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Many-body localization with quasiperiodic driving
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Sufficient disorder is believed to localize static and periodically driven interacting chains. With quasiperiodic
driving by D incommensurate tones, the fate of this many-body localization (MBL) is unknown. We argue that
randomly disordered MBL exists for D = 2, but not for D � 3. Specifically, a putative two-tone driven MBL
chain is neither destabilized by thermal avalanches seeded by rare thermal regions, nor by the proliferation of
long-range many-body resonances. For D � 3, however, sufficiently large thermal regions have continuous local
spectra and slowly thermalize the entire chain. En route, we generalize the eigenstate thermalization hypothesis
to the quasiperiodically driven setting, and we verify its predictions numerically. Two-tone driving enables new
topological orders with edge signatures; our results suggest that localization protects these orders indefinitely.
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I. INTRODUCTION

Strong periodic driving generates new phases of matter
with no analog in static systems [1–3]. Examples include
anomalous topological insulators with chiral edge modes
[4–7], and discrete time crystals with subharmonic response
to the drive [8–10]. Several optical and solid-state experiments
have observed signatures of these dynamical phases [11–15].

Similarly, quasiperiodic driving by multiple incommensu-
rate tones [16–28] generates orders not accessible in either
static or periodically driven systems [29–43], some of which
have been experimentally observed [44–49]. For instance,
anomalous localized phases support energy currents between
the drives at their edges [32,41,43], and spin chains without
any assumed symmetry exhibit coherent edge states [42]. In
both cases, the orders rely on localization in the bulk to forbid
heating to a featureless infinite-temperature state [50–63].

However, with interactions and quasiperiodic driving, it is
not known if the bulk can remain localized indefinitely, and
thus if these orders characterize genuine dynamical phases
of matter. Localization in quasiperiodically driven systems is
likely to be delicate, as even qubits can have ergodic dynamics
and act as a local heat bath for nearby degrees of freedom
[19,20,41,43]. Indeed, this is why there is no localization in
classical spin chains [64,65].

We provide analytical and numerical evidence that
quasiperiodically driven many-body localization (MBL) is a
stable dynamical phase for smooth two-tone driving. Here,
few-level systems generically have pure point spectra (Sec.
VI). Analogous arguments to those in static MBL then show
that perturbations do not lead to the proliferation of long-range
many-body resonances [66–68] (Sec. VIII).

However, other potential instabilities remain—in partic-
ular, for MBL by random disorder, a large thermal region
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with N levels may absorb nearby spins and initiate a thermal
avalanche [63,69] (Fig. 1). Here, the spectrum being pure
point does not guarantee stability. Intuitively, the number of
harmonics must grow slowly enough with N (Sec. V). We
show that the scaling with N allows for stable MBL when the
localization length is less than a critical value,

ξs,c = (2 ln 2)−1. (1)

Notably, the critical localization length is reduced as com-
pared to the static and periodically driven cases (Fig. 1).

With three or more tones in the drive, sufficiently large
thermal inclusions show continuous spectra [32,43]. Just as
in classical systems, a putatively MBL chain is not stable
to such an inclusion. Thus, quasiperiodically driven MBL
with random disorder does not exist with three or more tones
(Sec. VII).

Two of our intermediate results are of independent inter-
est. We characterize l-bits with quasiperiodic driving (Sec.
III) in terms of a frequency lattice which incorporates a
synthetic dimension for each drive (Sec. II). We also adapt
the eigenstate thermalization hypothesis (ETH) [70–74] to
quasiperiodically driven systems, and we test its predictions
numerically (Sec. IV).

In what follows, we focus on thermal inclusions in ran-
domly disordered chains before addressing the perturbative
stability of MBL. The former is more constraining in its im-
plications for MBL, and it provides mathematical machinery
with which to analyze the latter.

II. BACKGROUND–FREQUENCY LATTICE

The frequency lattice organizes the Fourier content of the
long-time steady states of quasiperiodically driven systems
[16,19,20,75–77]. It is well suited to discussions of formally
infinite-time properties, such as localization. This section re-
views the frequency lattice construction.

2469-9950/2022/105(14)/144204(19) 144204-1 ©2022 American Physical Society



LONG, CROWLEY, AND CHANDRAN PHYSICAL REVIEW B 105, 144204 (2022)

FIG. 1. (a) Thermal inclusions. The dominant mechanism of
thermalization for a randomly disordered driven chain is the occur-
rence of a thermal region, say at site j = 0. The system is driven
by D tones with frequencies �1, . . . , �D, and the N-level thermal
region has exponentially decaying couplings J j = O(e−| j|/ξs ) to l-bits
a distance j from the thermal region. (b) Critical localization length.
MBL is stable to the inclusion of a thermal region for D = 0 (static
systems), D = 1 (periodically driven), D = 2, and not for any D � 3.
The critical localization length below which MBL is stable is reduced
to ξs,c = (2 ln 2)−1 for two-tone driving.

We consider one-dimensional quantum systems with
smooth quasiperiodic time dependence consisting of
D incommensurate tones. Such a Hamiltonian may be
parametrized in terms of D phase variables θ j (t ) = � jt ,
where � j is the angular frequency of the jth drive. For
convenience, we assemble the phases into a vector

�θt =
D
∑

j=1

θ j (t )ê j . (2)

The time-dependent Hamiltonian may then be written as

H (t ) = H (�θt ), where H (�θ + 2π ê j ) = H (�θ ) (3)

is periodic in each phase variable, with period 2π . Incommen-
surability of the frequencies is stated mathematically as

�n · �� = 0 ⇐⇒ �n = 0, (4)

where �n ∈ Z
D is a vector of integers. (For D = 2, this is equiv-

alent to �1/�2 being irrational.) The drive is not periodic, but
is instead, in a sense that can be made precise, almost periodic.

In analogy to the stationary state solutions of the
Schrödinger equation with a static Hamiltonian, the steady
states of a quasiperiodically driven system are the quasienergy

states [16,20,78]

|ψα (t )〉 = e−iǫαt |φα (�θt )〉, (5)

where |ψα (t )〉 is a solution to the Schrödinger equa-
tion i∂t |ψα (t )〉 = H (t )|ψα (t )〉, α indexes a basis of the Hilbert
space, ǫα is the quasienergy, and the quasienergy state |φα (�θt )〉

FIG. 2. The frequency lattice. The steady states of a system
driven by D incommensurate tones are the eigenstates of a static
lattice problem in an extended frequency lattice. This lattice has
additional synthetic dimensions, with sites labeled by �n ∈ Z

D (each
site shown has all of the degrees of freedom of the spatial Hilbert
space). The hopping matrices H�n− �m in the frequency lattice are given
by Fourier components of the driven Hamiltonian. The on-site linear
potential is −�n · ��, as might arise from a uniform electric field ��.
The quasienergy states |φ̃α〉 are localized with localization length
ζ f . The degree of localization parallel to �� is greater than that
perpendicular to ��.

is smooth on the torus. The states

|φα (�θ )〉 =
∑

�n∈ZD

|φα�n〉e−i�n·�θ (6)

may be calculated after a Fourier transform from the eigen-
value equation

∑

�m∈ZD

K�n �m|φα �m〉 = ǫα|φα�n〉, (7)

where

K�n �m = H�n− �m − �� · �nδ�n �m, (8)

and H�n are the Fourier components of H (�θ ) = ∑

�n H�ne−i�n·�θ .
The quasienergy states being smooth on the torus is equivalent
to the Fourier components |φα�n〉 being localized in �n. If the
eigenstates of K�n �m are delocalized, the quasienergy states are
not well-defined.

The operator K�n �m is a static lattice Hamiltonian in an
extended frequency lattice. It has translationally invariant hop-
ping matrices given by H�n− �m, and an on-site linear potential
−�� · �n, which breaks translational symmetry. This linear po-
tential would arise in real space from a uniform electric field
given by ��, so we sometimes refer to �� in this context as an
electric field.

The frequency lattice has additional synthetic dimensions

corresponding to each of the periodic drives Fig. 2. We make
this explicit by appending states |�n〉 to the Hilbert space and
defining [16,19,20,77]

K̃ =
∑

�n, �m∈ZD

K�n �m|�n〉〈 �m|, (9)

and similarly |φ̃α〉 = ∑

�n |φα�n〉|�n〉. Explicitly, the extended
Hilbert space is

K = H ⊗ ℓ2(ZD), (10)
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where H is the Hilbert space in the temporal domain, and
ℓ2(ZD) denotes the space of square-summable complex val-
ued functions on the square lattice Z

D.
We will decorate states in, and operators on, K with a tilde

to make a clear distinction between those objects that have the
extra factor ℓ2(ZD) and those that do not.

Extending the Hilbert space introduces a new gauge free-
dom related to the position of the origin in the synthetic
dimensions. Translations in the synthetic dimensions do not
produce observable effects on real-time dynamics, as may be
seen explicitly from the quasienergy states. A translation of a
quasienergy state |φ̃α〉 by a lattice vector �m,

∣

∣φ̃ �m
α

〉

=
∑

�n
|φα�n〉|�n + �m〉, (11)

is another quasienergy state of K̃ , with quasienergy ǫα − �m ·
��. The actual solution to the Schrödinger equation, however,
does not change:

∣

∣ψ �m
α (t )

〉

= e−i(ǫα− �m· ��)t e−i �m· ��t |φα (�θ )〉 = |ψα (t )〉. (12)

An operator O(�θ ) on H corresponds to an operator on K

defined by

Õ =
∑

�n, �m
O�n− �m|�n〉〈 �m|, (13)

which is constructed so that O(�θ )|φ(�θ )〉 ↔ Õ|φ̃〉. We see
that physical operators are naturally translationally invariant
(gauge invariant) in the frequency lattice.

When H is a many-body Hilbert space for a spatially
extended system, the character of the spatial dimensions is
different from the synthetic frequency lattice dimensions. If
we consider a finite subsystem of the frequency lattice for a
spin- 1

2 chain with L spins and M synthetic sites, the Hilbert
space dimension supported on this subsystem is 2LM. The
synthetic part of the problem is thus analogous to a single-
particle system, even in the many-body setting.

