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ARTICLE INFO ABSTRACT
Keywords: The adhesive interactions between polymer nanofibers strongly influence the mechanical
Maugis-Dugdale behavior of their networks in synthetic materials and biological systems. A treatment of the ad-
JKR

hesive interactions at polymer contacts must take into account the viscoelastic behavior of the
van der Waals material in the contact region and the associated energy dissipation. This study focuses on the
Viscoelasticity rate-dependent adhesion of polyacrylonitrile (PAN) nanofibers which interact with strong van der
Nanofibers Waals forces. Experimental measurements of the detachment force between PAN fibers with di-
ameters 400 and 4000 nm showed that the apparent work of adhesion increases with the rate of
unloading by a factor of two within a three orders of magnitude increase in the unloading rate. In
order to obtain further insights into this rate-dependent adhesion, the Maugis-Dugdale (M-D)
elastic contact model for normal detachment was extended to include a linear viscoelastic
behavior of the PAN nanofibers. The extended model predicted the normal pull-off force in-
stabilities in good agreement with the experiments, capturing well the effect of the unloading
rate. The calculated viscoelastic time constants were of the order of milliseconds, suggesting fast
relaxations in the contact region, which explain the instantaneous full-strength reattachment of
nanoscale polymer fibers during slip-stick experiments.

Surface energy

1. Introduction

The adhesion between soft nanoscale fibers plays a significant role in the deformation mechanics of engineered nanofiber networks,
fibrous biological structures, and their respective composites (Negi and Picu, 2019). Compared to macroscale soft material structures,
the effect of adhesion is more pronounced at the micro and the nanometer length scales because of the significantly larger
surface-to-volume ratio. In a perfectly elastic material, the process of loading and unloading is reversible and contact mechanics
models such as the Johnson-Kendall-Roberts (JKR) (Johnson et al., 1971), the Maugis-Dugdale (M-D) (Maugis, 1992), or the
Derjaguin-Muller-Toporov (DMT) (Derjaguin et al., 1975) model have been applied in the past to extract the work of adhesion.
However, polymeric materials are viscoelastic, hence demonstrating adhesion hysteresis, due to which the work done to separate two
adhering surfaces is not fully recovered when the two surfaces are brought back into contact (Maeda et al., 2002; Waters and Guduru,
2010), because during separation there is viscoelastic dissipation of a fraction of the work done by external forces. When two surfaces
are brought together, the surface energy provides the driving force to overcome dissipation, as well as the external work. Thus, the
external work needed to separate two surfaces exceeds the energy that is returned when the surfaces come together, due to internal
dissipation. In addition, the apparent work of adhesion has been observed to be rate dependent when two surfaces separate or adhere.
This energy dissipation (Liu et al., 2018) and rate-dependency (Naraghi et al., 2014) in polymers is due to time-dependent molecular
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chain-level rearrangement processes that manifest as macroscale viscoelastic behavior. Macroscale normal detachment experiments of
glass (Maugis and Barquins, 1978) and silicon nitride (Lorenz et al., 2013) spheres from polyurethane and PDMS elastomeric films,
respectively, have shown that the apparent work of adhesion increases with the peeling rate (or crack tip velocity). For instance, Zeng
et al. (2006) performed pull-off experiments on thin polystyrene films attached to mica cylinders and showed that even at the
micrometer length scales, the pull-off force, and thus the apparent surface energy, increases with the separation rate following an
S-shaped growth curve.

In the absence of adhesion, the linear viscoelastic contact problem of spheres has been studied in detail by Ting (1966) and Graham
(1967). Later, Maugis and Barquins (1978) used linear elastic fracture mechanics (LEFM) to generalize the mechanics of adhesion of
elastic bodies, and experimentally showed that the effective work of adhesion required to separate two adhering objects was a function
of the rate of peeling. A relevant solution to the problem of crack propagation and healing in viscoelastic materials was provided earlier
by Schapery (1975), (1975) and (1989). Contrary to elastic materials, during crack growth in viscoelastic materials the energy flowing
from the far field to the crack tip is affected by energy dissipation, thus, making the available energy for crack growth a quantity that
needs to be determined. Therefore, although the reversible elastic problem (where loading and unloading contact size vs. normal load
data are identical) is completely described by the work of adhesion (i.e., the total work done by the adhesive forces), the problem of
crack growth in viscoelastic materials requires additional information about the distribution of the adhesive forces in order to develop
a thorough description. For a growing crack in a viscoelastic medium, the material near the crack tip would experience an “infinite”
strain rate due to the singular stress field associated with a JKR type model (because of negligible cohesive zone length), and as a result,
there can be no dissipation or crack velocity dependence on the propagation of the crack. In contrast, introducing a cohesive zone with
a finite size over which the interaction stresses act, leads to a finite strain rate resulting in velocity dependent dissipation (Hui et al.,
1998; Barthel and Frétigny, 2009). Hence, models that consider a simple distribution of adhesive forces, such as the Dugdale (1960)
and Barenblatt (1962) or the double-Hertz (Greenwood and Johnson, 1998) cohesive-zone models, have been successful in describing
viscoelastic crack growth. Cohesive-zone crack modeling has been used, for example by Liechti and Wu (2001), to simulate crack
propagation in rubber-metal debonding. The authors introduced a rate-dependent traction-separation law at the rubber-metal
interface along with a rate-dependent bulk rubber behavior to model quasi-static debonding under opening and mixed-mode
loading conditions. The results in Liechti and Wu (2001) highlighted the need to introduce rate-dependence in the cohesive zone.

Consideration of the aforementioned time-dependent processes in adhesive contacts at the micron and the nanometer length scales
is further restricted by the lack of experimental data, stemming from inherent difficulties in conducting experiments at these length
scales and actually measuring the geometry of the contact. The majority of the few existing studies focus on the normal detachment
problem of two nanofibers at a single detachment rate (Das and Chasiotis, 2020; Shi et al., 2010; Stachewicz et al., 2014; Wang et al.,
2012, 2017). Only one experimental study (Shi et al., 2012) has delved into the effect of the detachment rate on the “pull-off” force
between polycaprolactone microfibers, showing an increase in the work of adhesion with increasing detachment rate, albeit in a quite
narrow range of applied detachment rates. However, for meaningful conclusions to be drawn, such experimental results need to be put
in a theoretical framework that incorporates the effect of viscoelasticity on the adhesive response.

