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Abstract

Many organisms divide limited defenses among heterogeneous assets. Plants allocate de-
fensive chemicals among tissues differing in value, cost of defense, and risk of herbivory.
Some ant colonies allocate specialized defenders among multiple nests differing in volume,
entrance size, and risk of attack. We develop a general mathematical model to determine
the optimal strategy for dividing defenses among assets depending on their value, defend-
ability, and risk of attack. We build upon plant defense theory by focusing on defendability,
which we define as the functional relationship between defensive investment and successful
defense. We show that if hard-to-defend assets cost more to defend, as assumed in resource
defense theory, the optimal strategy allocates more defenses to those assets, regardless of
risk. Inspired by cavity-nesting ants, we also consider the possibility that hard-to-defend
assets have a lower chance to be successfully defended, even when defensive investment is
high. Under this assumption, the optimal response to elevated risk is to reduce defensive
allocation to hard-to-defend assets, a conservative strategy previously observed in turtle ants
(Cephalotes). This new perspective on defendability suggests that, in systems where assets
differ in the chance of successful defense, defensive strategies may evolve to be sensitive to

risk in surprising ways.



Introduction

For all organisms, defense against predators, parasites or competitors is critical to fitness.
Defenses, however, may often be quite costly, in terms of resources allocated, missed opportu-
nities and even potential self-damage (Strauss et al., 2002; Zuk and Stoehr, 2002). This means
that the ability to flexibly activate defenses only when they are needed (inducible defenses)—
rather than continuously expressing them at a constant level (constitutive defenses)—may
be of great benefit (Harvell, 1990). For example, many plants can induce physical and/or
chemical defenses in response to herbivore attack (reviewed in Zangerl, 2003), while animals’
investment in immune defense may fluctuate, influenced by changing costs and benefits of
defense as well as the risk of attack (Viney et al., 2005; Houston et al., 2007; Love et al.,
2008). However, the ability to modulate total investment in defense over time is just one
way for organisms to respond to environmental variation; another is to change the way de-
fenses are spatially allocated, either across different parts of the organism or across different
external resources. For example, some plants reallocate chemical defenses to young leaves,
which have greater expected future photosynthetic value than older leaves (van Dam et al.,
1996). Individuals may subdivide their time defending multiple mates, multiple food re-
sources, or both (e.g. Camfield, 2006; Buzatto and Machado, 2008; Magellan and Kaiser,
2010). In group-living species such as social insects, birds and primates, different individuals
may contribute to defense across multiple food resources (Hoélldobler and Lumsden, 1980;
Johnson, 1981; Brown, 2013) or multiple nests (Powell and Dornhaus, 2013; Smith et al.,
2003; Farabaugh et al., 2010).

Prior theory regarding the defensive behavior of organisms has identified three factors
that can influence the optimal deployment of defenses: the costs and benefits of defense
and the probability of attack. Optimal plant defense theory was formulated to address the

spatial and temporal allocation of defenses within plant tissues or across individuals based on



these three factors (McKey, 1979; Zangerl and Rutledge, 1996). Resource defense theory was
developed to explain territoriality in animals such as birds and fish: specifically, whether they
defend home ranges, food resources, nesting sites and/or mates (Brown, 1964; Grant, 1993).
While resource defense theory has focused on the binary choice of whether or not a resource
should be defended, plant defense theory has also addressed the optimal allocation of limited
defenses across multiple resources. A key concept from resource defense theory is that of
economic defendability, which was defined in a binary fashion: a “defendable” territory is one
in which the fitness benefits of defending a resource outweigh the costs of doing so (Brown,
1964; Mitani and Rodman, 1979). Plant defense theory has instead considered the optimal
spatial allocation of defenses across different tissues, but the focus has been on tissues that
vary in their value, affecting the benefit of defense (e.g. McCall and Fordyce, 2010), or in
their risk of attack (e.g. Zangerl and Rutledge, 1996)—with no consideration of how tissues
may vary in the cost of defense.

Here, we bring a new perspective to the theory of optimal defense by bringing together
aspects from plant defense theory and animal-focused resource defense theory in a way that
is inspired by collective defense in social insects. Specifically, we broaden the idea of defend-
ability in a way that allows us to examine the consequences of quantitative differences in
defensive allocation, by defining it as the functional relationship between defensive invest-
ment (cost) and successful defense against an attack (benefit). We consider defendability
as a characteristic that may vary among assets, and ask how such variation in defendability
influences the optimal spatial allocation of defenses among assets. Often, defendability may
vary between assets based on the size of the region that needs to be defended. For terri-
tory or resource defense, this is the perimeter of the territory or resource to be defended
(Brown, 1964; Grant, 1993; Holldobler and Lumsden, 1980); it has typically been assumed
that the costs of defense scale linearly with the length of the perimeter (Mitani and Rodman,

1979; Lowen and Dunbar, 1994). For chemical defenses in plants, the concentration of the



defensive compound within a tissue is generally considered to determine its effectiveness,
meaning that the costs of defense scale linearly with tissue volume (van Dam et al., 1996;
Iwasa et al., 1996; Brunt et al., 2006). Thus, existing models implicitly assume that assets
vary in defendability only according differences in cost; for example, if a hard-to-defend asset
costs twice as much to defend as an easy-to-defend asset, this relationship holds regardless
of the desired level of defense.

Our approach to defendability, instead, is inspired by the biology of polydomous cavity-
nesting ants. In polydomous species, a single colony of ants occupies multiple nests and
allocates individuals and resources across these discrete physical locations; such species are
widespread geographically and phylogenetically, and are often ecologically dominant or even
invasive (Debout et al., 2007). Many of these species nest exclusively in pre-existing natural
cavities, such as fallen nuts and beetle-produced cavities in tree stems, often selecting cavities
based on specific properties (Herbers, 1989; Powell, 2009; Priest et al., 2021). Some of these
species also deploy morphologically and/or behaviorally specialized defenders across nesting
cavities to protect these limiting resources from competitors, with the number of defenders
depending on cavity properties such as volume, entrance size, and risk of attack (Powell,
2008, 2009; Powell and Dornhaus, 2013; Powell et al., 2017; Fujioka et al., 2019). The
multiple nests belonging to a single ant colony may thus be seen as spatially separate assets
to be protected, with a limited quotient of specialized defenders that can be divided among
those assets according to their value, defendability and risk of attack.