Furthermore, the structure of tensor products in the fre-
quency lattice is more complicated than in the temporal
domain. The origin of this complication is that there is only
one factor of ℓ2(ZD) in the frequency lattice Hilbert space,
even in a tensor product system. Explicitly, if H = H1 ⊗ H2,
then

K = H1 ⊗ H2 ⊗ ℓ2(ZD) 
= K1 ⊗ K2, (14)

where K j = H j ⊗ ℓ2(ZD). As a consequence, given states
|φ j (�θ )〉 ∈ H j and corresponding frequency lattice states
|φ̃ j〉 ∈ K j , the frequency lattice state corresponding to
|φ1(�θ )〉 ⊗ |φ2(�θ )〉 is obtained as a convolution, for which we
use the symbol ∗,

|φ̃1φ̃2〉 = |φ̃1〉 ∗ |φ̃2〉 =
∑

�n

(

∑

�m
|φ1,�n− �m〉|φ2, �m〉

)

|�n〉, (15)

and not as a tensor product of the states |φ̃ j〉.
Such tensor convolutions are somewhat more elegantly

stated for operators. An operator O j (�θ ) on H j corresponds
to an operator Õ j on K j defined as in Eq. (13). The frequency

lattice operator for the tensor product O1(�θ ) ⊗ O2(�θ ) is

Õ1O2 = (Õ1 ⊗ 12)(11 ⊗ Õ2) = Õ1Õ2 = Õ2Õ1, (16)

where in the last two expressions we use the convention that
Õ1 acting in K is regarded as acting as the identity on the space
H2, and similarly for Õ2 acting on H1.

III. QUASIPERIODICALLY DRIVEN MANY-BODY

LOCALIZATION

We present a definition of MBL in a quasiperiodically
driven setting that recovers much of the phenomenology
present in static systems. In static systems, MBL may be char-
acterized by a complete set of quasilocal integrals of motion,
l-bits τ z

j , for which

〈ψ (t )|τ z
j |ψ (t )〉 = const (17)

for any initial state |ψ (0)〉. This property results in the many
striking features of MBL: memory of the initial state, pure
point spectra of local observables, and so on [54,56,60].

Similarly, we define a complete set of l-bits τ z
j (�θ ) with

explicit �θ dependence. The l-bits commute with the time evo-
lution operator, so that

〈ψ (t )|τ z
j (�θt )|ψ (t )〉 = const (18)

for any initial state |ψ (0)〉.
A quasiperiodically driven system is many-body localized

if there is a complete set of l-bits that are (quasi)local in both
the frequency and spatial lattices, i.e., a set of frequency lattice
operators

τ̃ z
j =

∑

�n, �m∈ZD

τ z
j,�n− �m|�n〉〈 �m| (19)

such that [τ̃ z
j , K̃] = 0, [τ̃ z

j , τ̃
z
k
] = 0, and with τ̃ z

j having local-
ization center j. More precisely, decomposing τ z

j,�n into terms
τ z

j,�n,r
supported within a spatial range r of j:

τ z
j,�n =

∑

r

τ z
j,�n,r

where
∥

∥τ z
j,�n,r

∥

∥ = O(e−|�n|/ζ f −r/ζs ). (20)

Here, we have introduced a frequency localization length ζ f

and a spatial localization length ζs.
The complete set of l-bits split the Hilbert space into 2L

sectors (for a spin- 1
2 chain of length L). Each sector contains

only one physically inequivalent quasienergy state, and it may
be labeled by its eigenvalues under each τ̃ z

j . Furthermore, we
require these quasienergy states to be localized in the synthetic
dimensions—that is, they must have a smooth quasiperiodic
time dependence in the temporal domain [79].

Explicitly, if we label the quasienergy state |φ̃α〉 translated
by the frequency lattice vector �n as |φ̃�n

α〉, then the frequency
lattice l-bits may be written as

τ̃ z
j =

∑

�n,α

τ z
jα

∣

∣φ̃�n
α

〉〈

φ̃�n
α

∣

∣, (21)

where τ z
jα is an �n-independent eigenvalue (recall that any

physical operator must be translationally invariant in the syn-
thetic dimensions). Equation (21) also makes clear that the
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frequency lattice localization length of the l-bits, ζ f , is also
that of the quasienergy states Fig. 2.

In later sections, we only use the frequency lattice opera-
tors τ̃ z

j . The corresponding temporal operators are conserved
quantities with explicit time dependence, as we show below.

In the temporal domain, τ̃ z
j corresponds to a smooth,

quasilocal, quasiperiodic operator

τ z
j (t ) = τ z

j (�θt ) =
∑

�n
τ z

j,�ne−i�n·�θt (22)

such that τ z
j (�θ )|φα (�θ )〉 = τ z

jα|φα (�θ )〉. That is,

τ z
j (�θ ) =

∑

α

τ z
jα|φα (�θ )〉〈φα (�θ )| (23)

is diagonal in the quasienergy state basis, even in the temporal
domain.

The temporal domain operators do not necessarily com-
mute with the instantaneous Hamiltonian, [τ z

j (�θ ), H (�θ )] 
= 0.
Rather, the Heisenberg operators

τ
z,H
j (t ) = U (t )†τ z

j (�θt )U (t ) (24)

[where U (t ) = U (t, 0) is the unitary evolution operator] are
constant in time,

dtτ
z,H
j (t ) = 0, (25)

so that the l-bits are conserved quantities with explicit time
dependence. Taking an expectation value in |ψ (0)〉 yields
Eq. (18).

Unlike in static MBL, the Hamiltonian H (�θ ) cannot be
expressed as a sum of products of the l-bits [54,56]. Instead,
the quasienergy operator in the frequency lattice has the anal-
ogous property that there exists a quasilocal unitary W̃ in the
frequency lattice so that

W̃ K̃W̃ † = −
∑

�n
�� · �n|�n〉〈�n| +

∑

j

h j σ̃
z
j

+
∑

j, j′
h j j′ σ̃

z
j σ̃

z
j′ + · · · . (26)

That is, a quasilocal rotation allows K̃ to be expressed as a
sum of products of Pauli σ̃ z operators up to a term that breaks
the translational invariance.

The definition of MBL implies that all local observables O

have pure point power spectra [19,20], as is the case in static
MBL. Reference [38] also proposes a definition of quasiperi-
odically driven MBL. We show in Appendix A that the two
definitions are equivalent.

IV. THERMAL REGION ANSATZ

In this section, we present an ansatz that characterizes ma-
trix elements of thermalizing quasiperiodically driven systems

in the style of the eigenstate-thermalization hypothesis (ETH)
[70–74]. This ansatz characterizes low-disorder regions in a
quasiperiodically driven putatively MBL chain.

Our ansatz is a statistical description of finite quasiperi-
odically driven quantum systems with pure point spectra. In
the thermodynamic limit, the spectrum becomes continuous.
However, it is also possible to have a continuous spectrum in

a finite quasiperiodically driven system for D � 3 (Sec. VII).
To develop an ETH ansatz here, the spectrum should be made
discrete with commensurate approximations (Sec. IX).

Consider an N-dimensional Hilbert space with a quasiperi-
odic Hamiltonian HB(�θt ) (the “bath Hamiltonian”). Assume
that there exists a complete set of smooth quasienergy states
|ψα (t )〉 = e−iǫαt |φα (�θt )〉—that is, that the eigenstates of the
corresponding quasienergy operator are localized in the syn-
thetic dimensions, with localization length ζ f .

The ansatz concerns matrix elements of generic local oper-
ators V (�θt ) between quasienergy states,

Vαβ (t ) = 〈ψα (t )|V (�θt )|ψβ (t )〉
= e−iωβαt 〈φα (�θt )|V (�θt )|φβ (�θt )〉, (27)

where ωβα = ǫβ − ǫα , and we choose particular representa-
tive quasienergy states |φα (�θt )〉 to fix ǫα .

The frequency lattice operator corresponding to V is Ṽ =
∑

�n, �m V�n− �m ⊗ |�n〉〈 �m|, and the quasienergy states are denoted
|φ̃�n

α〉 (11). Then an arbitrary matrix element of Ṽ in the
quasienergy state basis has the form

Ṽ �n �m
αβ =

〈

φ̃�n
α

∣

∣Ṽ
∣

∣φ̃ �m
β

〉

=
∑

�j,�k

〈φα �j |V�j−�k+�n− �m|φ
β�k〉, (28)

which is the coefficient of δ(ω − ��n �m
αβ ) in the Fourier

transform of Vαβ (t ), and ��n �m
αβ = ωβα + (�n − �m) · �� is the

quasienergy difference between |φ̃ �m
β 〉 and |φ̃�n

α〉. As Ṽ is trans-

lationally invariant, the matrix element Ṽ �n �m
αβ = Ṽ �n− �m

αβ only
depends on the separation between �n and �m, which we call
�ℓ = �n − �m. Subsequently, we only keep the �ℓ dependence in
our notation.

We first state the ansatz, and then we define and motivate
each of the terms appearing in the equation. The ansatz is

Ṽ
�ℓ

αβ = V̄�ℓδαβ +
f �ℓ
(

�
�ℓ
αβ

)

√

NξD−1
f

R
αβ,�ℓ. (29)

Consider the first term. Equation (29) must recover
the infinite-temperature expectation value of V (�θ ) in a
quasienergy state as it models a thermal system. (As energy
is not conserved in a quasiperiodically driven system, thermal
expectation values should be taken at infinite temperature.)
We define V̄ (�θ ) to be this expectation value,

V̄ (�θ ) = 1

N
Tr[V (�θ )] =

∑

�ℓ
V̄�ℓe−i�ℓ·�θ . (30)

The Fourier components V̄�ℓ appear in the first term of Eq. (29).
Fluctuations to the expectation value are given by the second
term in Eq. (29), but these vanish as the number of levels
N → ∞. The second term is motivated by the intuition that
the components |φα�n〉 appear as independent random vectors
[74], with an assumed exponentially decaying norm with |�n|
(Fig. 2).

The factors R
αβ,�ℓ are independent (usually complex) ran-

dom variables with mean zero and unit variance, and they
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model the apparently random nature of the quasienergy states.
We will not need to assume any particular distribution for
these variables, or even that they are identically distributed
for different �ℓ. However, if V (�θ ) is Hermitian, then there is a
constraint R

αβ,�ℓ = R∗
βα,−�ℓ, where z∗ is the complex conjugate

of z.
The spectral functions f �ℓ(ω) appearing in the second term

encode the dependence of the off-diagonal matrix elements on
the quasienergy difference ω. The spectral functions also carry
an explicit dependence on the frequency lattice separation �ℓ.
The former is usual for an ETH ansatz—matrix elements typ-
ically depend on energy differences of eigenstates. The latter
dependence on �ℓ has no analog in the usual ETH for static
or periodically driven systems—it encodes the localization
of the quasienergy states (and hence the matrix elements)
perpendicular to �� in the frequency lattice. Displacements
�ℓ parallel to �� affect the quasienergy difference ω = �

�ℓ
αβ ,

but those perpendicular to �� do not. As ω is insensitive to
this displacement, the additional dependence of f �ℓ(ω) on �ℓ is
required to correctly describe the localization perpendicular to
��. Namely, for large |�ℓ|, we demand that

| f �ℓ(ω)| = O(e−|�ℓ|/ξ f ), (31)

where ξ f is a frequency lattice localization length. If V�n =
O(e−|�n|/ζV ), then ξ f = O(max{ζ f , ζV }). When the localization
length of the quasienergy states is large, ξ f = O(ζ f ).

