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This development and validation study is part of a larger project focused on exploring development of 
mathematical modeling competencies among STEM undergraduates. We share a new assessment 
targeting modeling competency that is appropriate for undergraduates in advanced mathematics.  

The teaching and learning of mathematics at the tertiary level often benefits from a modeling approach. 
Typically, empirical studies suggest positive gains for students (e.g., in self-efficacy or robustness of 
mathematical knowledge) who are exposed to mathematical modeling (Czocher, 2017; Czocher, 
Melhuish, & Kandasamy, 2019). However, the field faces difficulty synthesizing results because the 
tools for assessment often serve only a local need. Indeed, in a survey of research literature, Frejd 
(2013) found that the majority of assessments were not grounded in theory but rather based on ad hoc 
constructions, personal experience, or small-scale studies of student work. We view this finding as 
indicating a clear need for a valid, reliable instrument capable of measuring gains associated with 
instructional interventions. However, theoretically and methodologically, assessing learning of 
mathematical modeling is uniquely difficult because the modeling process is itself idiosyncratic. It is 
difficult to formulate modes of assessment that can target instructional objectives when the target skills 
are not unidimensional.  It is with these sensitivities to empirical and theoretical foundations of the 
genre, that we share efforts to develop an instrument targeting modeling skills of undergraduate STEM 
majors. 
CONCEPTUAL FRAMEWORK 

This work is part of a broader project aimed at understanding how to leverage modeling and 
applications problems to help undergraduate STEM majors learn to define mathematical problems 
from nonmathematical situations. For this project, we adopt a view of mathematical modeling as a 
process of rendering a non-mathematical problem about a real-world phenomenon of interest as a well-
posed mathematical problem to be solved. We focus on the cognitive activities that facilitate the 
process (Kaiser, 2017) and utilize the mathematical modeling cycle to operationalize these activities 
as skills or competencies (Blum & Leiß, 2007; Czocher, 2016). Challenges to students’ development 
of modeling skills stem from the cognitive and metacognitive complexity of blending mathematical 
knowledge with real-world knowledge (Czocher, 2018; Fauconnier, 2006; Stillman & Galbraith, 
1998).  Students struggle to define mathematical problems from real-world situations because there 
can be an overwhelming number of considerations. Success requires understanding and structuring: 
specifying a problem and separating the relevant factors from ones that can be safely ignored. They 
struggle because the assumptions they introduce warrant mathematics that may not be accessible to 
them in the moment. Success requires mathematizing appropriate quantities, identifying relations 
among them, and representations to compose them. Models do need to be analyzed, but that is typically 
handled in mathematics classes. Finally, students struggle to interpret and validate their results, which 
involves checking that the model is representative of the situation and articulating its limitations. These 
activities are typically referred to as modeling competencies (Blum & Leiß, 2007). Because 
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competencies are interconnected, potential interventions and assessment should target the reasoning 
underscoring student decision-making. That is, an assessment of the extent to which an individual has 
developed a competency should acknowledge a student’s justifications for her choices and that her 
choices may diverge from a normatively correct answer (Czocher, 2019). 
INSTRUMENT DEVELOPMENT 

Frejd (2013) observed that about one-third of assessments were written multiple-choice tests based on 
Haines, Crouch, & Davis (2000). Items were designed to target a single aspect of the modeling process 
(e.g., asking clarifying questions, identifying variables) and distractor responses were either irrelevant 
to the construction of a model or consider only the real-world constraints. The “best” answer choice 
considers both real-world constraints and relevant mathematics. Despite the promise of the instrument, 
critiques have been raised. First, the question set was tested on a small sample of students, so its 
properties are unknown. Second, there is some disagreement as to whether the parallel forms are indeed 
comparable. Third, research advances have enabled generation of distractor choices that align with 
students’ tendencies. Fourth, psychometric models for item analysis have become more accessible.  

Our approach to item construction adhered to the following constraints: (a) base problems were 
relevant and authentic, in the sense that they mimicked problems encountered in the students’ studies 
or public discourse (b) phrasing of question stems and items appealed to multiple sources of student 
content knowledge (see Stillman, 2000) (c) question stems should target aspects of competencies via 
alignment to specific indicators of modeling activity (see Czocher, 2016), and (d) distractor drew on 
previous research studies of the kinds of factors and justifications that students exhibit when modeling.  

