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Abstract In this paper, we propose a new correlation, called stable correlation, to measure the dependence

between two random vectors. The new correlation is well defined without the moment condition and is zero if and

only if the two random vectors are independent. We also study its other theoretical properties. Based on the new

correlation, we further propose a robust model-free feature screening procedure for ultrahigh dimensional data

and establish its sure screening property and rank consistency property without imposing the subexponential or

sub-Gaussian tail condition, which is commonly required in the literature of feature screening. We also examine

the finite sample performance of the proposed robust feature screening procedure via Monte Carlo simulation

studies and illustrate the proposed procedure by a real data example.
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1 Introduction

It is fundamental to characterize the dependence between two random vectors. Developing measures to

characterize nonlinear dependence between two random vectors receives more and more attention in the

recent literature. The classical correlation coefficients such as the Pearson correlation, Spearman [18]’s ρ

and Kendall [8]’s τ cannot be used for measuring general dependence between two random vectors.

The distance correlation (DC) [20] can be used to characterize the nonlinear dependence between two

random vectors of different dimensions. The DC is well defined only when certain moment conditions

are imposed on the random vectors. To remove the moment condition, Heller et al. [5] suggested using

ranks of distances, but its practical implementation requires choosing several tuning parameters. Zhu et

al. [24] proposed a projection correlation (PC) for any two random vectors, and they demonstrated that

the DC may be less efficient than PC in detecting nonlinear dependence when the moment conditions are

violated. Weihs et al. [21] developed a generalized framework for nonparametric measure of dependence.

Spearman [15] proposed a generic measure of dependence in the Banach space.
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In this paper, we first propose a new correlation for measuring dependence between two random vectors

of arbitrary dimensions. The proposed correlation shares the same spirit of the DC, which is defined

via a weighted L2 distance between the joint characteristic function and the product of the marginal

characteristic functions. By taking a different weight function from the one used in the DC, the new

correlation can be well defined without moment conditions. We study properties of the new correlation,

and show that the new correlation retains virtues of the DC, and can be used to measure nonlinear

dependence between two random vectors with heavy-tailed distributions.

As an application of the proposed new correlation, we use it to develop a robust model-free feature

screening procedure for ultrahigh dimensional data. Since the seminal work by Fan and Lv [2], a number

of feature screening procedures have been developed under various model settings. For a recent review,

please refer to [13]. However, only a few works on robust feature screening have been proposed in the

literature. Li et al. [10] proposed the robust rank correlation screening (RRCS) based on Kendall τ .

It is known that Kendall τ can detect monotone relationship between the predictors and the response,

but cannot detect arbitrary possible dependence between the predictors and the response. In fact, two

random variables can still be dependent even when their Kendall τ is zero. Moreover the RRCS cannot

directly handle grouped predictors and multivariate responses. Zhong et al. [22] developed a robust

feature screening procedure for the ultrahigh dimensional single index model. Their procedure is limited

to the univariate response. The authors applied the distance correlation screening procedure [11] to the

rank statistic of the response and the predictors. Thus, their procedure is robust in the direction of the

response, but not the direction of predictors. Recently, Liu et al. [12] applied the PC to the ultrahigh

dimensional feature screening problem. Although the PC does not require any moment condition, its

computation can be expensive.

Compared with the robust screening procedures developed in [10,22], our proposed screening procedure

allows the multivariate response and grouped predictor, and it is model-free and robust in both directions

of responses and predictors. The proposed procedure does not need the subexponential tail condition, a

common condition imposed in the works related to feature screening.

The rest of this paper is organized as follows. In Section 2, we propose a new correlation and study its

theoretical properties. In Section 3, we propose a new robust feature screening procedure based on the

new correlation. Section 4 presents numerical studies and a real data example to illustrate the proposed

methodology. Conclusion is given in Section 5. All the proofs are presented in Appendix A.

2 A new correlation

Suppose that V and W are two random vectors with dV and dW dimensions. In this section, we propose

a new correlation to characterize both linear and nonlinear dependence between V and W .

Let φV,W (t, s) = E[ei(t
TV+sTW )] be the joint characteristic function (CF) of V and W , and φV (t) and

φW (s) be the marginal CFs of V and W , respectively, where tT denotes the transpose of t. To introduce

the new correlation, define

Q(V,W | ω) =
∫
R

dV +dW

|φV,W (t, s)− φV (t)φW (s)|2ω(t, s)dtds, (2.1)

where ω(t, s) � 0 is a weight function. Clearly, Q(V,W | ω) is zero if V and W are independent. In

general, it is hard to evaluate Q(V,W | ω) with an arbitrary ω(t, s). Fortunately, with a careful choice of

the weight function ω(t, s), we can derive a closed form of Q(V,W | ω). Székely et al. [20] advocated

ω(t, s) = (cdV
cdW

‖t‖1+dV ‖s‖1+dW )−1

with ‖ · ‖ being the Euclidean norm and

cd = π(1+d)/2/Γ((1 + d)/2),

where Γ(·) is the Γ function. With this weight function, Q(V,W | ω) has a closed form, and the authors

further defined the distance covariance and distance correlation. In order to ensure that Q(V,W | ω) is
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well defined and finite, moment conditions are required on V and W . In this paper, we propose to use

another class of weight functions so that we may avoid the moment conditions imposed on V and W .

For a complex number z, let z̄ be its conjugate and Re(z) be its real part. Then

|φV,W (t, s)− φV (t)φW (s)|2
= |φV,W (t, s)|2 + |φV (t)φW (s)|2 − 2Re(φV,W (t, s)φV (t)φW (s)).

Further notice that

|φV,W (t, s)|2 = E[cos(tT(V − V1) + sT(W −W1))],

|φV (t)φW (s)|2 = E[cos(tT(V − V1))]E[cos(s
T(W −W1))],

Re(φV,W (t, s)φV (t)φW (s)) = E[cos(tT(V − V1) + sT(W −W2))].