This combined experimental and analytical study focuses on the role of time-dependent material processes in the apparent work of
adhesion between polymeric nanofibers interacting through strong van der Waals forces. The experimental method allows for a broad
spectrum of detachment rates and contact displacements, bridging limit cases in rate-dependent normal detachment response. A
theoretical framework using the M-D model combined with LEFM and linear viscoelasticity provides the background to analyze the
experimental results, quantify the relevant material time scales at the fiber contact, and make predictions for the apparent work of
adhesion as a function of detachment rate.

2. Materials and methods

Nanoscale contact experiments were carried out with polyacrylonitrile (PAN) nanofibers. The latter were selected because of the
high surface energy of PAN (Das and Chasiotis, 2020) which during cold drawing deforms homogeneously without strain localization
and necking (Naraghi et al., 2007). The PAN nanofibers were synthesized via electrospinning from N, N-dimethylformamide (DMF)
solutions of 9, 12, and 15 wt.% PAN powders with MW=150,000 g/mol (Sigma-Aldrich). The PAN powders were dissolved in DMF at
room temperature through constant stirring for 24 h. The electrospinning voltage and the distance to the collector were 25 kV and 25
cm, respectively, at a relative humidity of 17% which was maintained inside a chamber by using calcium sulfate as desiccant. PAN
nanofibers with uniform diameter along their length were spun in suspended form on a wireframe collector and subsequently annealed
at 105C (20 C above the glass transition temperature, Tg) for 2 h to remove the surface roughness and any residual solvent (Das and
Chasiotis, 2020). The fiber diameter was controlled by the concentration of the polymer solution. Higher polymer concentrations
increased the solution viscosity and limited the stretching effect of the electrostatic repulsion forces, hence resulting in fibers with
larger diameters (Das and Chasiotis, 2020). Two extreme cases of PAN fibers were explored in this study, with diameters of 380 nm and
4100 nm.

Measurements of the adhesion force between individual PAN nanofibers were conducted in ambient conditions (23°C, 20-50%
relative humidity) by using a Microelectromechanical Systems (MEMS) type device under a high magnification optical microscope.
Due to the sensitive nature of the polymer nanofibers, in-situ tests inside a Scanning Electron Microscope (SEM) are prohibitive.
Instead, the optical microscopy method developed for this study allowed for fast imaging via a high-speed digital camera with frame
rates as high as 30,000 fps to record high magnification optical images during fast testing. Then, Digital Image Correlation (DIC) was
applied post-mortem to the optical images of the test device with the attached nanofiber, Fig. 1, to calculate the relative motion of the
components of the MEMS device and thus derive the applied force on the fibers (Naraghi et al., 2010; Naraghi et al., 2007) with a
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Fig. 1. (a) PAN nanofiber mounted on a MEMS device. (b) Schematic of a normal detachment test in which two fibers are brought at a slow rate into adhesive contact in crossed-cylinder geometry,
pressed into contact for 15 min, and subsequently pulled apart at various crosshead velocities.
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resolution of ~2 nN or better depending on the stiffness of the MEMS device (Das and Chasiotis, 2020). For each normal detachment
test, two PAN fiber segments were isolated from the same fiber with the aid of a micromanipulator and each segment was mounted
across a 50 pm section of a different MEMS device using a two-part epoxy, Fig. 1(a). Using fibers with the same diameter ensures a
circular contact area (Das and Chasiotis, 2020). Fig. 1(b) shows a schematic of the normal detachment procedure, where the midpoints
of two orthogonally positioned fibers are pressed into contact, held for 15 min in compression, and then pulled apart. The MEMS device
on the right was translated with a piezoelectric actuator at nominal speeds ranging between 3 nms ' and 1 mms™!. Note that the
contact point was in the middle of each fiber to prevent the moments arising from resultant tension components. The fiber diameter
was measured via an SEM after completion of all measurements.

3. Results and discussion

3.1. Normal detachment experiments

Fig. 2(a) shows a typical holding-unloading trajectory during a normal detachment test at a constant crosshead velocity of 2 ums L.
In the approach phase, the fibers were brought towards each other at 12 nms 1. A snap-in instability took place when the effective
spring constant of the force sensor and the fiber segments became equal to the gradient of the force-distance curve, e.g. (Das and
Chasiotis, 2020). Further compression bent and stretched the fibers to an initial compressive preload of 40 + 20 nN and 650 + 300 nN
for the 380 nm and 4100 nm diameter fibers, respectively, which was maintained for 15 min before the detachment (unloading)
process began. As a test of the effect of preload on the normal detachment force, Fig. 2(b) shows that the detachment force does not
depend appreciably on the initial compressive preload: the pull-off forces between two 3450 nm diameter fibers lie in a narrow range,
1472 + 50 nN, for initial compressive preloads varying between 130-3000 nN and a fixed crosshead velocity of 2 ums L. It will be
further shown in Section 3.5 that the same result can also be obtained numerically. During unloading, the two fibers detach when a
tensile pull-off force is reached. The experimental unloading trajectory provides the pull-off force and the unloading rate, dP/dt as
shown in Fig. 2(a). In the beginning the unloading rate is not constant due to bending and stretching of the fibers, but it assumes a
constant value at the later part of the unloading process, Fig. 2(a). Different nominal crosshead velocities provided different unloading
rates, inset, Fig. 2(a). As shown in Fig. 2(c), the pull-off force increases with the unloading rate following an S-shaped growth curve.
This increase in the pull-off force with the detachment rate can be thought of as an increase in the apparent work of adhesion with the
rate of unloading. Using contact mechanics models and treating the two fibers as cylinders with individual radii R; and Ry interacting
in crossed configuration with effective radius R = /R, Ra, the pull-off force is related to the apparent work of adhesion, w' as:

Ppu[[—.'z[f = _W”Rw, (1)

For the two extreme cases of adhesive contact and force control conditions, y lies between 1.5 (JRK model which is valid for soft
adhering solids with large elastic deformation) (Johnson et al., 1971) and 2 (DMT model which is valid for hard solids with negligible
elastic deformation) (Derjaguin et al., 1975). The JKR and DMT models for elastic contact are distinguished by the two extreme values

of the non-dimensional Tabor parameter, y = (Rw?/ (E*Zzg))l/ ®. The reduced elastic modulus E* = [(1 — v2)/E; + (1 — 12)/E,]”" with
Ey, v1, E, and v being the elastic moduli and Poisson’s ratios of materials 1 and 2 forming the contact; 2y is the equilibrium distance
between the two surfaces in contact; and w is the work of adhesion, which is the work required to separate two elastic bodies in contact.
For intermediate values of u, Maugis (1992) provided a closed form solution using the Dugdale approximation, where the adhesive
stress oy assumes a constant value until a critical separation, hy, between the two surfaces is reached and the force interaction vanishes.