The motivating biological example of allocating specialized defenders across multiple
nesting cavities leads us to consider several models of how defendability may vary among
assets. In the theory of territory defense, differences in territory defendability are assumed
to stem from differences in cost, where cost may scale with territory size in different ways
(Holldobler and Lumsden, 1980; Schoener, 1983). By defining defendability as the functional

relationship between defensive investment and successful defense, we are able to encompass



not only differences between assets in the cost of defense, but also in the chance that de-
fenses will fail. We begin with the assumption that the chance of successful defense has
a sigmoid shape, as is typical in models of anti-predator behavior (e.g. Nonacs and Blum-
stein, 2010). To illustrate the implications of different assumptions about how assets vary
in their relationship between defensive allocation and success, we compare three models of
defendability. Two models are based on increasing cost with different scaling relationships,
consistent with prior theory developed for territorial defense. In contrast, the third model
is tailored to fit the turtle ant Cephalotes rohweri, a species of polydomous, cavity-nesting
ants in which controlled experiments on defensive allocation and success across nesting cav-
ities have been performed (Powell and Dornhaus, 2013; Powell et al., 2017). The turtle
ants (genus Cephalotes) typically have a soldier caste that is morphologically specialized for
nest defense: large, armor-plated heads are used to physically block small nest entrances
from potential intruders (Creighton and Gregg, 1954; de Andrade and Baroni Urbani, 1999;
Powell, 2008, 2009, 2016). The number of soldier heads required to block a cavity entrance
thus provides a natural index of that cavity’s defendability: larger entrances require more
soldiers to defend them (Powell, 2008). Based on the natural history of C. rohweri as well
as previous field experiments, cavities with large entrances are more frequently lost even
when well defended (Powell et al., 2017). To capture the non-linear relationship between
entrance size and the number of soldiers required, we consider a third model of what makes
an asset harder to defend: it is less likely to withstand an attack, even when amply sup-
plied with defenses. We show that a model of defendability in which hard-to-defend assets
have a higher chance of defensive failure, unlike one in which successful defense simply costs
more, gives rise to an optimal defensive strategy which is conservative in its response to
risk—a qualitative response observed in prior experiments with C. rohweri (Powell et al.,
2017). More generally, our models suggest that defendability plays a key role in optimal

defensive allocation among heterogeneous assets, and that systems which differ in the way



that defendability varies among assets may have very different defensive responses to risk.

Methods

We describe a mathematical model of the flexible deployment of limited defenses across
assets that vary in defendability, risk of attack, and value. The model consists of a set of
equations specifying how the allocation of defenses to different assets affects the expected
fitness gained from those assets. We define defendability as the chance that an asset can
successfully be defended against an attack, based on the quantity of defensive resources
allocated there. Assets may vary in their defendability based on physical features such as
area (for territory defense), entrance size and number (for nest cavity defense), or tissue
volume and toughness (for chemical defenses). We create a defense model as a family of
functions mapping defensive allocation to probability of successful defense, indexed by an
additional argument (here called perimeter size) that varies across assets, indicating the
quantity of defenses required to achieve a certain level of defensive success against a single
attack. To explore the consequences of variation in different aspects of defendability, we
create three different defense models, based on different assumptions about the relationship
between defensive investment and the probability of successful defense across assets that vary
in defendability. For each defense model, we describe the optimal defense strategy; that is,
given a particular quantity of defensive resources to spread across all assets, which allocation
of defenses among assets maximizes the expected fitness gained. To do this, we combine two
approaches: we numerically calculate the optimal strategy for several specific examples, and
we analyze how the marginal value of additional defenses at an asset is affected by the defense
model as well as the characteristics of the asset.

The model framework is designed to be general enough to apply to the allocation of

chemical defenses across plant tissues, the allocation of defensive effort across multiple food



resources, for example in territorial animals, and the allocation of specialized defenders
across nesting resources, for example in polydomous ants. In Supplementary Material S1,
we discuss the assumptions of the model and its three variations in more detail, and how
well they may apply across different biological scenarios such as the allocation of defensive
compounds across leaves based on age (van Dam et al.; 1996), defense of multiple food
resources by primate groups (Brown, 2013) and social insects (Tanner, 2008; Han and Elgar,

2020), and defense of multiple cavity nests in ants (Powell et al., 2017; Fujioka et al., 2019).

Model definition

The total amount of defense available is formulated as a discrete quantity m, while the
number of assets available is denoted n. Each asset i has a value v; denoting the potential
fitness gain from that asset. Defendability (the relationship between defensive allocation
and the probability of successful defense against an attack) varies among assets according
to the index h;, which indicates the quantity of defense required to provide a specified level
of defensive coverage. For simplicity, we will here refer to h as the perimeter size, referring
to the defensive perimeter which is the part of the asset that needs to be defended; this
could mean the perimeter of a territory, the area of a nest entrance, or the volume of a leaf.
However, other factors such as number of nest entrances or leaf toughness may also influence
the amount of defense required at different assets (see Supplementary Material S1 for more
detail). Attacks are assumed to occur on each asset independently of one another, at a rate
a; which may vary across assets according to differences in accessibility or attractiveness.
These variables and their interpretations are summarized in Table 1.

First of all, we want to model defendability: the probability of successful defense against
a single attack, depending on the defensive resources dedicated to a particular asset and

its perimeter size. We model the relationship between the defensive allocation, k, and the



Table 1
Asset characteristics: definitions and variables

Concept  General interpretation In turtle ant nest defense In the model

Defendability Functional relationship Probability of defending a nest d(k,h)
between defensive invest- against a single attack, depend-
ment & success ing on number of soldiers
Perimeter size Size of the region of the Nest entrance size h
asset to be defended
Value Potential fitness gain Nest volume (brood capacity) v
from an asset
Risk Rate of attack Expected number of attacks per a
cavity per season

Note: See text and Supplementary Material S1 for interpretations in other specific systems, such as plant

defense and territory defense

probability of successful defense, d(k), using the logistic function:

A

d(k) = -y (1)

This function has a customizable sigmoid shape controlled by three parameters: A is the
upper asymptote (the lower asymptote is always zero), S reflects the steepness of the curve,
and M is the midpoint, which is the point of greatest steepness. In our application, A is the
chance of successful defense when there are plenty of defenses, S controls the marginal value
of additional defenses (i.e. how much each defensive unit contributes to defense), and M is
the number of defensive units at which that marginal value is maximized. We consider three
different defense models, which differ in the way that the parameters A, S, and M relate to

perimeter size h.