Here, (Vk,Wk), k = 1, 2 are independent copies of (V,W ).

From [14], the CF of a spherical stable law is given by

φZ(t) =

∫
Rq

cos(tTz)fa,q(z)dz = e−‖t‖a

,

where fa,q(·) denotes the density of a spherical stable law in Rq with characteristic exponent a ∈ (0, 2].

The density function takes the following form:

fa,q(z) = c2

∫ 1

0

ga,q(‖z‖u)(1− u2)(q−3)/2du,

where ga,q(u) =
∫∞
0

cos(ur)rq−1e−radr, and c2 = 2c1(2π)
−q with c1 = 2π(q−1)/2/Γ((q − 1)/2). The

spherical stable family includes the multivariate Gaussian and Cauchy distributions as special cases with

a = 2 and a = 1, respectively.

In this paper, we choose

ω(t, s) = fa,dV (t)fa,dW (s).

Then it follows that

Scov2(V,W ) =

∫
R

dV +dW

|φV,W (t, s)− φV (t)φW (s)|2fa,dV
(t)fa,dW

(s)dtds

=: E1 + E2 − 2E3 (2.2)

with Ej , j = 1, 2, 3 being defined as

E1 = E[e−‖V−V1‖a−‖W−W1‖a

],

E2 = E[e−‖V−V1‖a

]E[e−‖W−W1‖a

],

E3 = E[e−‖V−V1‖a−‖W−W2‖a

].

Since the spherical stable law plays an important role in the definition of Scov2(V,W ), we refer the

nonnegative square root of Scov2(V,W ) as the stable covariance between V and W . Similarly, we can

define Svar2(V ) = Scov2(V, V ) and Svar2(W ) = Scov2(W,W ). The stable correlation (SC) between

V and W is defined as the nonnegative square root of

SC2(V,W ) =
Scov2(V,W )√

Svar2(V )Svar2(W )
.

The form of Scov2(V,W ) is similar to that of dcov2(V,W ), the distance covariance between V and W .

Indeed, Scov2(V,W ) replaces the Euclidean distance ‖ · ‖ in dcov2(V,W ) by exp{−‖ · ‖a}. This change

is crucial since exp{−‖ · ‖a} is always bounded by 1, and as a result, no moment conditions on V and W

are required. The stable correlation has the following desirable properties.
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Proposition 2.1. The SC has the following properties:

(A) SC(V,W ) exists for any two random vectors V and W .

(B) 0 � SC(V,W ) � 1. SC(V,W ) = 0 if and only if V and W are independent.

(C) Let D1 and D2 be two orthogonal matrices, and a1 and a2 be two vectors. Then

SC(V,W ) = SC(a1 +D1V, a2 +D2W ).

The Svar has the following properties:

(D) Svar(V ) = 0 if and only if X = E(X) almost surely.

(E) Svar(c+DV ) = Svar(V ) for all constant vectors c, and orthogonal matrices D.

(F) Svar(V +W ) � Svar(V ) + Svar(W ) for independent random vectors V and W .

The proof of this proposition follows the same lines as those of [20, Theorems 3 and 4] and thus is

omitted here. From Proposition 2.1, we know that the SC is defined for arbitrary two random vectors

with any dimension. Thus it can handle the multivariate response and grouped predictor. Furthermore,

it is robust against outliers or heavy distributed data. Moreover, it is nonnegative and is zero only if the

two random vectors are independent and thus it can efficiently detect not only linear but also nonlinear

dependence.

As noted by the anonymous reviewers, there is a connection with the work of Sejdinovic et al. [16]. In

fact, the stable covariance can be seen as special members of the Hilbert-Schmidt independence criterion

(HSIC) statistics (see also [3]) defined with the class of kernel functions exp(−‖X−X ′‖a) and exp(−‖Y −
Y ′‖a), a ∈ (0, 2]. In particular, a = 1 and a = 2 correspond to the Laplacian kernel and the Gaussian

kernel widely known in the machine learning community, respectively. In this paper, by the virtue of

Proposition 2.1(B), we show that the product kernel

k((X,Y ), (X ′, Y ′)) = exp(−‖X −X ′‖a) exp(−‖Y − Y ′‖a)

does induce an HSIC that characterizes independence. From another point of view, the stable covariance

is a weighted L2 distance between the joint characteristic function and the product of the marginal

characteristic functions. The weight is chosen to be the density of a spherical stable law.

As a natural extension of the correlation in [6], Zhu et al. [24] recently proposed a projection correlation

to measure the dependence between two random vectors. However, two random vectors may not be

independent even if their projection correlation equals zero (see the counterexample in [6]). Kim et al. [9]

overcame this issue by extending the Blum-Keifer-Rosenblatt correlation coefficient [1] via projection

pursuit. Their new correlation is zero if and only if the two random vectors are independent. Moreover,

the computation complexity of SC is O(n2), which is the same as that of DC. The computation of

projection correlation and [9]’s correlation is more expensive and the complexity is O(n3).

We next propose an estimator of SC(V,W ) by using its sample counterpart. Suppose that {(vi, wi),

i = 1, . . . , n} is a random sample from the population (V,W ). We can estimate Ej , j = 1, 2, 3 by using

their moment estimators. Specifically,

Ê1 =
1

n(n− 1)

n∑
i=1

n∑
j �=i

e−‖vi−vj‖a−‖wi−wj‖a

,

Ê2 =
1

n(n− 1)

n∑
i=1

n∑
j �=i

e−‖vi−vj‖a 1

n(n− 1)

n∑
i=1

n∑
j �=i

e−‖wi−wj‖a

, (2.3)

Ê3 =
1

n(n− 1)(n− 2)

n∑
i=1

n∑
j �=i

n∑
l �=i,j

e−‖vi−vj‖a−‖wi−wl‖a

.