We developed a pool of 120 multiple choice questions (MCQs) belonging to 9 real-world scenarios 
and some selections from the original Haines et al. (2000) items targeting the MMC competencies, 
except working mathematically. The real-world scenarios were drawn from research and educational 
materials (e.g., GAIMME report; textbooks; published research; faculty syllabi) that are appropriate 
to STEM undergraduates post Calc 2. We sought scenarios that treated issues prevalent in today’s 
society, involved situations in the sciences where differential equations might be used, or were 
suggested by informal interviews with STEM professors. Mathematical content ranged from arithmetic 
to algebra, to calculus and to systems of ordinary differential equations. We then drafted MCQs from 
each scenario, striking a balance between information provided in the scenario set-up (so that the 
problems the MCQs addressed were situated) and readability (so that multiple MCQ stems could 
follow, cognitively, quickly from the set-up).  A variety of question stems were used (e.g., select the 
most/best/least; indicate the choice consistent with the assumptions) and responses were developed to 
have a single “best” answer with four distractors at varying degrees of reasonability (e.g., reasonability 
for a structuring MCQ might address (un)helpful assumptions to make). One MCQ is in in Figure 1 
(scenario set-ups omitted due to space constraints). 

Mathematizing (selecting representation) 
Which of the following models of human population growth is 
consistent with all of the following assumptions?  
• The human birth rate is proportional to the population present, 
• There are sufficient resources (e.g., space and ample food) for the 

population to thrive, given  

a. 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘1𝑃𝑃 − 𝑘𝑘2
𝑃𝑃(𝑃𝑃−1)

2
   

b. 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘1𝑃𝑃 − 𝑘𝑘2
𝑃𝑃2

2
   

c. dP
dt

= 𝑘𝑘1𝑃𝑃 + 𝑘𝑘2
𝑃𝑃(𝑃𝑃−1)

2
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• People die of old age and also prematurely, for example, due to 
malnutrition or inadequate medical supplies. Deaths also occur 
due to unnatural causes such as communicable disease and 
violent crimes. 

• Deaths are proportional to the number of two-party interactions 
• 𝑘𝑘1 and 𝑘𝑘2 are the proportionality constants for birth rate and 

death rate respectively  

d. 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘1𝑃𝑃 − 𝑘𝑘2
𝑃𝑃
2
   

e. 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘1𝑃𝑃 − 𝑘𝑘2
(𝑃𝑃−1)
2

   

Figure 1:  Sample item targeting an aspect of mathematizing 

Content and Construct Validity: Two mathematicians who teach differential equations to STEM 
majors addressed content validity of the items. They examined readability of the questions, adequacy 
of the answer choices, and correctness of mathematics. Three mathematics educators with expertise in 
mathematical modeling evaluated readability of the questions, adequacy of the answer choices, and 
whether items were appropriately categorized in terms of the competency it was intended to target. We 
implemented revisions and suggestions, eliminating MCQs that failed to be correct or sensible or that 
duplicated other items. 
Round 1 Testing (Feasibility): 59 items were sorted onto 3 forms (Red, Yellow, Blue) to balance 
competencies, and tested for feasibility with 14 STEM undergraduates enrolled in courses requiring 
differential equations or modeling at a large American university. At least 4 students responded to 
each MCQ (some participants skipped questions). Each MCQ was followed by a set of feedback 
questions: Did you find anything confusing about the wording of this question or the wording of the 
possible answers? Why did you select the answer you did? Would you have chosen something different 
that was not an available choice? Each scenario was followed by a set of feedback questions: Please 
comment on the authenticity of [the scenario]. Do you find it believable in the real world? Was there 
any information you wish you knew about [the scenario] that would have helped you answer the 
questions? Was there any mathematics knowledge you wish you knew more about that would have 
helped you answer the questions? We examined whether the students’ responses were conceivably 
correct (justifiable) based on the reasoning provided. We modified the MCQs so that those justifiable 
reasons would either no longer apply or else used the reasons to enrich detractors. We also amended 
scenario set-ups to include additional relevant (but not necessarily relevant-to-model-construction) 
information where multiple individuals indicated that there was missing information. Where possible, 
we left ambiguity in the scenario intact, but removed ambiguity from the answer selections. 