Defendability: coverage model

For the simplest defense model, we begin with a natural assumption: what determines the
probability of successful defense is simply the defensive coverage, that is, the ratio between

the number of defensive units allocated and the perimeter size. We use the following de-



fense function to model the chance that k defensive units successfully defend an asset with

perimeter size h against a single attack:

1

do(k,h) = PRy

(2)

(see Figure 1a). In this version of the generalized logistic function, the midpoint M = h,
the steepness S = a/h, and the asymptote A = 1. Because the function only depends on
the ratio k:h, under this model five defensive units at an asset with perimeter size h = 5 are
exactly as effective as one defensive unit at an asset with perimeter size h = 1. The model
has one parameter, o, which affects the steepness and thus the marginal value of additional
defenses. For o = 5, at an asset with perimeter size h = 1, the chance of success with no

defense is close to zero, with one defense unit is 50%, and with two units is close to 100%.

Defendability: accelerating-cost model

Next, we consider the possibility that the defensive resources needed are not directly pro-
portional to perimeter size, but increase more than proportionally as the perimeter size

increases. To model this, we modify the defense function as follows:

1
di(k,h) = = 3
1( ) 14+ efhiﬁ(k,hﬁ) ( )

(see Figure 1b). The model has one additional parameter beyond the coverage model, j,
which controls how quickly defensive costs increase as perimeter size increases. We assume
that 5 > 1; for 5 =1, di(k, h) reduces to the coverage model, dy(k, h). In the accelerating-
cost model, the midpoint and the steepness depend on a power of the perimeter size (M = h”
and S = ;%), but the asymptote A is still equal to 1 regardless of perimeter size. In contrast
to the coverage model, five defensive units at an asset with perimeter size h = 5 are not as

effective as one defensive unit at an asset with perimeter size h = 1. For § = log6/log 5, six
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Three defense functions, illustrated for turtle ants. The defense function describes the prob-
ability that k defensive soldiers can successfully defend a single nest cavity with entrance
size h against a single attack. In three models, each based on the logistic curve, the number
of soldiers required to defend a nest cavity increases with entrance size. (a) In the coverage
model dy(k, k) that increase is directly proportional to entrance size. (b) In the accelerating-
cost model d;(k, h), the number of soldiers required increases faster than entrance size (see
Equation 3; here, f = 1.11328). (c) In the diminishing-success model ds(k, h), even with
many soldiers a large-entrance nest cavity can never be defended as well as a small-entrance
nest cavity (see Equation 4; here v = 0.2). Defensive soldier heads of C. rohweri blocking a
small entrance (h = 1) and a large entrance (h = 6) are illustrated.
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defensive units at an asset with perimeter size h = 5 are just as effective as one defensive

unit at an asset with perimeter size h = 1 (that is, if h = 5 then h” = 6).

Defendability: diminished-success model

Finally, we consider the possibility that some assets can never be defended as well as others,
regardless of how much defensive effort is allocated to them. To model this, we modify the

defense function as follows:
B

dy(k,h) = =)

(4)

(see Figure 1c). This model has one additional parameter beyond the coverage model, -,
which controls the asymptote. We assume that v > 0 (for v = 0, this reduces to the
coverage model, dy(k, h)) and that A > 1. In this third version, as for the first, the midpoint
and the steepness depend directly on the size of the region to be defended (M = h and
S = «a/h); however, here the asymptote also decreases with the size of the region to be
defended (A = h™7). The result is that, just as for d;(k, h), five defensive units at an asset
with perimeter size h = 5 are not as effective as one defensive unit at an asset with perimeter
size h = 1. For v = 1/5, six defensive units at an asset with perimeter size h = 5 are about
as effective as one defensive unit at an asset with perimeter size h = 1 (50%), but no level
of defense at an asset with perimeter size h = 5 can match the effectiveness of two defensive

units at an asset with perimeter size h = 1.

Risk of attack

Given the relationship between perimeter size, defensive allocation, and chance of success-
fully defending against a single attack, we would like to model the chance that a particular
defensive allocation can successfully protect a single asset over an entire season. This de-

pends on the number of attacks on that asset during the season. We assume that attacks
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occur according to a Poisson process with fixed rate a;, so the rate of successful attacks is
also a Poisson process with rate a;(1 — d(k, h)), that is, the rate of attack multiplied by the
probability of failed defense. The chance that no successful attacks occur over the entire

season, on an asset with perimeter size h defended by k defensive units is therefore:
s(k, h,a) = e~ ail=dk) (5)

for any of the three defense functions.

Value

Finally, we want to estimate the potential fitness effects of a specific allocation of defenses
among a set of assets that may vary in defendability, risk of attack, and value. We represent
an allocation of m defenses among n assets as a vector k= (k1, k2, ..., ky) where Z:.L:l ki=m
and each k; is non-negative. We characterize the n assets available with a vector h =
(hi, ha, ..., hy,) of perimeter sizes, a vector @ = (ay,as,...a,) of attack risks, and a vector
U = (vq, Vg, ..., v,) representing the asset values. For each asset i, we multiply the chance of
successfully defending that asset over the whole season, s(k;, h;,a;), by the potential it has

to add to fitness, v;. Then we sum over all available assets
f(l;, h,d, ) = Z vis(ki, by, a;) (6)
i=1
to get the expected fitness for the season.

Numerical examples

To illustrate the way that the optimal strategy depends on the asset features and how this is

affected by the defense function, we include three series of numerical examples representing
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the allocation of turtle ant soldiers among four different potential nest cavities. Each series
focuses on the effect of one of the three characteristics of interest: value, defendability, or
risk of attack. In each of the numerical examples, we consider two pairs of cavities which
differ in just one of those characteristics, e.g. two cavities are of high value and the other two
are of low value, while all other characteristics are fixed (see Table 2). Using Mathematica
(Wolfram Research, Inc., 2020), we generated all possible ways to divide m soldiers among
four nest cavities (where it is possible that some cavities have no soldiers) and asked which
of those ways gave the highest expected reproductive fitness (Equation 6) using each of
the three defense models. We let the total number of soldiers m vary from 1 to 40 and
found the optimal allocation among cavities for each value of m. For all examples, we used
model parameters a = 5, § = 1.11328 (accelerating-cost model) and v = 0.2 (diminishing-
success model), as illustrated in Figure 1. The value @ = 5 was chosen so that for an
entrance size matching one soldier’s head, the chance of successful defense with no soldiers
is close to zero (Hasegawa, 1993; Powell et al., 2017). The values of § and v were chosen to
facilitate comparison between models: the accelerating-cost and diminishing-success models
show approximately equivalent defensive success for six soldiers in cavities with entrance size
h =5 (as good as five soldiers in the coverage model), but any soldiers beyond six are less

effective in the diminishing-success model than the accelerating-cost model.

