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Abstract This article is concerned with the high-dimensional location testing problem. For high-

dimensional settings, traditional multivariate-sign-based tests perform poorly or become infeasible since

their Type I error rates are far away from nominal levels. Several modifications have been proposed to

address this challenging issue and shown to perform well. However, most of modified sign-based tests

abandon all the correlation information, and this results in power loss in certain cases. We propose a

projection weighted sign test to utilize the correlation information. Under mild conditions, we derive

the optimal direction and weights with which the proposed projection test possesses asymptotically and

locally best power under alternatives. Benefiting from using the sample-splitting idea for estimating

the optimal direction, the proposed test is able to retain type-I error rates pretty well with asymptotic

distributions, while it can be also highly competitive in terms of robustness. Its advantage relative to

existing methods is demonstrated in numerical simulations and a real data example.

Keywords High dimensional location test problem, locally optimal test, nonparametric test, sample-

splitting, spatial sign test

MR(2010) Subject Classification 62H15

1 Introduction

With rapid development in data collection and storage techniques, high-dimensional data are
frequently collected in many scientific fields such as genomic studies and finance. In this paper,
we study testing hypotheses on high-dimensional locations. Let us start with the one-sample
mean problem. Suppose that X1, . . . ,Xn is a random sample from a p-dimensional population
X with mean E(X) = μ and finite positive definite covariance matrix cov(X) = Ω. Of interest
is to test the hypothesis:

H0 : μ = μ0 ↔ H1 : μ �= μ0 (1.1)
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for some known μ0. The well-known Hotelling T 2 test was developed for the one sample
problem in the multivariate analysis. However, the Hotelling test is undefined when p > n

because the sample covariance matrix is singular. [1] showed that the performance of the
Hotelling test is adversely impacted by an increased dimension even when p < n, reflecting
a reduced degree of freedom in estimation when the dimensionality is close to the sample
size. They further illustrated that the contamination bias, which grows rapidly with p, would
make the test unreliable for a large p. They also provided certain asymptotic justifications
and contained some numerical evidence. This challenge calls for new statistical tests to deal
with high-dimensional data and many authors are devoted to developing new tests for location
problems. See, e.g., [5, 6, 12, 15, 26–28, 31, 33], and references therein.

Although essentially nonparametric in spirit, the statistical performance of the moment-
based tests mentioned above would be degraded when the non-normality is severe, especially
for heavy-tailed distributions. This motivates some authors to consider using multivariate sign-
and/or-rank-based approaches to construct robust tests for high-dimensional location problems.
Existing methods were mainly developed under the framework of the spatial signs and ranks
(see [22]). [23] considered several testing problems in multivariate analysis, directional statis-
tics, and multivariate time series analysis, and they showed that, under appropriate symmetry
assumptions, the fixed-p multivariate sign tests would remain valid in the high-dimensional case.
[30] and [9] proposed high-dimensional spatial-sign-based tests for one-sample and two-sample
problems, respectively. The test statistic proposed in [30] is essentially in a similar fashion
to [5] test statistic. [9] proposed a scalar-invariant two-sample test and thus is particularly
useful when different components have different scales in high-dimensional data. To circum-
vent the difficulty of estimating additional biases yielded by using the estimation of location
parameter to replace the true one, they suggested a “leave-one-out” test statistic which may be
computationally extensive when n is not too small.

However, all those sign-based methods do not include correlation information in the con-
struction of statistics to make them robust to high dimensionality. A natural variant is the
so-called regularized T 2-type test ([4]), by adding a regularization term to the sample covari-
ance matrix so that the estimation is well-posed in high-dimensional settings, but it does not
work well in large p cases ([9]). To overcome these issues, we aim to develop a new sign-based
test based on the projection method. There exist some projection tests which project the orig-
inal sample to a lower-dimensional space and carry out tests with the projected sample, such
as [17, 20]. In particular, [19] proposed a moment-based projection test using data-driven esti-
mation of the optimal projection direction. [16] generalized the Cramér–von Mises statistic via
projection-averaging to obtain a robust test for the multivariate two-sample problem.

In this paper, we proposed a weighted-sign-based projection test statistic under elliptical
symmetric distribution and independent component models respectively, and derive the optimal
direction and weights with which the test possesses the asymptotically and locally best power
under alternatives. Interestingly, both the optimal direction and weights have simple closed
forms, and they do not depend on the underlying distribution. We further propose an estimation
procedure for the optimal direction by using the sample-splitting strategy. Under H0 in (1.1),
we show that the proposed tests with the estimated optimal direction asymptotically follows
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a χ2-distribution, and its finite sample P-value can be approximated by an F -distribution.
We demonstrate that the proposed projection tests with the estimated optimal direction retain
type-I error rates pretty well with asymptotic distributions, while it also can achieve high power
in a wide range of distributions and alternatives. Under H1, we derive the power function of the
proposed test under local alternative, and asymptotic relative efficiency of the proposed test to
several ones proposed in the recent literature. We further apply the projection weighted sign
test for two sample mean problems and derive its optimal direction. We further examine the
finite sample performance of the proposed tests via Monte Carlo simulations. Our simulation
results clearly demonstrate the superiority of the proposed test over existing ones.

The remainder of this article is organized as follows. In Section 2, we present the new test
statistic and its theoretical properties, as well as some discussions on the practical implementa-
tion of our proposed test. Extensions to the two-sample problem are given in Section 3. Section
4 consists of simulation studies and a real data example. Some concluding remarks are given in
Section 5, and theoretical proofs are given in the Appendix. Some additional simulation results
are provided in the Supplementary Material.

2 Projection Tests Based on Weighted Signs

We firstly develop tests for (1.1) under the elliptically symmetric assumption which is commonly
considered in the literature of multivariate-sign-based methods (see [22]). We further develop
projection test under independent component models in Section 2.3. The proposed approach
will be further extended to two-sample problem in Section 3.

2.1 Optimal Projection Direction and Weight Function

Suppose that {X1, . . . ,Xn} is an independent and identically distributed (i.i.d.) random sample
from a p-dimensional elliptical distribution Ep(μ,Σ), with the density function det(Σ)−1/2

g(‖Σ−1/2(x−μ)‖), where μ is the symmetry center and Σ is a positive definite symmetric p×p

scatter matrix. The spatial sign function of a vector X is defined as U(X) = ‖X‖−1XI(X �= 0).
Let Γ be a p×p nonsingular matrix so that Γ�Γ = Σ−1, then εi = Γ(Xi−μ) ∼ Ep(0, Ip). From
the theory of elliptical distribution ([8]), the modulus ‖εi‖ and the direction vector Ui = U(εi)
are independent, and the direction Ui follows the uniform distribution over the p-dimensional
unit sphere. It is well known that E(Ui) = 0 and cov(Ui) = p−1Ip. Without loss of generality,
we set μ0 = 0 in (1.1).

Let S be an appropriate estimate of the scatter matrix ([29]), and define ̂Ui = U(S−1/2Xi),
and Ū = n−1

∑n
i=1

̂Ui. The following so-called “inner standardization” sign-based statistic,
Wn = npŪ�Ū, is quite popular under the setting in which p is finite and fixed (e.g., [24]).
Wn is affine-invariant and can be regarded as a nonparametric counterpart of Hotelling’s T 2

statistic by using the spatial-signs instead of the original observations Xi’s. [9] showed that Wn

would not work well when p and n are close.
Consider the weighted sign Vi = K(‖ΓXi‖)U(ΓXi), where K(·) is a positive weight func-

tion. Vi combines the information on the direction of ΓXi given by its spatial sign U(ΓXi)
with the information on the magnitude of ri

def= ‖ΓXi‖. This weighted version of sign statistic is
essentially in a similar spirit of multivariate signed-rank statistic, h(Ri/(n + 1))U(ΓXi), where
Ri is the rank of ‖ΓXi‖ among ‖ΓX1‖, . . . , ‖ΓXn‖ and h(·) is a non-negative, nondecreasing,
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uniformly bounded continuous function over [0, 1] (see [14, 21]). Clearly, our Vi includes the
signed-rank statistic as a special case. Now, the original hypothesis is equivalent to

H0 : E(Vi) = 0 ←→ H1 : E(Vi) �= 0.

Consider constructing a test statistic with a projection matrix, D, which is a p×k full rank
matrix with k � p and k < n. Accordingly, D�V1, . . . ,D�Vn are i.i.d. k-variate random
vectors. Under H0, E(D�Vi) = 0 and cov(D�Vi) = p−1E{K2(ri)}D�D. The projection-
based test is defined by

QD = np[E{K2(ri)}]−1V̄�D(D�D)−1D�V̄,

where V̄ = n−1
∑n

i=1 Vi. Apparently, large QD leads to the rejection of the null hypothesis.
The following theorem sheds lights on how to determine the weight function K(·) and

projection direction D so that QD maximizes the power under a local alternative hypothesis.
In the asymptotic analysis, we let p → ∞ as n → ∞. We need the follow assumptions to
facilitate the derivation.