It has been shown (Das and Chasiotis, 2020) that the work of adhesion of PAN nanofibers at the extremely slow detachment rate of
12nms ! is 101 = 11 mJ/m? or 96 + 11 mJ/m? calculated by using the JKR or the M-D elastic contact model, respectively, which is
twice the surface energy of bulk PAN (Li et al., 2001). These literature results are consistent with the experimental results in Fig. 2(c):
For instance, at the slowest unloading rate, the work of adhesion w=-Ppyi1.oft/(1.57R) (assuming the JKR model is valid) is calculated as
102 mJ/m> (Ppult-off = -91 nN) and 106 mJ. /m? (Ppull-off = -1.02 uN), for fibers with 380-nm and 4100-nm diameter, respectively. These
values for the work of adhesion are within one-standard deviation from the values reported in (Das and Chasiotis, 2020). However, the
aforementioned contact models must be revisited to account for the time-dependent effects demonstrated by the experiments in Fig. 2
(c). This objective is implemented in the next Sections in a linear elastic fracture mechanics (LEFM) framework to obtain an adhesion
model that accounts for viscoelastic effects. As a background, we first review the elastic contact solution that has been shown to be
valid at very slow detachment rates (12 nms’l), and then expand our discussion to the viscoelastic contact solution. Furthermore, it
has been shown (Das and Chasiotis, 2020) that, contrary to using zp=0.165 nm, a value zp=1 nm could predict the experimental
pull-off instabilities during stick-slip sliding of two PAN nanofibers. Notably, the commonly used value of zp)=0.165 nm was originally
obtained for a closed packed solid (Israelachvili, 2015), and some prior contact studies with polymers have adopted a more realistic
value of zp=1 nm (Shi et al., 2010; Wang et al., 2012; Stachewicz et al., 2014).
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Fig. 2. (a) Force vs. time in a normal detachment experiment between two 4100 nm diameter fibers, showing the hold stage (flat portion) and the
unloading stage. The inset shows a schematic of detachment tests with load, hold, and unloading stages. Note that with increase in unloading rate,
the pull-off force increases. The loading rate was constant in all experiments and equal to 12 nms ™! to minimize viscoelastic effects. (b) Force vs.
time in a normal detachment experiment with different initial compressive preloads applied to the contact of two 3450 nm diameter fibers, showing
that the preload does not influence the pull-off force. (c) Pull-off force vs. unloading rate for two fibers with diameters differing by one order of
magnitude. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

3.2. Adhesive contact between elastic fibers

For a perfectly elastic material, energy flows from the far field to drive the creation of new crack surfaces, and the critical energy
release rate, G, is equal to the work of adhesion. For u>5, i.e., when the JKR elastic contact model and LEFM are valid® (Das and
Chasiotis, 2020), the adhesive force, P,, gives rise to a singular tensile stress at the contact periphery. As a result, the mode I stress
intensity factor, K, is related to the energy release rate, G, and the contact radius, a, as (Waters and Guduru, 2010; Papangelo and
Ciavarella, 2019):

_K P
" 2E° 81E'd

Crack initiation occurs when G = G, which is equal to the work of adhesion, w. This gives:

(2

1 LEFM is valid when the process zone is very small compared to other problem dimensions. It can be shown that for 4 > 5, the ratio of the
cohesive zone size to the contact radius, d/a << 1, and, thus, the LEFM conditions are met.
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G=G.=w= P, = V8rE a®w 3)

The JKR relation between the applied normal force, P, and contact radius, a, for two elastic cylinders with equivalent radius R is
given by:

AE o .
P=Py—P,= 3R — V8rE a*w 4)

where Py is the equivalent Hertzian contact force that results in contact radius a in the absence of adhesion. Eq. (4) obeys the contact
mechanics sign convention in which compressive forces are considered positive, and can be written in normalized form as:

P=a -Vé6a (5a)

_r 487\
P=— a=al b
7TRw and a a(37[wR2) (5b)

Herein, both test fiber segments were obtained from the same long fiber, Ry = Ry = R, which, for a normal cross-cylinder
configuration, results in circular contact area.

The JKR elastic contact model is conceptually equivalent to the small-scale yielding (SSY) approximation in LEFM. The region
where adhesion forces act is small compared to the contact radius, which is equivalent to the dimensions of the process zone compared
to the crack length (or any other dimensions) in the SSY approximation. In the JKR model, the adhesive tensile stress is infinite at the
edge of the contact and thus, for a growing crack, the material near the crack tip experiences an “infinite” loading rate (Hui et al.,
1998). The material response to this infinite rate of loading depends only on the instantaneous elastic response, and, therefore,
interface crack propagation and growth in the JKR model do not depend on the crack tip velocity. However, this is not what is observed
in Fig. 2(c). A similar well-known paradox in viscoelastic fracture mechanics was resolved by Schapery (1975) and Knauss (1970) by
using a non-zero cohesive zone length, analogous to the M-D elastic contact model (Maugis, 1992). This cohesive zone renders the
stresses finite everywhere, and, as a result, the material response does not depend on the instantaneous elastic properties, hence giving
rise to rate-dependent crack growth.