The localization of f �ℓ in the direction parallel to the elec-
tric field �� in the frequency lattice is much stronger than
in the D − 1 perpendicular directions. This is due to Stark
localization by the linear potential �n · ��, which causes a su-
perexponential localization like

ln | f �ℓ(ω)| ∼ −ω�ℓ ln ω�ℓ, (32)

where ω�ℓ = �ℓ · �̂ is much larger than a localization length
parallel to the electric field, ω�ℓ ≫ ξ‖ [80].

The localization length ξ‖ controls the preasymptotic ex-
ponential decay of | f �ℓ(ω)|, and it depends only weakly on
N . In a driven many-body system, ξ‖ is a function of W/| ��|,
where W is the bandwidth of the static part of the Hamilto-
nian. For a generic spin system, this varies as W = O(

√
L) =

O(
√

log2 N ), which results in a very weak growth with N .
States at a distance ω�ℓ ≫ ξ‖ are far detuned, resulting in
superexponential localization.

The localization length ξ f also appears in the denominator
of the second term in Eq. (29), which may be interpreted as
the square root of an effective Hilbert space dimension

Neff = NξD−1
f . (33)

For a given |φ̃�n
α〉, Neff is roughly the number of other states

with which |φ̃�n
α〉 has a significant matrix element. More pre-

cisely, the volume factor of ξD−1
f

in Neff ensures that

∑

α

〈φ̃α|Ṽ †Ṽ |φ̃α〉 =
∫

dDθ

(2π )D
Tr[V †V (�θ )] = O(N ). (34)

The exponent is D − 1, and not D, because the strong local-
ization in the �� direction means that the relevant volume is
(asymptotically for large N) just that perpendicular to ��.

The predictions of our ansatz (29) can be checked in nu-
merical simulations of thermalizing quasiperiodically driven
systems. In Appendix B, we check several statistics of the off-
diagonal matrix elements of an operator between quasienergy
states for D = 2, and we find that they are consistent with (29).

As a final comment, there may be D − 1 distinct localiza-
tion lengths in the plane perpendicular to �� in the frequency
lattice. Equation (29) is modified accordingly; specifically,
ξD−1

f
is replaced with the product of principal localization

lengths,
∏D−1

j=1 ξ f , j . More generally, this denominator is deter-
mined by the requirement of normalization. In later sections,
we neglect such refinements and use Eq. (29) as stated, as our
primary focus is D = 2, where there is a unique localization
length ξ f perpendicular to ��.

V. SPATIAL LOCALIZATION ASSUMING SYNTHETIC

LOCALIZATION

In this section, we show that quasiperiodically driven MBL
is self-consistently stable to the inclusion of a thermal region,
provided the frequency lattice localization length grows at
most as a power law with the Hilbert space dimension of the
thermal region, ξ f = O(Nν ).

Intuitively, in the ETH ansatz (29) the effective density of
states grows as

ρeff = O(Neff ) = O(N1+ν(D−1)). (35)

For MBL to be self-consistently stable, the product of this
density of states and a typical matrix element of a perturbation
must be much less than unity. Testing when this is true, as in
Ref. [69], leads to the conclusion that MBL may be stable for
spatial localization lengths obeying

ξs < ξs,c = {[1 + ν(D − 1)] ln 2}−1. (36)

Equation (36) is our main result of this section.
A technical proof of Eq. (36) is more involved, as the

density of states in the frequency lattice is formally infinite
at all energies, and the matrix elements Ṽ

�ℓ
αβ do not have a

single scale. To characterize precisely how the infinite density
of states is defeated by exponential localization in the matrix
elements, we use the fidelity susceptibility in the frequency
lattice. The typical value of this quantity is

χ⋆ =

⎛

⎜

⎝
lim
�→0

⎡

⎢

⎣

1

2�

∑

|��ℓ
βα |<�

|Ṽ �ℓ
βα|

⎤

⎥

⎦

⎞

⎟

⎠

2

, (37)

where the sum is over states in a narrow quasienergy window
�, and the square brackets indicate an ensemble average,
which we discuss further below. This quantity is well-defined
in the frequency lattice.

In a static system,
√

χ⋆ = ρ[|V |] reduces to the familiar
product of the density of states ρ and the average (absolute
value of the) off-diagonal matrix element [81].

We note that Eq. (36) is consistent with investigations of
MBL in classical spin systems [64,65]. As a thermal clas-
sical spin presents a continuous spectrum to the adjacent
nonchaotic spins, it completely thermalizes a putatively MBL
chain, so that MBL is not stable in classical systems. In our
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case also, if ξ f grows faster than a power law, ν → ∞ (which
includes the case of the spectrum being continuous at finite
N), the critical localization length is zero.

In Sec. V A we state our model of a thermal inclusion in a
quasiperiodically driven putatively MBL chain. Then in Sec.
V B and Appendix C we derive Eq. (36).

A. Model

The Hilbert space (in the temporal domain) for the pu-
tatively MBL chain is H = HB ⊗ HMBL, where HB is the
N-dimensional Hilbert space of the thermal inclusion (the
“bath”), and HMBL is the Hilbert space of the MBL chain,
which we regard as a tensor product of two-level systems—the
l-bits.

The Hamiltonian on this system is H (t ) = H0(�θt ) +
Hint(�θt ), where H0(�θ ) consists of the uncoupled Hamiltonians
of the thermal region and the MBL chain, and Hint(�θ ) is the
interaction between them.

In the frequency lattice, we have a quasienergy operator
K̃ = K̃0 + K̃int, with

K̃0 = −
∑

�n
�� · �n|�n〉〈�n| + K̃B ⊗ 1MBL + 1B ⊗ K̃MBL, (38)

where K̃a for a ∈ {B, MBL, int} is a translationally invariant
term, and

K̃int =
∑

j

J j (Ṽ τ̃+
j + Ṽ †τ̃−

j ). (39)

Here, Ṽ is a not-necessarily-Hermitian operator acting on the
bath with O(1) operator norm, and τ̃±

j are the raising and
lowering operators for the l-bit τ̃ z

j . Localization of the l-bits
implies that the coefficients J j = O(e−| j|/ξs ) decay exponen-
tially in space. We have suppressed a dependence on j from
the terms Ṽ .

The assumed form of the interaction (39) is incomplete. We
have neglected products of l-bit operators, and we have not
included a term like J ′

jṼ
′τ̃ z

j , which does not flip l-bits. These
additional terms do not change the results of our analysis [81].

B. Thermal avalanches

1. The fidelity susceptibility in the frequency lattice

We consider l-bits two at a time—one on each side of the
thermal region, which we position at j = 0 (Fig. 1).

To quantify when the l-bits at ± j are thermalized by the
thermal inclusion, we will use the fidelity susceptibility in the
frequency lattice. The fidelity susceptibility χ j quantifies the
strength of hybridization between uncoupled eigenstates that
differ in the ± jth l-bit when said l-bits are coupled to the bath.

Uncoupled frequency lattice quasienergy states of the ther-
mal region and the two l-bits take the form of a convolution
(Sec. II),

|φ̃α τ̃ j τ̃− j〉 = |φ̃α〉 ∗ |τ̃ j〉 ∗ |τ̃− j〉, (40)

with quasienergy

ǫα + h jτ j + h− jτ− j, (41)

where τ j, τ− j = ±1, and α indexes the Hilbert space of the
thermal region. (We have neglected products of l-bit operators
in K̃MBL by assuming this form of the quasienergy.)

The fidelity susceptibility can be regarded as the norm of
the correction to this state in the first order of perturbation
theory, regarding the coupling K̃int as a perturbation,

χα =
∑

β,�ℓ,h

∣

∣

∣

∣

∣

Ṽ
�ℓ

βα

ωαβ + �ℓ · �� − 2h

∣

∣

∣

∣

∣

2

. (42)

Here, the sum excludes (β, �ℓ) = (α, 0), but it includes β = α

when �ℓ 
= 0. The matrix elements Ṽ
�ℓ

βα = 〈φ̃ �ℓ
β |Ṽ |φ̃α〉 will be

taken to be of the form proposed in (29). The denominator

�
�ℓ
βα = ωαβ + �ℓ · �� − 2h (43)

is the quasienergy difference between the states |φ̃α{τ̃ }〉 and
|φ̃ �ℓ

β{τ̃ ′})〉, so that

h ∈ {2h jτ j, 2h− jτ− j} (44)

depending on whether l-bit j or l-bit − j is flipped by K̃int (at
the first order of perturbation theory, only one can be flipped).

In the static case, the distribution of χα within a particular
random matrix ensemble for V can be calculated in many
cases [81]. In all cases, it has a broad distribution with a
power-law tail. As we show in Appendix C, this is also true in
the frequency lattice.

That is, χα has a distribution function with asymptotic
behavior,

fFS(χ )
χ→∞∼

√

χ⋆, j

χ3
, (45)

where the typical scale of the distribution is given by

√
χ⋆, j = lim

�→0

⎡

⎢

⎣

1

2�

∑

|��ℓ
βα |<�

|Ṽ �ℓ
βα|

⎤

⎥

⎦
. (46)

Here, the sum is over all uncoupled quasienergy states
|φ̃ �ℓ

β{τ̃ ′})〉 such that |��ℓ
βα| < �, and the square brackets indi-

cate an average over the distribution of matrix elements |Ṽ �ℓ
βα|

[determined by the distribution of the random numbers R
βα,�ℓ

of (29)] and of the level spacings |��ℓ
βα|. We have not been

specific about the distributions for the matrix element or level
spacing for two reasons: first,

√
χ⋆, j is well-defined given

only very weak conditions on the distributions (the probability
density that �

�ℓ
βα = 0 is finite, and the averages of |Ṽ �ℓ

βα| are

summable over �ℓ); and second, we will only be concerned
with the scaling properties of

√
χ⋆, j . To calculate the actual

value of
√

χ⋆, j , we would need these distributions, but they are
unnecessary to deduce the fidelity susceptibility’s asymptotic
behavior with j.

