglement entropy Sα = S(J2χα), we now calculate the distribution of entanglement
entropies

fEE(S|J , E, hS) =

∫

dχ fFS(χ|E, hS)δ(S − S(J2χ)) (77)

and show it to agree well with numerical calculations of fEE. We analyse this distribution
highlighting two quantitative features. The first is a simple universal form at entropies above

Figure 5: Values of (Sα,χα): The entanglement entropy of Sα of a eigenstate of the
Spin-ETH model as a function of the fidelity susceptibility of the corresponding eigen-
states of H0 (J = 0). For each value of the coupling J (coloured points, J values in
legend), N = 200 points corresponding to randomly selected mid-spectrum eigen-
states are shown. Inset a histogram of data aggregated across many diagonalisations
showing the distribution within the grey boxed region of the main plot. Each col-
umn of cells in the inset is normalised to sum to unity. Parameters L = 12, other
parameters as in Fig. 4.
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Figure 6: Distribution of entanglement entropies: The distribution of spin entangle-
ment entropies in the L = 12 Spin-ETH model is numerically extracted for coupling
strengths (values of J

p

χ⋆(0, hS) inset in right panel). a) data for each coupling
strength is plotted (solid colours) together with the predicted analytic form (78)
(dashed line). b) data from the left panel is collapsed in accordance with (80), and
plotted with the theoretical curve (black dashed line). N = 800 realisations per data
series.
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Figure 7: Mean and median eigenstate entanglement entropy of the spin as a function

of coupling strength: three panels of the same data which plot the analytic form (81a)
(no fit parameters) for the mean entanglement entropy (black dashed) with numeri-
cal data (coloured solid points). The panels (a), (b) and (c) are plotted to emphasise
the lower tail, crossover region, and upper tail respectively (note the change in y-axis
for (c)). As the median is asymptotically separated from the mean in the lower tail
we additionally plot this quantity in the left panel. The analytic form for the me-
dian (82a) is shown (black dotted) together with numerical data (coloured hollow
points). N = 2000 realisations per data point for L ≤ 10, N = 300 for L = 11,12,
N = 10 for L = 13.

the typical value S ≫ S(J2χ⋆). The second is a separation of mean and typical entanglement
entropies, which is due rare resonances dominating the mean.

4.1.1 Universal form for fEE

We extract the distribution of entanglement entropies by performing the integral (77)

fEE(S|J , E, hS) = fFS

�

x(S)

J2

�

�

�

�
E, hS

�

1

J2S′(x(S))
. (78)

The typical entanglement entropy S ≫ S(J2χ⋆), the distribution of fidelity susceptibilities is
well approximated by its limiting form

fFS =

√

√χ⋆
χ3
+O

�

χ⋆
χ2

�

, (79)

yielding a correspondingly simplified distribution of entanglement entropies

fEE(S|J , E, hS) =
J
p
χ⋆

x(S)3/2S′(x(S))
+O(J2χ⋆) . (80)

We comment on the shape of the distribution fEE. The bi-modality of the distribution follows
from the compression of the long tail of fFS onto the bounded interval Sα ∈ [0, log 2], producing
a second mode at maximal entropy S = log 2. This is in addition to the dominant mode at
S ≈ 0, which contains the median, and corresponds to the single mode of fFS. Secondly we
note that (80) implies a scaling collapse of fEE(S|J , E, hS) upon dividing by J

p
χ⋆.

In Fig. 6 we numerically verify (78) and (80). We plot the distribution fEE of spin eigenstate
entanglement entropies in the Spin-ETH model for bath size L = 12. In Fig. 6a a histogram of
numerically calculated Sα values is plotted (solid lines) for mid-spectrum states for various val-
ues of J

p
χ⋆. The values of, J

p

χ⋆(0, hS) (inset, right panel) are calculated using (67). These
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Figure 8: Variance of the eigenstate entanglement entropies of the spin: the numerically
ensemble averaged variance (coloured points) is plotted as a function of J

p

χ(0, hS)

for mid-spectrum states of the Spin-ETH model for different L (legend inset). Data
corresponds to the same realisations as Fig. 7. The theoretical curve (black dashed)
is calculated from the distribution (78).

numerical estimates of fEE are compared with the analytic form (78) (dotted lines) calculated
using fFS as in (51b). The predicted and measured curves agree exactly in the intermedi-
ate coupling regime (J

p

χ⋆(0, hS) ≪ 1), whereas there is some discrepancy associated with
crossover into the strong coupling regime (J

p

χ⋆(0, hS) ¦ 1) due to the inexact nature of the
two-level resonance model. In Fig. 6b we show the predicted scaling collapse by plotting the
same data but vertically re-scaled by J

p

χ⋆(0, hS). The re-scaled data collapses onto the form
predicted by (80) (black, dashed line) for entropies above the typical value S≫ S(J

p
χ⋆). As

the typical value becomes comparable to S = log 2 the lower mode disappears, and fEE has a
single mode close to the thermal entropy S = log 2.

In Figs. 7 and 8 we compare the analytic and numerical calculations of the mean, median
and variance of the entanglement entropy (using the same diagonalisations as Fig 6). The
three panels of Fig. 7 show the same [Sα] data plotted to emphasise the agreement at small,
intermediate and large values of J

p
χ⋆ respectively. Good agreement is found between the

analytic (dashed lines) and numerically calculated values of [Sα] (solid colour points) across
all values of J

p
χ⋆. There is deviation at large J

p
χ⋆ (Fig 7), where the numerical data peels off

from the theoretical curve. The magnitude of this deviation decreases exponentially decreasing
with L.

4.1.2 Limit of weak coupling J2χ⋆≪ 1: separation of mean and typical behaviour

We now extract the analytical form of the limiting behaviours of the mean [Sα], median
medα Sα, and variance Var(Sα) of the entanglement entropies within the two level resonance
model.

We first consider the mean entanglement entropy in the weak coupling limit. In the limit
of small J

p
χ⋆ we may replace fFS with its large χ asymptotic form (79) and expand in powers

of J
p
χ⋆

[Sα] =

∫

dχ fFS(χ |E, hS)S(J
2χ) (81a)

= 2πJ
p
χ⋆ +O(J2χ⋆) . (81b)

The behaviour of the mean in the weak coupling limit may be contrasted by the asymptotically
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faster decay of the median

medα Sα = S(J2 medαχα) (82a)

= (1− log cm.J
2χ⋆)cm.J

2χ⋆ +O(J4χ2
⋆ ) , (82b)

where cm. :=medαχα/χ⋆ is some O(1) constant. The asymptotic separation of the mean (solid
coloured circles) and median (hollow coloured circles) is visible in Fig. 7a.

We may also obtain the variance from the same approach. First we calculate the second
moment of the entanglement entropy

[S2
α] =

∫

dχ fFS(χ|E,ω)S2(J2χ) = cv.J
p
χ⋆ +O(J2χ⋆) , (83)

where cv. =
∫∞

0 dxS(x)x−3/2 = 1.91755 . . .. This yields a variance

Var(Sα) = [S
2
α]− [Sα]2 = cv.J

p
χ⋆ +O(J2χ⋆) . (84)

4.1.3 Limit of strong coupling J2χ⋆≫ 1

The distribution fFS decays rapidly for χ ® χ⋆, as such we may expand
S(x) = log 2− 1/(8x) +O(x−2) yielding

[Sα] = log 2− ca.

8J2χ⋆
+O(J2χ⋆)

−2 , (85)

where ca. = χ⋆[χ
−1
α ] is an O(1) numerical constant. Following the same approach for the

variance yields

Var(Sα) =
c′v.

64J4χ2
⋆

+O(J2χ⋆)
−3 , (86)

where c′v. = χ
2
⋆Var(χ−1) is again an O(1) constant.

We note that (85) agrees with ETH; in contrast Var(Sα) is smaller than the ETH prediction
of Var(Sα) ∝ (J2χ⋆)

−1. This discrepancy follows from the O(1/d) scale of the off-diagonal
elements of the density matrix (30), which holds in the limit of fixed J

p
χ⋆ as d →∞. In this

limit we do not recover the off-diagonal ETH for spin observables. The fluctuations predicted
by ETH are obtained only in the regime J/hS held fixed as d → ∞, when the off-diagonal
elements of the density matrix ρ̂α are O(1/

p
d).

5 Infinite time memory in dynamical evolution

The Spin-ETH model consists of a few level system weakly coupled to a thermal bath, and is
thus a prototypical setting for applying Fermi’s Golden Rule (FGR), which predicts the expo-
nential decay two-time correlators. However, in the weak and intermediate coupling regime,
the spin maintains appreciable memory of its initial conditions even at infinite time, a feature
not captured by FGR. We show that the two-level resonance model provides a quantitative
description of this infinite time memory.