Assumption 1 The moment E(‖εi‖−8) exists for large enough p.

Assumption 2 For any t > 0, the function K(·) satisfies that |K(x + t)−K(x)|/K(x) ≤ Mt

when x > 0 is sufficiently large, where M > 0 is some constant.

Assumptions 1–2 ensure the validity of second-order expansions we use. The moments
E(‖εi‖−k) may not exist for a fixed p. For example, for standard multivariate normal and t

distributions, E(‖εi‖−2) is equal to 1/(p−2) and thus the second moment exists only when p >

3. [34] verified this assumption for three commonly used elliptical distributions, the multivariate
normal, the multivariate t distributions, and scale mixtures of multivariate normal distributions.
They also formulated this assumption using the gp that fixes the distribution of the modulus
‖εi‖. The existence of E(‖εi‖−k) is guaranteed if rp−1−kgp(r) is bounded for r ∈ (0, ε). Most
commonly used functions satisfy Assumption 2, such as xa, exp (x), log(x) and x/(1 + x).

Theorem 2.1 Consider the local alternative hypothesis,

H1n : E(‖εi‖−2)μ�Σ−1μ = O{(np)−1}.
Suppose that the function K(·) satisfies Assumption 2 and E{K4(ri)}/[E{K2(ri)}]2 → ζ ∈
[1,∞) as p → ∞, where ζ is a constant. The projection test based on Q2

D reaches its asymptotic
best power at k = 1 and D = E(V) with the weight function K(t) = t−1.

Under this local alternative, the asymptotic distribution of QD is a noncentral chi-squared
distribution. The difference between μ and 0, quantified by μ�Σ−1μ, goes to zero as n, p → ∞.
Consequently, the asymptotic variance of

√
nD�V̄ is still p−1E{K2(ri)}D�D so that an explicit

power expression can be obtained. Theorem 2.1 enlightens us to construct a locally most
powerful weighted sign test by using

Qd = np{E(r−2
i )}−1V̄�d(d�d)−1d�V̄, (2.1)

where d = E(Vi) is the “oracle” optimal direction and Vi = U(ΓXi)/ri. Note that when
D = d, E(D�Vi) = 0 is equivalent to E(Vi) = 0, and consequently Qd provides a method
for testing (1.1). It is also worth pointing out that [13] proposed a class of optimal tests based
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on interdirections and pseudo-Mahalanobis ranks. Depending on the score function considered,
locally optimal tests were obtained at selected densities. It is interesting to see that the opti-
mal weight function is free of the density g(·), which is a unique feature of high-dimensional
problems.

2.2 Test with Sample-splitting-based Direction Estimation

In practice, Qd can be carried out with an estimated d and Γ. Following [19] single sample-
splitting strategy (c.f., [32]), we partition the random sample into two separate sets: U1 and U2.
We use U1 for estimation of the optimal direction and U2 to construct Qd. To be more specific,
let S1 be the sample covariance matrix computed from U1. Note that S1 may not be invertible
when p is greater than n. A simple remedy is to use the ridge-like estimator S1 + λDS1 , where
DS1 = diag(S1), the diagonal matrix of S1, and λ is a ridge parameter. As alternative to the
ridge-like estimator, we propose to consistently estimate Σ−1 by the thresholding approach
based on U1 under some sparsity assumptions ([2, 3]). Let ̂Σ−1 be a proper estimator of Σ−1.
Define ̂Γ�

̂Γ = ̂Σ−1 and ̂Vi = U(̂ΓXi)/‖̂ΓXi‖. Then d can be estimated by ̂d = n−1
1

∑n1
i=1

̂Vi.
Similar to ̂Σ−1, another option of forming ̂d is to estimate μ via thresholding. As shown in
Section 2.4, the effect of replacing by thresholded estimators is asymptotically negligible and
the efficiency of the projection-based test can still be achieved under certain conditions.

The projection-based test statistic is given by

Q̃
̂d = n2p{ ̂E(r−2

i )}−1Ṽ�
̂d(̂d�

̂d)−1
̂d�Ṽ,

where Ṽ = n−1
2

∑n
i=n1+1

̂Vi and ̂E(r−2
i ) is an estimator of E(r−2

i ). Since ̂d is independent of
U2, Q̃

̂d based on ̂d�Ṽ is asymptotically χ2
1 distributed if ̂Γ is instead of Γ. However, due to

the use of ̂Γ in Ṽ, the variance of Q̃
̂d would be generally larger than 2, yielding a little liberal

test.

- - - -

Figure 1 Q-Q plots of our test statistics T
̂d under the autoregressive correlation structure

Noting that Q̃
̂d is essentially of the form c(̂d�Ṽ)2. Conditional on U1, ̂d�

̂Vn1+1, . . . , ̂d�
̂Vn

are i.i.d. random variables with mean zero. Accordingly, we suggest the following simple
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modification

T 2
̂d

= n2(̂d�Ṽ)2/σ̂2, (2.2)

where σ̂2 = (n2 − 1)−1
∑n

i=n1+1(̂d
�

̂Vi − ̂d�Ṽ)2. T 2
̂d

is similar to a classical F -test based

on ̂d�
̂Vn1+1, . . . , ̂d�

̂Vn and is asymptotically χ2
1 distributed. Its finite-sample p-value can be

approximated by using the F -distribution with 1 and n2 − 1 degrees of freedom. Figure 1
displays the Q-Q plots of T

̂d under various settings. Generally, the t distribution, tn2−1, is a
good fit of the distribution of T

̂d as for moderate sample size.

2.3 Extension to Independent Component Model

In the above discussion, we focus on the family of elliptical distributions, while our results can
be readily extended to some other distribution families. One such class of distributions is the
so-called independent component model (see Section 2.3 in [22]); that is Xi is generated by
Xi = μ + ΥZi, where Υ is a p × p positive-definite matrix and the standardized and centered
p-vector Zi has independent and symmetric components. It is noted that this class of models
is closely related to the linear transformation models which has received broad attentions in
high-dimensional tests ([1, 5]). The following theorem summarizes the fact that the result in
Theorem 2.1 is still valid under independent component model. Let λmax(A) and λmin(A)
denote the largest and smallest eigenvalues of a matrix A, respectively.

Theorem 2.2 Suppose all the conditions in Theorem 2.1 hold, and λmin (ΥΥ�) and λmax

(ΥΥ�) are bounded away from both zero and infinity. Under the independent component model,
the projection test based on Q2

D reaches its best local power at k = 1 and D = E(V) with the
weight function K(t) = t−1.

Generalizations to other multivariate distributions, such as the family of generalized ellip-
tical distributions are possible, which warrant future research.

2.4 Asymptotic Power Comparison

Theorem 2.1 enables us to compare the proposed test, the weighted-sign-based projection test
(abbreviated as WSP) with some existing works, such as [19] and [30], in terms of the limiting
efficiency. Consider the local alternative μ = n−1/2δ and assume that

√

n2/n → b > 0 as
n → ∞. Under the alternative, the asymptotic power function of the test based on Qd in (2.1)
at a given significant level α is

βWSP = Φ
(

− zα/2 +
√

n2p

E(‖εi‖−2)
‖E(V)‖

)

,

where Φ(·) is the standard normal distribution function and zα is the upper α quantile of
N(0, 1). By the first-order Taylor expansion of U(ΓXi) (see Appendix), βWSP reduces to

βWSP = Φ(−zα/2 + b
√

pηE(‖εi‖−2)), (2.3)

where we denote η = δ�Σ−1δ.
A natural but technical question to address is that when Σ and μ admit some structures,

are the thresholded estimators accurate enough so that the feasible T 2
̂d

in (2.2) is able to inherit
optimal properties of Qd in certain degree? The answer is affirmative, at least when certain
sparsity degree is fulfilled. Let μ̂ = Thn

(X̄1), where hn = M ′√log p/n for some large M ′ and
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Th(·) is the thresholding operator, defined by Tt(μ) = {μ1I(|μ1| ≥ t), . . . , μpI(|μp| ≥ t)}� and
X̄1 is the sample mean of the set U1. Let ̂d = ̂Γμ̂, where ̂Γ is obtained based on the thresholded
estimator of Σ ([2]). To establish the results shown below, we need some additional conditions.

Assumption 3 Suppose λmin(Σ) and λmax(Σ) are bounded away from both zero and infinity.
Moreover, the components of Σ, (Σ)ij , satisfy (Σ)ii ≤ M and

∑p
j=1 |(Σ)ij |q ≤ sp,Σ for some

M > 0 and 1 > q ≥ 0, where sp,Σ(log p/n)(1−q)/2 = o(1).

