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Abstract—This paper proposes a linear coding scheme for the
two-user fading additive white Gaussian noise broadcast channel,
under the assumptions that: (i) perfect Channel State Information
(CSI) is available at the receivers; and (ii) unit delayed CSI
along with channel output feedback (COF) is available at the
transmitter. The proposed scheme is derived from a control-
theoretic perspective that generalizes the communication scheme
for the point-to-point (P2P) fading Gaussian channel under
the same assumptions by Liu et al. [1]. The proposed scheme
asymptotically achieves the rates of a posterior matching scheme,
from the same authors, for a certain choice of parameters.

I. INTRODUCTION

This paper considers the problem of communication over an
Additive White Gaussian Noise (AWGN) Broadcast Channels
(BC) with fading and Channel Output Feedback (COF). In
particular, the forward link of the channel, from the transmitter
to the receivers, experiences i.i.d. time-varying fading assumed
to be known to the receivers perfectly and without delay. The
reverse link, also known as the feedback channel, enables
the transmitter to access the exact channel outputs, including
the channel state, with unit delay. Under the same Channel
State Information (CSI) assumption, the capacity for the fading
point-to-point (P2P) fading AWGN channels is known [2].

While COF cannot increase the capacity of memoryless
P2P channels, it can significantly reduce the probability of
error and even simplify capacity achieving schemes [3], [4].
The same is true for physically degraded BC [5]. In general,
COF increases the capacity region of multi-user channels. For
example, COF enlarges the capacity of the non-fading BC
even when the feedback is available from only one of the
receivers, and that in the degraded case the probability of
error decays doubly exponential in the block length [6]. The
coding scheme for non-fading AWGN-BC with two receivers
and COF constructed in [7] extends the approach for P2P
AWGN channel with feedback in [4], [8], and shows that the
capacity region is enlarged except for the physically degraded
BC, for which the capacity region is known. The P2P Posterior
Matching (PM) scheme in [3] was extended to non-fading BCs
in [9] to obtain the same exact region as in [7]. This region can
be further enlarged by using robust control theory as proved
in [10]. The Linear Quadratic Gaussian (LQG) control theory
inspired the code design in [11], which performs the same as
Elia’s scheme in [10] for two users, and outperforms Kramer’s
scheme in [12] for more than two users. For symmetric
non-fading AWGN-BCs with two users, the coding schemes
in [10], [11] achieve the largest known sum-rate with COF.
For non-symmetric non-fading AWGN-BCs with uncorrelated

noises, the iterative coding scheme in [13] is sum-rate optimal
among all linear-feedback schemes.

The capacity region of the fading AWGN-BC and COF
is an open problem. In our previous work [14], we derived
an achievable region for the two-user fading AWGN-BC with
COF by integrating channel fading into design and presenting
a PM-based coding scheme akin to [9]. Linear coding schemes
from a control perspective have been only investigated for
static BCs, to the best of our knowledge. These achievable
schemes do not work for fading BCs, as the instantaneous
channel fading is not available at the transmitter before signal
transmission. The feedback scheme for P2P fading AWGN
channel with receiver CSI and unit delayed COF proposed by
Liu et al. in [1] is optimal. It is motivated by control theory
and generalizes the Schalkwijk-Kailath (SK) scheme in [4],
[8]. However, it is not immediately clear how to extend the
scheme to a system with more than two users, since we need
to refine the system state vector sequentially based on the
feedback to stabilize each of the system state, which may be
correlated for dependent channel fadings.

Contributions. All capacity results for the AWGN-BCs
are without COF [15] or without fading [7], [9]–[13]. We
demonstrate here an achievable rate region for the fading
AWGN-BC with receiver CSI and COF. We propose a linear
coding scheme over a two-user BC with fading and COF that
generalizes (i) the work in [9] for static BCs with COF, and
(ii) the scheme over P2P Gaussian channels with fading and
COF in [1]. This linear coding scheme for a certain choice
of parameters asymptotically achieves the rate region of the
PM scheme we presented in [14]. This reveals yet again a
tight connection between the feedback communication prob-
lem over an infinite-state fading channel with CSI available
to the transmitter with a unit delay and a related feedback
stabilization problem over the same channel. It is interesting
to note that in the proposed scheme the encoder and decoder
are causal and simple to implement. Moreover, the needed
average transmission power can be determined by solving an
optimal linear control problem known as cheap control [16].
Ongoing work includes the analysis of the proposed scheme
for general parameters, in particular to understand whether,
and if so by how much, one can outperform the PM-based
scheme in [14].