Thus, a natural estimator of Scov2(V,W ) is given by

Ŝcov2(V,W ) = Ê1 + Ê2 − 2Ê3.
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Similarly, we can define the sample covariances Ŝcov2(V, V ) and Ŝcov2(W,W ). Accordingly, the sample

SC between V and W can be defined by

ŜC2(V,W ) =
Ŝcov2(V,W )√

Ŝvar2(V )Ŝvar2(W )

.

We establish the tail probability bound for the difference between ŜC2(V,W ) and SC2(V,W ) as follows.

Theorem 2.2. There exists a positive constant C > 0, for any ε > 0, such that

Pr(|ŜC2(V,W )− SC2(V,W )| � ε) � O(exp{−Cnε2}). (2.4)

The inequality (2.4) indeed is an exponential inequality of ŜC2(V,W ), and this inequality implies that

ŜC2(V,W ) converges to SC2(V,W ) almost surely. Based on the theory of U-statistic, the asymptotic

distributions of ŜC2(V,W ) depend on the value of SC2(V,W ). When SC2(V,W ) = 0, ŜC2(V,W ) is a

degenerate U-statistic, and it converges to a non-degenerate distribution at the n−1 convergence rate,

while when SC2(V,W ) �= 0, ŜC2(V,W ) is a non-degenerate U-statistic, and then ŜC2(V,W )−SC2(V,W )

converges to a normal distribution at the n−1/2 convergence rate. The details are omitted in this paper

to save space.

3 Robust feature screening procedure

Based on the SC, we propose a robust feature screening procedure for ultrahigh dimensional data. Let

Y = (Y1, . . . , Yq)
T be the response vector and X = (X1, . . . , Xp)

T be the predictor vector. We will

concentrate on the setting in which q is fixed, but p may increase in an exponential order of n. Denote

by F (Y | X) the conditional distribution function of Y given X. We define the index set of the active

and inactive predictors as follows:

A = {k : F (Y | X) depends on Xk for some y ∈ ΩY },
I = {k : F (Y | X) does not depend on Xk for any y ∈ ΩY }.

(3.1)

Here, ΩY is the support of Y . We further denote XA = {Xk : k ∈ A} and XI = {Xk : k ∈ I}. Clearly,

XA can be regarded as an active predictor vector and its complement XI as an inactive predictor vector.

We aim to identify the index subset A of all the active predictors.

For ease of presentation, we write

ωk = SC2(Xk, Y ) and ω̂k = ŜC2(Xk, Y )

for k = 1, . . . , p, based on a random sample {xi, yi}, i = 1, . . . , n. We consider using ωk as a marginal

utility to rank the importance of Xk. The SC naturally serves as a good marginal screening utility due

to its several merits: (i) it is model-free, i.e., the corresponding screening procedure does not require to

impose a specific model structure on the regression function of Y on X. (ii) The SC allows multivariate

responses and grouped predictors. (iii) It is robust against potential outliers since no moment condition

is needed for the response as well as the predictors. A large value of ω̂k indicates that the predictor Xk is

more correlated with the response. We select a set of important predictors with large ω̂k, i.e., we define

Â = {k : ω̂k � cn−κ, for 1 � k � p},

where c and κ are pre-specified threshold values, which will be defined in the following condition:

(C1) The minimum SC of active predictors satisfies

min
k∈A

ωk � 2cn−κ

for some constants c > 0 and 0 � κ < 1/2.
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Condition (C1) requires that for the active predictor Xk, ωk = SC2(Xk, Y ) is not too close to 0. Such

an assumption is commonly imposed in works on the marginal screening (see, for example, [2, Condition 3]

and [11, Condition (C2)]). The sure screening property for the proposed robust screening procedure is

established in the following theorem.

Theorem 3.1. There exists a positive constant C > 0, such that

Pr
(

max
1�k�p

|ω̂k − ωk| � cn−κ
)
� O(p exp{−Cn1−2κ}). (3.2)

Under Condition (C1), we have

Pr(A ⊆ Â) � 1−O(sn exp{−Cn1−2κ}), (3.3)

where sn = |A| is the cardinality of A.

Due to the sure screening property, we write the proposed SC-based robust sure independence screening

procedure as the SC-SIS for short. Compared with many existing methods, the subexponential tail

condition can now be totally removed due to the boundedness of Scov2. The sure screening property

holds for the SC-SIS under milder conditions than that for the DC-SIS [11] in that the SC-SIS does not

require any moment conditions for bothX and Y . We also achieve the NP dimensionality ln p = o(n1−2κ),

0 � κ < 1/2. The DC-SIS generally cannot handle such a rate unless Xk and Y are bounded uniformly

in p. However, this condition is too strong to be satisfied in practice.

We can characterize the size of the reduced model after screening in the following theorem.

Theorem 3.2. We have

Pr

(
|Â| � 2c−1nκ

p∑
k=1

ωk

)
� 1−O(p exp{−Cn1−2κ}). (3.4)

This theorem implies that if
∑p

k=1 ωk = O(nb) for some b > 0, the model after screening is of polynomial

size with probability approaching to 1.

We further note that given XA, Y is independent of XI . This implies that Y should be more dependent

upon XA than XI . In other words, ωk for k ∈ A is larger than ωk for k ∈ I. This is formulated as

follows:

(C2) mink∈A ωk −maxk∈I ωk = Δ > 0.

It is noted here that Δ can tend to zero as n → ∞, which is discussed later. With (C2), we have the

ranking consistency property for the SC-SIS procedure.

Theorem 3.3. Under the conditions (C1) and (C2), we have

Pr
(
min
k∈A

ω̂k > max
k∈I

ω̂k

)
� 1−O(p exp{−CnΔ2}). (3.5)

This theorem shows that ωk can always rank an active variable above an inactive variable with proba-

bility approaching 1 provided that p exp{−CnΔ2} = o(1). This implies that for the ranking consistency

property, it is unnecessary to assume Δ to be a constant. Instead, Δ is allowed to tend to zero as n → ∞.