The dimensionless quantity J j
√

χ⋆, j formalizes the notion
of the product of a matrix element and a density of states in
the frequency lattice.
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2. Growth of the thermal region

If the spin chain is thermal, the dimensionless combination
J j

√
χ j remains large as j → ∞—all uncoupled quasienergy

states hybridize strongly to form highly entangled thermal
eigenstates. In an MBL system, J j

√
χ j decreases to zero, in-

dicating that l-bits distant from the thermal inclusion are only
slightly dressed by their coupling to said inclusion. Our aim is
to show that the latter scenario of J j

√
χ j → 0 is possible. In

this stage, we mimic the arguments of Ref. [69].
We make the pessimistic assumption that all l-bits up to

and including ±| j − 1| are perfectly absorbed by the thermal
region. Then the system consisting of the thermal region and
the first 2( j − 1) l-bits is still described by the random matrix
ansatz (29), but with a larger Hilbert space dimension N j−1 =
N22( j−1). This in turn generically affects the frequency lattice
localization length ξ f = ξ f (N j−1), and subsequently affects

the spectral functions | f �ℓ| = O(e−|�ℓ|/ξ f (N j−1 )).
Considering some fixed quasienergy window �, there are

on the order of

Neff, j−1 = N j−1ξ f (N j−1)D−1 (47)

terms in the sum that contribute to
√

χ⋆, j before the expo-
nential suppression from | f �ℓ| makes further terms negligible.
(Recall from Sec. IV that the relevant frequency lattice volume
is ξD−1

f
, and not ξD

f , because the extent of the quasienergy state

in the direction parallel to �� scales weakly, i.e., slower than a
power law, with N .)

Meanwhile, each of the terms within the localization length
scales as N

−1/2
eff, j−1 in order to fix the normalization of V . Thus,

we see that
√

χ⋆, j = O(
√

Neff, j−1). (48)

By assumption of MBL, we have that J j = O(e−| j|/ξs ), so
for the dimensionless quantity J j

√
χ⋆, j , we have

ln(J j
√

χ⋆, j ) = O

(

− j

ξs

+ j ln 2 + D − 1

2
ln

ξ f (N22 j )

ξ f (N )

)

.

(49)
The thermal avalanche will eventually stop if

lim
j→∞

[

− j

ξs

+ j ln 2 + D − 1

2
ln

ξ f (N22 j )

ξ f (N )

]

= −∞. (50)

This requires that the frequency lattice localization length
grows at most as a power law in the Hilbert space dimension
of the bath,

ξ f (N ) = O(Nν ), (51)

that is, at most exponentially in the number of thermal spins.
Assuming (51), there is a critical spatial localization length

ξs,c below which MBL is stable, just as in the case of static
MBL. In the quasiperiodically driven case, this is given by

ξ−1
s,c = [1 + ν(D − 1)] ln 2. (52)

For spatial localization lengths below this value, ξs < ξs,c, the
susceptibility J j

√
χ⋆, j decreases exponentially with j. Oth-

erwise, the thermal region grows to encompass the entire
system.

We note that the result (52) has Floquet MBL as a special
case with D = 1. In that case, the critical localization length

is the same as the static case, (ln 2)−1, as is already well
known from other arguments based on the Floquet Hamilto-
nian [57,68,82].

We also observe that the quasiperiodically driven MBL
phase is less stable than the static phase in the sense that
the critical localization length is strictly smaller than that in
the static case. This is because the presence of the frequency
lattice allows the effective Hilbert space dimension Neff to
grow faster than 22 j .

VI. SYNTHETIC LOCALIZATION FOR TWO-TONE

DRIVING

In this section, we show that (51) generically holds for D =
2 with ν = 1, and thus that quasiperiodically driven MBL is
stable to thermal inclusions in the case of two-tone driving,
with a critical localization length

ξs,c = (2 ln 2)−1. (53)

The localization of quasienergy states for smooth two-tone
driving can be understood as Anderson localization in the
D − 1 = 1 dimensional surface perpendicular to �� in the fre-
quency lattice. That is, it is essentially a single-particle effect,
even in this many-body setting. Note that the localization is
“generic”—there are finely tuned examples in the literature of
smooth two-tone driving resulting in delocalized quasienergy
states [20,83].

For D = 2, Stark localization produces a quasi-one-
dimensional model of width roughly ξ‖ ≈ W/| ��| along which
quasienergy states could delocalize, where W is the bandwidth
of the static part of the Hamiltonian. We lump together sites
along the width of this strip to form new sites with increased
Hilbert space dimension N ′ ≈ NW/| ��| and bandwidth W ′ ≈
2W . In this coarse-grained model, localization is nearly com-
plete in the direction parallel to ��. We drop the primes on
N ′ and W ′, and we consider the one-dimensional model thus
formed below.

The sequence of sites included in the one-dimensional
model are those closest to the line with tangent �p = �2ê1 −
�1ê2 (Fig. 3). Label these sites by the index k such that
�nk = �nk−1 ± êik , where the sign of ±êik is determined by the
sign of �1 and �2, and ik ∈ {1, 2} is a sequence determined by
the number theoretic properties of �1/�2. For instance, when
�1/�2 = (1 +

√
5)/2 is the golden ratio, ik is the Fibonacci

word of the elements {1, 2} ([84,85], Chap. 2).
The quasienergy states are then approximated by the mid-

spectrum eigenstates of the one-dimensional single-particle
tight-binding model [86]

K1-dim =
∑

k,k′∈Z

(Hkk′ − ωkδkk′ )|k〉〈k′|, (54)

with N orbitals per site and where Hkk′ = H�nk−�nk′ still decays
exponentially in |k − k′|, but is not necessarily translationally
invariant in k. The on-site potential ωk = �nk · �� is defined up
to a constant by the recursion

ωk = ωk−1 + (−1)ik �ik , (55)

where we have chosen k to increase in the direction of �p =
�2ê1 − �1ê2.
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FIG. 3. Quasi-one-dimensional model. (a) Restricting the full
two-dimensional (coarse-grained) frequency lattice to those sites
closest to a given equipotential (gray line) with tangent �p produces
a one-dimensional model (54). The model has a quasiperiodic po-
tential and distinct hopping matrices on the horizontal and vertical
bonds. (b) The on-site potentials ωk = �nk · �� for sites �nk in the
one-dimensional model are quasiperiodic. They are obtained by sam-
pling a sawtooth function F (k) incommensurately to its period of
1 + �1/�2. The discontinuity in F favors localization in the one-
dimensional model.

The potentials ωk are quasiperiodic in the sense that they
may be obtained by sampling a periodic function F (k) at a rate
incommensurate to the period of F . Indeed, one can check that
taking

F (k + β ) = F (k) = �2k + C for k ∈ [0, β ) (56)

as piecewise linear with period β = 1 + �1/�2 [so that F is a
sawtooth, Fig. 3(b)] recovers F (k) − F (k − 1) = (−1)ik �ik .

The Hamiltonian (54) is an inhomogeneous one-
dimensional hopping problem. Such a model has
exponentially localized eigenstates if the on-site potential
is random and the hopping is quasilocal [50]. Although
the potentials ωk in (55) are not random, we argue that the
intuition from Anderson localization is correct in this case,
and that the localization of the model (54) is captured by the
associated Anderson model

Krandom =
∑

k,k′∈Z

(Hkk′ − ω′
kδkk′ )|k〉〈k′|, (57)

where ω′
k are independent random variables sampled from the

uniform distribution on [C,C + �1 + �2).

A. Localization in the Anderson model

The localization of the Anderson chain Krandom is con-
trolled by the ratio r of typical hopping amplitudes to the scale
of the disorder. By estimating r, we obtain a prediction for
the dependence of the localization length of the quasienergy
states ζ f [and hence that for the matrix elements, ξ f = O(ζ f )],
on the number of orbitals N .

We begin by estimating the effective scale of the dis-
order in the N-band model Eq. (57). A quasienergy state
with quasienergy ǫ0 in the uncoupled model, with Hkk′ set
to zero for k 
= k′, will hybridize with states with a similar
quasienergy. This justifies considering the delocalization of
this state as only involving the energy levels on each site
closest to ǫ0. The uncoupled energy levels of H0 = Hkk have
a typical density of states in the middle of the spectrum given
by ρ = N/W . If H0 is modeling a many-body Hamiltonian on
L ≫ 1 spins, then W = O(

√
L), and | ��| ≪ W at large L—the

on-site potential is small compared to the bandwidth. Then
we can approximate the density of states at quasienergy ǫ0

on every other site in the chain as also being ρ = N/W . The
effective disorder strength in the Anderson model (57) is thus
set by the typical level spacing between these states: W/N .

If the hopping matrices Hkk′ have typical scale ‖Hkk′‖ = J ,
where J depends on the driving protocol, then the typical
scale of the matrix element between the resonant levels is
J/

√
N . The factor of

√
N comes from an assumption that the

eigenstates of H0 present themselves in matrix elements of
Hkk′ as random vectors [74].

The hopping J/
√

N is asymptotically larger than the “dis-
order” W/N , so as N → ∞ the model (57) must enter the
low-disorder regime. Indeed,

r = J/
√

N

W/N
= (J/W )

√
N (58)

grows without bound with N .
In the large-r regime, the localization length scales with r2

[87], giving

ξ f = O(r2) = O

((

J

W

)2

N

)

. (59)

This provides ν = 1. Not only is ξ f finite for all finite N , it
grows only linearly with N (that is, as 2L in a spin chain).

B. Localization in the quasiperiodic model

While the inhomogeneous on-site potentials ωk in the
model (54) are not random, we find the associated Anderson
model (57) to be an effective description of the localization
properties of the system. This can be verified numerically, and
partially justified analytically.

The prediction of exponential localization with ν = 1 can
be checked numerically in a driven random matrix model.
Detailed descriptions of these numerics can be found in Ap-
pendix D, but we summarize some findings here. By taking a
commensurate approximation to ��, it is possible to calculate
quasienergy states (Appendix D 2). Figure 4 shows the inverse

participation ratio (IPR) (D5) of the quasienergy states in a
series of commensurate approximations indexed by Fibonacci
numbers q = Fn. The IPR is roughly IPR ∝ ξ−1

f
, so seeing

the IPR saturate as q → ∞ indicates the localization length
is finite in the incommensurate limit. Rescaling the IPR by N

and q by 1/N produces a good data collapse, consistent with
ν = 1.