5.1 Strong coupling limit J
p
χ⋆≫ 1

Let us recall the predictions of FGR. Consider a system prepared in an eigenstate |E0
α〉= | ↑〉|Ea〉

of the decoupled Hamiltonian H0. Dynamical evolution under the full Hamiltonian H will
cause population to leak from |E0

α〉 into a set of target states |E0
β
〉 = | ↓〉|Eb〉 at the target
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energy Eb ≈ Ea + hS (and subsequently on-wards into states |E0
γ 〉 = | ↑〉|Ec〉). FGR states that

the rate Γα of population leakage out of the state |E0
α〉 is set by the size of the typical matrix

element, and the density of states at the target energy

Γ↑(Ea) = 2π|J Vab|2ρ(Ea + hS)

= 2πJ2 ṽ(Ea, hS) ,
(87)

using ETH ansatz (57).
The decay of the initial state populations causes a decay in two-time correlations. For speci-

ficity we consider the connected zz correlator evaluated with an initial infinite-temperature
state

Czz(t) :=
1

2d
tr
�

eiH t (σz ⊗ ✶)e−iH t (σz ⊗ ✶)
�

. (88)

The FGR does not account for the finite nature of the bath, and thus predicts indefinite expo-
nential decay of correlations

log Czz(t) = −γt +O(t2/L) , (89)

with an exponential decay rate (derived in Appendix D)

γ=
2πJ2

d

∑

σ

∫

dEρ(E)ṽ(E,σhS) . (90)

For the Spin-ETH model studied in the manuscript, evaluating (90) numerically yields
γ/J2 = 1.64 . . ..

5.2 Intermediate and weak coupling J
p
χ⋆≪ 1

In contrast to the indefinite exponential decay predicted by the FGR, in the the weak and inter-
mediate coupling regime J

p
χ⋆ ® 1 many eigenstates of the system are only weakly entangled.

These cause the spin to maintain appreciable memory of its initial state at infinite time. This
infinite memory can be quantified in the infinite time average of the spin-spin correlator

Czz = lim
t→∞

1

t

∫ t

0

dt ′Czz(t
′) =

1

2d

∑

α

〈Eα|σz |Eα〉2 , (91)

where the second equality is obtained by expanding in the eigenbasis. Only eigenstates which
are close to product states contribute to Czz , which is thus approximately proportional to the
fraction of eigenstates in the lower mode of fEE. More precisely, we may evaluate (91) within
the two level resonance model

〈Eα|σz |Eα〉2 =
�

1− 2p(J2χα)
�2
=

1

1+ 4J2χα
. (92)

We obtain an analytic form for the infinite time correlator by first ensemble averaging

[〈Eα|σz |Eα〉2] =
∫

dχ f (χ|Ea,σhS)
1

1+ 4J2χ
, (93)

(where α= (a,σ)), and subsequently summing over possible states α to obtain

Czz =
1

2d

∑

σ∈↑,↓

∫

dEρ(E)

∫

dχ fFS(χ|E,σhS)
1

1+ 4J2χ
. (94)
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Figure 9: Finite time correlations in the Spin-ETH model for coupling strength J = 0.1
and different system sizes L (legend). The correlator Czz(t) initially decays exponen-
tially with FGR setting the decay rate (black dashed line). For a finite bath, the en-
semble averaged correlations (coloured solid lines) saturate to a finite value which
we extract numerically (coloured dashed lines). Individual trajectories (coloured
translucent lines) exhibit small oscillations around this value. The numerically ex-
tracted saturation values are compared with theoretical values in Fig 10.

The weak coupling behaviour of Czz is given by

Czz = 1− 4πJ

√

√χ⋆(0, hS)

6
+O(J2χ⋆(0, hS)) +O(L−1/2) . (95)

To recover (95) we consider the following quantity K which must be shown to have value
K = 4π/

p
6:

K = lim
J→0

1− Czz

J
p

χ⋆(0, hS)

= lim
J→0

1

2d

∫

dEρ(E)

∫

dχ
∑

σ∈↑,↓

fFS(χ|E,σhS)
p

χ⋆(0, hS)

4Jχ

1+ 4J2χ

=
π

d

∫

dEρ(E)
∑

σ∈↑,↓

√

√

√χ⋆(E,σhS)

χ⋆(0, hS)

=
2π

d

∫

dEρ(E)

√

√ρ(E)

ρ(0)
+O(L−1/2) .

(96)

Here, in the second line we have substituted (94), and in the third line we have used that
fFS ∼ χ1/2

⋆ /χ
3/2 at large χ , and performed the resulting integral

∫

dx x−3/2 4x/(1+4x) = 2π.
To obtain the final line we have then used

χ⋆(E,σhS) = cβ ṽ(E,σhS)ρ(E + hS)

= cβ ṽ(0, hS)ρ(E) +O(L−1/2)

= χ⋆(0, hS)ρ(E)/ρ(0) +O(L−1/2) .

(97)

Performing the Gaussian integral in the final line of (96) we obtain the desired result
K = 4π/

p
6, and hence (95) follows.

In Figs 9 and 10 we numerically verify the saturation values Czz of the two-time spin corre-
lator, (94) and (95) in the Spin-ETH model. In Fig 9, for bath of size L (legend inset) we show
a sub-sample of N = 4 trajectories (translucent colours) and the sample mean value of Czz(t)
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Figure 10: Infinite time correlations: The infinite time spin correlations Czz are plot-
ted for the Spin-ETH model. The predicted theoretical form (black dashed) crosses
over from Czz → 1 as J → 0 to Czz → 0 as J

p

χ⋆(0, hp) ≫ 1. The small J asymp-
tote (95) is also shown (black dotted). The theoretical forms show good agreement
with numerically extracted values (coloured solid lines, L values on legend, inset).
The region enclosed within the grey box where Czz crosses over between its limit-
ing values is shown (plot inset). N = 1000, 100, 10 realisations per data point for
L = 11,12, 13 repsectively and N = 3000 for L ≤ 10.

(solid colours),. These trajectories track the FGR prediction (89) at early times (black dashed)
before converging to the ensemble averaged infinite time value (dashed colour). The conver-
gence from below is related to the well known ‘dip’ and ‘ramp’ features of the spectral form
factor in Gaussian random matrices systems [35]. In Fig. 10 the numerically calculated infi-
nite time saturation values Czz (solid colours) are compared with theoretical predictions (94)
(black dashed). The agreement is good throughout the plot range. The weak coupling ap-
proximation (95) (black dotted), also shows good agreement for J

p
χ⋆≪ 1.

6 Off-diagonal matrix elements of operators on the bath

In the weak and intermediate regimes, the spin-bath system does not satisfy ETH. However,
operators on the bath do satisfy an ETH-like ansatz in which off-diagonal matrix elements
within a small spectral window have a non-Gaussian distribution. This distribution deforms
smoothly between the weak coupling limit (J

p
χ⋆ ≪ 1/d), wherein ETH is satisfied on the

bath (but not the combined spin-bath system), and the strongly coupled limit (J
p
χ⋆ ¦ 1)

where the entire spin-bath system approaches ETH.
Consider the weak coupling regime. A local operator V on the bath satisfies ETH (57) with

the random numbers Rab being Gaussian distributed [54–59]. Two arguments help see why
the Rab are Gaussian distributed in ETH: (i) the distribution of the Rab is constrained only
by [Rab] = 0 and [R2

ab
] = 1, and the standard normal distribution is the maximum entropy

distribution with this property (i.e. deviation from normality would imply the existence of
additional constraints) and (ii) under fairly weak assumptions (violated in the case of e.g.
localisation), Gaussian distributed elements represent the only perturbatively stable situation.
To see this consider a weak perturbation to the bath HB → H ′B = HB +∆H. Let the energy
scale |∆H| of this perturbation be much larger than the level spacing, but much smaller than
the local bandwidth so that only states for which V̄ (E) and ṽ(E,ω) have essentially the same
value hybridise. Consider the matrix elements of V in the new eigenbasis: the functions V̄ (E)
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and ṽ(E,ω) are unaltered from (57), but the Rab coefficients linearly superpose:

Rab→ R′
ab
=
∑

cd

UacRcd U
†
d b

. (98)

Above, U , the unitary which maps from the unperturbed to the perturbed eigenbasis, super-
poses unperturbed levels with small energy separations |Ea−Eb|® |∆H|. As R′

ab
is a weighted

sum of the Rab, by the central limit theorem, it is normally distributed.
At zero coupling the bath satisfies ETH. However, the combined spin-bath system does

not, as the off-diagonal matrix are not Gaussian distributed. The matrix elements of ✶ ⊗ V

evaluated between eigenstates α= (a,σ) and β = (b,τ) of H are given by

Vαβ := 〈Eα|✶⊗ V |Eβ 〉

= V̄ (Eα)δαβ +

√

√

√
ṽ(Eα, Eβ −Eα)

2ρ(Eβ )
R αβ .

