2021 IEEE Workshop on Workflows in Support of Large-Scale Science (WORKS) | 978-1-6654-1136-3/21/$31.00 ©2021 IEEE | DOI: 10.1109/WORKS54523.2021.00007

2021 IEEE Workshop on Workflows in Support of Large-Scale Science (WORKS)

Intelligent Resource Provisioning for Scientific
Workflows and HPC

Benjamin T. Shealy
Department of
Electrical and Computer Engineering
Clemson University
Clemson, SC, USA
btsheal @clemson.edu

Abstract—Scientific workflows and high-performance comput-
ing (HPC) systems are critically important to modern scientific
research. In order to perform scientific experiments at scale,
domain scientists must have knowledge and expertise in software
and hardware systems that are highly complex and rapidly
evolving. While computational expertise will be essential for
domain scientists going forward, any tools or practices that
reduce this burden for domain scientists will greatly increase
the rate of scientific discoveries. One such example is knowing
ahead of time the resource usage patterns of an application for the
purpose of resource provisioning. A tool that accurately estimates
these resource requirements would benefit HPC users in many
ways, by reducing job failures and queue times on traditional
HPC systems and reducing costs on cloud computing systems.
In this work we present Tesseract, a semi-automated tool that
predicts resource usage for any application on any computing
platform, from historical data, with minimal input from the
user. We employ Tesseract to predict runtime, memory usage,
and disk usage for a diverse set of scientific workflows, and in
particular we show how these resource estimates can prevent
under-provisioning.

Index Terms—high performance computing, machine learning,
Nextflow, resource provisioning, scientific workflows

1. INTRODUCTION

In the past two decades, scientific research (as well as
many other domains) has been transformed by the collective
emergence of three phenomena — machine learning, big data,
and high-performance computing (HPC). Recent advances in
machine learning were enabled by (1) the increased availability
of computational resources, which reside primarily in HPC
datacenters, and (2) the massive amount of training data that
is generated by devices, ranging from smartphones to DNA
sequencers, that become cheaper and more commonplace each
year. As a result, the HPC system has itself become a scientific
instrument that complements traditional lab equipment, as
scientists create increasingly complex workflows to extract
insights from large datasets. These computational experiments
require a great deal of computational expertise, especially as
experiments become large, and domain scientists are strug-
gling to acquire this expertise while doing their own research.
Thus the usability of HPC systems is a major bottleneck to
scientific progress today, and while computational expertise
will continue to become a necessary skill for domain scientists,

F. Alex Feltus
Department of
Genetics and Biochemistry
Clemson University
Clemson, SC, USA
ffeltus@clemson.edu

Melissa C. Smith
Department of
Electrical and Computer Engineering
Clemson University
Clemson, SC, USA
smithme @ clemson.edu

anything that simplifies the process of science experiments at
scale will ultimately increase the rate of scientific discovery.

One of the greatest challenges with computational experi-
ments is knowing the amount of resources that are required,
such as CPU-hours, GPU-hours, memory, storage, and I/O
bandwidth. Understanding the resource usage patterns of
an application is critical when using large-scale computing
systems. Users must request the resources that they need
for an experiment, and there are pitfalls to both under-
provisioning and over-provisioning. On shared HPC systems
such as university clusters, over-provisioning may increase
the time that the job is waiting in the queue, and under-
provisioning may cause the job to fail and have to be restarted.
On cloud platforms, there are no queue times or walltime
limits because resources are highly available, but there are
significant financial risks related to incorrectly provisioning
other resources such as memory and storage. Thus the lack
of knowledge about resource usage patterns is a hindrance
on HPC clusters and a major setback on cloud platforms.
These challenges are multiplied for scientific workflows with
multiple steps, with each step potentially having very different
resource requirements. Workflow managers such as Nextflow
[6] greatly reduce the burden of executing scientific workflows,
but they do not assist users in resource provisioning. An
accurate resource prediction tool would confer significant
benefits to users simply by addressing the aforementioned
problems — reducing job failures, queue times, and costs in
the case of cloud platforms.

