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The striking nonlinear effects exhibited by cavity QED systems make them a powerful tool in modern

condensed matter and atomic physics. A recently discovered example is the quantized pumping of energy

into a cavity by a strongly coupled, periodically driven spin. We uncover a remarkable feature of these

energy pumps: they coherently translate, or boost, a quantum state of the cavity in the Fock basis. Current

optical cavity and circuit QED experiments can realize the required Hamiltonian in a rotating frame.

Boosting thus enables the preparation of highly excited nonclassical cavity states in near-term experiments.
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Nonclassical states of cavity and circuit QED systems

[1–4] serve as a resource for difficult, or even classically

forbidden, tasks [5–16]. However, preparing these states is

itself difficult, as it requires strong nonlinearity [2,4]. In this

Letter, we present an experimentally feasible scheme for

the on-demand preparation of highly excited nonclassical

states, such as Fock and Schrödinger cat states. The scheme

exploits topological energy pumping—the quantized

pumping of energy into a cavity by a strongly coupled

periodically driven spin [17–20]—which acts to coherently

translate, or boost, a quantum state of the cavity in the

Fock basis.

Energy pumping (also called frequency conversion) is

well understood in the semiclassical regime, when the

cavity is in a coherent state [17–19,21–23]. The spin

experiences two strong periodically oscillating fields

[Fig. 1(a)]—one from the external drive with phase variable

θ1ðtÞ ¼ Ωtþ θ01, and an effective field from the cavity

with phase θ2ðtÞ ¼ ωtþ θ02. The spin follows this mag-

netic field adiabatically, and in so doing winds around the

Bloch sphere. If the frequency ratio Ω=ω ∉ Q is irrational,

and the motion of the spin covers the Bloch sphere with

Chern number C ∈ Z, then the spin mediates a quantized

average number current into (or out of) the cavity:

½ _n�t ¼
Ω

2π
C: ð1Þ

We use square brackets ½·�x to denote averages over the

variable x, which in Eq. (1) is time.

The instantaneous number current _nðtÞ is not quantized.
It may vary substantially within the periods 2π=Ω and

2π=ω. Thus, it is remarkable that there are special times—

the almost periods TN ¼ ð2π=ΩÞhN (where hN is an

integer)—at which the number of photons pumped into

the cavity is almost exactly given by ½ _n�tTN ¼ ChN,

regardless of the initial phase of the drive and cavity field.

At these times θ1ðtÞ, θ2ðtÞ, and the spin state all return close
to their initial values, with a deviation decreasing like 1=hN .

(a)

(b)

FIG. 1. (a) Model. A spin coupled to a quantum cavity with

frequency ω and subject to an external periodic drive of frequency

Ω, such that Ω=ω ∉ Q. The frequencies ℏω and ℏΩ are smaller

than all other energy scales in the problem. (b)Cavity state boosting

in a Fock state. A plot of the Fock state occupation

PðnÞ ¼ hnjρcavðtÞjni,whereρcavðtÞ is the reduceddensitymatrixof

the cavity, shows rephasings, marked by blue arrows. These

represent the cavity state becoming near-Fock with a larger

occupation number than the initial state. Parameters in model (4)

are Ω=ω¼ð1þ
ffiffiffi

5
p

Þ=2, μBm=ℏω¼μBd=ℏω¼6, μB0=ℏω ¼ 1.5,

and θ01 ¼ 3π=2, initial state jψ0i ¼ jþi
x̂
jn0i being a product of

jþi
x̂
(the þS eigenstate of Sx), and jn0i (a Fock state) with

n0 ¼ 10, and spin S ¼ 1=2 (that is, a two-level system).
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Thus, an ensemble of spin-cavity states will rephase to

form a boosted ensemble with a larger n at the times TN .

This is the semiclassical mechanism underlying cavity state

boosting.

Strikingly, the boosting effect persists into the quantum

regime of the cavity, and also applies to nonclassical initial

states. By decomposing the initial nonclassical state into a

superposition of coherent states, we relate boosting in the

quantum system to the corresponding semiclassical effect.

An initial product state of the spin and cavity

jψð0Þi ¼ jsi ⊗
X

n

cnjni ð2Þ

is, if the spin state is initialized correctly and the distribu-

tion of jcnj2 is sufficiently narrow, boosted to

jψðTNÞi ≈ jsi ⊗
X

n

cnjnþ ChNi: ð3Þ

Figure 1(b) shows that an initial Fock state presents the

boosting phenomenon. At the almost periods, the cavity’s n
distribution PðnÞ ¼ hnjρcavðtÞjni narrows substantially

[where ρcavðtÞ is the reduced density matrix of the cavity].