(99)

Above 2ρ(E) is the density of states of the combined spin-bath system. In (99), and throughout
this section, we neglect the O(L−1) correction to the energy density of the system from the spin
so that V̄ (Ea) = V̄ (Eα) +O(L−1). In decoupled limit J → 0, the random matrix elements are
given by

R αβ =
p

2δστRab . (100)

The R αβ are strongly non Gaussian: half the elements R αβ are exactly zero, whereas half are
Gaussian distributed with twice the variance predicted by ETH. In the strong coupling regime
the R αβ will be Gaussian distributed with [R αβ] = 0, [|R αβ |2] = 1 as required.

We characterise the crossover between the strong and weak coupling regimes by evaluating
the distribution of off-diagonal matrix elements on the bath within the two-level resonance
model. Consider the matrix element Vαβ between the two eigenvectors of the first spin and
bath

|Eα〉=
p

qα|E0
α〉+
p

pα|E0
γ 〉 ,

|Eβ 〉=
p

qβ |E0
β 〉+

p

pβ |E0
δ〉 .

(101)

Here the |E0〉 are product states of the spin and bath, with the subscriptsα= (σ, a), β = (τ, b),
γ= (−σ, c) and δ = (−τ, d).

There are two distinct cases of off-diagonal elements to consider: the even case σ = τ,
and the odd case σ = −τ. Taking the even case first, we use the ETH ansatz (57) to obtain
the matrix element

V
(e)
αβ
= 〈Eα|✶⊗ V |Eβ 〉
=
p

qαqβ 〈E0
α |✶⊗ V |E0

β 〉+
p

pαpβ 〈E0
γ |✶⊗ V |E0

δ〉

=

√

√

√ ṽ(Eβ −Eα)

2ρ0
R (e)
αβ

,

(102)

where the random coefficient

R (e)
αβ

:= Rab

Æ

2qαqβ + Rcd

Æ

2pαpβ (103)

has mean and variance

[R (e)
αβ
] = 0, [|R (e)

αβ
|2] = 2[qαqβ + pαpβ] . (104)
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Figure 11: Distribution fOD(R ) of the off-diagonal matrix elements of operators on the

bath: Eq. (107) is plotted for different values of J
p
χ⋆ from the intermediate regime

(values in legend, inset). The dotted lines show the limiting cases of weak coupling,
where fOD(R ) → 1

2 fN(R |0,2) + 1
2δ(R ), and strong coupling fOD(R ) → fN(R |0, 1)

(where fN(R |µ,σ2) is the normal distribution).

We now obtain the distribution for R (e)
αβ

. Let fN(R|µ,σ2) denote the usual normal distribution

of mean µ and variance σ2. The Rab are distributed as fN(R|0, 1), while pα = p(J2χα) with
χα distributed according to fFS(χ). Thus,

f
(e)

OD (R ) =

∫∫

dχdχ ′ fFS(χ) fFS(χ
′) fN

�

R |0, v(e)(J2χ , J2χ ′)
�

, (105)

where for brevity we have defined v(e)(x , y) = 2q(x)q(y) + 2p(x)p(y). It is readily verified
that this distribution has the mean and variance in (104).

Repeating this calculation for the odd case, we obtain R (o)
αβ

with mean and variance

[R (o)
αβ
] = 0, [|R (o)

αβ
|2] = 2[qαpβ + pαqβ] , (106)

and corresponding distribution

f
(o)

OD (R ) =

∫∫

dχdχ ′ fFS(χ) fFS(χ
′) fN

�

R |0, v(o)(J2χ , J2χ ′)
�

, (107)

with v(o)(x , y) = 2q(x)p(y) + 2p(x)q(y).
In sum, the distribution of off-diagonal elements R αβ is given by,

fOD(R ) =
1

2

�

f
(e)

OD (R ) + f
(o)

OD (R )
�

. (108)

The distribution fOD is plotted for different values of J
p
χ⋆ in Fig. 11. As J is tuned

through the intermediate regime fOD interpolates smoothly between the weak coupling limit
of fOD(R ) → 1

2 fN(R |0,2) + 1
2δ(R ) where ETH is satisfied within each spin sector, and the

strong coupling limit of fOD(R ) → fN(R |0,1) where the combined system approaches ETH.
At intermediate values, fOD is visibly non-Gaussian.

7 The entropy of the bath

In the intermediate regime, the effective density of states of the bath is enhanced by the partial
thermalisation of the spin, ρ(E) ≤ ρeff ≤ 2ρ(E). We characterise this smooth enhancement
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with the matrix element entropy ∆S = log(ρeff/ρ(E)) which describes the effective entropy of
the bath as felt by a second, weakly coupled, probe spin.

Introduce a second ‘probe’ spin with field h′S coupled to the bath in the same manner as the
first, with a weak coupling constant J ′ and bath operator V ′ (here and throughout this section
primed variables relate to the second spin). This second spin sees an “effective bath” composed
of HB together with the first spin, see Fig. 2a. Applying the results of Secs. 3.2 and 3.3, the
hybridisation of the states at energy E is quantitatively characterised by the scalar quantity
J ′2χ ′⋆(J , E , h′S) where

χ ′⋆(J , E ,ω) := [|V ′αβ |]2ρ′(E +ω)2 . (109)

Here ρ′(E) = 2ρ(E) +O(L−1) is the density of states of the combined (first) spin+bath. We
may also use (64) to define an effective density of states

χ ′⋆(J , E,ω) = cβ ṽ′(J , E,ω)ρeff(E +ω) , (110)

where ṽ′ is the spectral function of V ′.
At weak coupling, χ ′⋆(0, E ,ω) is given by (44). At strong coupling to the first spin, the

typical fidelity susceptibility is twice its J = 0 valueχ ′⋆(J , E ,ω) = 2χ ′⋆(0, E ,ω). Recalling (64),
we understand the factor two growth of χ ′⋆ as an enhancement of the effective bath density of
statesρeff due to strong hyrbidisation with the first spin, or equivalently as a log 2 enhancement
of bath entropy S = logρeff [25,60,61]. It is thus natural to define the entropic enhancement
of the bath at intermediate values by the matrix element entropy

∆S (J , E , h′S) := log

�

χ ′⋆(J , E , h′S)

χ ′⋆(0, E , h′S)

�

(111a)

=2 log

�

[|V ′
αβ
|]

[|V ′
αβ
|]J=0

�

. (111b)

As before, [|V ′
αβ
|] is the mean absolute value of the matrix elements averaged over levels α

and β taken from small windows about the energies E and E + hS respectively. [|V ′
αβ
|]J=0 is

the same quantity evaluated for zero coupling to the first spin J = 0.
We recast the matrix element entropy ∆S in terms of more familiar objects: it is the

Renyi entropy of order n = 1/2 associated to the R αβ . Specifically, as the R αβ square to
one [|R αβ |2] = 1, we may define the normalised “probability distribution” Pαβ = |R αβ |2/N
where N is a normalisation constant, and α, β are restricted to the aforementioned energy
windows. The Renyi entropy of order n associated to this distribution is

Hn(P ) =
1

1− n
log

 

∑

αβ

P n
αβ

!

. (112)

Comparing (112), (111a) and (99) we see that

∆S (J , E , hS) = H1/2(P )− H1/2(P )
�

�

J=0 . (113)

We now evaluate the matrix element entropy. Starting from (113) with Pαβ = |R αβ |2/N
we may perform the R -average using distribution of off-diagonal matrix elements (107) to
obtain

∆S = 2 log

�∫∫

dχdχ ′ fFS(χ) fFS(χ
′)k(J2χ , J2χ ′)

�

, (114)
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where, for brevity, we have suppressed the dependencies of∆S and fFS, and defined the kernel

k(x , y) :=
Æ

p(x)p(y)+q(x)q(y) +
Æ

p(x)q(y)+q(x)p(y) . (115)

Eq. (114) is exact within the two level resonance model, but cannot be straightforwardly
simplified to a closed form expression. However, in the asymptotic limits of weak and strong
coupling simpler forms may be extracted (see Appendix E), yielding respectively

∆S = −8J
p
χ⋆ log(J

p
χ⋆) +O(J

p
χ⋆) , (116a)

∆S = log 2+O
�

(J2χ⋆)
−2
�

. (116b)

The matrix element entropy∆S calculated here determines χ ′⋆, which in turn sets the large
χ ′ tail of the distribution of the fidelity susceptibilities χ ′

(α,τ) of the product states |τ〉|Eα〉 to

switching on the coupling J ′. χ ′
(α,τ) is defined in precise analogue to (28)

χ ′
(α,τ) :=

∑

β

�

�

�

�

�

V ′
αβ

Eα −Eβ +τh′S

�

�

�

�

�

2

. (117)

The χ ′
(α,τ) have distribution f ′FS with asymptotic tail

f ′FS(χ
′)∼

√

√

√ χ ′⋆
χ ′3

. (118)

As ∆S increases, this tail shifts to larger χ . By direct application of the results of Secs. 4
and 5, χ ′

(α,τ) determines the universal shape of the distribution of entanglement entropies of

the second spin at weak and intermediate coupling (80) (J ′2χ ′⋆≪ 1), and the saturation value
of two time correlators of the second spin (95). As we have set the second spin to be in the
weak coupling regime, there is no corresponding enhancement of the bath felt by the first
spin due to the presence of the second spin. If both spins are intermediately coupled, a self
consistent treatment is required.