Resource prediction has received moderate research atten-
tion with promising results, but few studies have translated
into usable tools for domain scientists. We believe this gap
between research and application is due to the complexity and
non-uniformity of large-scale computational systems, as well
as the understandable lack of computational expertise among
domain scientists. To that end, we present Tesseract, a tool that
provides intelligent resource prediction for any application,
on any computing platform, and can be used by experts and
non-experts alike. In this paper, we demonstrate the use of
Tesseract with a number of real scientific workflows on a
university cluster, and we focus specifically on how Tesseract
helps to prevent under-provisioning.

978-1-6654-1136-3/21/$31.00 ©2021 IEEE 9
DOI 10.1109/WORKS54523.2021.00007

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 13,2022 at 20:57:44 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

In this section we describe past research efforts on resource
prediction and performance prediction. We define resource
prediction as the task of estimating how much of some
resource will be used by an application before it is run. A
closely related task is performance prediction or performance
modeling, which is the task of measuring how efficiently an
application uses a resource.

A. Analytical Modeling

The earliest approaches to performance prediction devel-
oped analytical models that captured runtime or memory
complexity of the application as well as the behavior of
the underlying hardware. Many studies [3], [7], [9], [16],
[17] developed detailed models of particular applications and
architectures in an attempt to capture all of the intricacies
of these systems. Analytical modeling can yield very accurate
predictions, but a new model must be developed for every new
application or architecture, each of which requires deep expert
knowledge. As a result, analytical modeling is not suitable for
non-expert users such as domain scientists who want to predict
the resource usage of the applications they use.

B. Empirical Modeling

Many studies have explored the use of machine learning
models to predict resource usage. Ipek er al. [15], one of
the earliest studies of its kind, trained a multilayer perceptron
(MLP) to predict the runtime of SMG2000 with 5-7% test
error. In particular, the authors found that allocating an extra
core to handle OS-related tasks and modifying the training
process to minimize percentage error instead of absolute error
mitigated the effect of noise and greatly reduced the test error.

Matsunaga et al. [18] trained a number of machine learn-
ing algorithms to predict the runtime, memory usage, and
disk usage of two bioinformatics applications, BLAST and
RAXML. They evaluate several classical algorithms as well
as a custom algorithm called PQR2, a type of regression
tree that can use any regression model at each leaf node. In
addition to application-specific input features, the authors use
simple benchmarks to measure CPU speed, memory speed,
and disk I/O speed. They visualize the impact of these system
characteristics on the overall trend in runtime for their selected
applications. Rodrigues er al. [21] used similar methods to
develop an online memory usage prediction tool on an IBM
POWERS cluster. Interestingly, these authors included several
textual features, such as user ID, working directory, and the
executed command, as categorical inputs, however they did
not specify how much these features contributed to prediction
accuracy. Additionally, these authors used a database of jobs
executed on their cluster over a period of time, rather than
focusing on a few specific applications.

Da Silva er al. [5] profiled several Pegasus workflows with
the Kickstart profiling tool, explored the relationship between
input parameters and the profiling results, and developed a
model that uses density-based clustering and regression trees
to identify correlations between input parameters in order to

10

predict runtime, memory usage, and disk usage. Additionally,
the authors integrated their prediction model into an online
prediction tool which continuously estimates the resource
usage of tasks in a workflow, updating its predictions with
the real usage patterns of tasks as they finish. They provide a
clear methodology towards automatic resource prediction; we
aim to improve upon their work by focusing on ease-of-use
and preventing under-provisioning.

Empirical approaches to resource prediction are powerful
because they do not require any knowledge about the internal
details of the application or workflow. Generally speaking,
only those features that are readily available and easy to
obtain, such as input parameters and input data characteristics,
are used. Runtime predictions can be improved further by
including system metrics based on simple benchmarks (as
shown by Matsunaga et al.). The main drawback of empirical
models is that training data is expensive to acquire. Machine
learning models typically need at least O(100) samples, which
means that the application-under-test must be run many times
in order to train a sufficiently accurate model. The high cost of
acquiring training data can be mitigated by using historical job
information, as in the study by Rodrigues ef al., since those
jobs would have been run anyway. Thus empirical modeling
is a promising approach to resource prediction that is portable
and requires minimal computational expertise.