Assumption 4 Suppose that the components of the mean vector μ satisfy |μj | ≤ M,
∑p

j=1

|μj |q ≤ sp,µ for some M > 0 and 1 > q ≥ 0. Furthermore, sp,µ satisfies sp,µ(log p/n)(1−q)/2 =
o(1).

Assumption 5 The components of Xi are sub-Gaussian variables.

Assumptions 3 and 4 characterize the sparsity of Σ and μ by sp,Σ and sp,µ, respectively.
These two assumptions along with Assumption 5 are imposed for the purpose of establishing
consistency of the thresholded estimators ̂Σ−1 ([2]) and Thn

(X̄1). The above assumptions,
perhaps somewhat restrictive, substantially facilitates our technical analysis. In fact, they are
commonly used in the literature of high-dimensional estimation and test (e.g., [7] and the
references therein).

Theorem 2.3 Suppose that Assumptions 1–5 hold. Under either elliptical distributions or
independent component model,

√
n2

̂d�Ṽ/σ̂ −
√

n2pE{‖εi‖−2}(μ�Σ−1μ)1/2 d→N(0, 1),

provided that max{sp,Σ, sp,µ}(log p/n)(1−q)/2 → 0.

By this theorem, it is easy to verify that the power function in (2.3) is still valid for T 2
̂d
.

If sp,µ and sp,Σ are bounded, p can increase at an exponential rate of n. This should not be
surprising to us due to the benefit of using sample-splitting strategy; that is, the magnitudes
of the terms like u�

i (̂Σ−1 −Σ−1)ui could be much more easily and accurately controlled when
ui is independent of ̂Σ−1 than in the case without sample-splitting. Of course, the ratio “b” in
(2.3) represents the price to pay for estimating a large error covariance matrix with a subset of
samples.

Remark 2.4 [18] has studied eigenvalues of large dimension matrix via Stieltjes transform
of the empirical spectral measure for sample covariance matrix which equals to tr(S + λI)−1,
where S is the sample covariance, I the identity matrix, and λ represents tuning parameter
of ridge estimator. A natural variant is the so-called regularized T 2-type test ([4]) for high
dimensional mean test, by adding a regularization term to the sample covariance matrix so that
the estimation is well-posed in high-dimensional settings. Though there is no sparse constraint,
the relationship between n and p is required to be p/n → c with 0 < c < ∞.

2.4.1 Comparison with the Projection Test without Weights

Similarly, the asymptotic power of the sign-based projection test without weights (abbreviated
as SP), say K(t) = 1, is given by

βSP = Φ(−zα/2 + b
√

ηpE(‖εi‖−1)).
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By Cauchy inequality, βWSP(η) ≥ βSP(η) and the asymptotic relative efficiency (ARE) of the
WSP with respect to SP is

ARE(WSP, SP) =
E(‖εi‖−2)

{E(‖εi‖−1)}2 .

When εi ∼ Np(0, Ip), this ARE value is equal to one. When εi ∼ tv(0, Ip), multivariate t

distribution with degrees of freedom v, we can see that

ARE(WSP, SP) =
(p − 1)vΓ2(v/2)

2(p − 2)Γ2((v + 1)/2)
.

For v = 3, its value is about 1.18 and ARE(WSP, SP) → 1 as v → ∞. When εi ∼ MN(ε, σ, Ip),
the multivariate mixture normal distribution with density function (1−ε)fp(0, Ip)+εfp(0, σ2Ip),
where fp(0, Ip) denotes the probability density function of multivariate normal distribution with
mean 0 and covariance matrix Ip, we have

ARE(WSP, SP) =
(p − 1)(1 − ε + ε/σ2)
(p − 2)(1 − ε + ε/σ)2

.

The ARE(WSP,SP) will converge to 1/(1 − ε) as σ2 → ∞ and p → ∞. When σ = 10 and
ε = 0.8, this value is about 2.65. Hence, the efficiency gain of WSP compared with SP may be
substantial for heavy-tailed distribution.

2.4.2 Comparison with [19] Projection Test

Note that under the elliptical assumption, cov(X) = E(‖εi‖2)Σ/p. Thus, the asymptotic power
function of [19] moment-based projection test (abbreviated as MP) is given by

βMP = Φ
(

− zα/2 + b

√

pη

E(‖εi‖2)
)

.

Consequently, ARE(WSP, MP) = E(‖εi‖2)E(‖εi‖−2) ≥ 1.

When εi ∼ Np(0, Ip), we have ARE(WSP, MP) = p/(p − 2) → 1 as p → ∞; two tests are
equivalently powerful. When the dimension p is fixed, it can be expected that the proposed
test, using the direction of an observation from the origin, should be outperformed by the
test constructed with original observations as the MP test. However, as p → ∞ as n → ∞,
the disadvantage diminishes, at least from viewpoints of local power. For εi ∼ tv(0, Ip) and
εi ∼ MN(ε, σ, Ip), ARE(WSP, MP) becomes pv/{(p − 2)(v − 2)} and {(1−ε)+ε/σ2}{(1−ε)p+
εpσ2}/(p − 2), yielding the values of 3 and 16.7 for t3(0, Ip) and MN(0.8, 10, Ip), respectively.
Clearly, the WSP test is more powerful than MP when the distributions are heavy-tailed.

2.4.3 Comparison with [30] Sign Test

[30] spatial-sign-based test (abbreviated as SS) is constructed based on U(Xi) rather than
U(ΓXi). Hence, the WSP and SS tests are not directly comparable because their power func-
tions depend on δ�Σ−1δ and δ�δ, respectively. Different choices of Σ and δ would usually
yield quite different comparison results. Please refer to [9] for related discussions. To avoid this
difficulty, we replace U(Xi) with U(ΓXi) in the SS test for a clear comparison. By Theorem
2.3 in [30], the asymptotic power of SS (with U(ΓXi)) is

βSS ≈ Φ(−zα +
√

p/2ηE2(‖εi‖−1)).
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When εi ∼ Np(0, Ip) or εi ∼ tv(0, Ip), we have E2(‖εi‖−1) ≤ 1/(p − 2). Accordingly, βSS ≤
Φ(−zα + η/

√

2(p − 2)). When
√

ηb − η/
√

2(p − 2) ≥ zα/2 − zα, βWSP ≥ βSS. This trivially
holds if

√

2(p − 2)b/
√

η → ∞ (2.4)

as p → ∞. For many commonly used Σ, η � ‖δ‖2 and thus (2.4) is valid as long as ‖δ‖2 = op(p).
This implies that when the signal in μ is weak, our proposed test could be more powerful
than the SS test. For example, assume that (Σ)ij = 
|i−j| for 
 ∈ (0, 1). Suppose that
δ = c(1�

s ,0�
p−s)� for c �= 0. Then η = ‖δ‖2{(1 + 
2)s − 2
(s − 1) − 
2}/(1 − 
2). It is

straightforward to see that η � ‖δ‖2 is true for any 
 > 0 and s > 1.
It should be emphasized that this asymptotic comparison between the WSP and SS tests

may not be fair, because the conditions on which the validity of asymptotic results of the two
tests rely, are rather different. Our proposed test requires the good behavior of the sample-
splitting estimation, which is clearly more stringent than the conditions used in [30]. Our
numerical results in Section 4 demonstrate that the WSP test is capable of reducing multiplicity
and correlation, and thus obtain significant power improvement over SS when the Σ is not sparse
or heterogeneity of variance exists.

3 Extension to Two-sample Location Problem

3.1 Optimal Projection Test

Assume that X1, . . . ,Xn is an independent sample with sample size n, and Y1, . . . ,Ym is an
independent sample with sample size m, from p-variate distributions Ep(μ1,Σ) and Ep(μ2,Σ),
respectively. Consider two sample problem:

H0 : μ1 = μ2 ←→ H1 : μ1 �= μ2. (3.1)

Assume that n/N → w ∈ (0, 1) as N → ∞, where N = n + m. Denote ε1i = Γ(Xi − μ1),
ε2i = Γ(Yi − μ2) and consider the weighted signs V1i = K(r1i)U(Γ(Xi − μ)) and V2i =
K(r2i)U(Γ(Yi − μ)), where r1i = ‖Γ(Xi − μ)‖, r2i = ‖Γ(Yi − μ)‖ and μ is a “working”
parameter. It is tantamount to considering the test problem,

H0 : E(V1i) = E(V2i) ←→ H1 : E(V1i) �= E(V2i).