In Fig 12 we numerically verify that the fidelity susceptibilities of the second spin (117)
are distributed as (118) with the enhancement to the typical fidelity susceptibility
χ ′⋆ = exp(∆S ) χ ′⋆

�

�

J=0 determined by the matrix element entropy (114). We do this in two
equivalent ways one less direct measure with low statistical noise, and one more direct mea-
sure with greater statistical noise. In each case we find good agreement with the theoretical
prediction. In Fig 12a we plot ∆S as defined by (111b) with [|V ′

αβ
|] extracted by diagonalis-

ing the spin-ETH model for different values of coupling J to the first spin and averaging over
realisations and mid-spectrum states. Statistical error bars are smaller than plot points. The
deviation from the theoretical curve is decreasing with L. The ∆S > log 2 seen at small L

reflects the deviation from ETH exhibited by particularly small baths.
In Fig 12b we extract ∆S as defined by (111a) directly from the distribution of fidelity

susceptibilities χ ′
(α,τ). We extract the tail coefficient estimate χ ′⋆(J , E , hS), in accordance

with (118), by aggregating values of χ ′
(α,τ) from the mid-spectrum states of many realisations

into a large data set (of size N). We sort this sample into descending order χ ′1 > χ
′
2 > . . .> χ ′N ,

and use the identity (derived in App. F)

logχ ′⋆ =
1

M

M
∑

n=1

logχ ′n + 2 log
�

M

2eN

�

+O

�

M

N

�

+O

�

1p
M

�

, (119)

which holds for any M ≤ N . The corrections are minimised by restricting the partial sum
to the M = O(N2/3) largest values, specifically we use M = ⌊N2/3/10⌋. Eq. (111a) converts
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Figure 12: Entropic enhancement of the bath: two numerical measures of the en-
tropic enhancement of the bath (coloured points, L values inset) are compared with
the theoretical prediction (114) (solid black). Left panel: we extract ∆S as defined
by (111b). Right panel: we extract ∆S as defined by (111a) with χ⋆ extracted us-
ing (119). For very small sizes (right panel L = 6, 7) there is significant disagreement
once the coupling J becomes large. Number of realisations per data point: in the left
panel N = 10, 1000,2000 and N = 6000 for L = 13,12, 11 and L ≤ 10 respectively;
in the right panel N = 100, 1000,3000, 104, and N = 105 for L = 13, 12,11, 10 and
L ≤ 9 respectively.

the extracted values of χ⋆ into values of the matrix element entropy, ∆S , which are plotted
(coloured points) for different systems size (legend inset). The numerically extracted values of
∆S show good agreement with the theoretical prediction (114) (black solid line). The theory
curve is calculated using fFS(χ) as extracted for the ETH bath in Sec. 3.3, specifically fFS given
by (51b), with χ⋆(0,σhS) given by (67).

8 Discussion

We have developed an ETH-like ansatz of a spin coupled to a finite quantum bath (the Spin-
ETH model), this applies in the weak and intermediate regimes where the spin only partially
thermalises with the bath. In the intermediate regime, the fraction of states that form many-
body resonances determines eigenstate-averaged properties such as the mean spin entangle-
ment entropy, as well as physical observables, such as infinite-time memory and the combined
entropy of the spin-bath system as probed by a second spin. Previous analyses of small systems
interacting with mesoscopic quantum baths [25,60,62–65] overlooked these important effects
of many-body resonances.

Applicability of the two level resonance model: Our results hinge on the two level reso-
nance model. It may be surprising that the predictions of this model agree closely with exact-
diagonalisation numerics, as it assumes the eigenstates of the Spin-ETH model to be given by
a superposition of two eigenstates in the decoupled (J = 0) limit,

|Eα〉=
p

pα|σ〉|Ea〉+
p

qα|−σ〉|Eb〉 , (120)

and estimates the coefficients pα, qα within first order degenerate perturbation theory. Ac-
counting for hybridisation with other states at first order, as well as higher order terms, corrects
the bath states, and leads to a more refined ansatz

|Eα〉=
p

pα|σ〉|Ẽa〉+
p

qα|−σ〉|Ẽb〉 . (121)
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However, providing J ≪ hS, the cross term

p
pαqα〈Ẽa|Ẽb〉 ≪ pα〈Ẽa|Ẽa〉, qα〈Ẽb|Ẽb〉 (122)

is negligible due to conservation of energy. Thus, this more refined ansatz yields the same
results as presented in the main text.

Connections to the many-body localisation finite-size crossover: Refs. [32,58] found that
an ETH-like ansatz (specifically the matrix elements of local operators satisfying (57) but with
non-Gaussian Rab) applied on the thermal side of the finite-size many-body localisation (MBL)
crossover. The authors argued that this violation of Berry’s conjecture [54] was a consequence
of the sub-diffusive thermalising behaviour.

Our results in Sec. 6 indicate a different origin for the non-Gaussianity unrelated to the
presence, or otherwise, of sub-diffusion. Specifically, as each spin is coupled to an external
environment made up of the remaining spins, the spin-environment coupling may be charac-
terised by a quantity J

p
χ⋆. When J

p
χ⋆ ® 1 the spins are in the intermediate coupling regime,

and operators on the spin have off diagonal matrix elements which follow a non-Gaussian dis-
tribution. The distribution we predict (see Fig. 11, and Sec. 6) reproduces the qualitative
features observed in Refs. [32,58].

Non-Gaussianity is present in the intermediate coupling regime of the spin-ETH model,
where it appears concurrently with the spin entanglement entropy becoming bi-modally
distributed—being either close to the thermal (S = log 2) or localised (S = 0) value. Further-
more, the distribution of the Rab will approach a Gaussian when J

p
χ⋆ is taken sufficiently

large J
p
χ⋆ ¦ 1. In the context of numerical studies on spin chains, this may be achieved by

increasing the system size. Within the disorder regime studied by Refs. [32, 58], subsequent
analyses have verified both the bi-modal distribution of spin entanglement entropies [66], and
tendency towards Gaussian Rab upon increasing system size [67]. This indicates that the ther-
mal side of the numerically observed MBL crossover is in the intermediate coupling regime.

We note that this resonance based explanation of the physics in small system numerics is
in line with recent proposals that the numerical MBL-thermal crossover occurs when the MBL
phase is destabilised by many-body resonances [68, 69], and not by rare thermal regions, as
has largely been assumed [23,25,60,61,63,70–72].

Connections to the Rosenzweig-Porter model: Our results also connect to the Rosenzweig-
Porter (RP) model, though they do not correspond to the well-studied delocalisation tran-
sitions [73–77]. Instead, they correspond most closely to RP models in which the typical
off-diagonal matrix element and typical level spacing scale together (as 1/d, where d is the
dimension). Thus, within the RP terminology, the intermediate regime of the Spin-ETH model
is localised, as the exact eigenstates |Eα〉 have significant overlap with only a finite number
of the J = 0 eigenstates |E0

α〉. However, as we have shown, in the Spin-ETH model this is
sufficient to lead to the entropic enhancement of the bath.

Extensions to this work: We have focused on the infinite time properties of the system,
characterised by eigenstate properties, time averaged correlations, and the properties of the
system as an effective bath. It would be interesting to extend our analysis to describe the finite
bath corrections to the finite time decay of correlation functions, providing a link between our
work and previous random matrix models of decoherence [78–81], and Loschmidt echos [82–
88].

A particularly relevant direction for future investigation is extending our analysis to the
problem of multiple spins coupled to the bath. We treated the simplified case in Sec. 7 in
which the second spin is in the weak coupling regime. However, extension to the case where
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the ‘effective bath’ seen by the second spin is enhanced by the presence of the first spin and vice

versa is necessary to study the regime where multiple spins are coupled in the intermediate
regime.