III. TESSERACT: INTELLIGENT RESOURCE PREDICTION

In this section, we describe the implementation of Tesseract
and how it is used by a domain scientist.

A. Implementation

Tesseract draws inspiration from a number of previous
studies, including Ipek ef al. [15], Matsunaga ef al. [18], and
Da Silva er al. [5]. The overall approach of Tesseract is to
collect the performance data from past runs of a workflow
and then train a regression model to predict the resource
usage of future runs. This approach is open-ended enough
that it may be able to capture the many sources of variation
that contribute to application performance on a heterogeneous
computing system.

Tesseract can predict resource usage for any application or
workflow that is implemented as a Nextflow pipeline. Nextflow
[6] is a workflow manager that provides broad support for
many key elements of scientific workflows; it is language-
agnostic, portable across many execution environments, highly
scalable, and it supports many other useful features such
as caching, containerization, and pipeline sharing for re-
producibility. Tesseract depends on Nextflow to collect the
input features and resource metrics that comprise the training
data. Any standalone application can be easily wrapped into
a single-step Nextflow pipeline, and any workflow can be
refactored into a Nextflow pipeline, although difficulty may
vary. Tesseract itself is a collection of Python scripts that
use a number of standard libraries for machine learning,
including Numpy, Pandas, scikit-learn [19], Tensorflow [1],

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 13,2022 at 20:57:44 UTC from IEEE Xplore. Restrictions apply.

and Keras [4], as well as matplotlib [14] and seaborn [27] for
visualizations.

To further describe the implementation of Tesseract, we
address a number of design questions that must be considered.

Which resources do we need to predict? While Tesseract
can target any resource metric that is captured by Nextflow, we
are particularly interested in runtime, memory usage, and disk
usage, as these resources are the most pertinent to the problem
of resource provisioning. Runtime refers to the duration of a
job. Memory usage refers to the maximum amount of memory
used at one time throughout the duration of a job. Disk usage
refers to the total amount of output data written to disk storage
by a job. All of these metrics are automatically collected by
Nextflow. The number of CPUs is treated as an input rather
than an output because it is almost always provided as an
input. Applications are generally designed to work within
the CPU restraints they are given, whereas memory and disk
usage are usually determined by the problem size and other
input parameters. If the number of CPUs are restricted, the
application can still do the same work but it will simply
take longer; on the other hand, if an application requires
more memory or disk space than is available, generally the
application has no other option than to terminate. In this way
we can derive metrics such as CPU-hours from runtime as
long as we have the number of CPUs as an input. The same
reasoning can be applied to GPUs, FPGAs, and any other such
accelerators, which is pertinent to this work since we consider
several GPU-enabled applications. It should also be noted that
Tesseract predicts the resource usage of individual tasks rather
than entire workflow runs, as resource provisioning typically
occurs at the level of tasks.

What features can we use as inputs? Previous studies have
addressed this question in many different ways. To help guide
our exploration, we have devised a set of categories inspired
by Guo [12]. We say that a computational experiment has three
possible sources of inputs:

+ Code: the software and its dependencies; compile-time

and run-time input parameters

« Data: any data that is provided as input to the software;

file size, dimensions

+ Environment: the hardware and operating system on

which the software is run; hardware attributes, kernel
settings, environment variables, benchmarking results

These three categories form a basis for understanding how
to select the right input features for a prediction model. For
example, one could include specific command-line parameters
(code), input data size (data), and benchmarking metrics for
the underlying hardware (environment). Features can be added
and removed in each category to match the needs of the
particular application. Because input features can come from
so many different sources, Tesseract requires the user to
manually define the input features for each application.

How detailed does the input data need to be? Some studies
have only used input parameters, input data characteristics,
and simple benchmarking metrics; others have used much
more fine-grained information such as hardware counters and

11

other low-level profiling traces. Based on the results of these
studies and our own preliminary results, we have found that
the first case provides enough data to achieve sufficiently low
prediction error. Since the input features must be specified by
the user, the process should be as simple as possible. Including
profiling information would require additional profiling tools,
which may be unfamiliar to users, or code instrumentation,
which is even more prohibitive if the user is not familiar with
the source code. On the other hand, input parameters and input
data characteristics can be obtained from the job script with
few modifications. Benchmarking metrics are somewhat more
complicated and are not explored in this work, although we
intend to incorporate such metrics in the future.