Round 2 Testing (Difficulty): 63 items, including 59 from Round 1, 3 from Haines & Crouch (2004), 
and8 from Haines & Crouch, et al. (2000), were sorted onto two forms to balance competencies and 
scenarios (Pink & Green). A total of 350 undergraduate STEM majors enrolled in courses requiring 
differential equations or modeling at a large American university signed up to test the items, from 
which 35 completed Pink and 43 completed green.The mean item difficulty revealed that most items 
(76%) were moderately difficult ( 0.20 < 𝑝𝑝 < 0.70).  Seven items were too easy (𝑝𝑝 > 0.7)  and 
eliminated. Nine items performed worse than chance (𝑝𝑝 < 0.20) and were flagged for restructuring 
and one item was too difficult (𝑝𝑝 = 0.03) and was eliminated. We conducted a difficulty advantage 
analysis to assess whether those who studied differential equations had a sizable advantage over those 
who did not. Nine items suggested an advantage for students who took differential equations. None of 
these items were used in Round 3.  Six items suggested an advantage for those who had not taken 
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differential equation. Four of these items were used in Round 3 since they were not too difficult for 
those who had not yet completed differential equations.  

To analyze distractor efficiency, we calculated the proportion of students who selected each distractor. 
Of 253 distractors (62 items had 4 distractors and 1 item had 5), a majority were selected by at least 
5% of respondents. In 17 of these items, distractors were selected more often than the keyed option. 
These items were flagged as items with potential to be discriminating items among students with 
varying abilities or as potentially requiring restructuring. 

After restructuring items according to the option analysis, 30 items were selected for Round 3 on the 
following basis: (i) item difficulty should be in the 0.20<p<0.70 range (ii) items should be sorted onto 
two forms with comparable total difficulty (iii) each form should contain the same number of items 
for each competency (iv) items where students who studied differential equations would have an 
outsized advantage over those who did not should be excluded. There were 28 items satisfying all of 
the criteria and so we selected an additional 2 items that satisfied criteria (ii), (iii), and (iv) but had a 
difficulty of p=.19. Each form balanced 4 items targeting Mathematizing, 4 items targeting Validating, 
4 items targeting Structuring, 2 items targeting Understanding, and 1 item targeting Interpreting. Two 
items had 𝑝𝑝 < 0.20 since applying all 4 of the above criteria was too constraining, however their p-
values were close enough to 0.20 to be worth retesting. 

Purple Orange 
Item Label Competency p Item Name Competency p 
Carrying 
Capacity 3 

Mathematizing 0.67 Decay 3 Mathematizing 0.42 

Carrying 
Capcity 6 

Validating 0.45 Decay 5 Understanding 0.35 

Decay 4b Structuring 0.37 Decay 1 Structuring 0.20 
Haines & 
Crouch 11 

Understanding 0.19 Decay 2 Validating 0.38 

Disease 7 Interpreting 0.47 Disease 6a Understanding 0.21 
Disease 9 Validating 0.41 Disease 12 Validating 0.56 
Lagoon 4 Structuring 0.20 Lagoon 2 Structuring 0.47 
Lagoon 5 Mathematizing 0.40 Lagoon 8 Validating 0.30 
Lagoon 12 Validating 0.37 Lagoon 9 Mathematizing 0.34 
Moth 5 Validating 0.30 Moth 1 Structuring 0.19 
Population 5 Mathematizing 0.40 Moth 12 Mathematizing 0.45 
Recycling 1 Understanding 0.53 Population 3 Mathematizing 0.45 
Recycling 4 Structuring 0.37 Population 4 Validating 0.34 
Recycling 5 Mathematizing 0.20 Recycling 3b Structuring 0.33 

Recycling 14 Structuring 0.40 Recycling 17 Interpreting 0.50 

Table 2: Items tested in Round 3 with their p-values from Round 2 
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Round 3 Testing (Difficulty, Distractor, & Discrimination): The Orange and Purple forms were 
administered to a sample of secondary (25) and post-secondary (289) students participating in an 
international mathematical modeling competition focusing on the use of differential equations to solve 
real-world problems1. Of the 314 students responding to the forms, 115 responded to Purple form 
before the competition and 88 after while 111 responded to the Orange form prior to the competition 
and 87 responded after. Because the instrument is still in development, inferences about gains would 
be premature and therefore analysis of the pre/post performance is beyond the scope of this report.. 
Thus, we chose to collapse the pre and post responses to conduct item analysis. In total, there were 
135 valid responses (students answered 66% of the MCQs)  to the Purple form and 139 valid responses 
to the Orange form. Due to a survey platform error, Recycling 4 (structuring) and Population 4 
(validating) were omitted from the difficulty and discrimination analyses. 