Moreover, while we have focused on coupling a two-level system, or spin-1/2, to a bath,
it would be useful to obtain results for higher dimensional qudits, and even pairs of large
weakly coupled baths. The latter case in particular could prove relevant to the RG studies
of the MBL transition [89–95], which currently treat pairs of thermal regions as either in the
weak or strong coupling regimes. This is a poor approximation at large d where these regimes
are asymptotically separated.

Finally, while we have focused on infinite temperature properties of the Spin-ETH system,
we expect our results are generalisable to the finite temperature. A subtlety which must be
accounted for is the distinct density of states available in the ↑ and ↓ sectors. When this feature
is correctly accounted for, at the crossover from the intermediate to strong coupling regimes,
the two modes of fEE(S) should combine into a single mode at the thermal entropy Sth. < log 2.
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A Calculation of ρ̂α in perturbation theory

In this appendix we provide a step by step derivation of the reduced density matrix in (30)
which is calculated to quadratic order in perturbation theory.

Recall the unperturbed Hamiltonian H0. Consider an arbitrary eigenstate projector of this
Hamiltonian

P 0
α := |E0

α〉〈E0
α | . (123)

Upon introducing a perturbation H0 → H = H0 +V the perturbed eigenstate projectors are
given to infinite order in perturbation theory by

Pα =
∞
∑

n=0

P (n)α =

∞
∑

n=0

(−1)n+1
∑

k j≥0 : k0+k1+...+kn=n

S (k0)
α VS (k1)

α VS (k2)
α · · ·S (kn−1)

α VS (kn)
α , (124)

where the sum is taken over non negative integers k j such that
∑n

j=0 k j = n, and we have
denoted

S (0)α = −P 0
α , and S (n>0)

α = R n
α , (125)

where R α is the projected resolvent

R α := lim
z→E0

α

(✶−P 0
α )

1

H0 − z
(✶−P 0

α ) =
∑

β 6=α

P 0
β

E0
β
−E0

α

. (126)
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Eq. (124) is a corollary of the more general results derived in Chapter 2 of Ref. [96], results
which are here simplified by restricting to the case that H is Hermitian and all eigenvalues
are non-degenerate (i.e. that each P 0

α has rank 1).
Writing out the two leading corrections in (124) explicitly we have

P (1)α =−R αVP 0
α −P 0

αV R α ,

P (2)α =R αV R αV Pα +R αVP 0
αV R α +P 0

αV R αV R α

−R 2
αV P 0

αV P 0
α −P 0

αV R 2
αV P 0

α −P 0
αV P 0

αV R 2
α .

(127)

As we are interested only in the reduced density matrix on the spin, we will now trace out the
bath ρ̂α := trE (Pα). In order simplify the explicit expressions we obtain we denote

χα :=
∑

b

�

�

�

�

Vab

Ea − Eb +σhS

�

�

�

�

2

= O(g2/J2), χ ′α :=
∑

b 6=a

�

�

�

�

V ′
ab

Ea − Eb

�

�

�

�

2

= O(g2/J2) . (128)

We then substitute in form of the interaction V (23) and simplify. We consider a stateα= (↑, a)

as in the main text

trE

�

P 0
α

�

= |↑〉〈↑| , (129a)

trE

�

P 0
αV R α

�

= J
Vaa

hS
|↑〉〈↓|

= O

�

g

ρ0hS

�

|↑〉〈↓| , (129b)

trE

�

P 0
αV R αV R α

�

= JJ ′

 

∑

b

VabV ′
ba

hS(Eb − Ea − hS)
+
∑

b 6=a

V ′
ab

Vba

hS(Eb − Ea)

!

|↑〉〈↓|

= O

�

g

ρ0hS

�

|↑〉〈↓| , (129c)

trE

�

R αVP 0
αV R α

�

= J2
∑

b

�

�

�

�

Vab

Ea − Eb + hS

�

�

�

�

2

|↓〉〈↓|+ J ′2
∑

b 6=a

�

�

�

�

V ′
ab

Ea − Eb

�

�

�

�

2

|↑〉〈↑|

+ JJ ′
∑

b 6=a

VabV ′
ba

(Ea − Eb)(Ea − Eb + hS)
|↓〉〈↑|

+ JJ ′
∑

b 6=a

V ′
ab

Vba

(Ea − Eb)(Ea − Eb + hS)
|↑〉〈↓| (129d)

= J2χα|↓〉〈↓|+ J ′2χ ′α|↑〉〈↑|+O

�

g2

ρ0hS

�

|↓〉〈↑|+O

�

g2

ρ0hS

�

|↑〉〈↓| ,

trE

�

P 0
αVP 0

αV R 2
α

�

= trE

�

P 0
αV R 2

α

�

tr
�

P 0
αV

�

|↑〉〈↓|

= JJ ′
V 2

aa

h2
S

|↑〉〈↓|

= O

�

g2

ρ2
0h2

S

�

|↑〉〈↓| , (129e)

trE

�

P 0
αV R 2

αVP 0
α

�

=

 

J2
∑

b

�

�

�

�

Vab

Ea − Eb + hS

�

�

�

�

2

+ J ′2
∑

b 6=a

�

�

�

�

V ′
ab

Ea − Eb

�

�

�

�

2
!

|↑〉〈↑|

= J2χα|↑〉〈↑|+ J ′2χ ′α|↑〉〈↑| . (129f)
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Combining the above terms as in (127) provides an explicit form for ρ̂α given in (30)

ρ̂α =

 

1− J2χα O
�

g

ρ0hS

�

O
�

g

ρ0hS

�

J2χα

!

+O

�

g2

ρ0hS

�

+O(g3) , (130)

and hence the entanglement entropy

Sα = −tr (ρ̂α log ρ̂α) = −(1−J2χα) log(1−J2χα)−J2χα log J2χα+O

�

g2

ρ0hS

�

+O(g3) , (131)

expanding to leading order yields (31) in the main text.

B Calculation of the distribution fFS for a Poisson bath

In this appendix we provide a step-by-step derivation showing in detail how (39) is obtained
from the starting from (36). Our starting point is the definition of the fidelity susceptibility

χα =
∑

b

�

�

�

�

Vab

Ea − Eb +σhS

�

�

�

�

2

, (132)

where α = (a,σ). In the case of a Poisson bath we may treat each of the energy levels as iid
drawn from the density of states, and each of the matrix elements as iid drawn from some
distribution. Thus we obtain the cumulant generation function (37)

K(t|E,ω) := d log

�

exp

�

it

d

�

�

�

�

V

E − Eb +ω

�

�

�

�

2
��

V,Eb

. (133)

Writing this out explicitly as an energy integral, and using that K(t|E,ω) = K(t, E +ω, 0) to
set ω = 0 without loss of generality, we obtain

K(t|E, 0) = d log

�

1

d

∫ ∞

−∞
dE′ρ(E′)exp

�

it

d

�

�

�

�

V

E − E′

�

�

�

�

2
�

.

�

V

. (134)

We then change variables to x = |V |2/(d|E − E′|2); Taylor expand the density of states about
E; and collect the V averages. Step by step this gives

K(t|E) = d log

�

1

2d

∫ ∞

0

dx
Vei t x

p
d x3

§

ρ

�

E +
Vp
xd

�

+ρ

�

E − Vp
xd

�ª
�

V

(135)

= d log

�

1

d

∫ ∞

0

dx
Vei t x

p
d x3

�

ρ(E) +O

�

V 2ρ′′(E)

xd

���

V

(136)

= d log

�∫ ∞

0

dx ei t x

�

[|V |]ρ(E)
(xd)3/2

+O

�

[|V |3]ρ′′(E)
(xd)5/2

���

. (137)

To make further progress we use the following result of Fourier analysis (see e.g. Ref [97])
∫ ∞

0

dx
eit x

xn+1/2
= Γ (1

2 − n)(−it)n−
1
2 for n ∈ N , (138)

to obtain

K(t|E, 0) = d log

�

1−
√

√

−4πiρ(E)2[|V |]2 t

d3
+O

�

[|V |3]ρ′′(E)t3/2

d5/2

��

. (139)
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Above, the unity term in the argument of the logarithm follows from the requirement that
K(t = 0|E) = 0. Expanding to leading order provides the desired result (38)

K(t|E, 0) = −
√

√

−4πiρ(E)2[|V |]2 t

d
+O

�

tρ(E)2[|V |]2
d

�

. (140)

C Calculation of the distribution fFS for a GUE bath

C.1 Set-up

In this appendix we adapt the approach of Ref. [39] to calculate the distribution of the fidelity
susceptibility fFS, defined in (35), of the fidelity susceptibility, defined in (28).

