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a b s t r a c t

Testing high-dimensional means has many applications in scientific research. For in-
stance, it is of great interest to test whether there is a difference of gene expressions
between control and treatment groups in genetic studies. This can be formulated as
a two-sample mean testing problem. However, the Hotelling T 2 test statistic for the
two-sample mean problem is no longer well defined due to singularity of the sample
covariance matrix when the sample size is less than the dimension of data. Over the
last two decades, the high-dimensional mean testing problem has received considerable
attentions in the literature. This paper provides a selective overview of existing testing
procedures in the literature. We focus on the motivation of the testing procedures, the
insights into how to construct the test statistics and the connections, and comparisons
of different methods.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

With the rapid development of modern data collection and processing technologies, a vast amount of data with
arge dimensional features become increasingly popular and have been involved in many scientific areas such as
iology, medicine, finance, and social science, calling for an advancement of classical methods to handle the high
imensionality. In recent years, considerable attention has been devoted to variable selection and feature screening ([17]
nd references therein). Statistical inference for high-dimensional means has been a very active research topic in the
iterature because of its important applications, such as those in genetic studies. For instance, many biological processes
nvolve regulation of multiple genes, and such research suffers from low power for detecting important genetic markers
nd poor reproducibility if it focuses on the analysis of individual genes [47]. In other cases, genes are often analyzed in
heir functional groups to reduce the complexity of analysis [25]. Accordingly, the analysis of gene sets/pathways, which
re groups of genes sharing common biological functions, chromosomal locations, or regulations, has become increasingly
mportant in modern biological research. In many important applications, the problem of evaluating whether a group of
enes are differentially expressed from another group can be formulated as a problem of testing two-sample means.
Hotelling’s T 2 test [23] perhaps is the most well-known test on means in the multivariate analysis when the sample

s from multivariate normal distributions. To implement the Hotelling T 2 test, the sample size n should be greater
han the dimension p of data. Motivated by real-world applications, Dempster [13,14] proposed tests for a two-sample
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ormal mean problem when n < p. Läuter [27] proposed exact t and F tests for normal mean problems based on left-
pherical distribution theory [12] to improve the power of the Hotelling T 2 when n < p. See more detailed discussions
n Section 2. Bai and Saranadasa [2] employed random matrix theory to prove that the power of T 2 test can be adversely
ffected even with p < n. Since the seminal work [2], testing hypotheses on high-dimensional means has become a very
ctive topic.
This paper aims to provide a selective overview of research on testing high-dimensional mean problem. We will focus

n the two-sample mean problem. Since the Hotelling T 2 test involves inverse of a sample covariance matrix and is not
ell defined when the inverse does not exist, Bai and Saranadasa [2] proposed a test statistic based on the L2-distance
etween the sample mean and the population mean, and has inspired many follow-up works including, but not limited
o, [8,10,40,41,48,54]. We review these methods in Section 3. Multiple comparison has been used to construct tests for
igh-dimensional means by considering tests for means of individual variables. This leads to L∞-type tests, which have
een shown to be more powerful than the L2-distance based tests in the presence of a few large sparse signals [4,52].
e review works on this topic in Section 4. Since the L2-distance based tests may be more powerful than the L∞-type

ests in the presence of dense signals, i.e., many small signals. These tests cannot dominate each other. Adaptive tests are
γ -distance based tests with γ being selected by data-driven methods. In other words, the adaptive tests essentially aim
o achieve high power against various kinds of alternatives by adapting test statistics based on p-values calculated from
tatistics of different orders [22,51]. These tests are reviewed in Section 5. The L2-distance based tests, L∞-type tests, and
he adaptive tests do not take into account the correlation among variables. To utilize the correlation information in testing
he high-dimensional means, researchers have considered projecting the high-dimensional samples to a low-dimensional
pace and then applying the classical Hotelling T 2 test on the projected data. Lopes et al. [34] constructed a random
rojection test, followed by Thulin [43] and Srivastava et al. [42] with permutation-based computation methods to handle
ultiple projections. Huang [24] derived the theoretical optimal direction with which the projection test possesses the
est power under alternatives, and further proposed a sample-splitting strategy to construct an exact t test. Li and Li [31]
nd Liu et al. [33] further studied how to implement the projection test using the optimal projection direction in practice.
ection 6 provides a comprehensive review of these projection tests. We provide a numerical simulation comparison
mong these tests for the high-dimensional two-sample mean problem in Section 7, followed by discussions in Section 8.