Model analysis

Finally, in order to interpret the results of our numerical examples and generalize beyond
the specific parameter values we chose, we examined the marginal value of each soldier—
how much it contributes to expected colony reproductive fitness, depending on where it is
deployed. A mnecessary (but not sufficient) property of an optimal strategy is that fitness
cannot be improved by moving just one soldier from one cavity to another: that is, the

marginal value of the last soldier in each cavity is greater than the marginal value of an
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Table 2

Parameter settings for numerical examples

Numerical example series Value Defendability ~ Risk of attack
Asset value vy =50,v, =10 h=1 a=1
vg =50,v, =10 h=5 a=1
vg =50,v, =10 h=1 a=10
vg =50,v, =10 h=5 a =10
Asset defendability v = 50 hs=1h =5 a=1
v =>50 hs=1,hy =5 a=10
Risk of attack v = 50 h=1 ag =10, ar, =1
v =150 h=5 aHzlo,aLzl

Note: In each numerical example, we considered four cavities of two different types, with variation in only
one characteristic. For example, in the first row, two cavities had value vy = 50 and two had vy, = 10,
while all four had entrance size h = 1 and attack rate a = 1. We ran each series for all three defense

models, using parameters « =5, f = 1.11328 and v = 0.2

additional soldier in any other cavity. Mathematically, this property can be expressed as:
Af (K, hiyag, o) > Af(k; + 1, by, a5, v)) (7)

for all cavities ¢ and j with j # i, where k; represents the number of soldiers in the ¢th cavity
under the optimal deployment strategy. The marginal value of the kth soldier in cavity 7 is
defined as:

Af(ki, hiya;,v;) = v; (s(kiy hiya;) — sk — 1, kg, a;)) (8)

By examining the way that the marginal value of each soldier is affected by cavity value v,
perimeter size h, and risk of attack a, we gain insight into the way that the optimal allocation
of soldiers among cavities is affected by these properties, and how this differs between the

three models.
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Results

First we illustrate the behavior of the model by describing the results of the numerical
examples, based on the allocation of turtle ant soldiers among four nest cavities of two
different types. Using each of the three defense models, we show the optimal defense strategy
in response to differences in value, defendability and risk of attack, both in terms of which
cavities are defended, and how defenses are balanced between cavities. Comparing strategies
across the three models, we highlight aspects of the strategy that depend on the assumptions
of the specific defense model. Second, we analyze the model more generally to explain why
value, defendability and risk of attack affect the optimal defensive strategy in different ways,

and why only some aspects of that strategy are affected by the details of the defense model.

Numerical examples

In all cases, below a certain threshold number of soldiers, the optimal strategy is to concen-
trate soldiers in just a few cavities, rather than spreading them out among all cavities. We
can thus define two different colony states, which will depend on the number of soldiers and
cavities available, as well as the properties of those cavities: (1) the defense-limited state,
in which a colony, to perform optimally, must choose the best subset of cavities to defend,
and (2) the asset-limited state, in which a colony’s optimal strategy must balance defenses
well among all cavities. In particular, we will focus on two questions: (1) in the defense-
limited state, which cavities are defended first? and (2) in the asset-limited state, how are
the numbers of soldiers in cavities of each type balanced? The answers to these questions
are summarized in Table 3, with features common to all defense models indicated in each
table cell and footnotes indicating differences between models. Below, we give more detail

for each numerical example.
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Table 3

Common features of optimal defensive strategies across models.

Asset choice, defense limited Defense allocation, asset limited
Value high value equal allocation to high/low value
Defendability easy-to-defend greater allocation to hard-to-defend®?
Risk of attack — equal allocation to low/high risk?

NOTE When given assets of two types, differing in just a single characteristic, the optimal strategy
defines both which type will be defended when defenses are limited (“Asset choice, defense
limited”) and the relative allocation of defenses between those types when assets are limited
(“Defense allocation, asset limited”).

aIn the coverage and diminishing-success models, the optimal allocation ratio is governed by the
perimeter size ratio hy:hg; in the accelerating-cost model it is governed by the perimeter size
ratio raised to a power (hrz:hg)?

bIn the diminishing-success model, increased risk of attack reduces the optimal allocation to
hard-to-defend assets; in the other models risk of attack has no effect.

¢ In the diminishing-success model, the optimal strategy abandons high-risk, hard-to-defend assets
when defenses are limited. In the other models, asset choice depends on the total defense
available.

d When cavities are hard to defend, the optimal allocation ratio deviates from 1:1. Under the
coverage model and the accelerating-cost model, the ratio favors high-risk assets, while under the
diminishing-success model, it favors low-risk assets.

Asset value

When a colony is defense-limited, the optimal strategy leaves one or more cavities unde-
fended; the undefended cavities are always those of low value, regardless of the risk of attack
or the defense model (Figure 2). When all nest cavities are easy to defend, and at low risk of
attack, a colony is defense-limited if it has fewer than m = 7 soldiers (Figure 2a,c, left of the
grey vertical line). When there are m = 7 soldiers, all four cavities are defended; the optimal
allocation across the four cavities is (2,2,2,1), meaning that one of the low-value cavities
receives just one soldier. When there are m = 7 or more soldiers, the colony is asset-limited,
and the optimal strategy is to allocate approximately equal numbers of soldiers to both high-
and low-value cavities. This yields an allocation ratio—the average number of soldiers per

defended low-value cavity, divided by the average number of soldiers per high-value cavity—
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near 1:1 (Figure 2a,c, right of the grey vertical line). As the number of available soldiers
increases, each cavity takes turns receiving one soldier, with the high-value cavities given
priority. Thus, when the number of soldiers available is not divisible by 4, the allocation ratio
is a little below 1. When all nest cavities are hard to defend, but still at low risk of attack,
many more soldiers (m = 30) are required before the colony becomes asset-limited (Figure
2b,d, vertical grey line). For more than 30 soldiers, the optimal allocation ratio is still ap-
proximately 1:1 (Figure 2b,d, right of the grey vertical line), and as the number of available
soldiers increases, again each cavity takes turns receiving one soldier. The same general
patterns hold for all three defense models, for both low and high risk (see Supplementary
Material Figures S1 and S2).