How accurate do the predictions need to be? Some studies
define 20% relative error or less as acceptable [2]. Relative
error can be assessed using mean absolute percentage error
(MAPE):

MAPE (%) — 100 x Z Ytrueyi Ypred,i

n
=1

Ytrue,i

While we find this threshold reasonable, any sort of prediction
error by itself does not adequately describe the effectiveness
of a resource prediction model because the costs of underesti-
mation and overestimation are different. An under-provisioned
job will fail and have to be re-run, whereas an over-provisioned
job may have some negative effects (i.e. longer queue time,
wasted resources) depending on the situation, but will still
complete. A good resource prediction model should avoid
under-provisioning entirely, even at the expense of some over-
provisioning, so long as it is not extreme '. We address this
issue by using regression models that provide a confidence
interval around each point prediction, and using the upper
bound as the resource request. We evaluate these intervals
using the coverage probability (CP), which is the percentage of
intervals that contain the true target value. Given a sufficiently
large number of predictions, a 95% confidence interval should
provide a coverage probability of at least 95%. This metric
will essentially measure a model’s ability to avoid both under-
provisioning and extreme over-provisioning. For aesthetic con-
sistency with prediction error, we use coverage error, which
we define as CE (%) = 100 — C'P. Achieving at least 95%
coverage is equivalent to achieving 5% coverage error or less.

How many training samples are needed? The amount of
training data is a serious consideration since training data is
expensive to acquire, which is a primary drawback of data-
driven resource prediction. Tesseract should be able to achieve
an acceptably low prediction error with as few training samples
as possible to minimize the cost of acquiring training data.
More importantly, however, Tesseract should be able to learn
from the runs that users have already performed as part of
their normal work. That way, training prediction models will
not require any more runs than would have been performed

1'Under-provisioning is not so much an issue for applications that use
checkpointing, however many applications, including our entire test suite, do
not use checkpointing.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 13,2022 at 20:57:44 UTC from IEEE Xplore. Restrictions apply.

anyway. For the purpose of this study, we generated our own
runs based on actual use cases among our peers, in order to
ensure that Tesseract will work on real performance data when
used in production.

To summarize, Tesseract is implemented based on the
following design principles and goals:

o Predict runtime, memory usage, and disk usage (for
output files) of individual workflow tasks;

« Use input features that are fast and easy to acquire, no
profiling or code instrumentation;

« Use input parameters, input data characteristics, basic
system metrics (in the future);

« Achieve less than 20% relative error on point predictions;

« Achieve less than 5% coverage error when prediction
error is high;

+ Re-use performance data from historical runs.

B. Usage

Here we describe how a domain scientist would use Tesser-
act with their scientific workflow. The entire usage cycle can
be summarized as follows:

1) User annotates a scientific workflow with trace directives
that define the input features for each process in the
workflow

User runs the workflow many times as part of their
normal work

Tesseract combines input features from execution logs
with the execution traces to produce a performance
dataset for each workflow process

Tesseract trains a prediction model for each resource
metric and each workflow process

User employs prediction models to estimate resource
usage of future workflow runs

2

3)

4)
5)

Given a Nextflow pipeline, the user must annotate each
process script in the pipeline with “trace directives”. A trace
directive defines an input feature to be included in the training
data, and it is a core idiom used by Tesseract. A trace directive
is a print statement that prints the # TRACE prefix followed by
a key-value pair, which denotes the name and value of an input
feature. The key will become a column in the performance
dataset, and the value will be saved for each task. Trace
directives are evaluated and printed to the execution log during
task execution. Since the user may not yet know which inputs
will be most important for prediction, it is better to be inclusive
rather than exclusive at this stage. Input features can always
be discarded later on, but if an input feature is not included as
a trace directive, it will be difficult or impossible to recover
it later on without rerunning the workflow. In general, trace
directives consist of input parameters and simple input data
characteristics such as file size, number of lines, or number of
rows and columns.