. The Hotelling T 2 and related tests

Suppose that xi, i ∈ {1, . . . ,N}, is an independent and identically distributed sample from Np(µ,Σ ), the p-dimensional
ormal distribution with mean µ and covariance matrix Σ . Of interest is to test

H0 : µ = µ0 versus H1 : µ ̸= µ0,

here µ0 is a known constant. This test is referred to as the one-sample normal mean problem in the literature. The most
ell-known test for this hypothesis is the Hotelling T 2 test [23]. Let x̄ and S be the sample mean and sample covariance
atrix, respectively. Based on the likelihood ratio criterion, one may derive the Hotelling T 2:

T 2
= N(x̄− µ0)

⊤S−1(x̄− µ0).

he properties of T 2 have been well studied. See, for example, Chapter 5 of [1].
It has been observed that when the dimension p is close to the sample size N , T 2 has low power [2,27]. In particular,

hen N ≤ p, S is not invertible, and T 2 is not well defined. A natural question is how to construct an exact test when
≤ p with fixed and finite N and p. Let X = (x1, . . . , xn)⊤, which follows a matrix normal NN×p(1Nµ⊤, IN ⊗Σ ), where

N is an N-dimensional column vector with all elements being one, IN is an N × N identity matrix, and ⊗ denotes the
ronecker product.
Dempster [13,14] dealt with the singularity issue of S by using an orthogonal transformation on data. Let B be an

rthogonal matrix with the first row 1N/
√
N , and let Y = BX . Denote y⊤i as the ith row of Y . Using the property of

matrix normal distribution, it follows that y i’s are independent, y1 ∼ Np(
√
Nµ,Σ ), and y i ∼ Np(0,Σ ), i ∈ {2, . . . ,N}.

The test proposed in [13,14] for the one-sample mean problem corresponds to

TD =
∥y1 − µ0∥

2∑N
i=2 ∥y i∥

2/(N − 1)
.

Under H0, ∥y i∥
2 is a quadratic form of Np(0,Σ ). Dempster [13,14] suggested approximating ∥y i∥

2 by a scaled chi-square
istribution and estimating its scale parameter and degrees of freedom by fitting the first two moment equations. Thus,
nder H0, TD approximately follows an F-distribution.
Läuter [27] proposed a novel idea to construct T 2 by using the property of left-spherical distributions [12]. Without loss

of generality, assume that µ0 = 0. Then X follows NN×p(0, IN ⊗Σ ), and therefore X follows a left-spherical distribution.
That is, for any orthogonal N × N matrix Γ , X and ΓX have the same distribution. Using the invariance property of
left-spherical distributions, Läuter [27] proposed projecting the data along the direction D(X⊤X), a p × d matrix that
depends on X only through X⊤X , and using the Hotelling T 2 based on XD(X⊤X) rather than X . The authors showed that
the resulting T 2 still follows the Hotelling T 2 distribution with the dimension p replaced by d. Thus, the resulting T 2 test
2
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s still an exact test for the one-sample mean problem. Frick [19] pointed out power insufficiency for the two special cases
f Läuter’s tests, one attains the highest power in the situation where all variables have nearly the same relative deviation
nd the same correlation to each other and the other works well when the covariance has a one-factor structure.
Chen et al. [9] proposed a regularized Hotelling T 2 test, referred to as the RHT test, by replacing S−1 in the definition

f T 2 by (S + λI)−1, a ridge-type estimate of the Σ−1, where I is the identity matrix and λ is a ridge tuning parameter.
he authors further developed the theory of the RHT test and derived its limiting null distribution. Based on Chen et al.
9], Li et al. [30] further proposed a data-driven procedure to select the regularization parameter λ, and also proposed
n adaptive test which combines the RHT statistics corresponding to a set of regularization parameters. Note that the
HT test can be viewed as an improvement of the BS and SD tests which are reviewed in Section 3 by incorporating the
orrelation between variables into the test to improve power. Similarly, the projection tests to be introduced in Section 6
ive us an effective way to utilize the correlation information to improve power.
The Hotelling T 2 test has been further used for testing two-sample mean problems. Let xij, j ∈ {1, . . . ,Ni}, be a random

sample from Np(µi,Σ ) for i = 1 and 2, and N = N1 +N2, the total sample size. The two-sample mean problem is to test