In fact, if we set Δ = O(n−γ), 0 < γ < 1/2 and ln p = o(n1−2γ), we still have p exp{−CnΔ2} = o(1) and

thus the ranking consistency property still holds.

4 Numerical studies

In this section, we conduct Monte Carlo simulation studies to examine the performance of the SC-SIS and

compare its performance with its competitors including the DC-SIS (distance correlation sure indepen-

dence screening) [11], DC-RoSIS (distance correlation robust sure independence screening) [22], RRCS

(robust rank correlation screening) [10], PC-SIS (projection correlation sure independence screening) [12],

SIRS (sure independence and ranking screening) [23] and SIS (sure independence screening) [2].
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To examine the robustness of the SC-SIS, we generate features X from a mixture distribution

(1 − α)Xn + αXt with α being equal to 0, 0.1 or 0.2, where Xt is a p-dimensional random vector

with each component being independent t1-distribution (i.e., the Cauchy distribution) and Xn ∼ N(0,Σ)

is a p-dimensional multivariate normal distribution with mean 0 and covariance matrix Σ. Throughout

the simulation, we set Σ = (σij)p×p with entries σij = 0.75|i−j|, i, j = 1, . . . , p. We consider two types

of error ε: the standard normal distribution and the t1-distribution. Let Âδ = {k : ω̂k � δ} and define

the minimum model size (MMS) to be the cardinality of the smallest Âδ that includes all the active

predictors, i.e.,

MMS = min{|Âδ| : A ⊆ Âδ}.
A screening method with a small value of the MMS suggests that it is more powerful in detecting the

dependence between features and responses. We report the 25%, 50%, 75% and 90% quantiles of the MMS

to compare the performances of different screening methods based on 500 replications. In particular, in

Subsection 4.1, we study what value of a to use in practice. In Subsections 4.2–4.4, we apply the SC-SIS

and other existing methods to different models including the linear model, the generalized linear model,

the nonlinear model and the model with the grouped predictor. In Subsection 4.5, we demonstrate the

proposed SC-SIS by a real data example.

For implementation of the stable covariance, we employ the estimation strategy in [20] to reduce the

computation complexity. In that way, the stable covariance can be implemented in O(n2) computations.

To further improve the performance, the U -centering idea in [19] is adopted. With the technique developed

in [7], it would even be implemented in O(n log n) computations.

4.1 Choice of parameter a

The proposed stable correlation involves a unspecified parameter a. Though our theory holds for any

choice a ∈ (0, 2], in this section, we study how the parameter a effects the performance of the SC-SIS

empirically and suggest what value of a to use in practice. To this end, we set a = 0.1, 0.2, . . . , 2.0 and

apply the SC-SIS to Models 1.a, 2.a and 2.b defined in Subsections 4.2 and 4.3. Figure 1 reports the

25%, 50% and 75% quantiles of the MMS for the SC-SIS when a varies in Models 1.a, 2.a and 2.b. Figure 1

clearly shows that the quantiles of the MMS first decrease as a increases and then increase as a further

increases. Therefore, the SC-SIS is more powerful in capturing active features when a is neither too small

nor too large. According to Figure 1, we suggest that any value between 0.3 and 0.7 is a reasonable choice

for a and we set a = 0.5 in the rest of the numerical studies.

4.2 Linear model and generalized linear model

We consider the linear model and the generalized linear model as follows:

Model 1.a. (Linear model) Y = XTβ + ε.

Model 1.b. (Poisson regression) Y | X ∼ Poisson(λ(X)), where λ(X) = exp{XTβ} and Poisson

denotes the Poisson distribution.

We set n = 100, p = 2,000, and β = (1T
5 ,0

T
p−5)

T and thus we include 5 active predictors in the two

models. The 25%, 50%, 75% and 90% quantiles of the MMS are reported in Table 1. First, for Model 1.a

with ε ∼ N(0, 1) and α = 0, the 25%, 50%, 75% and 90% quantiles of the MMS are exactly 5 for all

the methods. This implies that in the setting where both predictors and errors are not heavy-tailed,

all the methods can capture active predictors efficiently. However, as α changes from 0 to 0.1 and 0.2,

the DC-SIS, DC-RoSIS, SIRS, and SIS start to perform poorly, especially for the 90% quantile while our

proposed SC-SIS, RRCS and PC-SIS can still perform reasonably well even when α = 0.2. When ε follows

the t1-distribution for Model 1.a, we observe a similar phenomenon: the SC-SIS, RRCS and PC-SIS out-

perform the other methods especially when α �= 0. This implies that the SC-SIS, RRCS and PC-SIS are

more robust to outliers. Among all the methods, the RRCS has the best performance for the linear model

(Model 1.a). This is not surprising since the RRCS is designed to capture the monotonic relationship.

For Model 1.b, the proposed SC-SIS and PC-SIS outperform the other methods and can effectively find
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(a1) Model 1.a (α = 0)
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Figure 1 (Color online) The 25%, 50% and 75% quantiles of the MMS for ε ∼ t1. The top, middle and bottom panels

are for Models 1.a, 2.a and 2.b with α being equal to 0, 0.1 and 0.2, respectively

all the active predictors. In this case, the RRCS completely fails since it cannot detect non-monotonic

relationship. The DC-SIS, DC-RoSIS, SIRS and SIS still perform very poorly when α �= 0.

4.3 Nonlinear model

In this subsection, we consider two nonlinear models.

Model 2.a. Y = 5X1X2 + 5X3I(X3 > 0) + 5 sin(2πX4) + ε.

Model 2.b. Y = X1 +X2 + 2/ exp(X3 +X4) + ε.