Notation. In this paper, we represent time indices by
subscripts, such as Yi, and user indices by superscripts, such
as Y (k). We use K to denote the number of receivers. We con-
sider real-valued continuous random variables in discrete-time
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stochastic processes. Random Variables (RVs) are denoted
by upper-case letters, their realizations by the corresponding
lower-case letters, and sequences of RVs by boldface, such
as Y := [Y (1), · · · , Y (K)]T . To denote explicitly the dimen-
sionality of a vector, we use superscripts and subscripts in
the following manner: Y

j(k)
i := [Y

(k)
i , · · · , Y (k)

j ] for i ≤ j

and Yi−1 := [Yi−1(1), · · · ,Yi−1(K)]T . R and Rn represent
sets of real scalars and n-dimensional real column vectors,
respectively. AT denotes the transpose of matrix A. A real-
valued RV X is associated with a distribution PX(·) defined
on the usual Borel σ-algebra over R, and we write X ∼ PX .
We write E(·) for expectation and P(·) for the probability of
a measurable event within the parentheses. The notation P−→
specifies convergence in probability. We use log in base 2,
and sgn(x) to denote the sign function, where sgn(x) := 1 if
x ≥ 0 and sgn(x) := −1 if x < 0. Given a statement A, the
indicator function 1(A) is equal to one if A is true and zero
otherwise. We let k̄ denote k̄ 6= k when k ∈ [2].

II. SYSTEM MODEL

We consider a communication system where one transmitter
and K receivers are connected via a fading AWGN channel.
Global CSI is assumed available at the receivers. All channel
outputs, including the CSI, are noiselessly fed back to the
transmitter. The received signal Y (k)

n for user k ∈ [K] at time
n ∈ N is

Y (k)
n =

√
S

(k)
n Un + Z(k)

n ∈ R, (1)

where Un ∈ R denotes the transmitted signal, Z
(k)
n is

the real-valued AWGN with unit power, and S
(k)
n ∈ S is

the channel fading of user k with alphabet S. We assume
that [S(1), · · · , S(K)]T forms a memoryless process over time
known at the receivers, that the noise Z := [Z(1), . . . , Z(K)]T

are independent across users and time, and that the input
is subject to the average power constraint E(U2) ≤ P . Let
H := [

√
S(1), · · · ,

√
S(K)]T . We also assume that U0,H,Z

are independent. A noiseless feedback channel transmits one-
step delayed information (Hn,Yn) from the receivers to the
transmitter.

Definition 1. A (2nR
(1)

, · · · , 2nR(K)

, n) code for the fading
AWGN-BC with COF consists of:

1) K independent and equally likely messages M (k) ∈
{1, · · · , 2nR(k)}, k ∈ [K];

2) an encoder that assigns a symbol Ui(M,Yi−1,Hi−1) to
the message vector M and the previous channel output
vectors (Yi−1,Hi−1) for each i ∈ [n]; and

3) K decoders, where decoder k ∈ [K] assigns an estimate
M̂ (k) to each sequence Y

n(k)
1 = (Y

(k)
1 , · · · , Y (k)

n ).

The probability of error for receiver k ∈ [K] is defined as
p

(k)
e,n := P(M (k) 6= M̂ (k)).

Definition 2. We say that (R(1), · · · , R(K)) is an achiev-
able rate vector under (asymptotic block) power constraint
P if there exists a sequence of (2nR

(1)

, · · · , 2nR(K)

, n)

codes such that limn→∞ sup 1
n

∑n
i=1 E(|Ui|2) ≤ P and

limn→∞maxk∈[K] p
(k)
e,n = 0.

III. MAIN RESULT

Several connections between information theory and con-
trol theory, especially when COF is present, have been ex-
plored [1], [10], [11]. In this section, we present the main
result of this paper, which relates the achievable rate region to
the open-loop growth rate of a control system1. We introduce
a linear feedback coding scheme for K = 2 from a control
perspective in Section III-A, analyze the achievable rate region
in Section III-B, and derive the linear coding parameters based
on cheap control in Section III-C.