H0 : µ1 = µ2 versus H1 : µ1 ̸= µ2. (1)

Let x̄i be the sample mean of xij’s, and

S =
1
n

2∑
i=1

Ni∑
j=1

(xij − x̄i)(xij − x̄i)⊤,

hich is the pooled sample covariance matrix, where n = N1 + N2 − 2.
The one-sample T 2 test can be naturally extended to the two-sample mean problem (1):

T 2
=

N1N2

N1 + N2
(x̄1 − x̄2)⊤S−1(x̄1 − x̄2), (2)

hich is well defined for an invertible S . Furthermore under the null hypothesis,
n− p+ 1

np
T 2

∼ Fp,n+1−p.

As seen, the one-sample and two-sample mean problems essentially can be handled in the same strategy. Thus, we
will focus on the two-sample mean problem, partly because the two-sample mean problem has many direct applications
in high-dimensional genetic data analysis and other fields.

As analyzed in [2], the Hotelling T 2 test has low power when S is near singular. Of course, S is singular when
p > n, and the Hotelling T 2 test is not well defined. To address the challenges, various tests for the one-sample and
two-sample problems have been developed. In the following sections, we introduce the main testing procedures for the
high-dimensional two-sample mean problem without normality assumption. As natural extensions of the multivariate
normal distribution, independent component model and elliptical distributions are the two distribution classes mainly
assumed in the literature of testing two-sample means.

Definition 1. A random vector x follows an independent component model (ICM) if x can be represented as x = Γ z+µ,
where Γ is a p × m matrix for some m ≥ p such that ΓΓ⊤

= Σ , and z = (z1, . . . , zm)⊤ is an m-dimensional random
vector with independent and identically distributed elements zj’s with E(zj) = 0, E(z2j ) = 1 and E(z4j ) < ∞.

Definition 2 (Elliptical Distribution). A random vector x follows an elliptically contoured distribution if its characteristic
function E{exp(ix⊤t)} is of the form exp(it⊤µ)φ(t⊤Σ t) for some function φ(·). When µ = 0 and Σ = I , x follows a
spherical distribution.

Both ICM and elliptical distributions are natural extensions of a multivariate normal distribution, which is the only
distribution belonging to both ICM and elliptical distributions.

3. L2-type tests

Consider the two-sample mean problem without normality assumption. Let xij, j ∈ {1, . . . ,Ni}, i ∈ {1, 2}, be a random
sample from a population with mean µi and covariance matrixΣ . For Ni large enough, x̄i asymptotically follows Np(µi,Σ ),
and x̄1−x̄2 asymptotically follows Np(µ1−µ2, (N

−1
1 +N−1

2 )Σ ). Then the T 2 defined in (2) asymptotically follows a χ2
p when

p is fixed and finite. When p > n, S becomes singular. Thus, the Hotelling T 2 test cannot be used in the high-dimensional
setting. Intuitively, a test statistic based on ∥x̄1− x̄2∥2, an estimate of ∥µ1−µ2∥

2, may be used for testing the two-sample
mean problem. We refer to such tests as L2-type tests since they are based on the L2-norm of the difference of the two
sample means.

Since E∥x̄1 − x̄2∥2 = (N−1
1 + N−1

2 )tr(Σ ), Bai and Saranadasa [2] first considered the following test statistic for the
two-sample problem in (1) as

T = (x̄ − x̄ )⊤(x̄ − x̄ )− (N −1
+ N −1)trS.
n 1 2 1 2 1 2

3
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Under the null hypothesis, E(Tn) = 0 and Var(Tn) = σ 2
Tn = 2(N1

−1
+N2

−1)2(1+ 1
n )trΣ

2 under the normality assumption,
nd Var(Tn) = σ 2

Tn{1+ o(1)} under ICM.
Under the ICM assumption, yn = p/n → y ∈ (0, 1), as n → ∞, and N1/N → κ > 0. Bai and Saranadasa [2] showed

hat under the null hypothesis in (1), as n → ∞,
Tn

√
Var(Tn)

∼ N(0, 1).

sing large-dimensional randommatrix theory, Bai and Saranadasa [2] showed that when y ∈ (0, 1), the plug-in estimator
f σ 2