Here, I(·) is the indicator function. We set n = 200 and p = 2,000 and simulation results are sum-

marized in Table 2. As shown in Table 2, for ε ∼ N(0, 1) and α = 0, the RRCS, SIRS and SIS perform

poorly. This suggests that these methods cannot detect nonlinear relationship between predictors and

responses. On the contrary, the SC-SIS, DC-SIS, DC-RoSIS and PC-SIS are able to efficiently detect

nonlinear relationship. When α = 0.1 or α = 0.2, the performances of the DC-SIS and DC-RoSIS are not

satisfactory. Again, this implies that these two methods are not robust against outliers or heavy-tailed

distributions. The SC-SIS also outperforms the PC-SIS in this example. Overall, in this nonlinear case,

our method SC-SIS has the best performance in all the settings, indicating that our method is not only

able to detect any possible dependence but also insensitive to outliers.
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Table 1 Simulation results for the linear model and generalized linear model

α = 0 α = 0.1 α = 0.2

25% 50% 75% 90% 25% 50% 75% 90% 25% 50% 75% 90%

Model 1.a: ε ∼ N(0, 1)

SC-SIS 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 5.0 5.0 7.0 15.2

DC-SIS 5.0 5.0 5.0 5.0 5.0 5.0 14.0 28.1 8.8 21.0 49.0 108.3

DC-RoSIS 5.0 5.0 5.0 5.0 5.0 5.0 6.0 27.1 5.0 5.0 13.0 127.4

RRCS 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

SIRS 5.0 5.0 5.0 5.0 5.0 8.0 39.2 115.1 6.0 16.0 75.0 139.0

SIS 5.0 5.0 5.0 5.0 8.0 27.0 208.2 1134.1 46.0 136.0 659.5 1521.0

PC-SIS 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.2

Model 1.a: ε ∼ t1

SC-SIS 5.0 5.0 5.0 6.0 5.0 5.0 8.0 27.1 6.0 13.0 57.5 240.5

DC-SIS 5.0 5.0 5.0 14.0 12.0 25.0 55.0 155.1 32.0 71.0 136.2 303.4

DC-RoSIS 5.0 5.0 5.0 5.0 5.0 5.0 7.0 61.0 5.0 7.0 28.0 197.6

RRCS 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 5.0 5.0 7.0 12.0

SIRS 5.0 5.0 5.0 6.0 6.0 13.0 50.0 134.0 9.0 29.0 85.2 157.1

SIS 7.0 266.0 1219.2 1790.3 98.8 460.0 1238.2 1758.0 200.8 526.0 1263.5 1682.3

PC-SIS 5.0 5.0 5.0 6.0 5.0 5.0 5.0 6.0 5.0 5.0 7.0 15.1

Model 1.b

SC-SIS 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 5.0 5.0 7.0 14.0

DC-SIS 5.0 8.0 28.0 88.2 515.5 1214.0 1593.5 1840.7 904.5 1308.5 1629.5 1877.1

DC-RoSIS 5.0 5.0 5.0 5.0 5.0 5.0 6.0 33.0 5.0 6.0 24.0 189.1

RRCS 250.0 1089.5 1801.5 1990.0 944.0 1652.0 1966.2 1998.1 1633.0 1931.0 1997.0 2000.0

SIRS 5.0 5.0 5.0 5.0 5.0 10.0 60.0 372.3 9.0 44.5 257.2 683.5

SIS 14.0 37.0 107.2 247.5 736.8 1304.5 1763.8 1920.2 916.0 1332.0 1749.8 1914.2

PC-SIS 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.1

4.4 Model with grouped predictors

In this subsection, we apply the SC-SIS to select grouped predictors. Following [11, Example 2], we

consider the following model:

Model 3. Y = X1 + X2 + {I(X3 < q1) + I(q1 � X3 < q2) + I(X3 > q3)} + X4 + ε, where q1, q2
and q3 are the 25%, 50% and 75% quantiles of X3, respectively. In this kind of model, I(X3 < q1),

I(q1 � X3 < q2) and I(X3 > q3) are considered as a grouped predictor in the sense that either all three

of them are included in the model or none of them is included. We write

X∗
3 = {I(X3 < q1), I(q1 � X3 < q2), I(X3 > q3)}T.

Consequently X∗
3 is a grouped predictor with three levels and the number of active predictors is 4.

Among these methods, only the SC-SIS, DC-SIS, DC-RoSIS and PC-SIS can be directly used for

screening grouped predictors and thus we only focus on these four screening procedures. We set n = 200

and p = 2,000. The simulation results are given in Table 3. When α = 0, all these four methods perform

very well, i.e., with high probability, the MMS which ensures the inclusion of all the active predictors is

the same as the number of active predictors. However, when α = 0.1, the DC-SIS starts to perform poorly

and the 90% quantile of the MMS becomes high especially when ε ∼ t1. Both SC-SIS and DC-RoSIS

can still control the MMS very well and the SC-SIS performs slightly better than the DC-RoSIS. When

α = 0.2, the DC-RoSIS also performs poorly and the 90% quantile of the MMS becomes much higher

than that of the SC-SIS. In fact, except for the setting where α = 0.2 and ε ∼ t1, the 90% quantile of the

MMS of the SC-SIS is 4, which is exactly the number of active predictors. Thus our proposed SC-SIS

is also efficient and robust in detecting grouped predictors. The performance of the PC-SIS is similar to

that of the SC-SIS.
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Table 2 Simulation results for the nonlinear model

α = 0 α = 0.1 α = 0.2

25% 50% 75% 90% 25% 50% 75% 90% 25% 50% 75% 90%

Model 2.a: ε ∼ N(0, 1)