Compared to the JKR model, the M-D model provides a more versatile treatment of the elastic contact adhesion problem for a wide
range of values for . In the M-D model, a cohesive zone exists outside the intimate contact region of radius a, which eliminates the
stress singularity in the JKR model. The cohesive zone with a constant adhesive tensile stress, oy extends to a radius ¢ (m=c/a), while in
the annulus a < r < ¢, the surface separation increases monotonically from zero to a value hy, beyond which the two surfaces no longer
interact with each other. The work of adhesion is then equal to w = 6phy. The value of the critical separation is obtained by energy
balance as hy = (9\/§ /16)20 ~ 0.972, and satisfies the condition that the work of adhesion, w, with a force per unit area, oy, is equal to
the interaction energy due to the Lennard-Jones potential in the adhesion region. The Maugis parameter, 4, in the M-D model, which is
equivalent to Tabor’s parameter (A = 1.16u), determines the strength of the adhesive tensile stresses and the extent of the cohesive
zone. As 1 increases from zero to infinity, there is a continuous transition from the DMT model to the JKR model. As a rule of thumb, the
DMT model is valid for u (or 1) < 0.1, while the JKR model is valid for y (or 1) > 5. In the M-D model, the following two equations are
solved simultaneously to relate P and a:

%zaz{(mz —2)cos (1 /m) +Vm? — 1 } +§E/12{\/m2 “Tcos ' (1/m)—m+ 1} =1, (6a)
P=a — ﬁaz{mzcos’l(l Jm)+Vm? — 1 } (6b)

The first term in Eq. (6b), is the Hertzian contact component, as in Eq. (5a), and the second term is the adhesive component which
depends on 4 and m. For large 4, (c —a)/a = (m—1) — 0 and Eq. (6b) reduces to Eq. (52), i.e., the JKR case.

3.3. Adbhesive contact of viscoelastic fibers

The aforementioned adhesive contact models were extended in the past to account for the linear viscoelastic response of two
cylinders in contact. The analogy between a moving crack in a viscoelastic solid and the kinetics of an adhering interface can be
understood by considering a system of two semi-infinite solids with an interface crack and a M-D adhesive traction distribution
(Johnson, 1999). The crack propagates under equilibrium conditions at a steady velocity V, by sliding a frictionless pin at the crack
mouth. For a perfectly elastic solid, if the pin moves towards the crack tip, the work done by sliding the pin exactly balances the work
done against the surface forces, w, (Eq. (3)) since the stored elastic strain energy does not change by displacing the pin. Similarly, the
same holds when the crack heals as the pin moves away from the crack tip. For a viscoelastic material, on the other hand, there is
energy dissipation as the strain field moves through the material, and the process of crack opening is different from that of crack
healing. Herein, the detachment problem is analogous to the process of crack opening. It is assumed that during crack opening in a
viscoelastic material, a fraction f(V) of the available elastic energy G is dissipated, and therefore, from energy considerations (Johnson,
1999):

(G—f(V)G) =G.=w (7a)
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e e (O RGES 7o)
According to (Johnson, 1999), for an opening crack, the fraction of dissipated energy, f, increases with local crack tip velocity V. Eq.
(7b) can also be written as: G = w/(1 — f), which is interpreted as follows: in a viscoelastic material, a crack initiates when the
available elastic energy becomes equal to the modified critical energy release rate, w = w/(1 — f). Thus, the apparent work of
adhesion, w, is greater than the extremely slow-rate (elastic) work of adhesion, w, since 0 < f <1. It also follows that the function y(V)
is required to determine w'. Schapery (1975) investigated the mechanics of crack initiation in viscoelastic materials, which was used by
Johnson and Greenwood to show that for an opening crack (Johnson, 1999; Greenwood and Johnson, 2006):

x(V) = (8)

@)
where j(t") is the normalized creep compliance function of the viscoelastic material at a representative time t*, which is the time
needed for the crack tip moving with velocity V to traverse a length d* of the effective process zone, namely d*=Vt*.

In the present study, the PAN fibers are assumed to behave in a linearly viscoelastic manner (also supported by the works of
Naraghi et al. (2014), and Shrestha et al. (2020)) which makes the problem mathematically tractable. Furthermore, a simple 3-element
standard linear solid (comprised of two springs and one dashpot) model is used to describe the small strain deformation behavior
(Johnson, 1999; Greenwood and Johnson, 2006). At extremely low and high deformation rates, the standard linear solid behaves
elastically with moduli, E; and ES, known, respectively, as the relaxed and the instantaneous moduli. At intermediate rates, the strain
£(t*) at a representative time t* for a step change in stress ¢ is given by &(t") = J(t")o, where J(t") is the creep compliance function:

I = é {1 - (1 ,%) exp(fgﬂ . éj(f) (9a)

0

"

i) = [1 -1 —k)exp(—%)]; k= %, (9b)

where, 7 is the viscoelastic time constant of the material, and k is the ratio of the relaxed modulus to the instantaneous modulus.

It is apparent that the Hertzian and the adhesive contributions in both the JKR and the M-D elastic contact models, Egs. (5a) and
(6b), have different length scales associated with them. There is the bulk deformation of the contact arising principally from the
Hertzian contact force Py, whose size is characterized by the radius a of the contact. The characteristic time for this bulk deformation is
tp ~ ap/V, where qy is the contact radius at the maximum compressive force. There is also a strain concentration just outside the
intimate contact region produced by adhesive forces, whose size is characterized by the effective length d* of the Dugdale zone, and
thus, the characteristic time associated with the adhesive force P, is t*~d*/V. Using Schapery’s arguments, Greenwood and Johnson
(2006) showed that for an opening crack, the effective process zone length can be considered as d*~dy/3, where dj is the cohesive zone
length (c-a) in the M-D model. Hence, the ratio of the characteristic times governing the strain rate in the two locations (Greenwood
and Johnson, 2006) is t*/tyg ~ d*/ap < 1 for 2 > 1 (when the length of the effective process zone is small compared to the initial contact
radius). For reference, the maximum value of d*/a ~ 0.2 for 4 = 1, with a being the contact area at pull-off. This means that the
viscoelastic effect at the edge of the contact due to the adhesive force P, can be separated from that in the Hertzian contact due to the
force Py. Thus, the Hertzian contact deformation can be assumed to be relatively very slow, elastic, and reversible with relaxed
modulus, E_, whereas all viscoelastic effects are confined to the adhesion term in Eq. (4). It should be noted, that the current study only
considers the viscoelastic effects of the polymer and does not delve into the rate dependence of the adhesive interaction in the cohesive
zone itself, as reported for example in Liechti and Wu (2001).

3.4. Extended JKR model for viscoelastic contact

The extension of the elastic JKR solution to account for viscoelastic effects is briefly reviewed here for completeness. In this problem
formulation, the total normal force in a viscoelastic adhesive contact can be written as (Greenwood and Johnson, 2006):

4E @ T o [
P=Py—P,= 3“}; —\/8r(yw)E_a* = P =a —\/6a’y, (10a)

« o\ 1/3
_ P _ 4E.,
P = m and a=a <3]7,'WR2) (10b)

where the work of adhesion is replaced by the apparent work of adhesion, yw (Eq. (7)), while the Hertzian contact contribution is
considered elastic and reversible with relaxed modulus E,.