Asset defendability

When a colony is defense-limited, the optimal strategy leaves one or more cavities unde-
fended: when assets vary in defendability, the cavities left undefended are always hard to
defend (large-entrance), regardless of the risk of attack or the defense model (Figure 3). In
each case, soldiers are initially allocated to the easy-to-defend cavities (allocation ratio = 0);
then an increasing number of soldiers is allocated to the first hard-to-defend cavity; then the
ratio drops as the second hard-to-defend cavity is added, decreasing the average number of
soldiers in each hard-to-defend cavity with soldiers. The vertical grey line indicates the point
at which all available cavities are defended, and thus the switch to an asset-limited state. In
the asset-limited state, the optimal strategy allocates many more soldiers to the cavities that
are hard to defend than to those that are easy to defend. For the coverage model, the allo-
cation ratio peaks at 5:1, regardless of risk, and as the number of soldiers increases beyond
24, additional soldiers are added in the same ratio—one new soldier in each easy-to-defend
cavity, followed by five new soldiers in each hard-to-defend cavity (Figure 3a,b). For the

accelerating cost model, the peak is at 6:1, regardless of risk, and new soldiers are added in
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Numerical examples: optimal soldier deployment depending on asset value. (a) and (b)
show the optimal way to divide m soldiers (z axis) into four available nest cavities (each
represented by one vertically stacked panel: two of high value vy = 50 and two of low value
vy, = 10). Each yellow dot represents a single soldier. In (a) all cavities are easy to defend
(small entrance, h = 1), while in (b), all cavities are hard to defend (large entrance, h = 5).
(c) and (d) show the corresponding optimal allocation ratios, that is, the average number of
soldiers per defended low-value cavity, divided by the average number of soldiers per defended
high-value cavity. The dashed line represents a 1:1 ratio. Above each graph, grey nest icons
indicate which cavities are defended by at least one soldier (have at least one yellow dot in
the corresponding panel above). The vertical grey line indicates the asset-limited threshold,
the minimum number of soldiers required for all four cavities to be defended. All cavities are
subject to low risk (attack rate @ = 1) and the defense model is the coverage model dy(k, h).
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a 6:1 ratio (Figure 3c,d). Only under the diminishing-success model is the ratio affected by
risk. When all cavities are at low risk of attack, the ratio initially peaks around 4.5:1, while
under high risk the initial peak is at 4:1; in both cases, additional soldiers are added in a
5:1 ratio (Figure 3e,f). In this sense, the diminishing-success model induces a conservative
response to risk: under higher risk of attack, the defensive skew towards the hard-to-defend

cavities is reduced, with relatively more soldiers allocated to easy-to-defend cavities.

Risk of attack

When a colony is defense-limited, the optimal strategy may choose either low- or high-
risk cavities to leave undefended. In most situations, it depends on the number of soldiers
available (Figure 4a,b,c; see Supplementary Material Figure S4a,b,c,d,e). Initially, all soldiers
are allocated to a low-risk cavity, but as the number of soldiers increases they are all shifted
to a high-risk cavity while the low-risk cavity is left undefended. Only for the diminishing-
success model with hard-to-defend cavities is the choice consistent: high-risk cavities are
only defended if all low-risk cavities are also defended (Figure 4d). When a colony is asset-
limited and cavities are easy to defend, the optimal strategy allocates approximately equal
numbers of soldiers to low and high risk cavities regardless of the defense model (Figure
4a; see Supplementary Material Figure Sda,c,e). However, when a colony is asset-limited
and cavities are hard to defend, risk impacts the optimal allocation ratio in different ways,
depending on the defense model. With the coverage model and the accelerating-cost model,
the optimal strategy allocates any extra soldiers to high-risk cavities (Figure 4b,c), but with
the diminishing-success model, the optimal strategy allocates any extra soldiers to low-risk
cavities (Figure 4d). Again, the diminishing-success model induces a conservative response
to risk, in the sense that it prioritizes the defense of low-risk cavities, both in terms of asset

choice under defense limitation and allocation ratio under asset limitation.

20



All cavities low risk, high value (a=1,v=50) Db All cavities
S R S'“'I"'

ag | e T L o
6 . : . . 6
BF--—--——— - @ -—-—— @ -~ 5F---————- @4 - - @8-
4f 4f
3f 3f

do(k, h)
* easy to defend (hg = 1)
® hard to defend (h; = 5)

do(k, h)
| easy to defend (hg = 1)
1% hard to defend (h =5)

Allocation ratio (hard:easy to defend)
[opow abeianod

Allocation ratio (hard:easy to defend)

20

OIIIIIIIIIIIIIIIIIIIIIII

C 5 N
© © L
c c T T T
2 2
[0 (0] Q
o S S sS6F e e 1
2 ® 2 © g
@ 5F @ S o
3 8 2
i S 4f s
£ k- @
< 3t < 3 Q
o Q @
8 dy (k, h) g 2 di (k, h) i3
o) * easy to defend (hg = < = =
S y to defend (hg = 1) S 4 easy to defend (hg = 1) 8_
§ 1 ® hard to defend (h, = 5) § ! ard to defend (h=5) @
S . . . J o
< <

I - 10 20 e 30 i f
g L - eSmSISSISSSSSiSSISSEEE: o
S B T T T T c
[0 [
g o 2
49 5 7777777777777777777777777 9 5 7777777777777777777777777 5-
> > =
s 4F S 4F =)
Q 4} =
o o @
s 3 8 3t 2
= = o
g2 da(k, h) g d(k, h) 18
E + easy to defend (hg = 1) E [d easy to defend (hg=1) 19
% 1 e hard to defend (h; = 5) -% 1 [® hard to defend (h; =5) 1 g
<_é> 0 1 1 1 1 § 0 1 1 L &
< 0 10 200 30 40 < 0 10 20 30 40

Total number of soldiers (m) Total number of soldiers (m)
Figure 3

Numerical examples: optimal soldier deployment depending on defendability. Each graph
shows the optimal allocation ratios for dividing soldiers among four available cavities, where
two are easy to defend (small entrance, hg = 1) and two are hard to defend (large entrance,
hr, = 5). The ratio is calculated as the average number of soldiers in defended hard-to-defend
cavities, divided by the average number of soldiers in defended easy-to-defend cavities. For
(a, ¢, e), the risk of attack is low (attack rate a = 1); for (b, d, f) the risk of attack is high
(attack rate a = 10). For (a, b) the optimal strategy is calculated using the coverage model
of defensive success dy; for (¢, d) using the 2dcelerating-cost model dy; for (e, f) using the
diminishing-success model dy (see Table 2 for values of other parameters).
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Figure 4