The mean item difficulty for the Purple form was 0.359 (𝑆𝑆𝑆𝑆 = 0.126), with 0.177 < 𝑝𝑝 < .0595. The 
mean item difficulty for Orange  was 0.369 (𝑆𝑆𝑆𝑆 = 0.129), with 0.147 < 𝑝𝑝 < 0.580. Across both 
forms, four items each were identified as too difficult (𝑝𝑝 < .20) or as having borderline (𝑝𝑝 ≈ 0.20). 
We again conducted a difficulty advantage analysis. Of the 135 students who responded to the Purple 
form and of the 139 respondents to the Orange form, 121 and 128 had studied differential equations, 
respectively. The mean item difficulty for these groups were calculated across both forms and the item-
wise differences between the groups were examined. Across both forms, there seemed to be notable 
advantages (differences in p-values > .15)  for those having taken differential equations for 3 items 
(Lagoon 4, Moth 5, Moth 12). A chi-square statistic on the differences in p-values indicated that the 
difference was significant (𝜒𝜒2 = .046) only for Lagoon 4. On Recycling 1, there was a notable 
disadvantage for those not having taken differential equations and a chi squared statistic on the 
differences confirmed a borderline significance (𝜒𝜒2 = .050). 

Our distractor analysis treats 56 distractors on each form. Common benchmarks for a distractor to 
function properly are (a) at least 5% of examinees should select each of an item’s distractors and (b) 
the discrimination correlation should be negative. Across both forms, all distractors were selected by 
at least one person, but seven distractors attending seven distinct items were selected by fewer than 
5% of the examinees. On the Purple and Orange forms, 16.07% (9/56) and 14.29% (8/56) of the 
discrimination correlation, respectively, were positive. Thus, 78.6% (Purple) and  80.4% (Orange) of 
the distractors were functional. All items had at least two functional distractors. On difficult items, a 
greater proportion of respondents selected distractors rather than the keyed option. The option analysis 
revealed four items for which a distractor was chosen much more often than the keyed answer (H&C 
11, Decay 4b on Purple; Lagoon 9, Decay 5 on Orange). In each of these cases the distractor could 
possibly be seen as a justifiably correct answer. These four items were rekeyed to include the popular 
distractor as correct for the discrimination analysis. They have subsequently been restructured. After 
rescoring, the overall mean item difficulty of the purple form was 0.4042 (𝑆𝑆𝑆𝑆 =  .181, 𝑁𝑁 = 135), 
with 0.23 < 𝑝𝑝 < 0.72.  The overall mean item difficulty for the orange from was . 4635 (𝑆𝑆𝑆𝑆 =
.2233,𝑁𝑁 = 139), with 0.18 < 𝑝𝑝 < 0.58. 

To conduct discrimination analysis, the point-biserial correlation was calculated for both forms under 
the revised scoring. The item-total point-biserial correlation (rPBIS) reflects the extent to which higher 
                                           
1  The SIMIODE Challenge Using Differential Equations Modeling, hosted by the Systemic Initiative for Modeling 
Investigations & Opportunities with Differential Equations https://www.simiode.org/scudem 

https://www.simiode.org/scudem
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ability students are more likely than lower ability students to select the keyed option. Thus, for a 
multiple-choice item to function effectively, the rPBIS must be positive. When the rPBIS is positive 
but small, it does not discriminate sufficiently among higher- and lower-scoring examinees to 
contribute to the overall quality of the assessment (DiBattista & Kurzawa, 2011). Only one item from 
the Purple form (Lagoon 9) was negatively correlated with the total score and all items from Orange 
form were positively correlated with the total score. All other items, from the purple from, had rPBIS>
0.20  while two items, from the orange from, had 0 < rPBIS < 0.20  and were flagged as low-
discrimination items. 

We calculated Chronbach’s alpha as a measure of instrument reliability for the two forms. Under the 
original scoring for the Purple form, 𝛼𝛼 = .430 with highly difficult problems (𝑝𝑝 < .20), and 𝛼𝛼 =
0.454 without the highly difficult problems (for all items with 𝑝𝑝 > .20). There was not a significant 
increase in 𝛼𝛼 even after removing the highly difficult problems. Under the original scoring for the 
orange from, 𝛼𝛼 = 0.556 with highly difficult problems (𝑝𝑝 < .20), and 𝛼𝛼 = 0.616 without the highly 
difficult problems (for all items with 𝑝𝑝 > .20). There was not a significant increase in 𝛼𝛼 even after 
removing the highly difficult problems. Revised scoring led to increased α across both forms – for the 
purple form 𝛼𝛼 = 0.556 and for the orange form 𝛼𝛼 = 0.625.  