Consider a p × k full rank projection matrix A with k � p and k < n. Under H0, if
μ = μ1 = μ2,

√

nmp

n + m
E−1/2{K2(r1i)}(A�A)−1/2A�(V̄1 − V̄2)

d→N(0, Ik),

where V̄1 = n−1
∑n

i=1 V1i and V̄2 = m−1
∑m

i=1 V2i. Hence, we could use

QA =
nmp

n + m
E−1{K2(r1i)}(V̄1 − V̄2)�A(A�A)−1A�(V̄1 − V̄2)

to assess the equality of μ1 and μ2.
Consider the local alternative hypothesis

H1N : E(‖ε1i‖−2)(μ1 − μ2)�Σ−1(μ1 − μ2) = O{(Np)−1}.
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QA is asymptotically χ2
k(δA) distributed under H1N , where

δA =
nmp

n + m
E−1{K2(r1i)}{E(V1i) − E(V2i)}�A(A�A)−1A�{E(V1i) − E(V2i)}.

Similar to Theorem 2.1, we have the following result which helps us to determine A.

Theorem 3.1 Suppose that Assumption 1 holds for ε1i and the conditions on the function
K(·) in Theorem 2.1 hold. Set μ = (μ1 + μ2)/2 in QA. The projection test QA reaches its
asymptotic best power under H1N at k = 1 and A = E(V1i)−E(V2i) with the weight function
K(t) = t−1.

Let a = E(V1i) − E(V2i) be the “oracle” optimal direction. Similarly, Qa can be carried
out with estimated μ1, μ2, a and Γ. We divide the random sample into two separate sets:
Uj with the sample sizes (nj , mj) for j = 1, 2. We use U1 to estimate the parameters and U2

to construct Qa. Let μ̂ and ̂Σ be the pooled sample mean and covariance matrix (with the
ridge-modification) computed from U1, respectively. Define ̂Γ�

̂Γ = ̂Σ−1, ̂V1i = U(̂Γ(Xi −
μ̂))/‖̂Γ(Xi − μ̂)‖, and ̂V2i = U(̂Γ(Yi − μ̂))/‖̂Γ(Yi − μ̂)‖. Correspondingly, a is estimated by

â = n−1
1

n1
∑

i=1

̂V1i − m−1
1

m1
∑

i=1

̂V2i.

Let Ṽ1 = n−1
2

∑n
i=n1+1

̂V1i and Ṽ2 = m−1
2

∑m
i=m1+1

̂V2i. Similar to (2.2), we use

T 2
â =

n2m2

n2 + m2
{â�(Ṽ1 − Ṽ2)}2/σ̂2

2

where

σ̂2
2 = (n2 + m2 − 2)−1

{ n
∑

i=n1+1

(â�
̂V1i − â�Ṽ1)2 +

m
∑

i=m1+1

(â�
̂V2i − â�Ṽ2)2

}

.

Tâ is similar to a classical two-sample t-test. Its finite-sample p-value can be approximated by
using the t-distribution with n2 + m2 − 2 degrees of freedom.

3.2 Asymptotic Power Comparison

Consider a local alternative hypothesis H1 : μ1 − μ2 = δ/
√

N . We assume that
√

N2/N →
b > 0 as N → ∞, where N2 = n2 + m2. Under certain conditions, the ARE of the proposed
WSP test with respect to [19]’s moment-based projection test in the two-sample setting is
ARE(WSP, MP) = E(‖ε1i‖2)E(‖ε1i‖−2), which is the same as that for the one-sample problem
as discussed in Section 2.4.2, implying that the proposed test could be more powerful for heavy-
tailed distributions. Similarly, the comparison between the proposed test and [9] test is basically
similar to that between WSP and [30]’s SS test in Section 2.4.3. Therefore, details are not
elaborated here.

4 Numerical Studies

In this section, we demonstrate our method with numerical studies. All the simulation results
are based on 1000 independent replications and all the comparisons are made at 0.05 significance
level. For ρ ∈ (0, 1), we set two structures for the correlation matrix R: (i) the compound
symmetry correlation R1, say all off-diagonal elements of the correlation matrix R are ρ and
all diagonal elements are 1; (ii) the autoregressive structure, R2 = (ρ|i−j|).
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4.1 Influence of the Tuning Parameters

Here we study how to determine the sample sizes n1 and n2 and the λ in the sample-splitting
based direction estimation proposed in Section 2.2.

Let the sample sizes of U1 and U2 be n1 = �nκ� and n2 = n − n1, where κ ∈ (0, 1) is the
sample splitting percentage and �·� denotes the rounding operator. We examine the influence
of κ on the performance of our new test by setting a grid of κ which are over (0, 1). We generate
a random sample of size n with mean μ, the percentage of μj = 0, for j = 1, . . . , p being chosen
to be 50% or 95% which are the dense case or sparse case. For simplicity, all the non-zero
components are equal to a constant c. Consider the testing power functions with correlations
0.95, 0.75, 0.5, 0.25 and 0. Figure 2 depicts the power as a function of κ with two different
covariance structures for sparse case when c = 0.24, n = 80 and p = 480. The conclusions for
other cases are similar. We can observe that different choices of κ indeed affect the power and
most peaks locate at the range from 0.4 to 0.6. 0.4 appears to be an appropriate choice and we
will use it in other simulations throughout this paper.

Figure 2 Power of WSP test as a function with respect to κ with (n, p, c) = (80, 480, 0.24). Random

sample are from normal distribution. The testing power functions with correlations 0.95, 0.75, 0.5,

0.25 and 0 are represented by bold dashed, bold dotdash, bold dotted, dashed and solid lines.

Next, we consider the choice of the tuning parameter, λ, in (S1 + λDS1)
−1. As we require

λ → 0 as n1 → ∞, we set λ = n−τ
1 . Figure 3 depicts the power as a function with respect

to τ with R = R1 when n = 80, p = 480 and n1 = 0.4n with dense case for c = 0.12, and
sparse cases for two other non-zero values of c. Clearly, the value of τ has little effect on the
performance of the WSP test. Therefore, we set λ = n−0.5

1 in the simulations.
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Figure 3 Power of our WSP test as a function with respect to τ with n = 80, p = 480 and covariance

matrix R1

Though we have theoretically verified that our WSP test works well with thresholded estima-
tion of d and Σ under certain sparsity assumptions in Section 2.4, our numerical results indicate
that using ridge-type estimate of Σ and ̂d = n−1

1

∑n1
i=1

̂Vi performs reasonably well for both
the sparse and dense models considered here. Hence, throughout the main text, our method
is constructed with the non-thresholded estimators. Some additional results with thresholded
estimators are available in the Supplementary Material.

4.2 Size and Power Comparison in One-sample Problem

Here we study size and power performance. We choose the following representative examples
for illustration.

(I) Multivariate normal distribution Xi ∼ N(μ,R).
(II) Multivariate normal distribution with different component variances. Xi ∼ N(μ,Σ)

with Σ = D1/2
Σ RD1/2

Σ and DΣ = diag{d21, . . . , d2p}, d2j ’s are generated from χ2
4.

(III) Multivariate t-distribution t3(μ,R).
(IV) Multivariate t-distribution with different component variances. Xi ∼ t3(μ,Σ) with

Σ = D1/2
Σ RD1/2

Σ , d2j ’s are generated from χ2
4.

(V) Multivariate mixture normal distribution MN(0.8, 10,R).
In our simulation, we also consider the following moving average model:

Xij = ‖�‖−1(�1Zij + �2Zi(j+1) + · · · �T Zi(j+T−1)) + μj

for i = 1, . . . , n and j = 1, . . . , p, where � = (�1, . . . , �T )� and {Zij} are i.i.d. random variables.
The following three scenarios for the innovation {Zij} are considered:

(VI) All the {Zij}’s are from N(0, 1);
(VII) All the {Zij}’s are from t3;
(VIII) All the {Zij}’s are from 0.8N(0, 1) + 0.2N(0, 16).
Xi’s are then obtained by multiplying D1/2

0 , where D0 = diag{d21, . . . , d2p} and d2j ’s are
generated from χ2

3. The coefficients {�i}T
l=1 are generated from U(0, 1) independently and are

kept fixed in our simulations once generated with T = 2. Note that the last two scenarios
are clearly non-elliptical setting and can be framed into the independent component model in
Section 2.3.

In this section we compare our proposed WSP test with some existing methods, including
[19]’s moment-based projection test (MP), [30]’s spatial sign test (SS) and the projection test
without weights (SP) as described in Section 2.4. [19] have made comprehensive investigation
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about the performances of the MP test relative to some other existing high-dimensional tests,
such as the tests proposed by [1], [5] and [27], and thus those tests are not included in our study.
Both dense and sparse cases are considered. Because the power of our WSP test depends on
n−1(p − 2)ηE(‖εi‖−2) as shown in Section 2.4.1, we adjust μ for each scenario so that this
value is fixed as 2 and 1 for the compound symmetry correlation and autoregressive structures,
respectively. For Scenarios (VI)–(VIII), we set μ�{diag(Ω)}−1μ = 0.007.