Once a pipeline has been annotated, it must be run many
times in order to generate sufficient performance data. These
runs should ideally be a part of the user’s normal work, or
they can be generated for the specific purpose of acquiring

12

training data. In either case, the runs should be representa-
tive of real experiments and should span a range of input
conditions. Nextflow will produce an execution trace for each
task which contains the desired resource metrics. After enough
experiments have been run, Tesseract aggregates the input
features and resource metrics from all runs and produces a
performance dataset for each process in the workflow.

Tesseract creates a prediction model for each resource met-
ric, for each process in the workflow. We refer to a particular
workflow / process / resource metric as a “prediction target”.
A workflow with multiple steps and multiple resource metrics
will produce many prediction targets. However, we have found
that some prediction targets do not actually require a prediction
model because a simpler heuristic can be used. For example,
many processes take only a few minutes to execute, or use
only a few megabytes of memory, or produce only a few
kilobytes of output data (i.e. log files). For these targets, the
maximum target value rounded up is sufficient for the purpose
of requesting resources. Therefore, Tesseract only trains a
model for prediction targets with standard deviation greater
than 0.1 hr (in the case of runtime) or 0.1 GB (in the case of
memory and disk usage), otherwise it uses the maximum target
value rounded up. Tesseract can use any prediction model that
implements the scikit-learn Estimator API, but also provides
models that can be used out-of-the-box. These models are
described in Section IV.

In the final step, the user employs Tesseract to provide
resource estimates for future runs. Currently, this step is done
by querying Tesseract and manually updating the correspond-
ing resource settings in the Nextflow pipeline. In the future,
we would like to integrate Tesseract with Nextflow such that
resource estimates are automatically queried and applied when
a task is launched.

IV. EXPERIMENTAL DESIGN

In this section, we describe the experiments that were
performed to evaluate Tesseract, including the applications and
the computing environment that were used.

A. Application Suite

We selected five scientific workflows that are used fre-
quently by fellow researchers at our institution. Using these
workflows for development and evaluation will ensure that
Tesseract is easy to use for domain scientists, such as our
peers, who do not have deep expertise in performance engi-
neering. We briefly describe these workflows here:

+« GEMmaker is a bioinformatics pipeline for constructing
gene expression matrices (GEMs) from Illumina RNA-
seq data [13].

+ Gene Oracle is a pipeline for identifying biologically
significant biomarkers, or “candidate genes,” from a high-
dimensional gene expression matrix (GEM) [25].

+ HemeLB is a high-performance Lattice Boltzmann code
for sparse complex geometries, typically used to study
vascular flow [10], [11], [23].

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 13,2022 at 20:57:44 UTC from IEEE Xplore. Restrictions apply.

« KINC is a bioinformatics pipeline for constructing gene
co-expression networks (GCNs) [22].

« TSPG is a deep learning pipeline for identifying global
gene expression transitions between biological condi-
tions [24].

Every workflow listed above except for HemelLB was
already implemented as a Nextflow pipeline. Hemel.B is a
conventional MPI application, which we have wrapped in a
single-step Nextflow pipeline for the purpose of this study,
in order to demonstrate the use of Tesseract with traditional
MPI applications. Additionally, every workflow except for
GEMmaker contains GPU-enabled steps.

We annotated the individual processes in each workflow
with trace directives in order to obtain input features, as
described in Section III. We generated performance datasets
for each workflow by running the workflow many times on a
range of parameters and input data, based on the typical usage
of these workflows by our peers. For more information on
these workflows, including the input features that were defined
for the individual workflow processes, we refer the reader to
the publications listed above and their corresponding GitHub
repositories.

B. Computing Environment

The Palmetto cluster at Clemson University is a condo-
minium cluster with over 20 hardware phases, ranging from
older CPU-only nodes to newer nodes equipped with GPU
nodes and a high-speed interconnect. The GPU nodes include
Tesla K20, K40, P100, and V100 GPUs. All of the perfor-
mance data for this study was collected on the Palmetto cluster.