Performance of Existing Items from the Literature: Because, to date, the items developed by 
Haines & Crouch, et al. are the only items targeting both differential equations and mathematical 
modeling, we provide an analysis of their performance with our samples. We tested 8 items found in 
papers (Haines et al., (2000); Haines & Crouch, 2004) listed in Table AAA.  

Item Label Competency p-value % selecting key/distractor DE Advantage 
H&C1 Mathematizing 0.42 40.6 0.02 
H&C2 Understanding 0.84 84.4 -0.10 
H&C3 Interpreting 0.53 51.6 -0.27 
H&C5 Understanding 0.23 22.6 (key)/ 64.5 (distractor) 0.33 
H&C7 Understanding 0.23 22.6 key/32.3 (distractor) 0.20 
H&C11 Understanding 0.19 18.8 key/62.5 (distractor) -0.08 
H&C13 Structuring 0.83 80.6 0.07 
H&C14 Mathematizing 0.71 68.8 0.10 

Table 3: Difficulty and distractor analysis of Haines, et al. items 

Of the 8 items, 3 items had  𝑝𝑝 > 0.70, and were considered to be too easy. These items targeted 
structuring, mathematizing, and understanding competencies from the following scenarios 
respectively: aircraft evacuation, grocery store checkout, and display of street name signs. One item 
had 𝑝𝑝 = .19 and was flagged as having near-chance levels of difficulty. While only 18.8% of the 
students selected the keyed option (option b) for this item, 62.5% of the students selected a distractor 
(option e) as the answer. The remaining 4 items had 0.20 < 𝑝𝑝 < 0.70. Of these four, two items had 
𝑝𝑝 = .23 but had a noticeable advantage (> 0.15) for those who had studied differential equations. At 
the same time, a third item gave a noticeable advantage to those who did not take differential equations. 
Of these 8 items, only one (H&C 11, size for stroller wheels) was tested again and had 𝑝𝑝 = 0.177, 
again being flagged as too difficult  (17.7% selecting the keyed option versus 54.6% selecting the same 
distractor as in Round 2). It is worthwhile to recall that the H&C items were developed to have a very 
tempting distractor (i.e., considering only mathematical or only real-world issues) for partial credit. It 
is possible that because the distractor had to do with the “smoothness of the ride as felt by the child” 
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posed in the question stem that it was more popular than the keyed option, which is problematic from 
an assessment perspective. It is also possible that the question was ambiguous since it is not clear to 
which attribute of the tire (e.g., radius or thickness) “size” is referring to. 
DISCUSSION 

The utility of the MCQ instrument lies in its potential to measure gains in competencies, as constructed 
and as conceptually construed for STEM undergraduates who have taken or are enrolled in differential 
equations. There are some theoretical considerations that merit discussion. First, it is not clear that the 
items can be uniquely categorized as addressing a single modeling competency. This is because the 
competencies are largely presumed to work together, not in isolation. For example, model validation 
can rely on real-world data or on agreement with assumptions made earlier in the modeling process. 
This is a limitation of the instrument format. Second, and relatedly, the MCQ format means there is 
no additional observational information to help resolve, for example, whether a student “actually did 
mathematizing or validating” in response to an item. Thus, we recommend that the MCQ be used to 
assess levels of modeling competence, in general, rather than whether individuals have improved on 
specific competencies. 

We are cautious, but optimistic, for interpreting the reliability and utility of the scale. The small sample 
sizes and low item numbers affect the estimate of Chronbach’s alpha. Thus, Chronbach’s alpha may 
provide a major underestimate of reliability. We are also cautious about interpreting correlations 
because the items provide dichotomous information.  Further, we recognize that the construct 
“modeling competence” is not unidimensional because it draws from multiple scenarios (domains of 
real-world knowledge), multiple mathematical domains, and targets potentially distinct competencies. 
Future rounds of testing will pursue factor analyses, multi-dimensional testing theory, and move into 
Item Response Theory for documenting item-level characteristic to mitigate some of these 
methodological limitations. Finally, measuring gains in individual competencies adopts an atomistic 
approach and does not guarantee increase in an individual’s modeling capacity holistically (see 
Blomhöj & Jensen, 2003). However, targeting competencies in interventions and assessment can 
support efforts to direct mathematics instruction toward ways of reasoning and justifying that are 
strongly connected to independent, autonomous modeling of complex situations. Due to the small 
number of items per competency, we relegate subscale analysis to future rounds of testing. Despite the 
limitations, the capability of the instrument to detect gains in modeling competence is hopeful because 
no individual’s score was too high and there were some items where students scored below chance 
suggesting there is room for interventions to target the competencies and that the items will 
discriminate well based on ability.  
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