SC-SIS 4.0 4.0 4.0 5.0 4.0 5.0 10.0 31.0 5.0 12.0 34.0 107.0

DC-SIS 4.0 4.0 5.0 10.1 32.0 90.0 349.2 792.4 183.2 441.0 1031.2 1636.4

DC-RoSIS 4.0 4.0 7.0 16.0 8.8 29.0 145.2 414.1 42.8 186.0 505.5 1036.7

RRCS 39.0 235.5 839.2 1520.6 147.8 579.5 1251.2 1738.6 398.0 962.5 1551.8 1813.1

SIRS 37.0 220.0 808.0 1509.4 615.8 1193.5 1655.2 1887.4 862.0 1395.0 1746.0 1942.3

SIS 6.0 40.0 442.5 1470.5 549.8 1131.0 1618.0 1868.1 680.2 1177.0 1627.5 1845.5

PC-SIS 4.0 4.0 8.0 22.0 6.0 14.0 40.3 94.7 26.0 76.5 173.3 346.5

Model 2.a: ε ∼ t1

SC-SIS 4.0 4.5 8.0 24.0 5.0 13.0 46.0 148.1 15.0 54.0 168.0 444.3

DC-SIS 4.0 6.0 25.0 105.9 64.0 170.0 473.2 1084.8 217.2 521.0 1062.5 1595.4

DC-RoSIS 4.0 6.0 16.0 45.0 12.0 45.0 187.8 513.7 71.5 222.5 614.8 1129.9

RRCS 65.8 246.5 939.2 1525.5 204.2 637.0 1291.0 1759.4 496.0 1027.5 1509.5 1827.7

SIRS 53.8 286.0 883.5 1594.1 685.2 1222.5 1646.0 1895.1 877.8 1363.0 1762.2 1926.2

SIS 272.5 964.5 1612.5 1895.0 734.8 1236.5 1688.8 1880.1 716.8 1193.0 1558.2 1843.2

PC-SIS 4.0 8.0 23.0 81.4 11.0 36.0 102.0 225.1 63.0 155.5 347.3 651.2

Model 2.b: ε ∼ N(0, 1)

SC-SIS 4.0 5.0 5.0 5.0 4.0 4.0 5.0 6.0 4.0 4.0 5.0 9.0

DC-SIS 5.0 6.0 7.0 8.0 486.8 1217.5 1652.5 1846.0 976.8 1368.0 1717.0 1888.0

DC-RoSIS 6.0 7.0 8.0 10.0 7.0 9.0 20.0 58.0 6.0 11.0 42.2 153.8

RRCS 478.8 991.0 1465.5 1811.8 706.0 1119.0 1547.0 1813.0 436.5 960.0 1547.0 1825.2

SIRS 7.0 8.0 11.0 17.0 42.0 120.5 265.5 650.3 24.8 86.5 189.5 451.7

SIS 6.0 8.0 19.0 86.2 988.0 1446.0 1761.5 1895.7 1047.8 1456.5 1769.2 1901.2

PC-SIS 6.0 7.0 8.0 11.0 7.0 9.0 13.0 22.0 8.0 14.0 28.0 52.0

Model 2.b: ε ∼ t1

SC-SIS 5.0 5.0 6.2 12.0 4.0 6.0 23.0 99.4 5.0 13.0 65.2 319.2

DC-SIS 6.0 6.0 10.0 33.0 476.8 1111.0 1553.2 1847.0 951.0 1387.0 1707.0 1869.3

DC-RoSIS 7.0 11.5 24.0 51.1 14.0 34.5 89.2 219.5 15.0 37.0 106.5 390.5

RRCS 147.8 506.5 1144.0 1583.4 721.2 1189.0 1591.5 1823.0 788.2 1273.0 1683.5 1876.1

SIRS 9.0 15.0 33.2 77.0 93.8 216.0 516.8 1065.2 44.0 146.0 363.2 914.1

SIS 7.0 24.5 210.2 986.4 900.8 1366.5 1721.0 1890.9 1002.0 1400.0 1750.5 1906.0

PC-SIS 8.0 13.0 28.0 54.0 16.0 38.0 89.3 170.0 34.8 77.5 152.5 281.4

Table 3 Simulation results for grouped variable screening

α = 0 α = 0.1 α = 0.2

25% 50% 75% 90% 25% 50% 75% 90% 25% 50% 75% 90%

ε ∼ N(0, 1)

SC-SIS 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

DC-SIS 4.0 4.0 4.0 4.0 4.0 5.0 11.0 28.1 12.0 27.5 71.2 325.9

DC-RoSIS 4.0 4.0 4.0 4.0 4.0 4.0 4.0 6.1 4.0 4.0 6.0 50.7

PC-SIS 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

ε ∼ t1

SC-SIS 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 7.0

DC-SIS 4.0 4.0 4.0 4.0 11.0 25.0 53.0 233.4 43.0 100.0 273.5 926.0

DC-RoSIS 4.0 4.0 4.0 4.0 4.0 4.0 5.0 13.0 4.0 4.0 9.2 172.4

PC-SIS 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
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4.5 Real data example

We now apply the proposed SC-SIS procedure to a cardiomyopathy microarray dataset and compare it

with the DC-SIS procedure [11]. The cardiomyopathy microarray dataset was collected from a study

based on a transgenic mouse model, in which the aim was to determine which genes were influential

for overexpression of a G protein-coupled receptor, designated Ro1, in mice. The research is related to

understanding types of human heart diseases. The response is the expression level Ro1 and was measured

for n = 30 mice. There are in total 6,319 genetic expression levels (p = 6,319) for each mouse.

In this empirical analysis, we focus on the SC-SIS and DC-SIS and apply them to rank the features.