C. Resource Prediction

We used Tesseract to predict runtime, memory usage, and
disk usage for each workflow in our test suite. This setup pro-
duced over 120 prediction targets, 16 of which were selected
by Tesseract for model training based on the criteria described
in Section III. The selected targets span all five workflows
and all three resource types. Nearly all of the excluded targets
had resource usage below 1 hr or 1 GB. For each selected
prediction target, we trained a neural network and a random
forest. The neural network was configured with hidden layer
sizes (128,128,128), Rel.U activation, MAE loss, and the
Adam optimizer. Additionally, the neural network uses 1.2
regularization and dropout in order to facilitate the use of
confidence intervals. The neural network was implemented in
Keras using the TensorFlow backend. We used the random
forest regressor in scikit-learn with 100 decision trees and
MAE criterion. Preliminary experiments revealed that these
two models consistently outperformed other regression models
and neural network architectures. We evaluated each model by
performing 5-fold cross validation. Since each fold is used
once as the test set, we combined the predictions of each
fold in order to compare predicted and actual values for the
entire dataset. We evaluated these predictions using MAPE, as
described in Section III.

13

Additionally, we extended the models described above to
provide a 95% confidence interval around each point pre-
diction. For the neural network, we enable dropout during
inference and take the mean and variance of multiple repeated
predictions, as demonstrated by Gal et al. [8]. For the random
forest, we use the jackknife [26] to obtain a a bias-adjusted
variance estimate based on the predictions of the individual
decision trees in the random forest. The forestci package
[20] integrates this approach seamlessly with the random forest
regressor in scikit-learn. For both models, the 95% confidence
interval is equivalent to the point prediction (mean) +/- two
standard deviations. We evaluated the confidence intervals
using coverage error, as described in Section III. The coverage
error effectively measures the percentage of jobs that would
fail when using the upper bound of the confidence interval,
rather than the point prediction, for resource provisioning.

V. RESULTS AND DISCUSSION

The results of our resource prediction experiments are
summarized in Figure 1, which shows the prediction error and
coverage error achieved by each model for each prediction
target. An effective model should achieve less than 20%
MAPE, or, failing that, achieve less than 5% coverage error.
While many of the models did not achieve low prediction
error, every model except for three achieved sufficiently low
coverage errot, and for every prediction target there is at least
one model with low coverage error. In other words, even when
prediction error is high, such as in cases where the training
data is sparse or noisy, the prediction model can still pro-
tect against under-provisioning by providing sufficiently large
confidence intervals. These results demonstrate that Tesseract
can predict resource usage across a diverse set of workflows,
using only basic input features, for the purpose of provisioning
resources for jobs. The neural network and random forest
are evenly matched overall, with each model providing better
performance over the other in different cases. In practice, the
user could use one or the other across the board, or use both
and have Tesseract choose the better model in each case.

Additionally, Figure 2 provides more detailed results for
three prediction targets, one for each of runtime, memory
usage, and disk usage. These scatter plots are merely a visual
sample in lieu of displaying detailed results for all 16 pre-
diction targets. In general, these plots are useful because they
provide context for the error metrics at the level of individual
predictions. For example, in the case of KINC / similarity_mpi
runtime, the scatter plots show that most of the predictions
are very close to the true target value, even though both of
these models had more than 100% MAPE. This discrepancy
is caused by the fact that some of the runs for this process had
unusually long runtimes compared to similar runs; in other
words, the training data contained a few anomalies. In the
future, we intend to detect these kinds anomalies automatically
by checking whether the actual resource usage is outside the
confidence interval of the predicted usage, Tesseract could then
alert the user to review the job for errors.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 13,2022 at 20:57:44 UTC from IEEE Xplore. Restrictions apply.

model
mEm mip
. rf

gemmaker / download_runs / runtime_hr

gemmaker / download_runs / disk_ GB

gemmaker / fastq_dump / runtime_hr

gemmaker / fastq_dump / disk_GB

gemmaker / fastq_merge / runtime_hr

gemmaker / fastq_merge / disk_GB

gemmaker / fastqc_1 / runtime_hr

gene-oracle / phasel_fg / runtime_hr

Name

hemelb / hemelb / runtime_hr

hemelb / hemelb / memory_GB

kinc-chunk / similarity_chunk / memory_GB

kinc-chunk / extract / runtime_hr

kinc-mpi / similarity_mpi / runtime_hr

kinc-mpi / similarity_mpi / memory_GB

tspg / train_target / memory_GB

tspg / perturb / memory_GB

0 20 40 60 80 100 40 60 80 100
MAPE (%) Coverage Error (%)

O
N
o

Fig. 1: Summary of results for the 16 selected prediction targets. The left-hand panel shows mean absolute percentage error
(MAPE), with 20% MAPE denoted by the dashed red line. The right-hand panel shows coverage error, with 5% coverage error
denoted by the dashed red line.