A. A Control System and its Stabilization

A K-dimensional unstable dynamical system is stabilized
by a controller having full state observation [17]. The system
model at time i ≥ 0 is

State: Xi+1 = A(Hi
i−j+1)Xi −B(Hi

i−j+1)Yi, (2a)

Input: Ui = C(Hi−1
i−l+1)Xi, (2b)

Output: Yi = HiUi + Zi, (2c)

where Xi ∈ RK is the system state vector; Ui ∈ R is the
channel input; Yi ∈ RK is the channel output vector; Zi ∈ RK

is the AWGN vector; and Hi ∈ RK is the channel fading
vector. As the controllers in (2a) and (2b) may depend on some
previous channel fading parameters, for Hi

i−j+1, j denotes the
fixed memory length of matrices A and B defined next, and
for Hi−1

i−l+1, l denotes the fixed memory length of matrix C.
We assume Z(k) ∼ N (0, 1) for all k ∈ [K] and mutually
independent, and

A(Hi
i−j+1)= diag(a

(1)
i (Hi

i−j+1), · · · , a(K)
i (Hi

i−j+1))∈ RK×K,

B(Hi
i−j+1)= diag(b

(1)
i (Hi

i−j+1), · · · , b(K)
i (H

i
i−j+1))∈ RK×K,

|a(k)
i (Hi

i−j+1)| > 1,∀k ∈ [K], (3)

C(Hi−1
i−l+1) 6= 0. (4)

The term B(Hi
i−j+1) in (2a) is the output feedback control

gain, i.e., the output of the controller is −B(Hi
i−j+1)Yi.

For convenience, in the rest of the paper we use Ai, Bi and
Ci to denote A(Hi

i−j+1), B(Hi
i−j+1), C(Hi−1

i−l+1) in (2); we
use a(k)

i and b(k)
i to denote a(k)

i (Hi
i−j+1) and b(k)

i (Hi
i−j+1),

respectively. We consider the stability of a system in the mean
square sense [18].

Definition 3. The system in (2) is said to be mean square
stable (MSS) if there exists a constant ζ < ∞ such that
E(‖Xi‖2) = E(

∑K
k=1 |X

(k)
i |2) < ζ for all i.

The open-loop system, namely Xi+1 = AiXi, is assumed
to be unstable in (3) and thus the state X

(k)
i in (2a) grows

1the open-loop growth rate is a measure of how unstable the open-loop
control system is.
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unboundedly at an asymptotic rate characterized by the Lya-
punov exponent [19] and denoted by R(k)?, where

R(k)? := lim
n→∞

1

n
log
|X(k)

n |
|X(k)

0 |
P−→ E

(
log |a(k)

i |
)
. (5)

The closed-loop system dynamics is

Xi+1 = Acl,iXi −BiZi, (6)

where Acl,i := Ai −BiHiCi ∈ RK×K. To have an MSS sys-
tem, based on Definition 3, we need to have

∑K
k=1 E(|X(k)

i |2)
bounded.

Remark 1. The information structure of the control system
in (2) is classical [20], as the channel input Ui can access
accurate information and histories of the state Xi. This implies
that the system model considered here is not relevant to
the Witsenhausen Counterexample in [21]. In the LQG team
decision problem, it is well-known that classical information
structure allows optimal linear solutions [22]. This is why we
focus on the linear representation in (2).

B. Reliable Communication Analysis

The control system model in (2) is a linear communication
scheme for the fading BC in (1) with a power budget P , where
each user k sees an entry of the output Y (k)

i and the CSI. The
encoding function is a choice of Ai, Bi and Ci in (2). Initially,
divide the interval [−

√
P (k),

√
P (k)] into 2(n+1)(1−ε)R(k)?

equal-length intervals, where
∑
k∈[K] P

(k) ≤ P . X(k)
0 is the

midpoint of the interval with distance

D(k)
n :=

√
P (k)/2(n+1)(1−ε)R(k)?−1, (7)

and encoder transmits U0. The encoder recursively forms Xi

and transmits Ui. Decoder k’s estimate X̂(k)
i is generated as

X̂
(k)
i = X̂

(k)
i−1 + φ

(k)
i b

(k)
i Y

(k)
i (8)

where φ(k)
i :=

∏i
l=0(a

(k)
i )−1 and X̂

(k)
0 = 0. Simple algebra

shows the following invariance relationship regardless of the
choice of Bi,

X̂
(k)
i = X

(k)
0 − φ(k)

i X
(k)
i+1. (9)

Then, X̂(k)
i is mapped to the closest (in Euclidean distance)

X
(k)
0 to obtain the decoded message. We next show that for

the parameters that stabilize the control system in MSS yield
an achievable rate region for the fading BC with COF. In
particular, the code is obtained by minimizing the transmission
power by using the tool of cheap control.