The relation between two experimentally measured quantities: the pull-off force and the rate of unloading, dP /dt, is required to
utilize the extended JKR model for a viscoelastic material. Taking the derivative of P w.r.t @:
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dP 3 3@ dy
= _3(a-/2 LY 11
da (“ 2”) 27 da an

The left-hand side in Eq. (11) can also be written as:

%_J: (ilf/dt) - (Z:)( ) di (12

where the crack tip velocity is V = da/dt.
Equating (11) and (12), it follows that:

L 3@ dy P/P 3 B\ dP
3<a— Ea)()_ 5;; (a/a ()dt <4ﬂ2w2RE;) (V)E (13)

If a relationship between the local crack tip velocity V and the parameter y is obtained, then a can be related to y via the second
equality in Eq. (13). Note that dP/dt is known from the experimental data. As described before, the crack tip velocity Vis the ratio of the
length of the effective process zone, d* to the time taken to by the crack to traverse this distance:

4 d
V="w 3;3 (14a)
£ hz
do="" 0 = )> (14b)

where dp=(c-a) in the first expression of Eq. (14b) was derived by Johnson, (1999) and Johnson and Greenwood (2002).

The JKR model does not have a cohesive zone length since (c-a)=0. However, an extended viscoelastic JKR model would require a
cohesive zone length as explained in the previous Section. Towards this goal, Greenwood and Johnson (1981) used an argument from
Israelachvili and Tabor (1972), supporting an inverse cube variation of the attractive forces between two surfaces, to obtain a rough
estimate of the cohesive zone length as the distance (or separation) at which the attractive force falls to one eighth of its maximum
value. The first expression in Eqn. (14b) gives an estimate of the cohesive zone size for an elastic material Johnson, 1999; Johnson and
Greenwood, 2002), whereas for a viscoelastic material such an estimate is given by the second expression in Eq. (14b) (Greenwood and
Johnson, 2006). Using Egs. (9) and (14) the following relation between the crack tip velocity V and the parameter y is obtained:

(%) -0 ”‘)exp(*g)] -1 %{/}f (152)

which, with the aid of Egs. (8, 9b), can be written as:

v __x (15b)

Esh? 1k
1_7[2 ( Wru) ln<1*1/)()

Finally, the ordinary differential Eq. (13) can be solved numerically by using an initial condition (a = a, for y=1) to derive the

relation between @ and y. Once the relation between @ and y has been obtained for a given value of dP/dt, a relation between P and @
can then be derived through Eq. (10a), and the pull-off force for the same unloading rate dP/dt can be obtained by using the condition
dpP/da = 0.

3.4.1. Extended DMT model for viscoelastic contact

The assumption that all viscoelastic effects are confined to the adhesion term breaks down when the length scales (and hence the
time scales) associated with the adhesive contribution, i.e. the cohesive zone length, grow in comparison to the length (and time) scales
associated with the Hertzian contribution. At the theoretical DMT limit, the size of the cohesive zone becomes infinite compared to the
intimate contact region, and as such, the introduction of a “velocity-dependent adhesive energy” in the DMT limit appears inappro-
priate. However, Barthel and Roux (2000) used such an approach to obtain a relationship between the load and the intimate contact
radius in the DMT limit as:

4E o°

P=
3R

—27R(yw)=>P=a -2 (16)

The validity of Eq. (16) was established by Barthel and Roux (2000) via the argument that the same expression could also be
derived through a self-consistent description of the contact between two elastic adhesive bodies in terms of the stress distribution
outside the contact zone (Barthel, 1998), which allows for the introduction of nonequilibrium effects.
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3.5. Extended M-D model for viscoelastic contact

In this research, the viscoelastic contact problem is approached from the perspective of the more general M-D model. The M-D
model directly provides the cohesive zone size in contrast to the JKR model where there is no inherent cohesive zone and assumptions
about the force-distance relations must be incorporated to estimate a cohesive zone length. In this work, the classic elastic M-D model is
extended to a more general viscoelastic M-D model:

%&mﬁz{(mz —2)cos™ (1 /m)+Vm? — 1 } +%ﬁﬁi{Vm2 —lcos' (1 /m)—m+ 1} =1, (17a)
P=a —ﬂmﬁz{mzcos’l(l/m)Jr\/mz - 1} (17b)

where the normalized force and contact radius are given by Eq. (10b). The Maugis parameter, 1, has been computed using the relaxed
modulus of the polymer. The model assumes that the time scale associated with the bulk deformation of the contact (arising from the
Hertzian contact force) is sufficiently long and, therefore, the deformation is still elastic, with the modulus being close to the relaxed
modulus of the polymer. All viscoelastic effects are confined to the adhesion term.

Numerical calculations were carried out by using Eqs. (17a) and (17b) for both 2p=0.165 nm and zp=1 nm. The work of adhesion, w
was taken as 100 mJ/m>. If 2p=0.165 nm is assumed, then 1, =6 (400 nm fiber diameter) and 1, =14 (4000 nm fiber diameter), and
thus, the M-D model is closer to the extended JKR model discussed in Section 3.4. However, if zp=1 nm is assumed, which was shown to
provide better agreement with experiments on adhesive sliding of polymer nanofibers (Das and Chasiotis, 2020), then A, =1 (400 nm
diameter) and A, =2 (4000 nm diameter), which means that the extended viscoelastic JKR model discussed in the previous Section is
no longer valid and the extended M-D model must be employed.

3.5.1. Extended M-D model for viscoelastic contact: zp=0.165 nm

Using the elastic M-D model, Eq. (6), it can be shown, Fig. 3(a), that the length of the cohesive zone (at extremely slow peeling
velocities) is roughly proportional to the reduced elastic modulus, dyE". Increasing values of E* decrease both radii a and c, as
deduced from Fig. 3(b) for 400 nm fiber diameter. However, dp—=(c-a) increases due to the decrease in the value of A with increasing E*,
which pushes the contact towards the DMT approximation. The cohesive zone length found numerically for a given value of 1, depends
on the applied normal force. Fig. 3(a) shows that the analytical expression represented by the dashed line (Eq. (14b)) captures well the
variation of the cohesive zone length with E* for large fiber diameters (4000 nm) but not so well for smaller fiber diameters (400 nm).
Furthermore, the inset in Fig. 3(a) shows that the conditions for LEFM are met when 1>5 (29 = 0.165 nm) since the ratio of the non-
linear cohesive zone to the contact radius is (c-a)/a < 1. For instance, for the case E "‘:EB, (c-a)/a is ~0.04 and ~0.01 for 400 nm and
4000 nm fiber diameter, respectively.