Size Dense Sparse

WSP SP MP SS WSP SP MP SS WSP SP MP SS

(n, p) = (80, 480)

(I) 5.4 5.6 5.5 6.7 76.9 76.6 76.0 16.9 71.7 71.2 70.6 10.8

(II) 4.3 4.4 4.2 7.5 74.0 73.9 73.3 9.4 73.3 73.0 72.1 9.8

(III) 4.7 6.4 5.8 8.6 69.1 64.2 39.1 14.4 68.2 63.8 39.9 8.5

(IV) 5.6 5.2 4.7 7.7 71.3 64.3 38.2 10.2 66.6 61.6 38.9 9.5

(V) 3.5 4.6 5.3 7.9 57.5 29.4 9.1 9.3 58.3 32.4 8.5 9.1

(n, p) = (80, 1440)

(I) 5.7 5.4 5.3 6.1 30.6 28.9 29.8 9.5 31.9 31.5 31.4 8.5

(II) 5.1 5.2 5.3 6.2 30.8 30.9 30.8 9.4 32.8 32.3 31.7 6.8

(III) 4.3 5.1 4.2 5.9 29.3 26.5 15.6 9.0 28.8 24.8 15.1 8.4

(IV) 4.8 5.1 5.4 7.1 30.0 26.2 15.9 7.8 30.5 26.1 15.8 8.7

(V) 5.4 4.7 4.8 6.9 21.6 12.6 6.3 8.8 22.6 11.7 5.9 8.9

(n, p) = (200, 1440)

(I) 4.5 4.6 4.6 6.8 97.8 97.8 97.6 14.0 98.1 98.1 98.0 8.9

(II) 4.6 4.5 4.2 5.2 97.9 97.8 97.7 9.8 97.8 97.8 97.8 8.7

(III) 4.5 4.4 4.9 6.2 97.8 95.7 72.6 11.5 97.0 94.6 68.4 7.4

(IV) 6.2 5.0 3.3 6.1 97.8 95.9 71.4 9.0 95.4 93.2 68.6 7.2

(V) 5.1 5.2 4.6 6.5 94.0 66.5 16.5 11.0 94.7 67.4 17.5 8.8

Table 1 Empirical size and power (%) comparison under Scenarios (I)–(V) with the compound

symmetry correlation structure (R1) when ρ = 0.5

Three combinations of (n, p) are used: (80, 480), (80, 1440) and (200, 1440). The results
of empirical size and power comparison under the compound symmetry, autoregressive and
moving average structures are given in Tables 1–3, respectively. We observe that the sizes of
the WSP test are close to the nominal level under all the scenarios. Generally, under Scenarios
(I) and (II), the WSP, MP and SP tests have almost identical performances, since the underlying
distribution is multivariate normal. This can be understood from the discussions in Section 2.4:
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the three tests are equivalently efficient as p → ∞. Under the other elliptical scenarios (III)–(V),
the WSP test is clearly more efficient than the MP test, and the difference is quite remarkable.
Certainly, this is not surprising as the asymptotic relative efficiency of WSP with respect to
MP is quite high under these distributions. Similarly, the WSP outperforms the projection test
without weights, which again concurs with the asymptotic comparison in Section 2.4.1. The
SS test is also able to maintain sizes in a reasonable range, though in some cases it appears to
be a little liberal. The SS test is outperformed by the other three tests when the correlation
matrix is dense, such as in Table 1. The advantages of the three projection tests are partially
due to the utilization of the correlation information without sacrificing the null performances.
When the correlation matrix possesses certain sparseness, such as the autoregressive structure,
the SS test could be much more powerful than the other three tests; see Scenarios (I), (III) and
(V) in Table 2. However, this superiority would be largely compromised when the variances of
components are not identical, such as the cases of Scenarios (II) and (IV).

Size Dense Sparse

WSP SP MP SS WSP SP MP SS WSP SP MP SS

(n, p) = (80, 480)

(I) 5.2 5.0 4.8 5.6 84.1 84.2 84.7 99.3 79.4 80.0 79.7 99.3

(II) 4.8 4.8 4.2 6.2 56.6 57.2 57.1 63.6 62.6 62.8 62.5 78.4

(III) 5.2 4.4 4.0 6.1 81.0 76.0 48.0 98.5 74.8 69.0 45.2 97.6

(IV) 4.7 5.2 4.7 7.6 52.3 49.1 30.2 55.1 54.5 50.7 28.7 60.7

(V) 4.6 4.2 4.0 8.9 71.8 42.4 12.2 65.2 62.2 37.4 10.7 56.4

(n, p) = (80, 1440)

(I) 5.6 5.3 5.4 4.5 52.9 53.2 53.2 92.4 55.5 55.2 55.2 92.3

(II) 5.9 5.8 5.8 5.2 24.5 24.2 24.1 22.7 23.3 23.7 23.7 25.0

(III) 5.0 5.3 3.9 5.1 49.1 44.2 26.1 83.1 50.2 45.6 26.6 82.3

(IV) 4.5 4.8 4.8 6.3 20.7 18.2 12.2 18.4 21.8 20.7 10.5 18.1

(V) 5.3 4.8 5.0 12.5 40.9 23.2 7.3 35.2 38.5 21.6 8.1 35.0

(n, p) = (200, 1440)

(I) 4.4 4.3 4.3 5.6 99.4 99.4 99.3 100.0 99.2 99.2 99.3 100.0

(II) 4.4 4.6 4.5 4.6 79.4 79.5 79.3 61.4 80.1 79.8 80.1 67.0

(III) 3.9 4.2 5.0 4.5 98.9 97.2 80.4 100.0 97.9 97.2 77.5 100.0

(IV) 5.4 4.7 4.0 5.9 79.2 72.9 42.6 53.1 76.1 70.6 42.1 55.6

(V) 4.6 4.1 4.1 8.1 98.2 78.0 22.7 88.4 98.0 73.3 21.8 83.2

Table 2 Empirical size and power comparison under Scenarios (I)–(V) with the autoregressive

structure (R2) when ρ = 0.5

Table 3 reports empirical sizes and power comparison under Scenarios (VI)–(VIII). We
observe that the WSP, SP and MP tests perform equivalently well in all the cases, though the
WSP appears to be slightly better. In fact, this should not be surprising to us because the ARE
values ARE(WSP, SP) = E(‖εi‖−2)/{E(‖εi‖−1)}2 and ARE(WSP, MP) = E(‖εi‖2)E(‖εi‖−2)
are very close to one under these three models.
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Size Dense Sparse

WSP SP MP SS WSP SP MP SS WSP SP MP SS

(n, p) = (80, 480)

(VI) 3.5 3.6 3.6 5.4 95.6 95.7 95.5 76.1 95.1 95.2 95.1 86.5

(VII) 4.5 4.5 4.7 5.5 41.1 41.1 39.1 18.4 39.7 39.3 37.6 25.0

(VIII) 4.9 4.6 4.6 5.3 21.0 21.7 21.2 17.3 23.1 22.9 22.3 22.2

(n, p) = (80, 1440)

(VI) 4.0 4.1 3.7 5.1 100.0 100.0 100.0 66.4 100.0 100.0 100.0 98.6

(VII) 5.4 5.4 5.1 5.8 81.1 81.6 80.8 39.7 81.2 81.0 79.2 37.0

(VIII) 4.2 4.6 4.6 5.4 56.0 55.8 55.7 14.4 52.6 52.3 51.8 26.5

Table 3 Empirical size and power comparison under Scenarios (VI)–(VIII)

R Size Dense Sparse

WSP MP SS WSP MP SS WSP MP SS

(n, p) = (80, 480)

(I) 4.9 5.7 5.3 83.5 84.2 14.2 82.6 84.7 9.7

(III) 4.5 4.7 5.9 77.6 42.5 12.3 75.6 42.4 9.5

(V) 5.0 4.9 5.8 30.3 8.1 6.9 29.5 10.1 6.3

R1 (n, p) = (80, 1440)

(I) 5.0 4.7 4.7 40.0 38.1 9.1 39.2 40.1 7.4

(III) 4.6 4.8 5.4 36.3 20.7 8.3 37.7 20.5 7.7

(V) 5.1 4.6 5.1 14.2 7.0 6.5 14.3 6.5 5.6

(n, p) = (80, 480)

(I) 5.7 5.3 5.4 79.9 79.6 99.8 75.3 73.9 99.4

(III) 5.4 4.0 5.3 75.5 42.3 98.7 71.3 39.0 97.1

(V) 5.0 5.3 4.9 39.7 12.7 26.1 35.8 10.2 24.4

R2 (n, p) = (80, 1440)