Proposition 1. The control system in (2) with K = 2, unstable
in open-loop with growth rates (R(1)?, R(2)?) in (5) and MSS
in closed-loop, achieves any rate (R(1), R(2)) arbitrarily close
to (R(1)?, R(2)?) for a communication system.

Proof: By (6), for a given Hn
0 , since Xn+1 =∏n

i=0Acl,iX0 −
∑n
i=0

∏n
l=iAcl,lBiZi, where Acl,i, Bi ∈

R2×2 and X0,Zi ∈ R2, we have that Xn+1 follows a

Gaussian distribution conditioned on (X0,H
n
0 ) with mean

E
(
Xn+1|X0,H

n
0

)
=
∏n
i=0Acl,iX0 and variance

E
((
Xn+1−E(Xn+1)

)2|X0,H
n
0

)
=
( n∑
i=0

n∏
l=i

Acl,lBi

)2

. (10)

Clearly, the variance depends on Hn
0 but not on X0. From (9),

X̂n conditioned on (X0,H
n
0 ) follows the Gaussian distribution

N
((
I2×2 −

n∏
i=0

A−1
i

n∏
i=0

Acl,i

)
X0,

( n∏
i=0

A−1
i

)2( n∑
i=0

n∏
l=i

Acl,lBi
)2)

.

where
∏n
i=0A

−1
i

∏n
i=0Acl,i and

(∑n
i=0

∏n
l=iAcl,lBi

)2 ∈

R2×2. Let
(
acl,11 acl,12

acl,21 acl,22

)
:=
∏n
i=0Acl,i and let the diagonal

elements of (10) from left to right be σ2
1 and σ2

2 . Thus, the
distribution of user k’s estimate X̂(k)

n is

N
(

(1− φ(k)
n acl,kk)X

(k)
0 − φ(k)

n acl,kk̄X
(k̄)
0 , (φ(k)

n )2σ2
k

)
. (11)

In the limit n→∞, the probability of error p(k)
e,n of user k is

upper bounded by p(k)u
e,n , where

p(k)u
e,n :=2Q

(1−(|φ(k)
n |/D(k)

n )
(
|acl,kk||X(k)

0 |+|acl,kk̄||X
(k̄)
0 |
)

(
√
n+ 1|φ(k)

n |/D(k)
n )(σk/

√
n+ 1)

)
,

and
∑
k∈[2] P

(k) = P . To show p
(k)
e,n → 0, it is

sufficient to show that p
(k)u
e,n

P−→ 0 or that the argu-
ment of the Q function tends to infinity, or equivalently
|φ(k)
n |/D(k)

n
P−→ 0,

(
|acl,kk||X(k)

0 | + |acl,kk̄||X
(k̄)
0 |
)

P−→ 0,
√
n+ 1|φ(k)

n |/D(k)
n

P−→ 0 and σk/
√
n+ 1

P−→ 0. Since
1

n+1 log |φ(k)
n | = − 1

n+1 log
∣∣∣∏n

i=0 a
(k)
i

∣∣∣ P−→ −R(k)?, we have

1

n+ 1
log
|φ(k)
n |

D
(k)
n

=
1

n+ 1

(
log |φ(k)

n |+ (n+ 1)(1− ε)R(k)?

− log
√
P (k)

)
P−→ −εR(k)?.

Specifically, the growth rate of |φ(k)
n |/D(k)

n converges to a
strictly negative value in probability and thus |φ(k)

n |/D(k)
n

P−→
0. Similarly, 1

n+1 log
√
n+ 1|φ(k)

n |/D(k)
n

P−→ −εR(k)?, that

is
√
n+ 1|φ(k)

n |/D(k)
n

P−→ 0. By [23, Theorem 3.33],
if the non-homogeneous system (6) is MSS, then the
corresponding homogeneous system Xi+1 = Acl,iXi is
MSS, which further leads to the almost sure convergence
to zero of

∏n
i=0Acl,iX0 [23, Corollary 3.46]. Therefore,(

|acl,kk||X(k)
0 |+ |acl,kk̄||X

(k̄)
0 |
)

P−→ 0.