14

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 13,2022 at 20:57:44 UTC from IEEE Xplore. Restrictions apply.

| mip

runtime_hr

memory_GB | mip

| mip

disk GB

Fig. 2: Expected vs predicted target values for three prediction targets, one example for each of runtime, memory usage, and
disk usage. In each case, the black dashed line denotes equality, each blue point and vertical bar is a point prediction with

304

254

204

151

10

40

30

| rf

20

10 A

runtime_hr

—-10

15
runtime_hr

20

(a) KINC / similarity_mpi runtime

runtime_hr

304

N
o
L

memory_GB | rf
[
)

10

20

20

0 5 15 25 0 5 10 15 25
memory_GB memory_GB
(b) HemelLB memory usage
60
301 50
40+
201 .
E -
gl I o - .
10 A 2 st ~"e I
[l
0] l
0 5 10 15 20 25 0 5 10 15 20 25
disk GB disk_GB

(¢) GEMmaker / download_runs disk usage

corresponding 95% confidence interval.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 13,2022 at 20:57:44 UTC from IEEE Xplore. Restrictions apply.

15

While we performed these experiments on a single com-
puting platform, Tesseract can be used on any platform that is
supported by Nextflow. In the future we would like to evaluate
Tesseract on other platforms, including cloud platforms, as
well as use system metrics as input features in order to predict
runtime across multiple platforms with a single model.

VI. CONCLUSIONS

We presented Tesseract, a tool for predicting resource usage
of scientific applications and workflows, using a methodology
that is generic across applications and platforms and requires
little computational expertise. We laid out the history of
resource prediction, underscoring the need for tools that are
generic and easy to use. We demonstrated how Tesseract
addresses this need by describing how the tool is used and
by evaluating the tool on a diverse set of scientific work-
flows. In particular, we show how Tesseract prevents under-
provisioning by providing confidence intervals. The source
code for Tesseract, including the scripts that were used to
generate performance data for this study, is available at https:
//github.com/bentsherman/tesseract under the MIT license.

ACKNOWLEDGMENT

This work was supported by National Science Foundation
Award #1659300 “CC*Data: National Cyberinfrastructure for
Scientific Data Analysis at Scale (SciDAS)”. Additionally,
Clemson University is acknowledged for generous allotment
of compute time on the Palmetto cluster.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In I2th {USENIX} symposium on operating systems design
and implementation ({OSDI} 16), pages 265-283, 2016.

Laura Carrington, Allan Snavely, and Nicole Wolter. A performance
prediction framework for scientific applications. Future Generation
Computer Systems, 22(3):336-346, 2006.

Siddhartha Chatterjee, Erin Parker, Philip J Hanlon, and Alvin R Lebeck.
Exact analysis of the cache behavior of nested loops. ACM SIGPLAN
Notices, 36(5):286-297, 2001.

Frangois Chollet et al. Keras. https://keras.io, 2015.

Rafael Ferreira Da Silva, Gideon Juve, Mats Rynge, Ewa Deelman, and
Miron Livny. Online task resource consumption prediction for scientific
workflows. Parallel Processing Letters, 25(03):1541003, 2015.

Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto Barja,
Emilio Palumbo, and Cedric Notredame. Nextflow enables reproducible
computational workflows. Nature biotechnology, 35(4):316-319, 2017.
Tan T Foster, Brian Toonen, and Patrick H Worley. Performance of
massively parallel computers for spectral atmospheric models. Journal
of Atmospheric and Oceanic Technology, 13(5):1031-1045, 1996.
Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approxima-
tion: Representing model uncertainty in deep learning. In international
conference on machine learning, pages 1050-1059. PMLR, 2016.
Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Cache miss
equations: a compiler framework for analyzing and tuning memory
behavior. ACM Transactions on Programming Languages and Systems
(TOPLAS), 21(4):703-746, 1999.