(I) 5.4 5.3 5.7 54.3 54.1 92.7 52.3 51.9 91.2

(III) 5.5 4.5 5.8 47.7 27.9 78.7 43.8 25.5 76.2

(V) 5.2 5.9 5.3 26.2 7.3 10.5 25.5 8.0 10.1

Table 4 Empirical size and power comparison in two-sample problem under Scenarios (I), (III) and

(V) when ρ = 0.5

4.3 Size and Power Comparison in Two-sample Problem

Here we compare our proposed WSP test with [19]’s moment-based projection test (MP), and
[9]’s spatial sign test (SS). We consider Xi and Yi follow multivariate normal, multivariate t

and multivariate mixture normal distributions like Scenarios (I), (III) and (V) in one-sample
problem with location parameters μ1 and μ2, respectively. Again, the two covariance structures,
the compound symmetry R1 and the autoregressive correlation R2, are used. Without loss of
generality, we choose n = m. Under the alternative hypothesis, set μ1 = 0 and choose μ2 such
that the percentage of μ1j = μ2j for j = 1, . . . , p are 50% (dense case) or 95% (sparse case).
We fix (p − 2)(μ1 − μ2)�Σ−1(μ1 − μ2)E(‖ε1i‖−2) as 4 and 2 for R1 and R2, respectively.
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The results were reported in Table 4. Similar conclusions to the one-sample problem can be
drawn: the improvement of WSP over the other two tests under heavy-tailed errors could be
quite substantial.

4.4 A Real-data Application

In this section, we apply the proposed methodology to a real data set. The diffuse large
B-cell lymphoma (DLBCL) data set (http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi)
includes the expression of the 661 genes across the 93 symbols with 42 ones in group one and 51
in group two. The DLBCL is a highly heterogeneous disease and the two groups have different
clinical manifestation. We want to test whether group one and group two have the same gene
expression levels or not. This is a high-dimensional test problem with dimensions 661. From
the top two panels of Figure 4, we observe that many variables of the two groups are not normal
distributed. Thus, we could expect that WSP test would be more robust. Furthermore, from
the bottom panels of Figure 4, many between-variables correlations of these two samples are
quite large, which illustrates that a test which is capable of utilizing correlations would be more
desirable. The p-values of the WSP and MP tests are 4.58e − 13 and 2.01e − 11, respectively.
These results suggest the rejection of the null hypothesis. However, the p-value of WSP test is
smaller for this data set, proving more strong evidence that the gene expression levels of the
two groups are significantly different.

Furthermore, we artificially re-arrange data to see how robust our proposed method is.
Firstly, we perform 661 marginal t-tests to study the significance of each variable and then
divide all the variables into two separate parts by p-values: smaller than 0.01 and larger than
0.01, which contain 240 and 421 variables, respectively. Then we compute the empirical size
by randomly drawing p = 350 variables from the second part and performing the two-sample
WSP and MP tests on those 350 variables. Similarly, the empirical power is approximated by
drawing 10 variables from the first part and 340 variables from the second part. Figure 5 shows
the ROC curves (power against significance level) of both the two tests with 1000 replications.
The advantage of our WSP test is clear.

Figure 4 Histograms of marginal kurtosis values and between-variables correlations
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Figure 5 ROC curves of the proposed test and MP test on the diffuse large B-cell lymphoma data

5 Concluding Remarks

A natural concern is whether the newly proposed test in this paper can handle the ultra-high
dimensional scenarios with larger p, say, at an exponential rate of n. Unfortunately, it is very
difficult, if not impossible, when there is no sparse structure for all existing scale-invariant tests
to correct bias-terms. Thus in general, it is still an open problem for whether we can define
a test statistic that is (at least) asymptotically effective without sparsity assumption on the
data structure. This paper offers the insight on how to find the optimal weights and directions
on high-dimensional sign paradigms, and the results in this paper also serve as a preliminary
step for us to carefully take this challenge into consideration. One may be wary of the problem
of the single sample-splitting method, say its sensitivity with respect to the choice of splitting
the entire sample: sample splits may lead to different decisions. To avoid the so-called “p-
value lottery”, we may consider employing some bagging technique to aggregate results from
multiple sample-splitting. In the Supplementary Material, we provide some preliminary analysis
but some future study is definitely needed.

Appendix

This appendix contains several lemmas and the proofs of Theorems 2.1–2.3 and 3.1.

Proof of Theorem 2.1 D�V1, . . . ,D�Vn are i.i.d. k-variate random vectors. Denote D1 =
(D�D)−1/2D� and σ2

n = (np)−1E{K2(ri)}. By the Central Limit Theorem, we have under
the null hypothesis,

√

npE−1{K2(ri)}D1V̄
d→Nk(0, Ik).

Under H1n, according to the Taylor expansion, we have

U(ΓXi) = ui + ‖εi‖−1(Ip − uiu�
i )Γμ + Qi, (A.1)

‖ΓXi‖ = ‖εi‖ + Ji, (A.2)

where ui = U(εi). By triangle inequality, the remainder term Qi satisfies

‖Qi‖ ≤ C‖εi‖−2‖Γμ‖2, (A.3)
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and Ji satisfies |Ji| ≤ ‖Γμ‖. Consider

D1{V̄ − E(V)} =n−1D1

n
∑

i=1

K(ri)ui + n−1D1

n
∑

i=1

{Vi − K(ri)ui − E(Vi)}.

Denote I1 = n−1D1

∑n
i=1 K(ri)ui and I2 = n−1D1

∑n
i=1{Vi − K(ri)ui − E(Vi)}. First,

I1/σn
d→Nk(0, Ik). Denote

R0 = D1n
−1

n
∑

i=1

{‖εi‖−1K(ri)(Ip − uiu�
i )Γμ

− E{‖εi‖−1K(ri)}Γμ + K(ri)Qi − E{K(ri)Qi}}.
Using (A.1)–(A.2), I2 = D1R0. By (A.3),

E(‖R0‖2) ≤ A[n−1E{‖εi‖−2K2(ri)}μ�Σ−1μ

+ n−1C2E{‖εi‖−4K2(ri)}(μ�Σ−1μ)2]{1 + o(1)},
where A is some constant.

By Cauchy inequality and H1n,

pE{‖εi‖−2K2(ri)}μ�Σ−1μ

E{K2(ri)} ≤ p[E(‖εi‖−4)E{K4(ri)}]1/2μ�Σ−1μ

E{K2(ri)}
= O{pE(‖εi‖−2)(μ�Σ−1μ)} = O(n−1).

Similarly,

pE{‖εi‖−4K2(ri)}(μ�Σ−1μ)2

E{K2(ri)} ≤ p[E(‖εi‖−8)E{K4(ri)}]1/2(μ�Σ−1μ)2

E{K2(ri)}
= O{pE2(‖εi‖−2)(μ�Σ−1μ)2} = O(n−1).

By noting that λmax = 1, it follows that E(‖I2‖2)/σ2
n ≤ λmaxE(‖R0‖2)/σ2

n = o(1), where λmax

is the maximum eigenvalue of D(D�D)−1D�. Hence

D1{V̄ − E(V)}/σn
d→Nk(0, Ik).

Denote δD = σ−2
n [E(V)]TD(D�D)−1D�E(V). When p → ∞, ‖εi‖ p→∞. Assumption 2

implies that K(ri) = K(‖εi‖){1 + Op(Ji)} = K(‖εi‖){1 + O(‖μ�Σ−1μ‖)}. Using Lemmas
A.1–A.2 again, we have

δD = np
E2{K(ri)‖εi‖−1}

E{K2(ri)} μ�Γ�D(D�D)−1D�Γμ{1 + o(1)},

= np
E2{K(‖εi‖)‖εi‖−1}

E{K2(‖εi‖)} μ�Γ�D(D�D)−1D�Γμ{1 + o(1)}.

By the continuous mapping theorem,

QD
d→χ2

k

(

np
E2{K(‖εi‖)‖εi‖−1}

E{K2(‖εi‖)} μ�Γ�D(D�D)−1D�Γμ

)

.

Hence, for any given k and D, the power of the projection test depends only on

E2{K(‖εi‖)‖εi‖−1}
E{K2(‖εi‖)} ≤ E{K2(‖εi‖)}E(‖εi‖−2)

E{K2(‖εi‖)} = E(‖εi‖−2),
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where the inequality is due to the Cauchy inequality. The maximum value is E(‖εi‖−2) with
maximizer K(t) = t−1. For fixed k > 0, the probability Pr(χ2

k(γ) > c), for any fixed c, is
increasing function with respect to the non-centrality parameter γ ([10]). Thus, K(t) = t−1 is
the optimal weight function so that the test is locally and asymptotically most powerful.