As E((X
(k)
n )2) = E((X

(k)
n )2|X(k)

0 ,Hn
0 ), by Markov’s In-

equality, for any ε > 0,

P
(
E((X(k)

n )2|X(k)
0 ,Hn

0 )≥(n+ 1)ε
)
≤
E
(

(X
(k)
n )2|X(k)

0 ,Hn
0

)
(n+ 1)ε

.

Since the system is MSS in closed-loop, E((X
(k)
n )2) converges

to some constant number. Hence E((X
(k)
n )2|X(k)

0 ,Hn
0 )/(n+

3
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1)
P−→ 0. Also, as σ2

k ≤ E((X
(k)
n )2), it holds that

σk/
√
n+ 1

P−→ 0. We conclude that p(k)u
e,n

P−→ 0. Therefore,
we have shown that closed-loop stability implies that the
corresponding communication system can transmit reliably at
rates arbitrarily close to R(k)?.

Remark 2. The open-loop growth rates in (5) asymptotically
achieve the rates of the PM-based scheme in [14] in all cases
we tried numerically, and D

(k)
n defined in (7) corresponds

to the decoding interval of the message to user k at time
n in [14]. Note that different choices of the stabilizing gain
in (2a) can yield the same rate, but they may result in different
average channel input powers.

C. Cheap Control

Here we derive the coefficients of the linear feedback
scheme in (2) that satisfy the conditions in Proposition 1,
that is, we stabilize the control system with minimum power
and enable reliable communication over the same channel
with achievable rates arbitrarily close to the open-loop growth
rate. With the help of cheap control, a method used in
Linear Quadratic Regulator (LQR) control, the problem can
be formulated as follows.

For the control gain Ci = [c
(1)
i , c

(2)
i ] in (2), without loss

of generality, we set |c(1)
i /c

(2)
i | = 1, since the fraction can be

compensated by optimizing over a(k)
i and b(k)

i . Inspired by the
parameters of the PM scheme in [14], in (2) we set

Ci = ηi[1, sgn(ρi)], (12a)

where

ρi = E
(
X

(1)
i X

(2)
i

)/√
E
(
|X(1)

i |2
)
E
(
|X(2)

i |2
)
, (12b)

ηi =

√√√√√
(
E
(
|X(1)

i |2
)

+ E
(
|X(2)

i |2
))

E
(
|X(1)

i + sgn(ρi)X
(2)
i |2

) . (12c)

Now the system dynamics in (2b) becomes

Ui = ηiX
(1)
i + sgn(ρi)ηiX

(2)
i . (13)

Here the goal is, for the given ergodic fading channel, to find
the most efficient system in the form of (2) by finding a

(k)
i

and b
(k)
i such that the open-loop is unstable with the growth

rate satisfying (5), and the closed-loop is MSS with the least
possible average channel input power. Thus, one needs to solve
the following optimal control problem

P (R(1), R(2)) := min
a

(k)
i ,b

(k)
i

lim
n→∞

1

n+ 1

n∑
i=0

E(|Ui|2), (14)

subject to (2) being MSS and satisfying (5). This is a type of
cheap control problem as the objective function does not assign
any direct penalty to the control effort −BiYi. Intuitively,
this translates to minimization of average channel input power
subject to a rate constraint for its associated communication
system. The solution is given as follows.

Proposition 2. A linear coding scheme for the fading AWGN-
BC, with two receivers and COF, obtained by solving the cheap
control problem in (14) has the following parameters

|a(k)
i | =

√√√√ 1 + S
(k)
i P

1 + S
(k)
i (PP (k̄)(1− ρ2

i ))/gi
,
k, k̄ ∈ [2],
k̄ 6= k,

(15a)

b
(1)
i =

a
(1)
i

√
S

(1)
i ηi

(
P (1) +

√
P (1)P (2)|ρi|

)
S

(1)
i

(
P (1) + P (2)

)
+ 1

, (15b)

b
(2)
i =

a
(2)
i

√
S

(2)
i ηi

(
sgn(ρi)P

(2) +
√
P (1)P (2)ρi

)
S

(2)
i

(
P (1) + P (2)

)
+ 1

, (15c)

and ρi+1 is updated as

ρi+1 =

√
mi

fi

(
giρi−

liP

mi
(Pρi+ sgn(ρi)

√
P (1)P (2)(1+ ρ2

i ))
)
,

(15d)

where

gi := P + 2|ρi|
√
P (1)P (2), (15e)

mi := (S
(1)
i P + 1)(S

(2)
i P + 1), (15f)

fi := (gi + S
(1)
i P (2)qi)(gi + S

(2)
i P (1)qi), (15g)

qi := P (1− ρ2
i ), (15h)

li := S
(1)
i S

(2)
i P + S

(1)
i + S

(2)
i , (15i)

for all i, which shares the same encoding function as the PM-
based scheme in [14].