The value of y is required to apply the extended viscoelastic M-D model, Eq. (17). y can be obtained from j(t*), Eq. (8), but the value

dy=mA(Eh 1)« _

)

30 ===

04 204 [ .=

a, ¢ (nm)

0.2 10 e N —a) _.
N\ E

Cohesive Zone Length, d,(nm

0.0

1.5 f . X X . -100 -5;0 0 50
E, E* (GPa) E, P (nN)

() (b)

Fig. 3. (a) Cohesive zone length (at P = 0 for extremely slow peeling velocities) obtained using the elastic M-D model for zp=0.165 nm. Note that for
20=0.165 nm and for both 400 nm and 4000 nm fiber diameters, one finds 1>5. The cohesive zone length is proportional to the reduced elastic
modulus and its variation for the 4000 nm fiber is captured well by the analytical expression given by Greenwood and Johnson: dy = zE"h2 /(4w)
(Johnson, 1999). The inset shows the ratio of the cohesive zone length over the contact radius for 2p=0.165 nm and fiber diameters 400 nm (solid
lines), 4000 nm (dashed lines). The non-linear cohesive zone is much smaller than the contact radius. (b) The cohesive zone length increases with
increasing E* due to the decrease in the value of 1, which pushes the contact towards the DMT regime. A fiber with 400 nm diameter was assumed
for the calculations in this plot. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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of k is then needed to calculate j, Eq. (9b). The value of k = E;o /Eg was obtained from Naraghi et al. (2014), where uniaxial tension tests
were performed on PAN nanofibers as a function of strain rate. For a fiber with 300 nm diameter, the ratio of the tangent modulus
measured at 2.5 x 10~% 57}, to the modulus obtained at 2 x 10% s}, provided k = E. /E, = 0.5. In this study k is considered to be
independent of the fiber diameter, since the electrospun PAN fibers were annealed, and therefore their elastic properties are not
expected to be size dependent for the particular range of diameters, as also reported in Das and Chasiotis (2020). Finally, the values
E. =3 GPa (Das and Chasiotis, 2020) and E8:6 GPa are used in all subsequent calculations. For k = 0.5, the values of j and y are in the
range: 0.5 gj(t*) <1 (Eq. (9b))and 1 < y < 2 (Eq. (8)). Based on these bounds, the solution of Eq. (17) is plotted in Fig. 4(a) for the
extreme values of y (red and blue curves: y =1; black and gray curves: y =2), and for two relatively extreme values of 1. Furthermore,
the extended JKR solution, for the extreme values of y (@ = ¢,Eq. (10a)), is plotted with solid green lines. The extended M-D solution
converges to the extended JKR solution for high values of the parameter A.

For a viscoelastic material and a given unloading rate dP/dt, Eq. (17) must be solved for the @ — P relation. However, in Eq. (17a,b)
the force and the contact radius are not related one-to-one as in Eq. (10a). Therefore, a graphical approach was adopted to obtain dP

10
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Fig. 4. (a) Normalized contact radii @ and ¢ vs normal force P. For large values of A, the M-D solution in Eq. (17a,b) coincides with the JKR solution
in Eq. (10a), for the extreme values of y. The points leading to the force-controlled snap-off instability are represented by the arrows. (b) Graphical
method to obtain the @ — P solution following the extended M-D model (dP/dt = 107° N/s). (¢) Simulated @ — P for various unloading rates of a
viscoelastic PAN fiber with diameter 400 nm and 7 = 5 ms. The pull-off force, indicated by the arrows, increases with unloading rate. The three
different values of the initial contact radius in the compression region, represented by the three yellow points on the red curve, result in the same
pull-off force for the same unloading rate of 2.2 x 10~® N/s, namely the initial preload does not influence the pull-off force. (d) Simulated
normalized pull-off force vs. unloading rate for 7 = 5 ms. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.).
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/da. As shown in Fig. 4(b), @ — P curves were constructed for various values of the parameter y by using Eq. (17a,b). The initial
condition @ = 1.9 for y=1 was used to obtain the first point. Choosing other values for the initial contact radius (in the hold stage when
the contact is in compression) did not change the calculated pull-off force. An unloading rate dP/dt=10"% N/s and 7 = 5 ms were
chosen to demonstrate the solution procedure. The cohesive zone length, dy (for the first point, @ = 1.9, y=1) can be obtained
numerically from Eq. (17) as: (¢ — a). The cohesive zone length can then be used to calculate the crack velocity V according to Eq.
(14a). The value of t* is obtained by inverting Eq. (9b) (y provides the value of j, Eq. (8)). The right-hand side of Eq. (13) (or Eq. (12))
can be obtained for known values of [V, dP/dt, R, w, E. 1, which is also equal to the slope dP/da. Knowing the first point and the slope of
the line, dP/da, a straight line is drawn that intersects the @ — P curve constructed for y=1.2. Again, the new value of y and the cohesive
zone size, (¢ — @), at the point of intersection provide the crack velocity and hence the slope of the next line at the point of intersection.
Proceeding similarly, the entire @ — P curve for a particular unloading rate, shown with five straight segments in Fig. 4(b), can be
constructed.

Following the approach described in Fig. 4(b), the @ — P curves were constructed for very small increments of the parameter y,
leading to smooth @ — P curves for different values of dP/dt that are shown in Fig. 4(c). The resulting smooth curves intersect the solid
black curve at steep angles (da/dP— ), leading to snap-off instabilities and providing the pull-off forces. This is due to the fact that (1/
V)—0 as y—(1/k)=2 (Greenwood and Johnson, 2006; Johnson, 1999), leading to dP/da—0 (Eq. 12). The pull-off force, indicated by
the arrows in Fig. 4(c), increases with dP/dt, following the S-shaped growth curves in Fig. 4(d). Furthermore, choosing other values for
the initial contact radius (e.g. just before unloading when the contact is in compression) does not change the results: for instance, three
different values of the initial contact radius in the compression region produce the same pull-off force for the unloading rate of 2.2 x
1076 N/s, Fig. 4(c). This also implies that, the initial preload does not influence the pull-off force, as was also demonstrated experi-
mentally in Fig. 2(b). Other numerical studies have also shown that the pull-off force is independent of (a) the initial contact radius for
a wide range of velocities and dissipation exponents (Barthel and Roux, 2000), and (b) the initial compressive preload (Greenwood and
Johnson, 2006) for a wide range of unloading rates.