For given K(t) = t−1, as E(‖εi‖−2) does not depend on D, we just need to study E(V)�

D(D�D)−1D� ·E(V) to get optimal projection direction. It follows that D = E(V) is the
best choice to reach asymptotic best power by using Theorem 2 in [11]. The remaining proof
is exactly the same as that of Theorem 1 in [19] and is omitted here. �
Proof of Theorem 2.2 The proof of this theorem is very similar to that of Theorem 2.1, and
thus we only highlight the main difference. We need an addition lemma.

Lemma 5.1 ([30]) Let Zi = (Zi1, . . . , Zip)� be such that Zij are independent subGaussian
random variables and have mean 0 and variance 1. Then

Pr
{

tr(Σ)
2

≤ ‖ΓZi‖2 ≤ 3tr(Σ)
2

}

≥ 1 − c exp
[

− c′
{

tr2(Σ)
tr(Σ2)

}1/6]

,

where c′ and c are positive finite constants.

Define B = E{K2(‖εi‖)uiu�
i }. Write

√
n(D�BD)−1/2D�{V̄ − E(V)} =

√
n(D�BD)−1/2D�n−1

n
∑

i=1

K(ri)ui

+
√

n(D�BD)−1/2D�n−1
n

∑

i=1

{Vi − K(ri)ui − E(Vi)}.

Let

I1 =
√

n(D�BD)−1/2D�n−1
n

∑

i=1

K(ri)ui

and

I2 =
√

n(D�BD)−1/2D�n−1
n

∑

i=1

{Vi − K(ri)ui − E(Vi)}.

Denote I2 =
√

n(D�BD)−1/2D�R0, where R0 is defined in the proof of Theorem 2.1. Note
that

E(‖I2‖2) ≤ n‖B−1‖2E(‖R0‖2)
= n‖B−1‖2o(σ2

n)

= p−1‖B−1‖2E{K2(‖εi‖)}o(1).

Thus, I2 = op(σn).
By Lemma 5.1, we have with probability tending to one, p/2 ≤ ‖εi‖2 ≤ 3p/2. Further,

by the continuity assumption of K(·), we have K2(‖εi‖) ≥ K2(η), where η ∈ [p/2, 3p/2].
Accordingly, we have λmin(B) is lower bounded by 2K2(η)/(3p) with probability tending to
one. Thus, the noncentral parameter of the chi-square distribution is

δD = nE2{K(‖εi‖)‖εi‖−1}μ�Γ�D(D�BD)−1D�Γμ{1 + o(1)},
≤ 3np/{2K2(η)}E2{K(‖εi‖)‖εi‖−1}μ�Γ�D(D�D)−1D�Γμ{1 + o(1)},
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from which we can establish the optimal D is Γμ as in the proof of Theorem 2.1. Using Lemma
5.1 again, tr(Σ−1)/2 ≤ ‖Γεi‖2 ≤ 3tr(Σ−1)/2 and consequently

tr
[

μ�Γ�E{K2(‖εi‖)uiu�
i }Γμ

] ≤ 3E{K2(‖εi‖)}tr(Σ−1)‖μ‖2/p.

The power of the project test depends on δD which is thus lower bounded by

E2{K(‖εi‖)‖εi‖−1}
3E{K2(‖εi‖)} np{tr(Σ−1)}−1‖μ‖2.

Taking K(t) = t−1 would result in the largest power. �
Next, we state several necessary lemmas for proving Theorem 2.3.

Lemma 5.2 ([9]) For any p × p symmetric matrix M, we have

E(u�
i Mui)2 = {tr2(M) + 2tr(M2)}/(p2 + 2p),

E(u�
i Mui)4 = {3tr2(M2) + 6tr(M4)}/{p(p + 2)(p + 4)(p + 6)}.

Lemma 5.3 ([2]) Under Assumptions 3 and 5, we have ‖̂Σ−1 −Σ−1‖2 = Op(sp,Σ

√

log p/n),
where ‖A‖2 denotes the spectral norm of a matrix A.

The next lemma is a parallel result of Lemma 5.3, establishing the consistency of the
thresholded estimator of μ.

Lemma 5.4 Suppose Assumptions 4 and 5 hold. If we take hn = M ′√log p/n for large M ′,
then

‖Thn
(X̄1) − μ‖ = Op{sp,µ(log p/n)(1−q)/2}.

Proof By Assumption 5 and limit theorems for large deviations in [25], we have

max
j

|X̄j − μj | = Op(
√

log p/n).

Write ‖Thn
(X̄) − μ‖ ≤ ‖Thn

(μ) − μ‖ + ‖Thn
(X̄) − Thn

(μ)‖. On one hand,

‖Thn
(μ) − μ‖ ≤

p
∑

j=1

|μj |I(|μj | ≤ t) =
p

∑

j=1

|μj |1−q|μj |qI(|μj | ≤ t) ≤ spt
1−q.

On the other hand, we observe that

‖Thn
(X̄) − Thn

(μ)‖ ≤ L1 + L2 + L3,

where

L1 =
p

∑

j=1

|X̄j |I(|X̄j | ≥ t, |μj | < t),

L2 =
p

∑

j=1

|μj |I(|X̄j | < t, |μj | ≥ t),

L3 =
p

∑

j=1

|X̄j − μj |I(|X̄j | ≥ t, |μj | ≥ t).

By Assumption 4, it is easy to see that

L3 ≤ max
j

|X̄j − μj |
p

∑

j=1

|μj |−q|μj |q|I(|μj | ≥ t) = spt
−qOp(

√

log p/n).
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Denote

L4 =
p

∑

j=1

|X̄j − μj |I(|X̄j | ≥ t, |μj | < t),

L5 =
p

∑

j=1

|μj |I(|μj | < t) ≤ t1−qc0(p).

Thus L1 ≤ L4 + L5. Take 0 < γ < 1, Then

L4 ≤
p

∑

j=1

|X̄j − μj |I(|X̄j | ≥ t, |μj | ≤ γt) +
p

∑

j=1

|X̄j − μj |I(|X̄j | ≥ t, γt < |μj | < t),

=
{ p

∑

j=1

I(|X̄j − μj | > (1 − γ)t)
}

Op

(
√

log p

n

)

+ sp(γt)−qOp

(
√

log p

n

)

.

Since

Pr
({ p

∑

j=1

I(|X̄j − μj | > (1 − γ)t)
}

> 0
)

= Pr(max
j

|X̄j − μj | > (1 − γ)t)

≤ p exp{−nδ(1 − γ)2t2},
for some δ > 0. Thus, L4 = Op{spt

−q(
√

log p/n)}. Accordingly,

L1 = Op{spt
−q(

√

log p/n) + spt
1−q}.

Similarly,

L2 ≤
p

∑

j=1

|X̄j − μj |I(|X̄j | ≤ t, |μj | > t) +
p

∑

j=1

|X̄j |I(|X̄j | ≤ t, |μj | > t),

≤ max
j

|X̄j − μj |
p

∑

j=1

I(|μj | > t) + t

p
∑

j=1

I(|μj | > t),

= Op

{

spt
−q

√

log p

n
+ spt

1−q

}

.

If we take t = M ′√log p/n, the lemma follows from the above three terms L1, L2 and L3. �
In the following derivation, we will simply take q = 0 without loss of generality.

Lemma 5.5 For any p-dimensional vectors X and μ, we have
∥

∥

∥

∥

X + μ

‖X + μ‖2 − X
‖X‖2 − ‖X‖−2

(

Ip − 2
XX�

‖X‖2
)

μ

∥

∥

∥

∥

≤ C
‖μ‖2
‖X‖3 .

Proof This lemma can be easily shown by using the Taylor theorem and thus omitted here.
See [22, Lemma 6.2] for a similar result. �

Lemma 5.6 Suppose Assumptions 3–5 hold. We have

‖̂d − d‖ = Op{sp,Σsp,µ

√

log p/n}.

Proof By the proof of Theorem 2.1, we have

d ∝ EV = E{‖εi‖−1ui + ‖εi‖−2(Ip − uiu�
i )Γμ + ‖εi‖−1Qi},



704 Chen H. et al.

=
p − 1

p
E{‖εi‖−2}

{

Γμ +
p

p − 1
E(‖εi‖−1Qi)/E(‖εi‖−2)

}

,

where Qi is defined in (A.1).
As d is a projection direction, we write

d = Γμ +
p

p − 1
E(‖εi‖−1Qi)/E(‖εi‖−2).