The one-dimensional model (54) can also be simulated
directly (Appendix D 3). This produces a more quantitative
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FIG. 4. IPR in commensurate approximations. (a) Inverse par-
ticipation ratio averaged over both eigenstate index α and Nsamp ≈
1200/N samples in the random matrix model of Appendix D 1.
Successive commensurate approximations are indexed by Fibonacci
numbers q = Fn. For small q, the IPR decreases as 1/q (dashed
line), but for large q the IPR saturates, indicating a finite localization
length in the incommensurate limit. (b) Scaling by N leads to a good
data collapse, consistent with ν = 1. Parameters for model (D1):
J/W = 0.2, �1/W = 0.6, q ∈ {34, . . . , 987}, with Nsamp ≈ 1200/N

random matrix samples.

prediction that

ν = 1.001 ± 0.009, (60)

which is also consistent with ν = 1.
The model (54) evades the mechanism of delocalization in

many well-known quasiperiodic models, such as the Aubry-
André model [88,89]. Determining the localization properties
of quasiperiodic tight-binding models, such as Eq. (54), is
assisted by the existence of a duality transformation of these
models [88–94]. For simplicity, suppose the hopping matri-
ces Hkk′ = Hk−k′ are translationally invariant (which amounts
to an isotropy condition in the two-dimensional frequency
lattice: Hê1 = Hê2 , etc.). Then the dual model is related to
Eq. (54) by Fourier transform. Indeed, if |φ̃〉 = ∑

k |φk〉|k〉 is
an eigenstate of K1-dim, then substituting the Fourier transform

|φk〉 = C
∑

x

|φx〉e−2π ixk/β (61)

(where C is a normalization constant) into the eigenvalue
equation K1-dim|φ̃〉 = ǫ|φ̃〉 reveals that

∑

x |φx〉|x〉 is an eigen-
state of

Kdual
1-dim =

∑

x,x′∈Z

[H (x)δxx′ − Fx−x′ ]|x〉〈x′|, (62)

where

Hk = C
∑

x

H (x)e2π ixk/β , (63)

F (k) = C
∑

x

Fxe−2π ixk/β . (64)

If an eigenstate |φ̃〉 of Kdual
1-dim is localized, then the dual

eigenstate of K1-dim must be delocalized [94]. In the self-dual
Aubry-André model [88,89], this guarantees the existence of
a delocalized phase. Similarly, whenever the on-site potential
F (k) is smooth and the hopping amplitudes Hk−k′ decay ex-
ponentially, the dual model also has a smooth potential and
exponentially decaying hopping amplitudes. At least one of
the two models related by duality must be delocalized, and
as both models have a similar structure, it is not possible for
quasiperiodic models with smooth potentials to generically be
localized.

In contrast, we observe that the on-site potential F (k) in
Eq. (56) is not smooth as a function of k—it has a finite
jump—and so the hops Fx in the dual model are power-law
decaying. In the absence of other special structure, we expect
that the long-range model Kdual

1-dim will be delocalized, which
allows the quasilocal hopping model K1-dim to generically be
localized.

While it is possible for both K1-dim and Kdual
1-dim to be de-

localized, once the inhomogeneous model K1-dim evades any
condition preventing it from localizing, the intuition from An-
derson localization is that it will do so. Our numerical results
provide a strong case for generic localization with ν = 1.

VII. ABSENCE OF SYNTHETIC LOCALIZATION WITH

THREE OR MORE TONES

Following Sec. VI, Stark localization produces a coarse-
grained single-particle hopping problem in D − 1 dimensions.
Just as in the D = 2 case, said hopping model has a large
number of orbitals N , an inhomogeneous on-site potential
ω�k = �� · �n�k , and exponentially decaying (but no longer nec-
essarily translationally invariant) hopping matrices H�k�k′ .

A disordered (D − 1)-dimensional Anderson model with
spin-orbit coupling is not always localized for D � 3 [95–97].
There is typically a nonzero hopping amplitude to disorder
strength ratio rc above which eigenstates become delocalized.
As argued in Sec. VI, the relevant ratio in our case is r =
(J/W )

√
N (58).

The ratio r grows with N , so for sufficiently large N > Nc,
the ratio r exceeds the critical value rc, and the localization
length ξ f becomes infinite. That is, a large enough, but finite,
thermal inclusion acquires a genuinely continuous spectrum
in the presence of three-tone (or more) driving. This feature
destabilizes randomly disordered MBL—it is known from, for
instance, Ref. [64] that a finite thermal region that presents a
continuous spectrum to the rest of the chain can completely
thermalize the system given sufficient time.

That ξ f can diverge for a finite thermal inclusion is sup-
ported by recent numerical evidence. References [41,43]
identify a phase believed to be delocalized in the frequency
lattice for a three-tone-driven qubit (N = 2). Larger N only
increases the likelihood to delocalize.
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We conclude that quasiperiodically driven MBL with ran-
dom disorder can only be stable for two-tone-driving. For
D � 3 tones, sufficiently large thermal regions will destabilize
a putatively MBL chain.

VIII. MANY-BODY RESONANCES

Another mechanism for destroying MBL is the prolifera-
tion of many-body resonances—if, for all L sufficiently large,
a fixed nonzero perturbation to a putatively MBL chain causes
a given quasienergy state to hybridize with exponentially
many other quasienergy states in L, then MBL is not a stable
dynamical phase.

In static systems, demanding perturbative stability of MBL
implies that the localization length must be below a crit-
ical value ξ ′

s,c. This critical value is bounded from below
by (ln 2)−1, the critical localization length predicted by the
avalanche argument. The bound is saturated when the matrix
elements of the perturbation between l-bit states that differ in
τ̃ z
±r are sufficiently narrowly distributed. In physical chains,

however, the matrix elements at each range r are broadly
distributed (approximately log-normally) [98], so that there
is a window of disorder strengths accessible at small sizes in
which localization in the chain is stable to the formation of
many-body resonances, but not to thermal avalanches [68,99].

For D � 2 tones, we show that the critical localization
length for perturbative stability is still bounded by (ln 2)−1,
which is now strictly larger than the localization length pro-
vided by the avalanche argument. Thus, we expect that the
regime wherein avalanches, and not many-body resonances,
control the (in)stability of randomly disordered MBL (ξs,c <

ξs < ξ ′
s,c) is broader in quasiperiodically driven systems than

in static and periodically driven systems.
The reason the bound on ξ ′

s,c is unaltered from the static
case is because the frequency lattice only provides a polyno-
mial enhancement to the effective density of states introduced
in Sec. V. Unlike in the case of a thermal avalanche, there
is no growing thermal bubble that can expand exponentially
in the frequency lattice as it absorbs more spins. Without the
required exponential scaling, the effective density of states
cannot compete with the decaying matrix elements. The re-
mainder of this section is essentially a formal verification of
this intuition.

The frequency lattice fidelity susceptibility (Sec. V B 1) de-
tects if a perturbation JV (�θ ) to a putatively MBL Hamiltonian
H (�θ ) causes large changes to the unperturbed quasienergy
states. Strong localization of l-bits places constraints on the
fidelity susceptibility, and ensures perturbative stability. This
calculation generalizes methods used in Ref. [68] in the static
and Floquet contexts.

We assume that the Hermitian operator V (�θ ) is quasilocal
in space centered at j = 0 (say), and smooth in �θ . To extract
the spatial structure of Ṽ , it is convenient to decompose it as

Ṽ =
∑

r

Ṽr, (65)

where [Ṽr, τ̃
z
j ] = 0 for | j| > r, and [Ṽr, τ̃

z
±r] 
= 0. In other

words, Ṽr acts trivially on l-bits that are further than a range r

from j = 0, and nontrivially on those exactly at range r. We

define a scaled Frobenius norm for the temporal operator for
Ṽr ,

‖Vr‖ =
√

1

2L

∫

dDθ

(2π )D
Tr[Vr (�θ )2], (66)

where L is the system size. Quasilocality of Ṽ in real space is
expressed as

ln ‖Vr‖ ∼ − r

ξs

. (67)

Quasilocality in the synthetic dimensions implies exponential
decay of the matrix elements Ṽ

�ℓ
βα with | �ℓ|, with localization

length ξ f , as usual.
We use the assumed exponential decay of ‖Vr‖ with r

to deduce the scaling of the matrix elements appearing in
the calculation of the fidelity susceptibility χ⋆. In terms of
the matrix elements between quasienergy states |φ̃�n

α〉 = |{τ̃ }�n〉,
specified by their l-bit configurations and a translation �n, the
norm is

‖Vr‖2 = 1

2L

∑

α,β,�ℓ
|(Ṽr )�ℓ

βα|2. (68)

To estimate χ⋆, we find the average squared matrix ele-
ment, summed over �ℓ:

v(r)2 =

⎡

⎣

∑

�ℓ
|(Ṽr )�ℓ

βα|2
⎤

⎦, (69)

where square brackets indicate an average over those α and
β such that the matrix element is nonzero. Comparing this
to Eqs. (66) and (68), and noting that there are Nr = O(22r )
states |φ̃β〉 for which the matrix element is nonzero with a
given α, we have

v(r) = O(e−r/ξs )√
Nr

. (70)

By summing over the frequency lattice before analyzing
the scaling of χ⋆, the problem of calculating ξ ′

s,c is essentially
reduced to the static case. The sum was possible due to the
exponential decay of |(Ṽr )�ℓ

βα|2 with | �ℓ|, and the fact that there
are only polynomially many frequency lattice sites with a
given | �ℓ|.

Summarizing the remaining steps in the calculation [68]:
one organizes the sum for χ⋆ in terms of operators of increas-
ing range Ṽr , which gives

√
χ⋆ �

L
∑

r=1

⎛

⎜

⎝
lim
�→0

⎡

⎢

⎣

1

2�

∑

|��ℓ
βα |<�

|(Ṽr )�ℓ
βα|

⎤

⎥

⎦

⎞

⎟

⎠
, (71)

where we used the triangle inequality. Equation (68) places a
restriction on the sum of squares of the matrix elements. Given
this restriction, the sum of the absolute values appearing in√

χ⋆ is maximal when all the matrix elements are equal. Thus,
we obtain an upper bound for

√
χ⋆ by replacing the sum of

matrix elements for each r by the root-mean-square value
v(r) = O(e−r/ξs 2−r ) times the number of terms Nr = O(22r ).
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The � → 0 limit introduces an unimportant O(1) factor.
Thus, we have

√
χ⋆ � O

(

L
∑

r=1

2re−r/ξs

)

. (72)

Demanding that
√

χ⋆ converges as L → ∞ for ξs < ξ ′
s,c

implies

ξ ′
s,c � (ln 2)−1. (73)

If this condition is met, then by choosing J ≪ 1/
√

χ⋆ we
have that the dimensionless quantity J

√
χ⋆ ≪ 1, and distant

quasienergy states typically do not strongly hybridize when
the perturbation JV (�θ ) is added to the Hamiltonian. On the
other hand, if the sum for

√
χ⋆ diverges, then no such J exists

in the thermodynamic limit, and the MBL phenomenology is
unstable to an arbitrarily small perturbation.