Numerical examples: optimal soldier deployment depending on risk of attack. Each graph
shows the optimal allocation ratio for dividing soldiers among four available cavities, where
two have high risk (attack rate ay = 10) and two have low risk (a; = 1). The allocation
ratio is the average number of soldiers in defended low-risk cavities compared to soldiers in
defended high-risk cavities. Note that the allocation ratio is undefined when no soldiers are
in high-risk cavities. For (a), all cavities are easy to defend (entrance size h = 1); for (b, c,
d) all cavities are hard to defend (h = 5). For panels (a, b) the optimal strategy is calculated
using the coverage model of defensive success dy; for panel (c) using the accelerating-cost
model dy; for panel (d) using the diminishing-success model ds (see Table 2 for values of
other parameters).
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Model analysis and generalization of results

The results of the numerical examples suggest a number of generalizations. Table 3 sum-
marizes several features of the optimal strategy that are independent of the specific defense
model, and result from more general assumptions of the model. Other features of the opti-
mal strategy do depend on the defense model (see footnotes in Table 3); in particular, the
diminishing-success model generates a uniquely conservative response to risk (specifically,
footnotes b—d). Here, we will compare the marginal value curves for defenses at different
types of assets across all three defense models, and argue that these results generalize beyond

the specific numerical examples we chose.

Features common to the optimal strategy under all defense models

Below a certain threshold quantity of defenses, the optimal strategy is to concentrate de-
fenses at just a few assets, rather than spreading them out among all assets. The advantage
of aggregating defenses at a subset of assets is a consequence of the sigmoidal shape of
the logistic family of defense functions (see Equation 1). Their sigmoidal form causes the
marginal value curves for additional defenses to initially increase, rather than steadily de-
creasing, creating a peak in marginal value beyond a single defensive unit (see Figure 5).
The marginal value curves show the fitness gained from allocating an additional defensive
unit to a specific asset. Thus, until the peak in marginal value is reached, it is more valuable
to add defenses to an asset that is already defended than to defend a new asset of the same
type. The consolidation of defenses is most noticeable when individual assets require more
defenses: when assets are difficult to defend (e.g. Figure 2b,d) and/or when risk of attack is
high (e.g. Figure 3b,d,f). This occurs because the location of the peak in marginal value is
shifted to the right for assets that are harder to defend (see Figure 5, blue vs. red curves)
and when the risk of attack increases (see Figure 5b,d.f vs. ba,c,e).

When limited defenses are consolidated into fewer assets, the optimal strategy involves
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Marginal value of each soldier. The marginal value function Af(k,h,a,v) describes the
contribution of one soldier to the colony’s total potential reproductive fitness, if it is the kth
soldier in a cavity with entrance size h, volume v, and risk of attack a. Within each panel,
four marginal value curves are shown, for cavities with four different combinations of value
and ease of defense (see legend in panel e). Panels on the left side (a, ¢, e) show the marginal
values for low risk (e = 1) while panels on the right (b, d, f) show marginal values for high
risk (¢ = 10). Panels in the top row (a, b) show marginal values for the coverage model
do; panels in the middle row (¢, d) show marginal values for the accelerating-cost model dy;
panels in the bottom row (e, f) show marginal values for the diminishing-success model ds
(see Table 2 for values of other parameters).
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a choice of which assets to defend: regardless of the model, it is always better to leave low-
value or hard-to-defend assets undefended. High-value assets are chosen first because they
contribute to fitness in proportion to their value (see Equation 6). Comparing the marginal
value curves for high-value and low-value assets with the same ease of defense, we see that
the kth defensive unit in a high-value asset contributes more to fitness than the kth defensive
unit in a low-value asset (compare dashed to solid lines in Figure 5). Easy-to-defend assets
are chosen first because we assume they require fewer defenses to defend them well, and
each defensive unit contributes more to defense. That is, in all three defense models, as
assets become harder to defend (h increases), the midpoint M increases and the steepness S
decreases (Figure 1). Because the marginal value curves are related to the slope of the fitness
gain for each asset as the number of defensive units allocated to it increases, the steepness
of the defense function affects the height of the peak in marginal value, while the midpoint
of the defense curve (the point of greatest steepness) affects its location. Thus, the peak
in marginal value for hard-to-defend assets occurs with more defensive units and is lower
than the peak for easy-to-defend assets (compare blue to red lines in Figure 5). Thus, in the
defense-limited condition, all else being equal, a group can always gain more from defending
an easy-to-defend asset than a hard-to-defend asset—just as it can gain more from defending
a high-value asset than a low-value asset.

When assets are limiting, instead, the optimal strategy balances defenses across assets
in a way that depends strongly on defendability, but less strongly on either value or risk of
attack. In the numerical examples, we saw that assets with a 5-fold difference in value were
defended in approximately a 1:1 ratio (Figure 2), as are assets with a 10-fold difference in
risk (Figure 4). In contrast, assets with a 5-fold difference in perimeter size were defended
at a ratio of 4:1 to 6:1, depending on the model. This ratio is governed by two features: (1)
the relative location of the peaks in marginal value, which determine the optimal allocation

ratio at the transition from an asset-limited to a defense-limited state, and (2) the relative
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rate at which the marginal value curves decay, which determines the optimal ratio at which
extra defenses beyond that threshold are placed at each asset. For each asset, the location
of the peak in marginal value is strongly determined by ease of defense (compare red to blue
lines in Figure 5), weakly affected by risk (compare Figure 5a,c,e to 5b,d,f), but not affected
by asset value at all (compare dashed to solid lines in Figure 5.) Furthermore, the rate at
which the marginal value curves decay converges quickly to a constant which depends only
on asset defendability (perimeter size h and the defense model d(k,h)), but not on asset

value or on the risk of attack (see Supplementary Material S2).