Then, we have

‖̂d − d‖ ≤ ‖̂Γμ̂ − Γμ‖ +
p

p − 1
E(‖εi‖−1‖Qi‖)/E(‖εi‖−2),

≤ ‖(̂Γ − Γ)μ + Γ(μ̂ − μ) + (̂Γ − Γ)(μ̂ − μ)‖ + CE(‖εi‖−3)μ�Σ−1μ/E(‖εi‖−2),

≤ {‖(̂Γ − Γ)μ‖ + ‖Γ(μ̂ − μ)‖ + ‖(̂Γ− Γ)(μ̂ − μ)‖} + {E(‖εi‖−1)}−1O{(np)−1},

= Op

(

sp,Σsp,µ

√

log p

n

)

+ Op

(

1
n
√

p

)

,

= Op

(

sp,Σsp,µ

√

log p

n

)

. �

Proof of Theorem 2.3 Firstly, from the proof of Theorem 2.1, we know that

d = Γμ(1 + o(1)). (A.4)

Denote ds = d/‖d‖ and ̂ds = ̂d/‖̂d‖. The proof of this theorem can be divided into three key
steps. In the first step, we show that

σ−1
n2

d�
s

̂V −
√

n2pE{‖εi‖−2}(μ�Σ−1μ)1/2 d→N(0, 1). (A.5)

Lemma 5.5 leads to

U(̂ΓXi)

‖̂ΓXi‖
= ‖εi‖−1ui + ‖εi‖−1(Ip − uiu�

i )(̂Γ− Γ)Γ−1ui + ‖εi‖−2(Ip − uiu�
i )(̂Γ− Γ)μ

+ ‖εi‖−2(Ip − uiu�
i )Γμ + υi,

where the remainder term υi satisfies

‖υi‖ ≤ C‖εi‖−3‖(̂Γ− Γ)(Xi − μ) + (̂Γ− Γ)μ + Γμ‖2.
Therefore, we have

d�
s

̂V =
1
n2

n
∑

i=n1+1

‖εi‖−1d�
s ui +

1
n2

n
∑

i=n1+1

‖εi‖−2d�
s (Ip − uiu�

i )Γμ

+
1
n2

n
∑

i=n1+1

‖εi‖−1d�
s (Ip − uiu�

i )(̂Γ− Γ)Γ−1ui

+
1
n2

n
∑

i=n1+1

‖εi‖−2d�
s (Ip − uiu�

i )d�
s (̂Γ − Γ)μ

+
1
n2

n
∑

i=n1+1

d�
s υi

=: M1 + M2 + R1 + R2 + R3.
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Note that σ−1
n2

M1
d→N(0, 1). Next, we show that Rk = op(σn2) for k = 1, 2, 3. Write R1 =

ϑ1 + ϑ2, where ϑ1 = n−1
2

∑n
i=n1+1 ‖εi‖−1d�

s (Γ − ̂Γ)Γ−1ui and ϑ2 = −n−1
2

∑n
i=n1+1 ‖εi‖−1d�

s

uiu�
i (Γ − ̂Γ)Γ−1ui. Denote H1 = Γ−1(Γ − ̂Γ)dsd�

s (Γ − ̂Γ)Γ−1. By Cauchy inequality and
(A.4),

E(ϑ2
1) = n−1

2 E{‖εi‖−1(u�
i Γ−1(Γ − ̂Γ)dsd�

s (Γ − ̂Γ)Γ−1ui)},
≤ n−1

2 {E(‖εi‖−4)}1/2{E(u�
i H1ui)2}1/2,

= n−1
2 {E(‖εi‖−4)}1/2O(

√

tr{E(H2
1)}p−1),

= {E(‖εi‖−4)}1/2O

(

1
n2p

s2p,Σ log p

n2

)

= o(σ2
n2

),

where the second equality is due to Lemma 5.2 and the third equality comes from Lemma 5.3.
Also,

E(ϑ2
2) ≤ {E(‖εi‖−8)}1/4{E(u�

i dsd�
s ui)4}1/4[E{u�

i Γ−1(Γ− ̂Γ)ui}4]1/2,

= {E(‖εi‖−8)}1/4O

(

1
n2p

tr1/2(Σ2)s2p,Σ log p

p2

)

= o(σ2
n2

).

By taking a similar procedure, we can verify that R2 = op(σn2). The proof of R3 = op(σn2) is
also similar but more tedious, and thus the technical details are provided in the Supplementary
Material. Using (A.4) again, we have

E(σ−1
n2

M2) =
√

n2pE{‖εi‖−2}(μ�Σ−1μ)1/2(1 + o(1)).

Similar to R1, it can be verified that var(M2) = o(σ2
n2

), from which we establish (A.5).
The second step is to show that

(̂ds − ds)� ̂V = op(σn2). (A.6)

By (A.1),

‖̂ds − ds‖ ≤ 2‖̂d − d‖/‖d‖
= Op(r−1sp,Σsp,µ

√

log p/n2)

= Op(max{sp,Σ, sp,µ}
√

log p/n2).

Thus, by using similar arguments for showing R1 = op(σn2), we can establish (̂ds−ds)� ̂V =
op(σn2).

The third step is to prove

n−1
2 σ̂2/(σ2

n2
̂d�

̂d)
p→ 1. (A.7)

Notice that given ̂d, ̂d�
̂Vn1+1, . . . , ̂d�

̂Vn are i.i.d. random variables. Thus, σ̂2/var(̂d�
̂Vi)

p→ 1
by the WLLN. By taking the same procedure as in the first step, we can see that

(n2
̂d�

̂d)−1/2
̂d�

̂Vi = n
−1/2
2 ‖εi‖−1(̂d�

̂d)−1/2
̂d�ui + op(σn2).

Accordingly, var(̂d�
̂Vi)

n2σ2
n2

̂d�̂d
→ 1 from which we can conclude that (A.7) holds.

Combining (A.5), (A.6) and (A.7), Theorem 2.3 follows immediately. �
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Proof of R3 = op(σn) Recall that we aim to see that

R3 =
1
n

n
∑

i=1

d�
s υi = op(σn),

where the term υi satisfies

‖υi‖ ≤ C‖εi‖−3‖(̂Γ− Γ)(Xi − μ) + (̂Γ− Γ)μ + Γμ‖2.
It follows from that

E

(

1
n

n
∑

i=1

d�
s υi

)2

= O{E(υ�
i d�

s dsυi)},

where

E{υ�
i d�

s dsυi} ≤ E(υ�
i υi),

≤ E{‖εi‖−6‖(̂Γ− Γ)(Xi − μ) + (̂Γ− Γ)μ + Γμ‖4},
= O(E{‖εi‖−6(‖(̂Γ− Γ)(Xi − μ)‖4 + ‖(̂Γ− Γ)μ‖4 + ‖Γμ‖4)}),

= O

( 3
∑

i=1

Δi

)

.

Note that

Δ1 = E{‖εi‖−2(u�
i Γ−1(̂Γ − Γ)2Γ−1ui)2},

≤ [E{‖εi‖−4}]1/2[E{u�
i Γ−1(̂Γ− Γ)2Γ−1ui}4]1/2,

= O

(

E{‖εi‖−2}
{

1
p4

tr(E(H4))
}1/2)

,

= O

(

E{‖εi‖−2} 1
np

log2 p

np
tr1/2(Σ4)

)

,

= o(σ2
n),

where H = Γ−1(̂Γ− Γ)2Γ−1. Similarly,

Δ2 = E{‖εi‖−6(μ�ΓHΓμ)2},
= E{‖εi‖−6}[μ�Γ{E(H)}Γμ]2,

= O{E(‖εi‖−6)(μ�Σ−1μ)2},
= O{E(‖εi‖−2){E(‖εi‖−2)(μ�Σ−1μ)}2},
= O{E(‖εi‖−2)(np)−2},
= o(σ2

n).

The arguments for showing Δ3 = o(σ2
n) is similar. Hence, we can establish R3 = op(σn). �

Proof of Theorem 3.1 By the Taylor approximation of U(Γ(Xi − μ)) and U(Γ(Yi − μ)) and
the assumption on μ, we get

U(Γ(Xi − μ)) = U(ε1i) + ‖ε1i‖−1(Ip − U(ε1i)U�(ε1i))Γ(μ1 − μ) + Q1i,

U(Γ(Yi − μ)) = U(ε2i) − ‖ε2i‖−1(Ip − U(ε2i)U�(ε2i))Γ(μ − μ2) + Q2i,
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where Q1i and Q2i are the Taylor remainder terms satisfying

‖Q1i‖ ≤ C‖ε1i‖−2‖Γ(μ1 − μ2)‖2,
‖Q2i‖ ≤ C‖ε2i‖−2‖Γ(μ1 − μ2)‖2,

and C is a constant that does not depend on ΓXi and ΓYi or μ1 and μ2.
Using similar arguments in the proof of Theorem 2.1, we can show that QA

d→χ2
k(δA), where

δA =
nmp

n + m
E−1{K2(‖ε1i‖)}E2{K(‖ε1i‖)‖ε1i‖−1}

(μ1 − μ2)�Γ�A(A�A)−1A�Γ(μ1 − μ2){1 + o(1)}.
By using Cauchy inequality again, the assertion follows immediately. �
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