We conclude that MBL phenomenology is stable to many-
body resonances for any number of tones D whenever the
spatial localization length is below a critical value ξ ′

s,c �

(ln 2)−1, the bound for which is independent of D. We reiterate
that Eq. (73) is not the critical localization length for the
stability of randomly disordered MBL in the thermodynamic
limit. Avalanches are the dominant instability for MBL, and
this is particularly stark in quasiperiodically driven MBL for
D � 3.

IX. DISCUSSION

We have shown that two-tone-driven randomly disordered
MBL is stable to the occurrence of a large thermal region,
and to the addition of a small perturbation to the Hamiltonian.
Stability requires that the spatial localization length is below a
critical value ξs,c = (2 ln 2)−1. With three or more tones, how-
ever, putative MBL is always unstable to thermal avalanches.

An immediate consequence of our result is that the two-
tone-driven topological orders identified in Refs. [38,41–43]
have infinite lifetime with sufficient disorder. That is, they
characterize genuine dynamical phases of matter.

We have not proven the existence of quasiperiodically
driven MBL. Rather, we have checked for the stability of puta-
tive MBL to two particular mechanisms of thermalization that
are believed to be the dominant ones in the thermodynamic
limit. There has been a recent debate about the existence
of MBL even in static systems [100–102]. Quasiperiodically
driven MBL is not immune to that debate—all objections to
static MBL apply just as much to quasiperiodically driven
MBL.

Our results also clarify how quasiperiodic driving enhances
the effective Hilbert space dimension of a finite system. This
feature could be used to increase the thermalizing ability of
small quantum systems, and thus aid in experimental tests of
thermalization in nearly isolated quantum systems [63,103].

While we have kept our discussion to smooth driving, our
results may hold for continuous and piecewise smooth but
nonanalytic drives. Nonanalyticities result in power-law hops
in the frequency lattice, Ṽ

�ℓ
αβ = O(| �ℓ|−p). Our conditions on

the drive ensure p > 1, so that the analogous Anderson model

in the frequency lattice is localized for D = 2 [50], and χ⋆, j=0

is finite. Stability to avalanches additionally requires that χ⋆, j

grows at most exponentially in j. We expect this is so, but we
leave this calculation to future work.

Resonance counting in the frequency lattice suggests that
discontinuous two-tone drives with p < 1 lead to delocaliza-
tion [50]. Indeed, this has been shown for specific drives in
a two-level system [17]. As local regions have continuous
spectra, MBL is not stable here, explaining the results in
Ref. [104]. The marginal p = 1 case is an interesting topic
for future research [105].

With D � 2, we expect that the finite-size regime in which
a localized chain is stable to many-body resonances but not to
thermal avalanches is broader than in static and periodically
driven systems [99]. Quasiperiodic driving may thus provide
a good experimental setting for the controlled exploration of
different instabilities of randomly disordered MBL [59,61–
63].

If putative MBL is due to quasiperiodic spatial modulation
(QPMBL), rather than random disorder, then regions of low
disorder do not occur [106,107]. Avalanches can only occur
for ξs > ξs,c if there is some other mechanism to generate
large thermal subsystems. This leaves open the possibility that
quasiperiodically driven QPMBL, and the associated topolog-
ical dynamical phases [38,43], are stable with any number of
tones D.

Our discussion of the critical localization length ξs,c largely
follows Ref. [69]. Reference [69] identifies a bare localization
length that is subject to a renormalization group (RG) scaling
[108–111]. The value ξs,c = (2 ln 2)−1 should also be inter-
preted in this way. We leave a more systematic formulation of
RG in quasiperiodically driven MBL to future work.

Local integrals of motion could be explicitly constructed
on the frequency lattice (Sec. III) by adapting existing analyti-
cal and numerical techniques for static systems [60,112–116].
We suspect the frequency lattice also provides a formalism to
generalize Imbrie’s proof of static MBL [60].

Our quasiperiodically driven ETH-style ansatz (29) is ap-
propriate for systems with pure-point spectra: finite systems
with quasienergy states localized in the synthetic dimen-
sions of the frequency lattice. With three or more tones, the
quasienergy states may be delocalized. The ansatz (29) can be
adapted to this case by taking commensurate approximations
to ��. This collapses the frequency lattice into a cylinder with
a finite circumference [30,43,83]. Quasienergy states are lo-
calized parallel to the length of the cylinder by the electric
field ��, but are delocalized around the circumference. The
appropriate ETH-style ansatz then becomes

Ṽ
�ℓ

αβ = V̄�ℓδαβ +
f (��ℓ

αβ )
√

Nμ
R

αβ,�ℓ, (74)

where symbols are defined as in Eq. (29), and μ is the (D −
1)-dimensional volume of the cylinder section perpendicular
to ��. Note that the spectral function f does not depend on
�ℓ, as the states are delocalized perpendicular to the electric
field. We conjecture Eq. (74) to be the statistical description of
three-or-more-tone thermalizing quantum systems with con-
tinuous spectra in the incommensurate limit.
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APPENDIX A: EQUIVALENCE OF DEFINITIONS OF

QUASIPERIODICALLY DRIVEN MBL

There has already been a definition of quasiperiodically
driven MBL presented in the literature (Ref. [38], Sec. II D).
The definition proposed in Sec. III is equivalent to that in
Ref. [38].

Reference [38] defines quasiperiodically driven MBL by
first supposing a decomposition of the evolution operator of
the form

U (t, 0) = P(�θt )e
−itHF P(�θ0)†, (A1)

where P(�θ ) is a quasilocal unitary. This is equivalent to our
requirement of the existence of a complete set of smooth
quasienergy states, as may be seen by taking

P(�θ ) =
∑

α

|φα (�θ )〉〈α|, HF =
∑

α

ǫα|α〉〈α|, (A2)

where some locality structure must be imposed on the basis
|α〉 to make sense of P being quasilocal. For instance, the basis
could be taken to be the product basis of uncoupled spins.

Given this decomposition exists, Ref. [38] defines a
quasiperiodically driven system to be MBL if there is a com-
plete set of quasilocal integrals of motion for HF , which we
can express in terms of the basis |α〉 as

τ z′
j =

∑

α

τ z
jα|α〉〈α|. (A3)

The relation between this τ z′
j and our τ z

j (�θ ) is given by what
Ref. [38] calls “reverse (Heisenberg) evolution,”

τ z
j (�θt ) = P(�θt )τ

z′
j P(�θt )

†. (A4)

Thus, the quasilocality of one of these objects implies the
quasilocality of the other, and the two definitions of quasiperi-
odically driven MBL are equivalent.

APPENDIX B: NUMERICAL EVIDENCE FOR THE

THERMAL ANSATZ

In this Appendix, we verify that the ansatz (29) is effective
for our purposes by numerically computing the matrix ele-
ments Ṽ

�ℓ
αβ for α 
= β and D = 2 and checking that they obey

the statistics we predict in Eq. (29).

1. Model

We first define a model that we work with numerically.
In principle, this should be a nonintegrable many-body quan-
tum system driven quasiperiodically. However, it has already
been established numerically that the expectation values of
operators in eigenstates of static thermalizing Hamiltonians
are well-described by random matrix theory, through ETH
[70–74]. The content of our ansatz that requires new analysis
is the frequency lattice structure.

To separate the frequency lattice structure from a test of
ETH, we choose a model that already consists of random
matrices, and we add quasiperiodic driving. The result is a
Gaussian unitary ensemble (GUE) random Hamiltonian with
nearest-neighbor hops on the frequency lattice. That is,

H (�θ ) = H0 + J (H1e−iθ1 + H2e−iθ2 + H.c.), (B1)

where H0 is a GUE random matrix with root-mean-square
(rms) energy

√

1

N
Tr[H†

0 H0] = W + o(1), (B2)

J sets the driving amplitude (and is a hopping amplitude in
the frequency lattice), and H1 and H2 are complex Gaussian
random matrices with unit rms energy. We take θ j = � jt , with
�1/�2 = (1 +

√
5)/2 given by the golden ratio.

We restrict our attention to the case of D = 2 tones, which
is the most numerically tractable. As the ansatz (29) as-
sumes no structure beyond that imposed by the assumption
of localization and normalization, we expect that if the RMT
phenomenology holds for D = 2 it will also hold for more
tones, provided the larger D models are localized in the fre-
quency lattice.

We take V in Eq. (29) to be a static GUE random operator
with unit rms energy.

2. Statistics of matrix elements in commensurate

approximations

Numerically extracting the quasienergy states |φα (�θ )〉 from
the quasiperiodically driven model (B1) can be challenging. It
usually requires solving the model on the frequency lattice,
which increases the size of the problem substantially. It is
much easier instead to make a commensurate approximation
to the incommensurate frequency vector �� and solve the
corresponding Floquet problem in the time domain. If the
incommensurate model is localized in the frequency lattice,
which is a requirement of our ansatz, then the incommensurate
limit may be safely described by a limit of commensurate
approximations [117].

We consider commensurate approximations

��n = �1ê1 + �1
pn

qn

ê2, (B3)

where pn = Fn−1 and qn = Fn are consecutive Fibonacci num-
bers. As n → ∞, we have that ��n → ��.

Each commensurate approximation is periodic with period
Tn = qn

2π
�1

. Thus, we can find the quasienergy states at �θ =
0 and their corresponding quasienergies by diagonalizing the
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FIG. 5. Frequency lattice quasienergy state. Quasienergy states
are well described by a sum |φ̃α〉 = ∑

�n |φα�n〉|�n〉, where |φα�n〉 are
random vectors. The norm |φα�n| of the components decreases expo-
nentially in the direction perpendicular to ��, with localization length
ζ f . They decrease faster than exponentially parallel to ��. Parameters:
N = 20, J/W = 0.1, �1/W = 0.6, and q = 233.