Unique features of the optimal strategy under the diminishing-success model

Under the diminishing-success model, it is optimal to prioritize defense of low-risk assets
when defenses are limited, a conservative response to risk that does not occur in the other
two models. The numerical examples for risk of attack show that, for the coverage model
and the accelerating-cost model, depending on the degree of defense limitation, it may be
advantageous for a group to defend a high-risk asset instead of a low-risk asset; in contrast,
for the diminishing-success model the low-risk assets always take priority (see Figure 4). In
the first two models, the effect of risk is to shift the peak in marginal value to the right and
up, so that assets under higher risk of attack require more defenses to defend them well, but
the value of each defensive unit is higher (compare Figure 5a,c to 5b,d). This means that
the optimal choice depends on the number of defensive units available: it is advantageous
to choose to defend high-risk assets, but only if there are sufficient defensive units to do so
well. In contrast, under the diminishing-success model, the effect of risk is to shift the peak
in marginal value to the right, and for assets that are hard to defend, also down (compare
Figure 5f to 5e). This is because, under the diminishing-success model, hard-to-defend assets
can never be defended as well as easy-to-defend assets, even with maximal defense. As a

result, when assets are difficult to defend, high-risk assets both require more defensive units
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to defend them, and are less worth defending.

When assets are limiting, risk of attack affects the optimal balance of defenses across
assets that differ in perimeter size for the diminishing-success model, but not for the other
two models. The numerical examples for asset defendability show that under the diminishing-
success model, increased overall risk of attack shifts the optimal allocation ratio away from
hard-to-defend assets (compare Figure 3f to 3e), but has no impact on optimal allocation
ratio for the other models (compare Figure 3b to 3a and 3d to 3c). This occurs because in
the coverage and accelerating-cost models, higher risk of attack increases the height of the
peaks in marginal value in the same way, regardless of perimeter size, so the relative peak
heights stay the same (compare Figure 5b to 5a and 5d to 5¢). In contrast, in the diminishing-
success model, the impact of risk on the peak heights depends on asset perimeter size: higher
risk actually reduces peak height, but only at hard-to-defend assets (compare Figure 5f to
5e). This striking difference in the impact of risk is a result of the fact that, under the
assumptions of the diminishing-success model, even well-defended hard-to-defend assets are
likely to succumb to attack and are thus less worth defending than easy-to-defend assets.

Although the optimal strategy is to allocate defenses approximately equally across assets
regardless of risk, under the diminishing-success model low-risk assets get any additional
defenses, while under the other models the high-risk assets get any additional defenses.
Increasing risk of attack shifts the peaks in marginal value to the right for all models (compare
Figure 5b to 5a, 5d to 5c, and 5f to 5e). For the coverage model and the accelerating-cost
model, risk of attack also increases the height of the peak (compare Figure 5b to 5a, and 5d
to 5¢). Together, these two things mean that for those two models the optimal strategy is to
prioritize defense at assets that are under higher risk of attack. However, for hard-to-defend
assets under the diminishing-success model, the optimal strategy is to prioritize defense at
assets under low risk of attack, because increased risk of attack reduces the height of the peak

(compare blue curves in Figure 5f to 5e). The reason that hard-to-defend, high-risk assets
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are avoided only for the diminishing-success model is that, under its assumptions, hard-to-
defend assets that are under higher risk of attack have more opportunity for defenses to fail

even when well defended, making them less worth defending.

Discussion

In this article, we have developed a mathematical model of defense that focuses on the
adaptive deployment of defenses: what is the optimal way to distribute limited defenses
among multiple assets, depending on their value, defendability and risk of attack? We focus
in particular on the impact of asset defendability, comparing three versions of the model that
make different assumptions about how assets vary in the costs of defense and/or the chance
of successful defense. We derive from all three models that it is critical to distinguish between
a defense-limited and an asset-limited state; in other words, between the decision of which
assets to defend at all when defenses are limited, and how much defense to allocate to each
asset when defenses are plentiful. Across all three models, we find that in the defense-limited
state, the optimal strategy is to focus defensive effort on high-value, easy-to-defend assets
while abandoning low-value or hard-to-defend assets. In the asset-limited state, defendability
has a stronger impact on the optimal defensive allocation than either value or risk of attack,
with far more defensive effort being allocated to the assets that are most difficult to defend.
Beyond these commonalities, however, for just one of the three models of defendability—
the diminishing-success model, in which even formidable defenses are likely to fail—we find
that a conservative response to risk is optimal. That is, under some conditions it may be
favorable to accept a high chance of defeat and to instead conservatively consolidate defenses
at assets that have a higher chance of being successfully defended: those that are easy to
defend and/or at low risk of attack.

The feature of asset choice—the fact that, for all three models, the optimal strategy
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aggregates limited defenses at a subset of assets—is not an inevitable consequence of any
defense model, but rather a result of the general family of defense functions we chose. Such
consolidation of defenses has in fact been observed in laboratory experiments with the turtle
ant Cephalotes rohweri: under conditions of higher risk, colonies defended fewer cavities,
and concentrated defenses primarily in well-established nests (Powell et al., 2017). This
trade-off between defending a few assets well and defending many poorly is analogous to the
well-established tradeoff between size and number of offspring. Many organisms are capable
of shifting between life-history strategies, producing either a few large offspring with high
fitness or many small offspring with lower fitness. Often, the optimal offspring size changes
depending on environmental conditions, typically increasing under harsher conditions where
offspring survival is lower (Smith and Fretwell, 1974; McGinley et al., 1987; Einum and
Fleming, 2004; Hassall et al., 2006). Similarly, we find that under higher risk of attack, the
optimal defensive strategy is to concentrate more defenses at fewer assets. The similarity is
due to the general shape of the investment /benefit curves: in both cases, benefits (chance of
survival or successful defense) initially increase slowly for small investment (in offspring size
or asset defense), then increase rapidly, and finally plateau. Under harsher environmental
conditions, small offspring are unlikely to survive and thus are not worth producing; similarly,
under high risk of attack, poorly defended assets are unlikely to be retained, and so are not
worth defending. The consolidation of defenses into fewer assets under risk might be a
strategy shared by other organisms, which, if observed, could suggest a sigmoid defense
curve.