Proof: By (13), the average transmission power becomes

lim
n→∞

1

n+ 1

n∑
i=0

E

∑
k∈[2]

|X(k)
i |

2

 . (16)

To have minimum average transmission power P , let
limi→∞ E

(
|X(k)

i |2
)

= P (k), and
∑
k∈[2] P

(k) = P .

From (6), X(k)
i+1 are given by

X
(1)
i+1 =

(
a

(1)
i −

√
S

(1)
i b

(1)
i ηi

)
X

(1)
i

−
√
S

(1)
i b

(1)
i sgn(ρi)ηiX

(2)
i − b

(1)
i Z

(1)
i , (17a)

X
(2)
i+1 =

(
a

(2)
i −

√
S

(2)
i b

(2)
i sgn(ρi)ηi

)
X

(2)
i

−
√
S

(2)
i b

(2)
i ηiX

(1)
i − b

(2)
i Z

(2)
i . (17b)

By convergence, the following holds

P (1) = E
((
a

(1)
i −

√
S

(1)
i b(1)

n ηi
)2)

P (1)− 2ρi
√
P (1)P (2)

× E
(√

S
(1)
i b

(1)
i sgn(ρi)ηi

(
a

(1)
i −

√
S

(1)
i b

(1)
i ηi

))
+ E

(
(

√
S

(1)
i b

(1)
i sgn(ρi)ηi)

2
)
P (2)+ E

((
b
(1)
i

)2)
, (18a)

P (2) = E
(

(a
(2)
i −

√
S

(2)
i b

(2)
i sgn(ρi)ηi)

2
)
P (2) − 2ρi
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×
√
P (1)P (2)E

(√
S

(2)
i b

(2)
i ηi

(
a

(2)
i −

√
S

(2)
i b

(2)
i sgn(ρi)ηi

))
+ E

(
(

√
S

(2)
i b

(2)
i ηi)

2
)
P (1) + E

((
b
(2)
i

)2)
. (18b)

Hence, minimizing the transmission power (16) is equivalent
to minimizing P (1) + P (2) satisfying (18).

Now we assume all a(k)
i ≥ 1 are given and look for the

optimal control {b(k)
i }. Then, we look for {a(k)

i } by searching
over all {a(k)

i } satisfying (5). Summing up the right-hand side
terms of (18a) and (18b), we obtain λ(b

(1)
i , b

(2)
i ), a function

of b(1)
i and b(2)

i , where

λ(b
(1)
i , b

(2)
i ) :=

(
a

(1)
i −

√
S

(1)
i b

(1)
i ηi

)2

P (1) +

2∑
k=1

(
b
(k)
i

)2

+
(
a

(2)
i −

√
S

(2)
i b

(2)
i sgn(ρi)ηi

)2

P (2)+η2
i

2∑
k=1

S
(k)
i (b

(k)
i )2P (k̄)

− 2

√
S

(1)
i b

(1)
i sgn(ρi)ηi

(
a

(1)
i −

√
S

(1)
i b

(1)
i ηi

)√
P (1)P (2)ρi

− 2

√
S

(2)
i b

(2)
i ηi

(
a

(2)
i −

√
S

(2)
i b

(2)
i sgn(ρi)ηi

)√
P (1)P (2)ρi.

Recall that b(k)
i are functions of S(k)

i , k ∈ [2]. For functional
optimization, each of the expressions inside the expectation
in the right-hand side of (18) needs to be minimized, in
other words, we need to solve min

b
(1)
i ,b

(2)
i
λ(b

(1)
i , b

(2)
i ) for each

S
(k)
i . Letting ∂λ(b

(1)
i ,b

(2)
i )

∂b
(k)
i

= 0, ∀k ∈ [2], the minimum value

of λ(b
(1)
i , b

(2)
i ) is achieved when b

(1)
i and b

(2)
i satisfy (15b)

and (15c) respectively. Taking gi defined in (15e) and substi-
tuting (15b) and (15c) into (18), we attain that

1 = E

 (a
(k)
i )2

(
1 + S

(k)
i (PP (k̄)(1− ρ2

i ))/gi
)

S
(k)
i P + 1

 .