Both SC-SIS and DC-SIS rank Msa.2134.0 as the most important feature. As shown in Figure 2(a),

there is a clear nonlinear relationship between Msa.2134.0 and Ro1. The SC-SIS identifies Msa.1024.0

as the second most important feature while the DC-SIS identifies Msa.1024.0 as the 19th most im-

portant feature. Figure 2(c) shows the scatter plot of Msa.1024.0 and Ro1. We detect 3 potential

(a) Msa.2134.0 with outliers (b) Msa.2134.0 without outliers

(c) Msa.1024.0 with outliers (d) Msa.1024.0 without outliers

Figure 2 (Color online) Scatter plots of Msa.2134.0 and Msa.1024.0 versus Ro1. The left two panels are the scatter plots

with the potential outliers and the potential outliers are marked by ‘�’. The right two panels are the scatter plots after

removing the potential outliers. The solid curves are fitted by local linear regression

Table 4 Rankings determined by the SC-SIS and DC-SIS before and after removing the potential outliers

Msa.2134.0 Msa.1024.0 Msa.5727.0 Msa.42131.0

SC-SIS
Before 1 2 3 4

After 1 2 4 3

DC-SIS
Before 1 19 11 25

After 1 9 6 4
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outliers that are marked by ‘	’ (see Figures 2(a) and 2(c)). These 3 potential outliers are detected by

standardized residuals after fitting marginal linear regression. To examine the robustness of the SC-

SIS, we remove the 3 potential outliers from the original dataset and the scatter plots are shown in

Figures 2(b) and 2(d). As shown in the bottom panel of Figure 2(d), we can see a strong monotonic

relationship between Msa.1024.0 and Ro1. The DC-SIS fails to capture such a monotonic relationship

due to the presence of outliers while the SC-SIS can still capture it despite the potential outliers. After

removing the potential outliers, the SC-SIS still ranks Msa.1024.0 as the second most important feature

and the DC-SIS ranks Msa.1024.0 as the 9th most important feature instead of 19th. This observation

indicates that the SC-SIS is more robust than the DC-SIS and is less sensitive to outliers. The top 4

features selected by the SC-SIS are {Msa.2134.0,Msa.1024.0,Msa.5727.0,Msa.42131.0}. Table 4 shows

the rankings of these 4 features before and after removing the potential outliers determined by the SC-SIS

and DC-SIS, respectively. The rankings given by the SC-SIS are very stable while the rankings given by

the DC-SIS become much smaller when outliers are removed.

To further examine the robustness of the proposed SC-SIS, we apply the bootstrap approach proposed

in [4] to this dataset. We describe the approach as follows:

• Apply the SC-SIS/DC-SIS to the original dataset and obtain the rankings r1, . . . , rp for all the

features, where rj is the ranking of the feature Xj .

• For b = 1, . . . , B, draw a bootstrap sample {(x(b)
1 , y

(b)
1 ), . . . , (x

(b)
n , y

(b)
n )} from the original dataset and

apply the SC-SIS/DC-SIS to the bootstrap sample. The resulting rankings are r
(b)
1 , . . . , r

(b)
p .

• For each j = 1, . . . , p, compute the 2.5% quantile rj− and the 97.5% quantile rj+ based on

r
(1)
j , . . . , r

(B)
j .

Following [10], we set B = 200. Figure 3 shows the original ranking, 2.5% quantile rj− and 97.5%

quantile rj+ for the top 10 features selected by the SC-SIS, ordering in terms of increasing rj+. In

Figure 3, Msa.2134.0 and Msa.1024.0 emerge strongly as the top 2 features based on the SC-SIS and

this result coincides with the result obtained from the original dataset. We can also see that for the

same feature, the 95% interval of the ranking given by the SC-SIS is much shorter than that given by

the DC-SIS. For example, the 95% intervals of Msa.2134.0 given by the SC-SIS and DC-SIS are [1, 19]

and [1, 63], respectively. This indicates that the SC-SIS is a robust feature screening procedure, while

the DC-SIS is not.

Figure 3 95% intervals of ranking obtained from the DC-SIS and SC-SIS based on 200 bootstrap samples for the top 10

genes selected by the SC-SIS. Variables are ordered in increasing order of rj+ by using the SC-SIS method. The black dots

are the ranking obtained from the original dataset
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5 Conclusion

In this paper, we propose the stable correlation (SC) to measure the dependence between two random

vectors. SC is well defined for any pair of random vectors and no moment condition is required. One

of its desirable properties is that it equals zero if and only if the two random vectors are independent.

Motivated by this nice property, we further propose the SC-SIS, a robust feature screening procedure

without specifying a regression model. For the SC-SIS, we establish its sure screening property and

rank consistency property without imposing the subexponential tail condition. The numerical studies

demonstrate that this SC-SIS is able to capture both linear and nonlinear dependence between predictors

and responses and is robust against outliers.
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Appendix A

Lemma A.1. Let h(Y1, . . . , Ym) be a kernel of the U -statistics Un and θ = Eh(Y1, . . . , Ym). If a �
h(Y1, . . . , Ym) � b, then for any t > 0 and n � m,

Pr(Un − θ � t) � exp{−2[n/m]t2/(b− a)2},

where [n/m] denotes the integer part of n/m.

This lemma indeed is [17, Theorem 5.6.1.A].

Proof of Theorem 2.2. It is sufficient to establish the exponential inequality for the denominator and

the numerator of ŜC2(V,W ), respectively. Because the denominator of ŜC2(V,W ) has a similar form to

the numerator, we deal with the numerator only below. Throughout the proof, the notations C and c

are generic constants, which may take different values at each appearance.

Recall the definitions of Êj , j = 1, 2, 3 as follows:

Ê1 =
1

n(n− 1)

n∑
i=1

n∑
j �=i

e−‖vi−vj‖a−‖wi−wj‖a

,

Ê2 =
1

n(n− 1)

n∑
i=1

n∑
j �=i

e−‖vi−vj‖a 1

n(n− 1)

n∑
i=1

n∑
j �=i

e−‖wi−wj‖a

,

Ê3 =
1

n(n− 1)(n− 2)

n∑
i=1

n∑
j �=i

n∑
l �=i,j

e−‖vi−vj‖a−‖wi−wl‖a

.