Specifically we assume the matrix elements Vab in (28) are the elements of a d×d Gaussian
Random matrix V drawn with Dyson index β . Specifically Vab ∈ R,C,H for β = 1,2, 4 respec-
tively, and the matrix V is drawn from a distribution∝ exp

�

−βtr
�

V 2
�

/4σ2
�

with σ2 = 1/d.
The matrix elements of V are Gaussian random numbers with mean [Vab] = 0 and two-point
correlations

[VabVcd
∗]V = σ

2
�

δacδbd +
2− β
β
δadδbc

�

. (141)

For now β is left general, and we proceed in generality as far as possible, but ultimately we only
complete calculation is only in the cases β = 2. The eigenvalues Ea in (28) are the eigenvalues
of a separate random matrix, the “bath hamiltonian” in the main text, here denoted R. R is
drawn iid from the same distribution as V . As the target energy Ea +σhS is arbitrary, for the
purposes of simplifying the calculation we set it to zero. We will discuss afterwards how the
result we obtain is generalised to different target energies.

According to the arguments presented in the main text, we expect that at asymptotically
large χ the distribution decays as

fFS(χ|E,ω)∼
χ1/2
⋆

χ3/2
where χ⋆(E,ω) = ρ(E +ω)2[|Vab|]2 , (142)

with ρ(E) and a given by (15) and (42) respectively.
As the upper tail of fFS, set by χ⋆, flows off to infinity in the limit of large d, we will calculate

the distribution of the reduced susceptibility x = χ/χ⋆, providing a well behaved large d limit.
Specifically we calculate

fRS(x) = χ⋆ fFS(xχ⋆|E,−E) , (143)

where for simplicity, additionally setω = −E so that E+ω is a mid-spectrum energy, however
the calculation below is easily extended to generic energies to obtain the result (142).

C.2 Calculation of fRS(x)

The distribution of fRS(x) can be written as

fRS(x) =

�

δ

�

x − χ
χ⋆

��

E,V
=

�

δ

�

x − 1

χ⋆

∑

b

|Vab|2
|Eb|2

��

E,V

=
1

2π

∫

dt

�

exp

�

−it

�

x − 1

χ⋆

∑

b

|Vab|2
|Eb|2

���

E,V

,

(144)
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where in the final equality we have substituted the integral representation of the δ-function.
Performing the integration over the Gaussian distributed matrix elements Vab we obtain

fRS(x) =
1

2π

∫

dte−it x

�

∏

b

�

1− 2itσ2

χ⋆β |Eb|2

�−β/2�

E

=
1

2π

∫

dte−it x





∏

b

 

|Eb|2

|Eb|2 − 2itσ2

χ⋆β

!β/2




E

,

(145)

where β = 1,2, 4 for matrix elements Vab which are real, complex and quaternion respectively.
We then use that det R =

∏

b Eb for a Gaussian random matrix R, and swap the average over
eigenvalues, for an ensemble averaging of R

fRS(x) =
1

2π

∫

dte−it x











det R2

det
�

R2 − 2itσ2

χ⋆β

�





β/2






R

. (146)

We next use the Gaussian integral result

1=
�

β

2π

�β/2
∫

M

dzi exp
�

−β2 z∗i zi

�

, (147)

where for β = 1,2, 4 the integral is over real M = R, complex M = C, and quaternion
M = H respectively. This integral is well known for real and complex zi , and holds also for
quaternions [98]. From this relation we obtain

1

(det A)β/2
=

�

β

2π

�dβ/2
∫

Md

dz exp
�

−β2 z†Az
�

, (148)

for any positive definite matrix A. Inserting (148) into (146) one obtains

fRS(x) =
1

2π

∫

dte−it x ·
�

β

2π

�dβ/2
∫

Md

dz ei|z|2 tσ2/χ⋆
�

(det R2)β/2 exp
�

−β2 z†R2z
��

R

=

�

β

2π

�dβ/2
∫

Md

dzδ
�

x − |z|2σ2/χ⋆
� �

(det R2)β/2 exp
�

−β2 z†R2z
��

R
,

(149)

where in the second line we have performed the t integral. As the ensemble of R is Haar
invariant, the integrand depends only on |z|, thus we may use the relation perform the angu-
lar/phase part of the z-integral. Specifically:

∫

Md

dz · g(|z|) =
∫ ∞

0

rdβ−1dr ·
∫

dΩ · g(r) = Sdβ−1 ·
∫ ∞

0

rdβ−1dr

=
2 ·πdβ/2

Γ (dβ/2)

∫ ∞

0

rdβ−1dr · g(r) ,
(150)

where Sn = 2π(n+1)/2/Γ ( n+1
2 ) is the surface are of an n-sphere, which lives in n+1 dimensional

space. Using (150) to simplify (149) we obtain

fRS(x) =
2(β/2)dβ/2

Γ (dβ/2)

∫ ∞

0

dr rdβ−1δ
�

x − r2σ2/χ⋆
� �

(det R2)β/2 exp
�

−β2 r2u†R2u
��

R

=
2(β/2)dβ/2

Γ (dβ/2)
·
�

xχ⋆/σ
2
�dβ/2

2x
·
�

(det R2)β/2 exp
�

−β xχ⋆
2σ2

u†R2u

��

R

,

(151)
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where is u is an arbitrary fixed unit vector which we set to u= (1, 0,0, · · · ), and in the second
line we have then subsequently performed the radial integral.

To make further progress we decompose R into: a scalar y ∈ R, a d − 1 element vector
v ∈Md−1 and a (d−1)× (d−1) random matrix R′, which is of the same symmetry class as R

R=

�

y v†

v R′

�

. (152)

We may correspondingly decompose the average over R into and average over y, v, R′

[g(R)]R =
1

Z

∫

dR e−
β

4σ2 tr(R2) · g(R)

=
1

Z

∫

dR′ e−
β

4σ2 tr
�

R′2
�

·
∫

dv e−
β

2σ2 v†v ·
∫

dy e−
β

4σ2 y2

· g
��

y v†

v R′

��

=

�

g

��

y v†

v R′

���

y,v,R′
,

(153)

where Z is a normalisation constant. In addition we use the relation

det R2 = det R′2
�

y − v†R′−1
v
�2

. (154)

Inserting (152), (153), (154) into (151) we then obtain

fRS(x) =
2(β/2)dβ/2

Γ (dβ/2)
·
�

xχ⋆/σ
2
�dβ/2

2x

×
�

(det R′2)β/2
�

�

�y − v†R′−1
v

�

�

�

β

exp
�

−β xχ⋆
2σ2

(y2 + v†v)

��

y,vR′
. (155)

The exponential terms in (155) can be scaled out by using the property

[ f (y)e−a y2
]y =

�

1
p

1+ 4aσ2/β
f

�

y
p

1+ 4aσ2/β

��

y

, (156)

which is obtained using the substitution y → y ′ = y
p

1+ 4aσ2/β , and similarly

[ f (v)e−av†v]v =

�

1

(1+ 2aσ2/β)β(d−1)/2
f

�

v
p

1+ 2aσ2/β

��

v

. (157)

Using (156) and (157) to simplify (155) we obtain

fRS(x) =
2(β/2)dβ/2

Γ (dβ/2)
·
�

xχ⋆/σ
2
�dβ/2

2x
· 1
p

1+ 2xχ⋆
· 1

(1+ xχ⋆)
β(d−1)/2

×



(det R′2)β/2 ·
�

�

�

�

�

y
p

1+ 2xχ⋆
− v†R′−1

v

1+ xχ⋆

�

�

�

�

�

β




y,vR′

=
(dβ/2)dβ/2

Γ (dβ/2)
· 1

x
Æ

1+ 2xcβd/π2
·

�

xcβd/π2
�dβ/2

(1+ xcβd/π2)β(d−1)/2

×



(det R′2)β/2 ·
�

�

�

�

�

y
Æ

1+ 2xcβd/π2
− v†R′−1

v

1+ xcβd/π2

�

�

�

�

�

β




y,vR′

,

(158)
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where in the second line we have simply subsitituted σ2 = 1/d and χ⋆ = cβd/π2 We can
simplify this slightly by noting that in the limit of large d

�

xcβd/π2
�β(d−1)/2

(1+ xcβd/π2)β(d−1)/2
∼ exp

�

− βπ
2

2cβ x

�

(159)

and by Stirling’s formula

Γ (dβ/2)∼
√

√4π

dβ

�

dβ

2e

�dβ/2

, (160)

where in all cases ∼ denotes asymptotic equality in the limit of large d. Thus

fRS(x)∼
edβ/2

p
4π
· 1

x
Æ

2xcβd/π2
· exp

�

− βπ
2

2cβ x

�



(det R′2)β/2 ·
�

�

�

�

�

yp
2
− v†R′−1

v
Æ

xcβd/π2

�

�

�

�

�

β




y,vR′

. (161)