By separating each strategy into the two components of asset choice and relative allo-
cation of defenses, we see that value and defendability influence these two components in
qualitatively different ways, regardless of which of the three defense models is used. For
value, the optimal strategy is to choose to defend higher-value assets when defenses are in

limited supply, and to allocate any extra defenses to those same assets when defenses are
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plentiful. In contrast, for defendability, the optimal strategy is to prioritize easy-to-defend
assets when defenses are scarce, but to concentrate defenses at hard-to-defend assets when
defense availability is high. Considering these two aspects together highlights a potential
tension between the choice of which assets to defend and the optimal level of investment in
those assets, which holds regardless of specific assumptions about how defendability varies
across assets. Intuitively, it might seem that what is worth defending at all should be worth
defending well. For value, this intuition holds: the optimal strategy is to defend high-value
assets, and invest more in their defense. However, when it comes to defendability, the assets
that are most worth defending are actually those requiring the least amount of defensive ef-
fort. In fact, the reason it is optimal to choose those assets is precisely because they require
less defensive investment to achieve the same levels of defensive success.

The tension between the choice to defend an asset at all and the quantity of defensive
resources to allocate to it raises an interesting question: how might a distributed decision-
making entity, such as a social insect colony, actually implement an optimal deployment
strategy? Such a colony faces conflicting objectives, depending on the conditions: to prefer-
entially defend easy-to-defend assets when the colony is defense-limited, but to allocate more
defenses to hard-to-defend assets when the colony is asset-limited. It is difficult to see how
individual preferences based on defendability alone could produce such behavior. There may
be simple rules of thumb that individual soldiers could follow, where preference is modulated
for example by the presence of other soldiers in a cavity. This might yield adaptive group
behavior most of the time, as seen for example in models of social insect foraging (Camazine
and Sneyd, 1991; Hirsh and Gordon, 2001; Detrain and Deneubourg, 2008). Intriguingly,
laboratory experiments with C. rohweri showed that while colonies did allocate more sol-
diers to cavities that are difficult to defend, they did not choose to defend easy-to-defend
cavities over hard-to-defend ones—even though such cavities showed much higher survival

in the field (Powell et al., 2017). This observation stands in contrast to field experiments
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with C. persimilis, in which artificial cavities with smaller entrances were chosen and de-
fended (Powell, 2009). Examining how individual decisions lead to group-level patterns of
occupation and defense under different conditions for these different species, empirically and
theoretically, might explain why such different group behaviors are observed.

Although the qualitative results for all three defense models are similar in many ways,
the assumptions of the diminishing-success model in particular generate more conservative
optimal strategies which invest preferentially in defending low-risk, easy-to-defend assets.
Comparing the optimal defense strategies generated by these models with empirical results
from laboratory experiments in turtle ants, we find that the lower rate of successful defense
in the diminishing-success model can explain a surprising feature of the turtle ants’ defensive
deployment strategy. Under conditions of elevated risk, colonies of C. rohwer: responded
by reducing defenses at the most difficult-to-defend cavities (Powell et al., 2017), a counter-
intuitive result which seemed at odds with general models of colony task allocation (e.g.
Cornejo et al., 2014). However, reduced investment in high-risk assets under risk is a unique
prediction of the diminishing-success defense model, arising from its biologically-inspired
assumption that some cavities are more difficult to defend, not just because they require
more investment to defend well, but also because the nature of the interactions means it
is likely that even well-defended cavities will succumb to attack. This assumption fits the
ecology of turtle ants with highly specialized defensive soldiers, because soldiers create a
physical blockade with their armored heads, and in larger entrances, those physical blockades
are less structurally sound (Powell, 2008). Variation between cavities in the likelihood that
an attack will be successful may thus explain why C. rohwer:i colonies take a conservative,
risk-limiting approach to defensive deployment. The diminishing-success model also predicts,
again counter-intuitively, that colonies should invest fewer soldiers in defending cavities that
are more likely to be attacked, for example because they are more accessible to competitors.

Future empirical studies could examine how soldier deployment responds to variation in risk
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of attack among nests, to explore whether turtle ant colonies indeed invest less in threatened
assets in order to limit risk. Other species in the large and diverse Cephalotes genus have
soldiers that are less specialized in defense (Powell, 2008, 2016; Powell et al., 2020), presenting
the opportunity for a comparative study of the turtle ants examining the relationship between
defensive morphology, the effects of entrance size and soldier number on defensive success,
and the defensive strategy in response to risk (see Supplementary Material S1).

We developed here a general model of defensive allocation, inspired by polydomous ant
colonies, but with potential applications in plant defense, resource defense, and other sys-
tems where limited defenses must be divided among multiple assets. By bringing together
aspects of prior work in optimal plant defense theory and resource defense theory, augmented
with insights from the study of collective behavior in social insects, we make two important
conceptual additions which could broaden the scope of such models to other organisms or
groups allocating limited defenses among multiple assets. First of all, we show that differ-
ences among assets in defendability can have even stronger impacts on defensive allocation
than differences in value or risk of attack. Prior work on the allocation of chemical defenses
across leaves has suggested that younger leaves are better protected because they are more
valuable to the plant (van Dam et al., 1996) or at higher risk of attack (Zangerl and Rutledge,
1996). However, younger leaves may also be better protected because they are harder to de-
fend: if leaves increase in toughness as they age, they may need less concentrated chemical
defenses to produce the same aversive effect on herbivores (Brunt et al., 2006; Mason and
Donovan, 2015). For animals that defend multiple food resources, such as ant colonies de-
fending trees with aphid colonies, defendability might depend not just on the perimeter size
of the food resource but also how competitors would access it (Holldobler, 1979), suggesting
an interesting comparison between defensive strategies for ants based on whether their pri-
mary competitors travel on the ground or via connecting branches in the canopy (Jackson,

1984; Tanner, 2008). Second, we compare two different ways in which certain assets can be
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disproportionately hard to defend: they require increasingly more defense, or the likelihood
of defensive failure grows. While plant defense theory has generally focused on the costs of
defense, the chance of defensive success may also vary across plant tissues: for example, the
use of nectaries to recruit ant defenders has been suggested to be more effective at cotton
leaves than at fruits, because herbivores are more accessible to the ant defenders on the leaves
than they are within the fruits (Wéckers and Bonifay, 2004). For ant colonies, the chance
of successfully defending a food resource may depend on the size and nature of the food
source, which affects the types of competitors attracted to it (Kaspari, 1993; Bliithgen and
Fiedler, 2004; Adler et al., 2007). Variation in these two aspects of defendability—defense
costs and the chance of successful defense—generate optimal strategies with qualitatively
different responses to risk. This suggests that different organisms in different contexts will
respond defensively to increased risk in different ways, but that by characterizing not just
whether but also how assets differ in defendability, we may be able to qualitatively predict

whether defensive allocation is sensitive to risk and in what way.
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