Denote d
(k)
i :=

(a
(k)
i )2

(
1+S

(k)
i (PP (k̄)(1−ρ2

i ))/gi
)

S
(k)
i P+1

. Now the
cheap control problem is reduced to

min
d

(1)
i , d

(2)
i

P

s.t.


E
(
d

(k)
i

)
= 1,∀k, k̄ ∈ [2], k̄ 6= k,

E

(
log d

(k)
i + log

(
1+S

(k)
i P

1+S
(k)
i PP (k̄)(1−ρ2

i )/gi

))
= 2R(k)?.

With P (1) = αP and P (2) = (1−α)P for α ∈ [0, 1], we have

log

(
1 + S

(k)
i P

1+S
(k)
i PP (k̄)(1− ρ2

i ))/gi

)
(19)

= log

(
1 + S

(k)
i P

1 + S
(k)
i P (1− ρ2

i ))(1− α)/(1 + 2|ρi|
√
α(1− α))

)
.

As the right-hand side term of (19) is monotonically in-
creasing with P , to minimize P , we need to minimize

E
(

log
(

1+S
(k)
i P

1+S
(k)
i PP (k̄)(1−ρ2

i )/gi

))
or equivalently maximize

E
(

log d
(k)
i

)
for fixed R(k) subject to E

(
d

(k)
i

)
= 1. From the

concavity of the logarithm, it follows that the maximization is
achieved if all d(k)

i = 1, which gives |a(k)
i | as in (15a) with

|a(k)
i | > 1.
Thus, the convergence of E((X

(k)
n )2) holds by choosing b(k)

i

and a(k)
i as in (15b)–(15a), which also ensures the closed-loop

MSS. From (12b), after some simple algebra, the correlation
coefficient ρi+1 is updated as (15d) with notations defined
in (15e)–(15i). Furthermore, one can see that the choice of
parameters of the encoder in [14] are consistent with the
coefficients chosen here. Therefore, the PM scheme for fading
AWGN-BC in [14] can be obtained from a control-oriented
perspective.

Remark 3. We note that the linear coding scheme in Propo-
sition 2 is obtained based on the choice of Ci in (12a) and
it recovers the result in [1] when the number of user K = 1.
Also, the cheap control formulation here differs from the PM
scheme in [14] in that the cheap control performs the same
operation at every step, whereas the PM scheme’s startup
phase differs from later phases. The cheap control approach
has the advantage of unifying the operations for all steps
(which simplifies the control-oriented analysis), but it has to
wait long enough until that exponentially vanishing bias (i.e.,
the term φ

(k)
n acl,kkX

(k)
0 − φ

(k)
n acl,kk̄X

(k̄)
0 in (11)) becomes

negligible [10]. In contrast, the PM scheme is unbiased since
the special startup operation provides an unbiased estimation
error and the action taken in this first step has no effect on the
average transmission power used by later steps, which depends
on the steady state behavior. Therefore, except for these minor
differences, we show that the PM-based scheme in [14] is a
special case of the cheap control method introduced here.

IV. CONCLUSIONS AND FUTURE WORK

This paper presented a linear code for the Gaussian two-
user fading broadcast channel with feedback by using tools
from control theory. We showed that the problem of feedback
stabilization over control channels is closely related to the
problem of communication over the same channel, when the
encoder has access to noiseless feedback from the decoders.
The growth rate of the open-loop system becomes the rate at
which information is communicated over the channel. Based
on this equivalence, feedback control methods can be applied
to obtain communication schemes, i.e. one can translate the
problem of maximizing the achievable rates for fixed power
constraint in a communication system to the problem of
minimizing the transmission power for fixed rates in a control
system. The achievable rates of this linear coding scheme
are not optimal as we choose the controller based on the
PM scheme, which sometimes is worse than non-feedback
schemes. Future work includes broadening and optimizing the
form of the controller, incorporating other control methods to
derive an achievable region that uniformly outperforms the
region without feedback.
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