The cavity state has been boosted to an approximate Fock

state with a larger occupation number (Fig. 2). By decou-

pling the spin at one of these almost periods, the boosted

state can be preserved in the cavity.

More generally, highly excited nonclassical cavity states

(Fock states, Schrödinger cat states, etc.) may be prepared

by boosting states from lower occupations.

Model.—We consider a Floquet Jaynes-Cummings

model with a periodically driven spin:

HðtÞ ¼ ℏωn̂ − μB⃗c½θ1ðtÞ� · S⃗þ μB0

2
ðâSþ þ â†S−Þ: ð4Þ

Here, μ is the spin magnetic moment, B0 is a coupling

strength between the cavity and spin, âð†Þ are cavity

annihilation (creation) operators, and S� are spin raising

(lowering) operators. The spin is driven by a circularly

polarized classical field with frequency Ω:

B⃗cðθ1Þ ¼ ðBm − Bd sin θ1Þx̂þ Bd cos θ1ẑ; ð5Þ

where the phase of the drive is θ1ðtÞ ¼ Ωtþ θ01. Later, we

will show how this model may be achieved within a

rotating frame of a typical cavity or circuit QED

Hamiltonian.

Semiclassics.—The related semiclassical model is

obtained by taking the expectation value of H in a cavity

coherent state jαi ¼ j ffiffiffi

n
p

e−iθ2i, giving an effective model

for the spin alone,

Heffðθ1; θ2; nÞ ¼ hαjHjαi − ℏωn ¼ −μB⃗eff · S⃗; ð6Þ

where

B⃗effðθ1; θ2; nÞ ¼ ðBm − Bd sin θ1 − B0

ffiffiffi

n
p

cos θ2Þx̂
− B0

ffiffiffi

n
p

sin θ2ŷ þ Bd cos θ1ẑ ð7Þ

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. (a)–(d) The photon number distribution PðnÞ ¼ hnjρcavðtÞjni in Fig. 1 at multiples of the period of the classical drive

T ¼ 2π=Ω. The distribution broadens from the initial Fock state (a), but narrows again at special times to produce a near-Fock state

again (d). (e)–(h) The Husimi Q function QðαÞ ¼ ð1=πÞhαjρcavðtÞjαi. Initially (e) the cavity is in a Fock state, with a circularly

symmetric Q function. At most times (f),(g), the Q function is displaced from the center of the quadrature plane, and is not circular. At

special times (h) theQ function is again centered and approximately circularly symmetric about the origin, but now with a larger radius.

The initial radius (n ¼ 10, red) and predicted final radius (n ¼ 22, blue) are marked by dashed circles for reference. Parameters are

as in Fig. 1.
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is related to the Bernevig-Hughes-Zhang model [24,25].

For now, we assume that the motion of the cavity is

unaffected by the spin, so that the phase variable arising

from the cavity field θ2ðtÞ ¼ ωtþ θ02 rotates at a constant

angular velocity. This occurs in the limit n → ∞

with B0

ffiffiffi

n
p ¼ Oð1Þ.

The spin model (6) has been shown to exhibit energy

pumping in the adiabatic limit, where ℏΩ and ℏω are

much less than all other energy scales in the problem [17].

Energy pumping proceeds with C ¼ �1 if the spin is

initially aligned with the field, Ω=ω ∉ Q is irrational, and

ðjBmj − jBdjÞ2 < B2

0
n < ðjBmj þ jBdjÞ2 [19].

In this regime, the spin follows the effective field,

hS⃗i ¼ SB̂eff þOðΩÞ. Importantly, the spin state only

depends on the instantaneous values of θ1, θ2, and n.
Explicitly calculating the instantaneous rate of change of n
using ℏ _n ¼ −h∂θ2

Heffi gives [21]

ℏ _nðθ1; θ2; nÞ ¼ μS∂θ2
jB⃗eff j þ ℏΩF þOðΩ2Þ; ð8Þ

where

F ¼ SB̂eff · ð∂θ1
B̂eff × ∂θ2

B̂effÞ; ð9Þ

is the Berry curvature of the spin state aligned to the field

B⃗eff [26].

We neglect the effect of the changing cavity population n
on the spin dynamics, and so fix n ¼ n0 on the right hand

side of Eq. (8). This is justified if the right hand side of

Eq. (8) changes slowly with n. Then the change in cavity

population

Δnðt; θ⃗0; n0Þ ¼
Z

t

0

_nðθ⃗s; n0Þds ð10Þ

is computed as the integral of a quasiperiodic function over

the trajectory θ⃗t ¼ ½θ1ðtÞ; θ2ðtÞ� on the torus. As Ω=ω is

irrational, this trajectory densely fills the torus as t → ∞,

and the integral [Eq. (10)] approximates the uniform

integral of _n over the torus. At the almost periods TN ,

the trajectory comes close to its initial position (θ⃗TN
≈ θ⃗0),

and Eq. (10) approximates the uniform integral especially

well:

ΔnðTN ; θ⃗0; n0Þ ¼
TN

ð2πÞ2
Z

_nðθ⃗; n0Þd2θ þOðT−1
N Þ

¼ ΩTN

2π
CþOðT−1

N Þ: ð11Þ

These almost periods may be computed from the continued

fraction expansion of Ω=ω [27,28].