Floquet operator

U (Tn, 0) = T exp

(

− i

∫ Tn

0
dt H (�θt )

)

=
∑

α

e−iǫαTn |φα (0)〉〈φα (0)|, (B4)

where T denotes time ordering. The quasienergy states at any
other �θt can then be calculated as

|φα (�θt )〉 = eiǫαtU (t, 0)|φα (0)〉. (B5)

We use a second-order Suzuki-Trotter approximation [118]
to compute U (Tn, 0), and subsequently calculate |φα (�θ )〉 on
an Fn−1 × Fn grid in the �θ torus. We fix a gauge for this state
by requiring that the highest weight component in the corre-
sponding frequency lattice state |φ̃α〉 = ∑

�n |φα�n〉|�n〉 be |φα0〉.
In this gauge, if the quasienergy states are well-localized, we
may regard our chosen representative states as being centered
at the origin in the frequency lattice (Fig. 5).

With |φα (�θ )〉 found, we can compute the matrix elements
Ṽ

�ℓ
αβ as the two-dimensional Fourier coefficients of

Vαβ (�θ ) = 〈φα (�θ )|V (�θ )|φβ (�θ )〉. (B6)

Using this method, we can directly compute the matrix
elements Ṽ

�ℓ
αβ in small commensurate approximations. We ad-

dress the behavior of the matrix elements for �ℓ perpendicular
to and parallel to the electric field �� separately. We begin with
�ℓ ⊥ �� (Fig. 6).

We have assumed that the standard deviation �Ṽ�ℓ of the
matrix elements with fixed �ℓ should decrease exponentially
for large |�ℓ| in this direction (the mean vanishes). Specifically,
we predict for the off-diagonal matrix elements that

�Ṽ�ℓ ∼ ‖ f �ℓ‖√
Neff

, (B7)

where

‖ f �ℓ‖2 =
∫

dω | f �ℓ(ω)|2 (B8)

FIG. 6. Matrix elements perpendicular to ��. We examine the
statistics of matrix elements Ṽ

�ℓ
αβ for | �ℓ · ��n| < W (almost perpen-

dicular to the electric field). (a) Equation (29) conjectures that the
matrix elements should have a standard deviation that decreases
exponentially in | �ℓ|. This feature is visible for small N . Inset: The
standard deviation of the �ℓ = 0 matrix elements decreases faster than
N−1/2 (red dashed), as we predict. Section VI predicts a scaling
of N−1 (black dashed), which is a better fit for large N , though
Appendix D provides much better evidence for this scaling. (b) The
ratio Ŵ�ℓ should be π/2 (red line) for a Gaussian distribution of
matrix elements. We see this is not the case for large | �ℓ|. Parameters:
J/W = 0.1, �1/W = 0.6, q = 233, with Nsamp ≈ 1200/N random
matrix samples.

decays exponentially. This exponential decay is visible for
small N in Fig. 6(a), but we are unable to reach commensurate
approximations that allow us to see the decay clearly for
larger N .

We can also observe that �Ṽ0 decays faster than N−1/2

for fixed �ℓ = 0. This is also predicted by our ansatz, as the
localization length ξ f may grow with N , so that Neff grows
faster than N . Indeed, Sec. VI gives that ξ f = O(N ) for D = 2,
so that �Ṽ0 = O(N−1).

We did not require that the matrix elements be normally
distributed, as is often done in ETH. Indeed, in the tails of a
localized wave function, the wave-function amplitudes, and
hence matrix elements, should be log-normally distributed
[119]. We can check if the matrix elements we compute
numerically are normally distributed by computing the ratio
[120]

Ŵ�ℓ =
〈∣

∣V
�ℓ

αβ

∣

∣

2〉

〈∣

∣V
�ℓ

αβ

∣

∣

〉2 , (B9)

where angular brackets indicate an average over off-diagonal
elements V

�ℓ
αβ for fixed �ℓ, and within a window of the

quasienergy difference �
�ℓ
αβ . Ŵ�ℓ is π/2 if the matrix ele-

ments are Gaussian-distributed for fixed �ℓ, within a small
quasienergy window.
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FIG. 7. Matrix elements parallel to ��. We examine the statistics
of matrix elements Ṽ

�ℓ
αβ for | �ℓ × ��n| < | ��n| (almost parallel to the

electric field). Equation (32) predicts that the standard deviation of
the matrix elements should decay much faster as compared to the
perpendicular direction. This is reflected in our numerics, where the
decay is faster than exponential, consistent with ln �Ṽ�ℓ ∼ −ω�ℓ ln ω�ℓ
(where ω�ℓ = �ℓ · �̂) for large ω�ℓ. Furthermore, the localization length
of the matrix elements does not grow with N—increasing N only de-
creases the matrix elements. Parameters: J/W = 0.1, �1/W = 0.6,
q = 233, with Nsamp ≈ 1200/N random matrix samples.

We see in Fig. 6(b) that most matrix elements are not
Gaussian-distributed. For small deviations from π/2, this may
be because the windows we have used for �

�ℓ
αβ are too large.

Taking smaller windows while still maintaining good statistics
requires larger N . The large deviations visible at small N

and large |�ℓ| cannot be explained in this way; they represent
departures from Gaussianity.

Our ansatz predicts qualitatively different behavior of the
matrix elements with |�ℓ| when �ℓ is parallel to the electric
field ��. These predictions are verified in (Fig. 7). Namely, the
standard deviation �Ṽ�ℓ = O(e−ω�ℓ ln ω�ℓ ) decreases faster than
exponentially for ω�ℓ ≫ ξ‖, and ξ‖ does not depend on N . [For
a typical spin system with high-frequency quasiperiodic driv-
ing, ξ‖ should depend weakly on N , because the bandwidth of
the static part of the Hamiltonian grows. Our model (B1) has
a fixed bandwidth, so ξ‖ should not depend on N .]

Indeed, faster-than-exponential decay of �Ṽ�ℓ is visible in
Fig. 7. Furthermore, increasing N only decreases �Ṽ�ℓ (due to
the factor N

−1/2
eff ), without extending the localization length ξ‖.

The features of the ansatz listed in this Appendix are those
most relevant for this paper. We have verified that they are ef-
fective descriptions of the frequency lattice structure of matrix
elements in the localized (in the synthetic dimensions) regime.

APPENDIX C: TYPICAL FREQUENCY LATTICE

FIDELITY SUSCEPTIBILITY

In this Appendix, we prove Eq. (46). Restated here, we
show that the fidelity susceptibilities of frequency lattice
eigenstates are distributed according to a power law

fFS(χ ) ∼
√

χ⋆, j

χ3
(C1)

where the typical scale is

√
χ⋆, j = lim

�→0

⎡

⎢

⎣

1

2�

∑

|��ℓ
βα |<�

|Ṽ �ℓ
βα|

⎤

⎥

⎦
. (C2)

We split the sum in (42) into a sum for each frequency
lattice site, χα = ∑

�ℓ χ
α,�ℓ, where

χ
α,�ℓ =

∑

β,h

∣

∣

∣

∣

∣

Ṽ
�ℓ

βα

ωβα + �ℓ · �� − 2h

∣

∣

∣

∣

∣

2

. (C3)

Due to the presence of small denominators �
�ℓ
βα = |ωβα +

�ℓ · �� − 2h|, this sum tends to be dominated by its largest
element. Then we can write

χ
α,�ℓ ≈

∣

∣Ṽ
�ℓ

βα

∣

∣

2

∣

∣�
�ℓ
βα

∣

∣

2 , (C4)

where β and h are chosen to minimize |��ℓ
βα|2. The distribution

of fidelity susceptibilities fFS(χ |ωβα, �ℓ) can then be calculated
as [81]

fFS =
∫

dV

∫

d�δ

(

χ − |V |2
|�|2

)

fME(V ) fLS(�) (C5)

= 1

2χ3/2

∫

dV |V | fME(V ) fLS( V√
χ

), (C6)

where fME and fLS are distributions for the matrix element and
minimum level spacing �

�ℓ
βα , respectively. Both depend on �ℓ.

This calculation shows that fFS ∼
√

χ
⋆,�ℓ/χ

3 has a power-law
dependence on χ . The scale χ

⋆,�ℓ may be extracted as

χ
⋆,�ℓ = lim

χ→∞
χ3 f 2

FS (C7)

=
(

lim
�→0

1

2

∫

dV |V | fME(V ) fLS(�)

)2

. (C8)

Schematically, this may be written χ
⋆,�ℓ = [|V �ℓ|]2ρ2

�ℓ , where

[|V �ℓ|] is an average of the absolute value of the matrix ele-
ments Ṽ

�ℓ
βα as the random variables R

βα,�ℓ from Eq. (29) are
varied. The quantity ρ�ℓ is a density of states at the relevant
quasienergy, restricted to the site �ℓ. However, it will be more
useful later to instead express √

χ
⋆,�ℓ explicitly as

√

χ
⋆,�ℓ = lim

�→0

⎡

⎢

⎣

1

2�

∑

|��ℓ
βα |<�

|Ṽ �ℓ
βα|

⎤

⎥

⎦
, (C9)

where �ℓ is fixed in the sum, and square brackets indicate an
average over the variables R

βα,�ℓ and over the quasienergies
ǫβ − 2h. We have not specified the distributions fME and fLS

over which this average is to be performed because for our
purposes all we require is that the average [|V �ℓ|] exists, and
that the probability density fLS(0) is finite. The specific distri-
bution of the matrix elements and quasienergies will affect the
value of √

χ
⋆,�ℓ, but not its asymptotic scaling as the avalanche

progresses, which is our only concern.
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If we then make the approximation that the random vari-
ables χ

α,�ℓ on different sites are independent, we can calculate
the typical scale χ⋆, j of χα in terms of the distributions on the
sites �ℓ. We define the cumulant generating functions

K�ℓ(t ) = ln[eiχ
α,�ℓt ], (C10)

where the square brackets indicate an average over χ
α,�ℓ, ap-

propriately weighted by the distribution fFS.
As the asymptotic form of the fidelity distribution is fFS ∼

χ
1/2

⋆,�ℓ /χ3/2 for χ → ∞, the cumulant generating function must
behave asymptotically for t → 0 as

K�ℓ(t ) ∼ C
√

tχ
⋆,�ℓ, (C11)

where C = (−1 + i)
√

2π is a constant [81]. The cumulant
generating function for a sum of independent random vari-
ables is the sum of their cumulant generating functions, thus

K (t ) ∼ C
√

t
∑

�ℓ

√

χ
⋆,�ℓ. (C12)

That is, we have a full distribution of χα with the same power-
law tail, and a scale χ⋆, j given by

√
χ⋆, j =

∑

�ℓ

√

χ
⋆,�ℓ = lim

�→0

⎡

⎢

⎣

1

2�

∑

|��ℓ
βα |<�

|Ṽ �ℓ
βα|

⎤

⎥

⎦
. (C13)

The sum is over |φ̃ �ℓ
β{τ̃ ′}〉 satisfying the condition |��ℓ

βα| < �.