It should be noted that the pull-off force was calculated at the pull-off instability for a force-controlled experiment by using the
condition dP/da=0. The experiments in this work were conducted by imposing constant crosshead velocities. However, the experi-
mental system, comprised of two MEMS force sensors and two polymer fibers, has a finite stiffness due to the finite spring constant of
the MEMS folded beam load cells and the finite bending stiffness of the fibers in contact that are functioning as springs in series with the
MEMS devices. These experimental parameters lead to a compliant system: as the fiber surfaces in contact are displaced away from
each other at a prescribed crosshead velocity, it is not the applied displacement but the force that arises which controls the evolution of
the contact. The pull-off instability in a force-controlled experiment occurs when the condition dP/da—0 (or dP/ds—0, with § being
the displacement) is met.

Finally, the computed pull-off force as a function of the unloading rate follows an S-shaped growth curve that is shifted to the right
for increasing fiber diameter, Fig. 4(d), which is in agreement with the experimental results in Fig. 2(c). This shift originates in the
prefactor (P/P)/(a/a) in Eq. (13), which depends on the fiber diameter. The results in this Section were based on the general
assumption that zp=0.165 nm, which has been derived for close packed solids (Israelachvili, 2015). However, as shown by Das and
Chasiotis (2020), a value of zp=1 nm provides better agreement with the experimental results for the pull-off instability during shear
detachment of polymer nanofibers. The next Section explores the use of zp=1 nm which, in turn, results in 1<l <5, and, therefore, the
extended M-D model must be used to describe the adhesive contact.

3.5.2. Extended M-D model for viscoelastic contact: zp=1 nm

The approach described in Section 3.5.1was also applied for the case of zp=1 nm, which was shown before to provide a better
agreement with experimental tangential pull-off force values measured during adhesive sliding of PAN nanofibers (Das and Chasiotis,
2020). Also, when zp=1 nm, 1,,=1 (400 nm diameter) and A, =2 (4000 nm diameter), implying that the extended M-D model must be
employed, as the extended JKR model, Section 3.4, is no longer valid. Fig. 5(a) shows simulated @ — P curves for various unloading
rates of a viscoelastic PAN fiber with diameter 4000 nm and 7=50 ms. The normalized pull-off force, indicated by the arrows, increases
with the unloading rate following S-shaped growth curves (as in Section 3.5.1), Fig. 5(b). Note that for the same value of the work of
adhesion, w=100 mJ/m?, the normalized pull-off force at the two unloading rate extremes increases with decreasing fiber diameter,
Fig. 5(b). This is due to the decrease in the value of 1., with decreasing fiber diameter which, in turn, increases the normalized pull-off
force (Fig. 4(a) shows that the normalized pull-off force increases with decreasing A, for curves generated with the extreme values of
). Equivalently, a gradual decrease in the fiber diameter, and consequently decrease in the value of 1, leads to an increase in the
value of y, Eq. (1), from 1.5 to 2 as the contact model transitions from the JKR to the DMT model under force control.

Note that the extended M-D model developed in this study has the same inherent assumption as the extended JKR model in Section
3.4 in which the viscoelastic effects are confined to the adhesion term whereas the Hertzian contribution is relatively slow, elastic, and
reversible. This is also reflected in Fig. 4(a) where the extended M-D model converges to the extended JKR model for 1,>5. As
described in Section 3.3, the assumption that the Hertzian contribution is slow and elastic is appropriate only when the size of the
initial contact radius is much larger than the cohesive zone length (see also the relevant discussion in Greenwood and Johnson (2006)).
This limits the application of the extended M-D model to cases where 1,,>1; when 1,,=1, the maximum value of d*/a ~ 0.2, with a
being the contact radius at pull-off. The extended M-D model applied in this work can, thus, be considered as valid even for 1., =1, since
the criterion by Greenwood and Johnson (2006), d*/ap <1 is still satisfied, where qy is the initial contact radius at the maximum
compressive force.
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3.6. Identification of viscoelastic time constants from normal detachment data

The normal pull-off force at the slowest unloading rate could be used to obtain the work of adhesion, w, for the fully elastic
condition. Specifically, for the 380 nm fiber diameter, w=101 mJ/m? (20=0.165 nm) and w=95 mJ/m? (20=1 nm), and for the 4100
nm fiber diameter, w=106 mJ,/m?> (20=0.165 nm) and w=103 mJ/m?> (2o0=1 nm). All values are within one standard deviation of the
work of adhesion values obtained in a previous work on PAN nanofibers (Das and Chasiotis, 2020). Using the aforementioned values
for w, the experimental pull-off force measurements are compared to theoretical predictions. Fig. 6(a) and (b) show the experimental
and calculated normalized pull-off force vs. unloading rate for zp=0.165 nm and zp = 1 nm, respectively. There is good agreement
between the experimental pull-off force values and the model predictions for relaxation time constants in the range of 7=2-6 ms
(2p=0.165 nm) and t=45-90 ms (zp=1 nm). These time-constants were obtained by maximizing the coefficient of determination, R?
between experimental and numerical data. Numerical simulations were carried out with varying time-constants and 1 ms
time-resolution to obtain the best fit value of 1, as described in Section 3.5.1. Note that the time constants obtained for zp=1 nm are
more than one order of magnitude larger than those obtained for zp=0.165 nm. Mathematically speaking increasing 2y, reduces the
value of 1, which leads to an increase in the cohesive zone length. As a result, for a given fiber diameter and the same dP/dt, t* in-
creases proportionally to the cohesive zone length to maintain V, Eq. (14a) (and by extension the pull-off force), and, therefore, T must
also increase proportionally to t*, Eq. (9). As shown in Fig. 6(a,b), the smaller diameter fiber has larger time-constants, albeit of the
same order of magnitude, than the thicker fiber, namely for a given unloading rate of the viscoelastic region, the normalized pull-off
force is higher for the thinner fiber, Fig. 6(a,b). A similar increase in normalized pull-off force with decreasing fiber diameter was also
obtained numerically using the same time constants for the thinner and the thicker fibers, Figs. 4(d) and 5(b), although the gaps
between the red and green solid lines in Figs. 4(d) and 5(b) are narrower than those observed experimentally in Fig. 6(a,b). Increasing
the time-constant shifts the red and green curves to the left (and vice-versa). As a result, the time-constants obtained from the best fit
procedure are larger for the thinner fiber compared to the thicker fiber. The time constants are expected to be sensitive to the molecular
orientation of the fiber surface (where contact takes place), which is influenced by the annealing step. Further studies are required to
shed more light into the physical mechanisms influencing the time constants of different fiber diameters.