Crucially, Eq. (11) implies that ΔnðTNÞ is only OðT−1
N Þ

different between trajectories with different initial condi-

tions θ⃗0. An ensemble of spins initiated in coherent cavity

states with different θ02 will each pump the same number of

photons into the cavity at the almost periods, with a

correction which decays as larger almost periods are

considered (Fig. 3). We say the ensemble rephases.

In contrast, if Ω=ω ¼ p=q ∈ Q are rationally related

[17,29], then trajectories do not densely fill the torus, and

the long-time averages ½ _n�t depend on θ⃗0, so that rephasings
at subsequent periods TN ¼ Nð2π=ΩÞp decay in quality

linearly with TN .

Quantum.—The rephasing of the classical ensemble of

states initiated with different θ02 can be used to explain

cavity state boosting in the full quantum model (4).

An arbitrary initial state jψð0Þi of the spin and cavity

can be decomposed into a superposition of coherent states

jαi ¼ j ffiffiffi

n
p

e−iθ2i and spin states jmiB̂eff
(m ∈ f−S;…; Sg)

quantized along the axis B̂eff defined by n and θ2. For the

simplest case of a spin-1
2
, we have

jψð0Þi ¼
Z

d2α½cþðαÞjþiB̂eff
þ c−ðαÞj−iB̂eff

�jαi; ð12Þ

where d2α is a normalized measure on the coherent states

[30]. When c− ≈ 0, the initial state is approximately a

superposition of states where the spin is aligned with an

effective field B⃗eff . The dynamics of each component of this

superposition can then be described semiclassically. The

requirement c− ≈ 0 is typically unrestrictive, and for the

(a)

(b)

(c)

FIG. 3. Semiclassical rephasings. The prediction for the Fock

occupation number nðtÞ (10) for an ensemble of initial phases θ⃗0
and a (a) quasiperiodic and (b) periodic drive. Both show

rephasings at their almost periods and periods respectively.

(c) Inspecting the variance of nðtÞ between Nθ ¼ 32 different

values of θ02 shows that the rephasings improve in quality with

increasing TN for quasiperiodic drives, but decay linearly for

periodic drives.
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model (4) an initial product state jψð0Þi ¼ jþi
x̂
jψ0i is

sufficient.

In each component of the superposition [Eq. (12)], the

dynamics of the spin is described by the semiclassical

description leading to Eq. (11)—the spin remains aligned

with the effective field as it evolves under the cavity

dynamics (Fig. 4). Thus, at the almost periods the spin

will return to its initial state in each component of the

superposition, while the cavity coherent state returns to the

same angular position θ2ðTNÞ ≈ θ02 but with a larger

nðTNÞ ≈ n0 þ TN ½ _n�t.
Furthermore, the quantum mechanical phase accumu-

lated by each component may be expressed within the

semiclassical approximation as the integral of the energy. In

the cþ components of Eq. (12), this is

ϕðt; θ⃗0; n0Þ ¼
1

ℏ

Z

t

0

ðℏωn0 − μSjB⃗effðθ⃗s; n0ÞjÞds: ð13Þ

The phase ϕ is also an integral of a quasiperiodic function,

just as Δn in Eq. (10). Thus, ϕðTN ; θ⃗0; n0Þ rephases at the
almost periods TN , becoming almost θ⃗0 independent. This

extends our observations about rephasings in a classical

ensemble to rephasings in the full quantum superposition.

The result of this rephasing is the boosting phenomenon:

at the almost periods TN , the quantum state of the cavity

rephases to form a state which has been boosted in the Fock

basis, as described in Eq. (3) (up to a global phase).

We have neglected several effects in the above arguments.

We enumerate these approximations in the Supplemental

Material [28], and demonstrate that there is a regime of

parameters and initial states in which the boosting phenome-

non occurs as claimed.

Experimental considerations.—Cavity boosting requires

a periodic classical drive, which is routine in essentially all

experimental architectures. In Eq. (4), it also requires that

ℏΩ and ℏω be the smallest energy scales in the problem,

which, naively, necessitates ultrastrong coupling [31–34].

However, this hierarchy can be achieved in a rotating frame

starting from a strong coupling Hamiltonian in the

lab frame.