Derek Groen, David Abou Chacra, Rupert W. Nash, Jirf Jaros, Miguel O.
Bernabeu, and Peter V. Coveney. Weighted decomposition in high-
performance lattice-boltzmann simulations: are some lattice sites more
equal than others?, 2014.

[2]

[3]

[4]
[5]

[6]

(7

[8]

[9

—

[10]

16

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Derek Groen, James Hetherington, Hywel B Carver, Rupert W Nash,
Miguel O Bernabeu, and Peter V Coveney. Analysing and modelling the
performance of the hemelb lattice-boltzmann simulation environment.
Journal of Computational Science, 4(5):412-422, 2013.

Philip Guo. Cde: A tool for creating portable experimental software
packages. Computing in Science & Engineering, 14(4):32-35, 2012.
John Hadish, Tyler Biggs, Ben Shealy, Connor Wytko, Sai Prudhvi Oru-
ganti, F. Alex Feltus, and Stephen Ficklin. Systemsgenetics/gemmaker:
Release v1.1, January 2020.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in
Science & Engineering, 9(3):90-95, 2007.

Engin Ipek, Bronis R De Supinski, Martin Schulz, and Sally A McKee.
An approach to performance prediction for parallel applications. In
European Conference on Parallel Processing, pages 196-205. Springer,
2005.

Tejas S Karkhanis and James E Smith. A first-order superscalar
processor model. In Proceedings. 31st Annual International Symposium
on Computer Architecture, 2004., pages 338-349. IEEE, 2004.

Darren] Kerbyson, Henry J Alme, Adolfy Hoisie, Fabrizio Petrini,
Harvey] Wasserman, and Mike Gittings. Predictive performance and
scalability modeling of a large-scale application. In Proceedings of the
2001 ACM/IEEE conference on Supercomputing, pages 37-37, 2001.
Andréa Matsunaga and José AB Fortes. On the use of machine
learning to predict the time and resources consumed by applications.
In Proceedings of the 2010 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing, pages 495-504. IEEE Computer
Society, 2010.

FE. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

Kivan Polimis, Ariel Rokem, and Bryna Hazelton. Confidence intervals
for random forests in python. Journal of Open Source Software, 2(1),
2017.

Eduardo R Rodrigues, Renato LF Cunha, Marco AS Netto, and Michael
Spriggs. Helping hpc users specify job memory requirements via
machine learning. In 2016 Third International Workshop on HPC User
Support Tools (HUST), pages 6-13. IEEE, 2016.

Benjamin T Shealy, Josh JR Burns, Melissa C Smith, F Alex Feltus, and
Stephen P Ficklin. Gpu implementation of pairwise gaussian mixture
models for multi-modal gene co-expression networks. IEEE Access,
7:160845-160857, 2019.

Benjamin T Shealy, Mehrdad Yousefi, Ashwin T Srinath, Melissa C
Smith, and Ulf D Schiller. Gpu acceleration of the hemelb code for
lattice boltzmann simulations in sparse complex geometries. [EEE
Access, 9:61224-61236, 2021.

Colin Targonski, M Reed Bender, Benjamin T Shealy, Benafsh Husain,
Bill Paseman, Melissa C Smith, and F Alex Feltus. Cellular state
transformations using deep learning for precision medicine applications.
Patterns, page 100087, 2020.

Colin A Targonski, Courtney A Shearer, Benjamin T Shealy, Melissa C
Smith, and F Alex Feltus. Uncovering biomarker genes with enriched
classification potential from hallmark gene sets. Scientific reports,
9(1):1-10, 2019.

Stefan Wager, Trevor Hastie, and Bradley Efron. Confidence intervals
for random forests: The jackknife and the infinitesimal jackknife. The
Journal of Machine Learning Research, 15(1):1625-1651, 2014.
Michael ~Waskom and the seaborn development
mwaskom/seaborn, September 2020.

team.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 13,2022 at 20:57:44 UTC from IEEE Xplore. Restrictions apply.