It is easy to see that Ê1 is a U-statistic with m = 2 and h(vi, wi; vj , wj) = e−‖vi−vj‖a−‖wi−wj‖a

being the

kernel. A significant feature of this kernel is that 0 < h(vi, wi; vj , wj) � 1. By applying Lemma A.1, we

obtain

Pr(Ê1 − E1 � ε) � exp{−nε2}.
As a result, we have

Pr(|Ê1 − E1| � ε) � 2 exp{−nε2}.
For the term Ê2, we write Ê2 = Ê2,1Ê2,2, where

Ê2,1 = {n(n− 1)}−1
n∑

i=1

n∑
j �=i

e−‖vi−vj‖a

and

Ê2,2 = {n(n− 1)}−1
n∑

i=1

n∑
j �=i

e−‖wi−wj‖a

.

Similarly, we write E2 = E2,1E2,2, where E2,1 = E[e−‖vi−vj‖a

] and E2,2 = E[e−‖wi−wj‖a

]. We can

similarly show that

Pr(|Ê2,1 − E2,1| � ε) � 2 exp{−nε2} and Pr(|Ê2,2 − E2,2| � ε) � 2 exp{−nε2}.

Since E2,1 and E2,2 are both smaller than 1, we then get

Pr(|(Ê2,1 − E2,1)E2,2| � ε) � Pr(|Ê2,1 − E2,1| � ε) � 2 exp{−nε2},
Pr(|(Ê2,2 − E2,2)E2,1| � ε) � Pr(|Ê2,2 − E2,2| � ε) � 2 exp{−nε2}
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and

Pr(|(Ê2,1 − E2,1)(Ê2,2 − E2,2)| � ε) � Pr(|Ê2,1 − E2,1| � ε/2) � 2 exp{−nε2/4}.
It follows from Bonferroni’s inequality and the above results that

Pr(|Ê2,1Ê2,2 − E2,1E2,2| � 3ε) � Pr(|Ê2,1 − E2,1| � ε) + P (|Ê2,2 − E2,2| � ε)

+ Pr(|(Ê2,1 − E2,1)(Ê2,2 − E2,2)| � ε)

� 4 exp{−nε2}+ 2 exp{−nε2/4}.

Turn to the term Ê3. First note that

Ê3 =

(
n

3

)−1∑∑∑
1�i<j<l�n

Hs(Ui, Uj , Ul).

Here, Ui = (vi, wi) and Hs(Ui, Uj , Ul) = (Hijl + Hilj + Hjil + Hjli + Hlij + Hlji)/6 is the kernel with

Hijl = e−‖vi−vj‖a−‖wi−wl‖a

. Again Ê3 is a U-statistic with m = 3 and Hs(Ui, Uj , Ul) being the kernel.

It is easy to know that 0 < Hs(Ui, Uj , Ul) � 1. By using Lemma A.1, we obtain

Pr(Ê3 − E3 � ε) � exp{−2nε2/3}.
As a result, we have

Pr(|Ê3 − E3| � ε) � 2 exp{−2nε2/3}.
Thus we conclude that

Pr(|(Ê1 + Ê2 − 2Ê3)− (E1 + E2 − 2E3)| � ε) � Pr(|Ê1 − E1| � ε/4) + Pr(|Ê2 − E2| � ε/4)

+ Pr(|Ê3 − E3| � ε/4)

� O(exp{−Cnε2})

for some positive constant C. The convergence rate of the numerator of ŜC2(V,W ) is now achieved.

Following similar arguments, we can obtain the convergence rate of the denominator. In effect, the

convergence rate of ŜC2(V,W ) has the same rate as that of the numerator. The details are omitted

here.

Proof of Theorem 3.1. From the result in Theorem 2.2, it follows that for any k,

Pr(|ω̂k − ωk| � ε) � O(exp{−Cnε2}).
Let ε = cn−κ, where κ satisfies 0 � κ < 1/2. We thus have

Pr
(

max
1�k�p

|ω̂k − ωk| � cn−κ
)
� p max

1�k�p
Pr(|ω̂k − ωk| � cn−κ) � O(p exp{−Cn1−2κ}).

The first part of Theorem 3.1 is proved.

To prove the second part of Theorem 3.1, we consider the event

B =
{
max
k∈A

|ω̂k − ωk| � cn−κ
}
.

Since for all k ∈ A, the condition (C1) ensures that ωk � 2cn−κ, then for event B, we have for all k ∈ A,

ω̂k � cn−κ. Hence we have A ⊆ Â. Thus we get

Pr(A ⊆ Â) � Pr(B) = 1− Pr
(
max
k∈A

|ω̂k − ωk| > cn−κ
)
= 1−O(sn exp{−Cn1−2κ}). �

Proof of Theorem 3.2. Note that the number of {k : ωk � 2−1cn−κ} cannot exceed 2c−1nκ
∑

k ωk.

Otherwise, we have ∑
k

ωk �
(
1 + 2c−1nκ

∑
k

ωk

)
× c

2
n−κ >

∑
k

ωk.
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Further note that on the set C = {max1�k�p |ω̂k − ωk| � 2−1cn−κ}, the number of {k : ω̂k � cn−κ}
cannot exceed the number of {k : ωk � 2−1cn−κ}. Thus we have

Pr

(
|Â| � 2c−1nκ

∑
k

ωk

)
� Pr(C) � 1−O(p exp(−Cn1−2κ)). �

Proof of Theorem 3.3. Recalling the condition (C2), we have Δ = mink∈A ωk −maxk∈I ωk. Thus we

have

Pr
(
min
k∈A

ω̂k � max
k∈I

ω̂k

)
= Pr

([
min
k∈A

ωk −max
k∈I

ωk

]
−

[
min
k∈A

ω̂k −max
k∈I

ω̂k

]
� Δ

)
= Pr

([
max
k∈I

ω̂k −max
k∈I

ωk

]
−

[
min
k∈A

ω̂k −min
k∈A

ωk

]
� Δ

)
� Pr

(
max
k∈I

|ω̂k − ωk|+max
k∈A

|ω̂k − ωk| � Δ
)

� Pr

(
max
1�k�p

|ω̂k − ωk| � Δ

2

)
� O(p exp{−CnΔ2}).

This completes the proof.