A typical lab frame cavity QED Hamiltonian takes the

form [1–4]

Hlab=ℏ ¼ ωcavn̂þ ½ωq þ fðtÞ�Sz þ gðâþ â†ÞSx
þ 2VðtÞ cosðωqtÞSx; ð14Þ

where ωcav is the lab frame cavity frequency, and ωq is the

mean level splitting of the spin. The splitting of the spin is

modulated slowly by fðtÞ, while the x field on the spin is

amplitude modulated by 2VðtÞ at the resonant carrier

frequency ωq.

Making a rotating frame transformation jψi → Ujψi
with UðtÞ ¼ exp½iωqtðn̂þ SzÞ� and dropping terms

which oscillate rapidly with frequency 2ωq produces a

Hamiltonian

Hrot=ℏ ¼ ðωcav − ωqÞn̂þ fðtÞSz
þ g

2
ðâSþ þ â†S−Þ þ VðtÞSx; ð15Þ

at leading order in ω−1
q . Making the identifications

ωcav − ωq ¼ ω;

ℏfðtÞ ¼ −μBd cosðΩtÞ;
ℏg ¼ μB0;

ℏVðtÞ ¼ −μ½Bm − Bd sinðΩtÞ� ð16Þ

reproduces Eq. (4) in the rotating frame. As the trans-

formation U rigidly rotates the phase space of the cavity,

boosting in the rotating frame implies boosting in the lab

frame. We verify this in the Supplemental Material [28].

Boosting requires a hierarchy of scales

ωcav − ωq;Ω ≪ f; g; V ≪ ωq: ð17Þ

This hierarchy is achievable in a variety of microwave-

frequency superconducting architectures, where naturally

high coupling strengths, on the order of 100 MHz, and

lifetimes in excess of 100 μs provide an ample window for

the required slow drive timescales ωcav − ωq and Ω [3,4].

(a)

(d)

(b) (c)

FIG. 4. Alignment of spin and field. (a)–(c) Cavity Q functions

for different initial states, jþi
x̂
jψ0i, with (a) jψ0i ¼ jn ¼ 10i a

Fock state, (b) jψ0i ¼ jα ¼
ffiffiffiffiffi

10
p

i a coherent state, and

(c) jψ0i ∝ jα ¼
ffiffiffiffiffi

10
p

i þ jα ¼ −
ffiffiffiffiffi

10
p

i a Schrödinger cat state.

(d) The expectation value M ¼ hB⃗ · S⃗i=
ffiffiffiffiffiffiffiffiffi

hB⃗2i
q

quantifies how

closely aligned the spin is to an effective cavity field in a basis of

coherent states. We see thatM remains close to its extremal value

of −S. Parameters are as in Fig. 1.
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It is also possible to satisfy this hierarchy in optical cavity

QED, although the achievable separation of scales between

dissipation rates and light-matter couplings is typically

smaller [1,2].

Discussion—Cavity state boosting allows the prepara-

tion of nonclassical states of a quantum cavity with larger

occupation number n than may otherwise be possible. The

potential to realize boosting in optical cavities is particu-

larly intriguing, as the deterministic generation of even

single photons is challenging in this regime.

Boosting is topological, in the sense that it occurs even if

the instantaneous Hamiltonian is continuously deformed,

provided the drive frequencyΩ remains incommensurate to

the cavity frequency. Changing the parameters of the

Hamiltonian may alter the positions of the almost periods,

but will not change the fact that they occur.

There is a close analogy between rephasings and Bloch

oscillations. Electronic wave packets in an electric field

show center-of-mass oscillations, and coherently expand

and contract [35]. If the packet also has a nonzero Hall

velocity, then at Bloch periods it has the same shape, but is

translated perpendicular to the electric field—that is, it has

been boosted. This analogy can be made precise through

the construction of synthetic dimensions, and the frequency

lattice [36–41].

If photon losses in the cavity, or dephasing of the qubit,

are significant, boosting degrades in quality. As the rate of

photon loss from the cavity increases with increasing n,
the cavity populations achievable with boosting (and all

methods) are limited by the cavity quality factor. Quality

factors larger than 106 have been reported in many

architectures [42–44].

Boosting offers a qualitatively distinct method of pre-

paring highly nonclassical cavity states—for instance, Fock

states—compared with current methods [45–47]. Presently,

preparing Fock states requires detailed and precise control

of the coupled spin [45–47]. In contrast, boosting has an

immensely simpler drive protocol for the spin—a sine wave

in Eq. (4). Related protocols may also be used to prepare

many-body scar states in other systems [48].

Boosting also provides a way of preparing Schrödinger

cat states for use in bosonic encoded qubits [9–16].

Remarkably, the drive protocol to boost a cat state is the

same as for a Fock state. Indeed, boosting does not require

any knowledge of the current state of the cavity.
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