As argued in the main text, large values of χα are dominated by the “most resonant” term in
the sum. To make this statement precise, let

Rα :=

�

�

�

�

Vab

Ea − Eb +σhS

�

�

�

�

2

, (162)

where α = (σ, a) and b is chosen as to minimise the denominator. Exactly analogous to (35)
we define the distribution of this quantity as

fR(R|E,σhS) :=
[δ(R− Rα)δ(E − Ea)]B

[δ(E − Ea)]B
, (163)

which is related precisely to fFS by

lim
χ→∞

fFS(χ|E,σhS)

fR(χ |E,σhS)
= 1 . (164)

From this it follows, by the arguments in the main text, that

fR(χ)∼
√

√χ⋆
χ3

, (165)

and thus
f (x)∼ x−3/2 . (166)

Using (166) to simplify the x-independent constants in (161) we find

fRS(x)∼
1

x3/2
· exp

�

− βπ
2

2cβ x

�

�

(det R′2)β/2 ·
�

�

�

�
y − v†R′−1

v
q

xcβ d/(π2
p

2)

�

�

�

�

β
�

y,vR′
�

(det R′2)β/2 · |y |β
�

y,vR′

.
(167)

To make further progress we consider the cases β = 1, 2,4 individually.

C.2.1 fFS for GUE

The simplest case is GUE matrices (β = 2). Expanding the quadratic in (167), noting that the
cross term, which is odd in y thus integrates to zero, and substituting cβ=2 = π/4 one finds

fRS(x) = exp
�

−4π

x

�

· 1

x3/2
·
�

1+
8π

x

�

, (168)

where the coefficient 8π on the second term in the brackets is determined by enforcing that
the distribution is normalised

∫

dx fRS(x) = 1.
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C.2.2 fFS for GSE

Following the same approach for (β = 4), expanding (167) and performing the y-integrals,
and substituting cβ=4 = 9π/32 one finds

fRS(x) = exp
�

− 9π

64x

�

· 1

x3/2
·
�

1+
C

x
+

C ′

x2

�

, (169)

where by normalisation we determine that 8192C ′ + 768Cπ + 135π2 = 0. However this
leaves the remaining degree of freedom undetermined. Unfortunately we have been unable
to determine the values of C , C ′ exactly.

C.2.3 fFS for GOE

For GOE (β = 1), we set cβ=1 = 2/π, however the terms inside the brackets are not easily
expanded

fRS(x) = exp

�

−π
3

4x

�

· 1

x3/2
·

�

�

�det R′
�

� ·
�

�

�

�
y − v†R′−1

vp
xd
p

2/π3

�

�

�

�

�

y,vR′

[|det R′| · |y|]y,vR′
, (170)

however by performing the y−integral we obtain

fRS(x) = exp

�

−π
3

4x

�

· 1

x3/2








1+

�
�

�det R′
�

� · g
�

v†R′−1
vp

x
p

2/π3

��

v,R′

[|det R′|]v,R′








, (171)

where g(z) = e−z2/4 − 1+ (
p
πz/2)Erf(z/2). As we expect the R′ average to be dominated by

the cases where R′ is close to singular, (i.e. |R−1| large), in which regime g(z)∝ |z|+O(z0),
we anticipate that the sub-leading terms come in powers of x−1/2:

fRS(x) = exp

�

−π
3

4x

�

· 1

x3/2

�

1+
C

x1/2
+

C ′

x
+ . . .

�

. (172)

D Fermi’s Golden Rule

In this appendix we show that Fermi’s Golden rule (FGR) predicts an exponential decay of the
infinite temperature correlator two-time connected correlator

Czz(t) := tr
�

eiH tσze−iH tσz ˆ̺0

�

= e−γt . (173)

The calculation is a little more complex than simply resolving the trace over the initial states
|E0
α〉 and asserting that each one has an amplitude which is decaying at the FGR rate. By

conservation of probability one must also consider the influx of amplitude generated by states
from the opposite spin sector, this correction leads to an O(1) pref factor on the FGR.

The decay rate we calculate in this section sets the exponential decay of correlations. We
note that the same value of γ is obtained for a treatment of the spin dynamics using the
Lindblad equation of motion.

To apply FGR we first rearrange the correlator into the form

Czz(t)=

�

∑

στ

στPσ|τPτ

�

−
�

∑

στ

σPσ|τPτ

��

∑

τ

τPτ

�

, (174)
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where the sum is over σ,τ ∈ {↑,↓} where ↑,↓ are taken to have numerical values +1,−1
respectively, and the probabilities are given by the expectation values

Pσ = 〈Πσ(0)〉 ˆ̺0
, (175a)

Pσ|τ(t) = 〈Πσ(t)Πτ(0)〉 ˆ̺0
/〈Πτ(0)〉 ˆ̺0

, (175b)

whereΠσ(t) is the projector onto a spin sector in the Heisenberg picture. By rearranging (174)
is recast as

Czz(t) = 1− P↑|↓(t)− P↓|↑(t) . (176)

To apply Fermi’s Golden rule we decompose this into their different energy contributions
Pσ|τ(t) =

∫

dE pσ|τ(t, E) where pσ|τ(t, E)dE is the probability that the spin is in state σ with
bath energy in the range [E, E + dE], given the boundary condition pσ|τ(0, E) = δστρ(E)/d.
Fermi’s golden rule states that

∂t pσ|τ(t, E) = Γ−σ(E +σhS)p−σ|τ(t, E +σhS)− Γσ(E)pσ|τ(t, E) , (177)

where the decay rate Γσ(E) = 2πJ2 ṽ(E,σhS) is determined by (87), and the two terms re-
spectively account for the decays of −σ states into the σ sector and vice versa. The solution is
given by

pσ|−σ(t, E) =
ρ(E +σhS)

2d

�

1−
Γ
−
σ (E)

Γ+σ (E)

�

�

1− e−Γ
+
σ (E)t

�

, (178)

where we have denoted Γ±σ (E) = Γσ(E)± Γ−σ(E +σhS) (note Γ±σ (E −σhS) = ±Γ±−σ(E)). Thus
we obtain

Czz(t) = 1− 1

2d

∑

σ

∫

dEρ(E +σhS)

�

1−
Γ
−
σ (E)

Γ+σ (E)

�

�

1− e−Γ
+
σ (E)t

�

= 1− 1

2d

∑

σ

∫

dEρ(E)

�

1+
Γ
−
σ (E)

Γ+σ (E)

�

�

1− e−Γ
+
σ (E)t

�

.

(179)

Expanding log Czz(t) in powers of t we obtain

log Czz(t) =
∑

n

κn tn

n!

= C ′zz(0)t +
1
2

�

C ′′zz(0)− C ′zz(0)
2
�

t2

+ 1
6

�

C ′′′zz (0)− 3C ′′zz(0)C
′
zz(0) + 2C ′zz(0)

3
�

t3 + . . . ,

(180)

where
κ1 = C ′zz(0) ,

κ2 =
�

C ′′zz(0)− C ′zz(0)
2
�

,

κ3 =
�

C ′′′zz (0)− 3C ′′zz(0)C
′
zz(0) + 2C ′zz(0)

3
�

,

...