With fixed �ℓ this sum is finite, with at most 2N terms for
any �ℓ. The infinite sum over �ℓ converges if |Ṽ �ℓ

βα| decays

exponentially in |�ℓ|, as we have assumed. The � → 0 limit
converges if fLS(0) is finite for all �ℓ. Thus,

√
χ⋆, j is a finite

quantity for any N, ξ f < ∞.
Let us return to the assumption that the random variables

χ
α,�ℓ are independent for different �ℓ. The matrix elements

Ṽ
�ℓ

βα appearing at distinct �ℓ are independent random variables

within our ansatz, but the energy denominators �
�ℓ
βα do have

correlations between them. These correlations arise because
the change in a given energy denominator is given deter-
ministically by the change in the �ℓ · �� term. This results in
special separations �ℓ∗ where �ℓ∗ · �� ≈ 0, and so the energy
denominators are almost the same. On this point, we observe
that these special �ℓ∗ occur no more frequently than would be
expected for random shifts in quasienergy, so even if they do
introduce some correlation, it is unlikely to affect the asymp-
totic behavior we have identified.

In more detail, for a badly approximable �� ∈ R
2, there is

a C > 0 such that [38,121,122]

| �ℓ · ��| � C| ��|
| �ℓ|

. (C14)

(A similar statement may be made for almost all �� ∈ R
2 by

replacing |�ℓ| with |�ℓ|1+ǫ for any ǫ > 0.) Thus, if |�ℓ∗ · ��| < δ

is especially small, then

| �ℓ∗| � C| ��|/δ = O(δ/| ��|)−1. (C15)

In other words, to find a potential �ℓ∗ · �� that is smaller than
δ, one must search within a distance O(δ/| ��|)−1 in the fre-
quency lattice. Similarly, if the potentials �ℓ · �� were actually
random, one would expect to have to sample O(δ/| ��|)−1 of
them to find one that is smaller than δ.

APPENDIX D: NUMERICAL EVIDENCE OF SYNTHETIC

LOCALIZATION FOR TWO-TONE DRIVING

Our calculations in Sec. VI on the behavior of ξ f with
N for D = 2 can be verified through a number of numerical
experiments. In this Appendix, we report on two such ex-
periments, one based on real-time evolution in a sequence
of commensurate approximations to the quasiperiodic drive
(Appendix D 2), and one based on the one-dimensional model
(54) in the frequency lattice (Appendix D 3). In both cases,
our results are consistent with ξ f = O(ζ f ) = O(N ).

1. Model

We use the model (B1) from Appendix B 1 for our nu-
merics. This is a model of driven random matrices with
nearest-neighbor hops on the frequency lattice. Restating it
here,

H (�θ ) = H0 + J (H1e−iθ1 + H2e−iθ2 + H.c.), (D1)

where H0 is a GUE random matrix with rms energy W [as
defined in Eq. (B2)], J is a hopping amplitude, and H1 and H2

are complex Gaussian random matrices with unit rms energy.
We take θ j = � jt , with �1/�2 = (1 +

√
5)/2 given by the

golden ratio.

2. Commensurate approximations

Ideally, we could directly compute the quasienergy states
|φα (�θ )〉 from the quasiperiodically driven model (B1), but as
we noted in Appendix B 2, this is numerically challenging,
and so instead we make a commensurate approximation to
the incommensurate frequency vector ��, and we solve the
corresponding Floquet problem.

Recall that the commensurate approximations we use are

��n = �1ê1 + �1
pn

qn

ê2, (D2)

where pn = Fn−1 and qn = Fn are consecutive Fibonacci
numbers. We use a second-order Suzuki-Trotter approxima-
tion [118] to compute U (Tn, 0), and subsequently calculate
|φα (θ2ê2)〉 at q points along the line θ1 = 0.

Localization in the frequency lattice can be probed by
calculating the Fourier coefficients of the density matrix,

ρα (θ2ê2) = |φα (θ2ê2)〉〈φα (θ2ê2)| =
∑

n

ρ ′
αne−inθ2 , (D3)

which are related to the two-dimensional Fourier coefficients
of the density matrix ρα�n by

ρ ′
αn =

∑

n1

ρα,n1 ê1+nê2 . (D4)

Computing ρ ′
αn, rather than ρα�n, is less expensive numerically

(in both time and memory), and it allows us to probe larger
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commensurate approximations. We calculate the density ma-
trix, rather than the kets |φα (�θ )〉, to avoid having to find a
smooth gauge for the states.

To quantify the localization of these states, we use the
inverse participation ratio, defined as

IPRα =
∑

n

‖ρ ′
αn‖4

F , (D5)

where ‖ · ‖F is the Frobenius norm. This quantity is 1 for a
perfectly localized state, and 1/q for a completely delocalized
state on q sites. [We do not have an infinite system as we
calculate ρα (θ2ê2) at only q points.] Roughly, 1/IPRα is the
number of frequency lattice sites that a state has significant
weight on, and it is proportional to ζ f , the localization length
of the quasienergy states. As we observed in Sec. IV, the lo-
calization length of the matrix elements has the same scaling:
ξ f = O(ζ f ). Thus, it is sufficient to compute ζ f .

The numerically calculated inverse participation ratios for
the model (B1) are shown in Fig. 4. For every N in Fig. 4, the
IPR saturates as q becomes very large, indicating that all N

have a finite localization length, as we have predicted.
Furthermore, rescaling q by 1/N and the IPR by N pro-

duces a collapse of the data. This amounts to rescaling lengths
in the frequency lattice by 1/N , so the data collapse indicates
the existence of a single length scale, ξ f = O(ζ f ), which
grows proportionally to N . Thus, these numerics agree with
our prediction of ν = 1.

3. One-dimensional approximation

We can probe even larger distances in the frequency lattice,
and larger Hilbert space dimensions N , by instead studying the
one-dimensional approximation (54) directly.

There are many numerical methods effective in solving
one-dimensional tight-binding models. For the purpose of ex-
tracting the localization length ζ f (which has the same scaling
as ξ f ), we use a transfer matrix method [123,124].

The eigenvalue equation for |φ̃α〉 = ∑

k |φα,k〉|k〉 may be
written

(H0 + ωk )|φα,k〉 + J (Hik |φα,k−1〉 + H
†
ik+1

|φα,k+1〉) = ǫα|φα,k〉,
(D6)

where ik ∈ {1, 2} is the same quasiperiodic sequence from
Sec. VI, and H0, H1, and H2 are given as in the model (B1).

The eigenvalue equation (D6) may be expressed as a trans-
fer matrix equation for |φα,k+1〉 given |φα,k〉 and |φα,k−1〉:

|�α,k+1〉 =
(

|φα,k+1〉
|φα,k〉

)

= Tk+1(ǫα )

(

|φα,k〉
|φα,k−1〉

)

, (D7)

where

Tk+1(ǫ) =
(

− 1
J
H

−†
ik+1

(H0 + ωk − ǫ) −H
−†
ik+1

Hik

1 0

)

, (D8)

and we have written A−† = (A−1)† = (A†)−1.
To identify the localization length ζ f , we need to identify

the asymptotic behavior

ζ−1
f = lim

k→∞
−1

k
ln ‖�α,k‖. (D9)
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FIG. 8. Scaling of ζ f in a one-dimensional approximation.
(a) The inverse localization length ζ−1

f may be extracted from the
limiting behavior of the QR-decomposition of a transfer matrix, as
described in (D13). (b) Values of ζ f extracted from the data in
(a) show the expected linear scaling with N . Fitting a power law ζ f =
ANν (dashed line) gives ν = 1.001 ± 0.009, consistent with ν = 1.
Parameters: �1/W = 0.6, J/W = 0.2, �1/�2 = (1 +

√
5)/2, ǫ =

0, chain length L = 4000 with between 800 and 200 samples of
random matrices, depending on N .

The scaling of ln ‖�α,k‖ can be estimated by computing the
eigenvalues of

�k (ǫ) = TkTk−1 · · · T1(ǫ) (D10)

at a fixed target quasienergy ǫ. The product �k has 2N eigen-
values λkβ , which may have |λkβ | < 1 corresponding to decay
of the wave function, or |λkβ | > 1 corresponding to growth
of the wave function (moving toward the localization center).
The longest localization length is extracted as

ζ−1
f (ǫ) = lim

k→∞
min

β

1

k
|ln |λkβ ||. (D11)

Equation (D11) is hard to evaluate numerically, as the
eigenvalues of �k (ǫ) vary over many orders of magnitude for
large k, and numerical calculations tend to be dominated by
the largest eigenvalue. Fortunately, numerically stable meth-
ods to calculate ζ−1

f
(ǫ) have been developed in the context of

calculating Lyapunov exponents in discrete maps [125]. They
are based on the QR-decomposition of �k ,

�k = QkRk, (D12)

where Qk is unitary and Rk is upper triangular. The localiza-
tion length may be computed as

ζ−1
f (ǫ) = lim

k→∞
min

β

1

k
|ln |Rk,ββ ||, (D13)
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where Rk,ββ is a diagonal element of Rk . By using the tech-
niques of [125], the logarithms ln |Rk,ββ | may be computed
directly. These are not dominated by the largest value, as the
exponential growth with k in the elements Rk,ββ appears only
as linear growth in the logarithm.

Localization lengths extracted using the transfer matrix
method for different values of N and a value of ǫ in the middle
of the spectrum are shown in Fig. 8. (There is no “middle of
the spectrum” in the full frequency lattice model, where the
spectrum is unbounded. However, when restricted to a line
as in this section, the spectrum is bounded, and so it has a
“middle” where the density of states is maximal, and the one-

dimensional model is most representative of the frequency
lattice.) We first see that the average of minβ | ln |Rk,ββ || over
random matrix samples (and even the individual samples, not
shown) shows linear behavior with k with a strictly positive
slope, so there is indeed exponential localization. Extracting
the localization length from these data and fitting a power law
ζ f = ANν gives

ν = 1.001 ± 0.009, (D14)

consistent with the predicted ν = 1 from the associated An-
derson model.
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