Although, it can be shown that there is a greater reduction in contact area during unloading for zp=1 nm (also observed during
shear detachment experiments, see (Das and Chasiotis, 2020)), it cannot be asserted, however, which value of zy describes best the
normal detachment process without direct observations of the contact area. For reference, prior creep and strain rate experiments were
used to compute the viscoelastic time constants of PAN (Naraghi et al., 2014). The shortest time constant, computed from ramp data
obtained at 200 s, was ~15 ms, which is of the same order as the time constants extracted herein. These short time constants are
relevant to local segmental relaxations at the fiber surface which are considered to be quite faster than molecular relaxations taking
place in the fiber core. These fast time constants may also explain the fast recovery of PAN nanofiber surfaces which re-bond to the
original strength right after each sliding jump instability in stick-slip experiments (Das and Chasiotis, 2020).

The estimated time constants for the contact problem could be used to evaluate the assumption for the shape and size of the contact
before detachment. When two PAN nanofibers are brought in close proximity during a normal adhesion test, they snap-in and an initial
contact area forms and grows with time to its equilibrium size (given by the contact radius for a particular normal force, as determined
by the elastic JKR or M-D models). The time required to reach the equilibrium size might be 100 times larger than the viscoelastic time
constant (Greenwood and Johnson, 2006). In the present experiments the fibers were held in contact and under compression for 15 min
which is much longer than 100 times the extracted viscoelastic time constant. As a result, the initial contact size can be estimated by the
elastic JKR or the M-D contact models. Moreover, the applied force remains stable during the initial hold stage, Fig. 1(a), which
suggests that the contact radius does not increase after attaining equilibrium.

Finally, the dependence of the S-shaped curves on the Maugis (or Tabor) parameter is explored in Fig. 6(c). A normalized loading
rate parameter, can be obtained if the cohesive zone length at pull-off (when j(t*)=0.5) is considered to be a multiple, ¢, of the
theoretical value, Eq. (14b). Furthermore, a non-dimensional velocity, v, (Johnson, 1999) can be defined as in Eq. (15b):

x(E.\ h
dpull—uff = ¢Z (’(;o)> ;0 (183)
\%4 1 (12wV7t
VA (;rE;hg) (18b)

(o658)

Eq. (13) can be rewritten using the normalized velocity, which provides the normalized loading rate parameter, A (Johnson, 1999):

dP 3 A/ I 3 (12wt \ (aRw\ dP (198)
da  \4mW2RE., V) dt  ¢p\4n*wRE., rE I} v ) drt
_ _ 2/3 _ 2/3
dP dP 7 (36 Rw? 1\ A dP 7 (36 Rw?
=" (200 (D) =5 A= (19b)
da — dr ¢\ ZEZh] v) v AR

Using the rate parameter A as the abscissa, the curves in Fig. 6(a,b) can be re-plotted using the time-constants obtained from the
best-fitting procedure to show the dependence of the S-shaped curves on 4.,. The value of ¢ is obtained from Eq. (18a) using the value
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Fig. 6. Normalized pull-off force vs. unloading rate showing a good correlation between experiment and theory for (a) 2p=0.165 nm corresponding to T = 2-6 ms, and (b) zp = 1 nm corresponding to
7=45-90 ms. (c) Dependence of the S-shaped curves on the Maugis parameter, 1.,. The normalized pull-off force increases with decreasing A.,. For slow unloading rates, the normalized pull-off force
increases from 1.5 (JKR) to 2 (DMT), while for fast unloading rates the normalized pull-off increases from 3 (JKR) to 4 (DMT) for k = 0.5. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)
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of dpyir.off from the numerical simulation (Section 3.5.1). The four S-shaped curves plotted with solid lines in Fig. 6(c) are valid for the
model developed in this work for 1,,>1. The curves demonstrate an increase in the normalized pull-off force with decreasing A.,. If the
assumption by Barthel and Roux (2000) (Section 3.4.1) is considered as valid, the current M-D viscoelastic model could be extended to
the DMT limit that is represented by dashed lines in Fig. 6(c), for the cases of 1,=0.01 and 1,=0.02. Furthermore, the normalized
pull-off force has the following two limits at the extremes of the rate parameter: For slow detachment rate parameters: y —1.5 (JKR:
le>5) and y —2 (DMT: 1, <0.1) (Eq. (1)), and for fast detachment rate parameters: y/k -3 (JKR) and y/k —4 (DMT).

4. Conclusions

The rate dependent adhesion of viscoelastic polymer nanofibers interacting through strong van der Waals forces was investigated
via a coupled experimental/theoretical approach. The experiments were carried out via a recently developed method for normal and
shear detachment experiments between individual nanofibers, which utilizes precision MEMS force sensors. It was shown that the
apparent work of adhesion of PAN fibers, as calculated from the pull-off force in normal detachment experiments, increases with the
rate of unloading by a factor of two within a three orders of magnitude increase in the unloading rate. The M-D contact model was
extended to account for viscoelastic dissipation, which provided a good fit of the experimental normal pull-off force vs. unloading rate
data. The extended M-D contact model for a standard linear solid with extracted time constants 7=2-6 ms (29p=0.165 nm) or 7=45-90
ms (2g=1 nm), captured well the experimental results for two fiber diameters that differed by an order of magnitude. This study
provides new perspectives into the rate-dependent adhesion of soft fibers interacting with strong van der Waals forces, with direct
implications in the way energy dissipation in natural/artificial fibrous systems is treated, as well as the design of strong and tough
networks of soft fibers and their composites.
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