(181)

One finds κ1 = O(L0), whereas higher order terms are suppressed, this follows as the density
of states ρ(E) is asymptotically narrower than the scale on which Γσ(E) varies, specifically,
κ2 = O(L−1) and κn>2 = O(L−n). We may thus neglect the sub-leading terms in the large
system limit. Thus we have

log Czz(t) = −γt +O(t2/L) , (182)
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where

γ= −C ′zz(0) =
1

2d

∑

σ

∫

dEρ(E)
�

Γ
+
σ (E) + Γ

−
σ (E)

�

=
2πJ2

d

∑

σ

∫

dEρ(E)ṽ(E,σhS) , (183)

which is the value (90) quoted in the main text. For the Spin-ETH model studied in the main
text we find numerically

γ= J2 × 1.64 . . . . (184)

E Asymptotic form of the matrix element entropy

In this appendix we show the matrix element entropy has the limiting small J behaviour

∆S (J , E , h′S)∼ −8J
q

χ⋆(E , h′S) log
�

J
q

χ⋆(E , h′S)
�

(185)

given as (116a) in the main text. Here and throughout this section ∼ is used to denote asymp-
totic equality, and we assume we have already taken the limit of large dimension d → ∞
while holding χ⋆ fixed i.e. J2χ⋆ may be tuned arbitrarily small without leaving the intermedi-
ate regime. Here the matrix element entropy is defined by

∆S := 2 log

�∫

dχ

∫

dχ ′ fFS(χ) fFS(χ
′)K(J2χ , J2χ ′)

�

, (186a)

K(x , y) :=
Æ

p(x)p(y) + q(x)q(y) +
Æ

p(x)q(y) + q(x)p(y) , (186b)

p(x) := 1− q(x) :=
1

2

�

1− 1p
1+ 4x

�

. (186c)

(114) in the main text, where for brevity we have suppressed dependency on E , h′S.
In the limit of J → 0 the integral converges to unity, and hence ∆S = 0. It is useful to

separate off this limiting value

∆S = 2 log
�

1+
1

2
I

�

= I +O(I)2 , (187a)

I := 2

∫

dχ

∫

dχ ′ fFS(χ) fFS(χ
′)
�

K(J2χ , J2χ ′)− 1
�

. (187b)

We then proceed by making a substitution s = 2
p

χ⋆/χ to obtain

I = 2

∫ ∞

0

ds

∫ ∞

0

ds′ fs(s) fs(s
′)

�

K

�

4J2χ⋆
s2

4J2χ⋆

s′2

�

− 1

�

, (188)

where the distribution of the s is given by

fs(s) = fχ

�

4χ⋆
s2

�

·
�

�

�

�

dχ

ds

�

�

�

�
= 1+O(s) (189)

and decaying − log f (s)∼ s2 at large s.
Consider the integral I , we note two properties of its integrand K−1: (i) in the limit of small

J the integrand K−1 tends to zero everywhere except for the neighbourhood of the lines s = 0
and s′ = 0; (ii) in the limit of small J the derivative ∂sK is non zero only in the neighbourhood
of s = 0, and similarly the derivative ∂s′K is non zero only in the neighbourhood of s′ = 0.
With these properties, one can see that the small J limit of I is the same for any choice of
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distribution fs(s) which is smooth in the vicinity of 0, and preserves the value of fs(0). As a
result we are at liberty to choose a much “nicer” distribution to work with. We choose

fs(s) =

¨

1 for s ∈ [0, 1]

0 otherwise
(190)

to obtain

I ∼ I ′ := 2

∫ 1

0

ds

∫ 1

0

ds′
�

K

�

4J2χ⋆
s2

4J2χ⋆

s′2

�

− 1

�

. (191)

From here we continue by substituting p = p(4J2χ⋆/s
2) and p0 = p(4J2χ⋆) to obtain

I ′ = 2

∫ 1/2

p0

dp

∫ 1/2

p0

dp′ fp(p) fp(p
′)
�Æ

pp′ + (1− p)(1− p′) +
Æ

p(1− p′) + p′(1− p)− 1
�

. (192)

Where the distribution of p is given by

fp(p) =

�

�

�

�

ds

dp

�

�

�

�
=

J
p
χ⋆

p3/2(1− p)3/2
(193)

and we have set
p0 = 4J2χ⋆ +O(J4χ2

⋆ ) . (194)

We then consider the limit c := limp0→0 I ′(p1/2
0 log p

1/2
0 ) writing q := 1 − p, q′ := 1 − p′,

q0 := 1− p0 for brevity

c = lim
p0→0

1/2

p
−1/2
0 log(p1/2

0 )

∫ 1/2

p0

dp

∫ 1/2

p0

dp′
�p

pp′ + qq′) +
p

pq′ + qp′ − 1

p3/2q3/2p′3/2q′3/2

�

(195a)

= lim
p0→0

2

p
−3/2
0 log(p1/2

0 )

∫ 1/2

p0

dp

�p

pp0 + qq0 +
p

pq0 + p0q− 1

p3/2q3/2p0
3/2q0

3/2

�

(195b)

= lim
p0→0

2

p
−5/2
0 log(p1/2

0 )

∫ 1/(2p0)

1

dr

 q

rp2
0 + (1− rp0)q0 +

p

rp0q0 + p0(1− rp0)− 1

r3/2p
3/2
0 (1− rp0)

3/2p0
3/2q0

3/2

!

(195c)

= lim
p0→0

2

p
−5/2
0 log(p1/2

0 )

∫ 1/(2p0)

1

dr

� p
1+ r

r3/2p
5/2
0

�

(195d)

= lim
p0→0

2

p
−5/2
0 log(p1/2

0 )
· log p0

p
5/2
0

(195e)

= 4 , (195f)

where: in the second line we have applied l’Hôpitals rule, differentiating with respect to p0; in
the third line substituted p = rp0; in the fourth line expanded the integrand to leading order
term in p0; in the fifth line performed the integral and kept the result to leading order in p0

before taking the limit.
Combining (187), (191), (194) and (195) we obtain the desired result in the limit of small

J

∆S ∼ I ∼ I ′ ∼ 4
p

p0 log
p

p0 ∼ 8J
p
χ⋆ log J

p
χ⋆ . (196)
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F Estimator for χ⋆

In this appendix we give a statistical estimator for obtaining χ⋆ from a sample of N values χα
drawn iid from the distribution fFS. Specifically we show that

logχ⋆ =
1

M

M
∑

n=1

logχn + 2 log
�

M

2eN

�

+O

�

M

N

�

+

�

1p
M

�

, (197)

where χ1 > χ2 > . . . > χN are the rank ordered χα, and setting M = O(N2/3) minimises the
sub-leading corrections. This estimator has asymptotic error O(N2/3) which we believe may
be the minimum possible asymptotic error.

The χα are drawn from the distribution fFS, which is given to leading and first sub-leading
order by

fFS(χ) =
χ1/2
⋆

χ3/2
+ a
χ⋆
χ2
+O

�

χ3/2
⋆

χ5/2

�

. (198)

Consider the quantities v1 < v2 < . . .< vN defined by

vn =

�

χ1/2
n

2χ1/2
⋆

− c

4

�−1

. (199)

The vn are distributed according to

fv(v) = fFS(χ) ·
�

�

�

�

dχ

dv

�

�

�

�
= 1+O(v2) . (200)

Intuitively, in the vicinity of v = 0 the distribution fv behaves like the uniform distribution

fu(u) =

¨

1 for u ∈ [0, 1]

0 otherwise
. (201)

This can be made precise in the sense of the following result

�

1

M

M
∑

n=1

log vn

�

=

�

1

M

M
∑

n=1

log un

�

+O

�

M2

N2

�

, (202)

where the u1 < u2 < . . .< uN are a rank ordered sample of values drawn iid from fu.
Using (202) to relate to expectation values of calculated under the uniform distribution is

useful, as it is significantly more simple to work with. In particular the mariginal distribution
of the smallest M values of a sample of size N is given by

fu,M (u) =

M
∑

n=1

N !

M(n− 1)!(N − n)!
un−1(1− u)N−n , (203)

(this is a standard result of Order statistics, see for example, Section 5.4 of Ref. [99]) from
which it is readily calculated that

�

1

M

M
∑

n=1

log un

�

=

∫ 1

0

log u fu,M (u)du= HM − HN − 1= log
�

M

N

�

+O

�

1

N

�

, (204)
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where Hn =
∑n

k=1 1/k = γ + log n + O(1/n) is the nth harmonic number, and γ the Euler-
Mascheroni constant. Lastly we note that while (204) describes the ensemble averaged value,
for any individual sample there will additionally be statistical noise

1

M

M
∑

n=1

log un =

�

1

M

M
∑

n=1

log un

�

+O

�

1p
M

�

. (205)

We are now able to arrive at our desired result

1

M

M
∑

n=1

logχn =

�

1

M

M
∑

n=1

logχn

�

+O

�

1p
M

�

(206a)

= logχ⋆ +

�

2

M

M
∑

n=1

log
�

2
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+
c

2

�
�

+O

�

1p
M

�

(206b)

= logχ⋆ + 2 log 2−
�

2

M

M
∑

n=1

log vn

�

+O

�

1

M

�
M
∑

n=1

vn

��

+O

�

1p
M

�

(206c)

= logχ⋆ + 2 log 2−
�

2

M

M
∑

n=1

log un

�

+O

�

M

N

�

+O

�

1p
M

�

(206d)

= logχ⋆ + 2 log 2− 2 log
�

M

N

�

+ 2+O

�

M

N

�

+O

�

1p
M

�

. (206e)

Where in the second line we have substituted vn (199); in the third line we have expanded the
argument of the logarithm in powers of c; in the fourth line we have substituted Eq. (202) and
evaluated the summation in the correction term; in the fifth line we have substituted Eq. (204).
It is then a matter of simple rearrangement to obtain Eq. (197).
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