Tn , i.e., substituting trΣ 2 by trS2, is not a consistent estimator of Var(Tn) if λmax(Σ ) = o(trΣ 2), where λmax(Σ )
tands for the largest eigenvalue of Σ . They further showed that [n2/{(n + 2)(n − 1)}][trS2

− (trS)2/n] is an unbiased
nd ratio-consistent estimator of trΣ 2, and proposed a test, referred to as the BS test, for the two-sample mean problem:

TBS =
( 1
N1

+
1
N2

)−1(x̄1 − x̄2)⊤(x̄1 − x̄2)− trS√
2(n+1)n

(n+2)(n−1) {trS
2
− (trS)2/n}

.

nder some conditions, Bai and Saranadasa [2] derived the asymptotic power of the BS test as

βBS(µ1 − µ2)− Φ

{
−ξα +

nκ(1− κ)∥µ1 − µ2∥
2√

2trΣ 2

}
→ 0,

where ξα is the 100(1− α)th percentile of the standard normal distribution for a given significance level α. The authors
urther proved that the BS test may be more powerful than the Hotelling T 2 test when p/n is close to one. They also
oted that the BS test has the same asymptotic power with the test proposed in [13,14]. Notice that under the null
ypothesis, the asymptotic distribution of the BS test and several L2-type tests to be introduced are approximated using
ormal distributions. Instead of a normal approximation, Zhang et al. [54] proposed to use the Welch–Satterthwaite (W–S)
2-approximation [37,50] to achieve adaptivity of the null distribution. Zhang et al. [54] further conducted a thorough
nalysis on theoretical properties and empirical analysis of the W–S χ2-approximation and concluded that the W–S
2-approximation is at least comparable to and can be more accurate than the normal approximation under certain
cenarios.
The Hotelling T 2 test is affine invariant. That is, the two-sample Hotelling T 2 test is invariant under a linear

ransformation y ij = Axij + b for a nonsingular constant square matrix A and a constant vector b. The BS test does not
ossess this property. Indeed, the BS test is not invariant under yijk = akxijk + bk for k ∈ {1, . . . , p}, where xijk is the kth
lement of xij. One way to deal with this issue is to scale each variable by dividing its sample standard deviation. Denote
S = diag(S), the diagonalized matrix of S , and consider (x̄1 − x̄2)⊤D−1

S (x̄1 − x̄2) instead of ∥x̄1 − x̄2∥2. Srivastava and Du
41] proposed a test, referred to as the SD test, with the test statistic defined as

TSD =

N1N2
N1+N2

(x̄1 − x̄2)⊤D−1
S (x̄1 − x̄2)− np

n−2

{2(trR2
− p2/n)cp,n}

1
2

,

where cp,n is an adjustment coefficient to improve convergence, and it should satisfy that cp,n → 1 in probability as

(n, p) → ∞. The authors suggested using cp,n = 1+ p−3/2trR2, where R = D
−

1
2

S SD
−

1
2

S is the sample correlation.
We denote R to be the corresponding correlation matrix of the covariance matrix Σ , and λmax(R) to be the largest

igenvalue of R. It is assumed that n = O(pζ ) with 1/2 < ζ ≤ 1, N1/N → κ ∈ (0, 1), 0 < limp→∞ p−1trRk < ∞,
∈ {1, . . . , 4}, and limp→∞ λmax(R)/

√
p = 0. Srivastava and Du [41] showed that TSD ∼ N(0, 1) under H0, and further

derived its asymptotic power function as

βSD(µ1 − µ2)− Φ

{
−ξα +

N1N2

N1 + N2

(µ1 − µ2)⊤D
−1
Σ (µ1 − µ2)

√
2trR2

}
→ 0,

s n, p → ∞.
Srivastava and Du [41] further compared the power function with that of the BS test and showed that the SD test may

njoy higher power than the BS test when the diagonal elements of Σ are not the same and some regularity conditions
re satisfied.
Gregory et al. [21] proposed the generalized component test (referred to as GCT), which is a centered and scaled version

f the statistic that takes the form of the mean of the squared two-sample t-statistics with unpooled variance over all
components. The choices of centering quantity relate to the dimension and the formulation of scaling quantity rests
n the assumption that the dependence among components is autocovarying and diminishing as components are further
part. Chakraborty and Chaudhuri [6] noted that the size of GCT is larger than the nominal level under the autoregressive
odel as well as spherical t distributions for all values of p, which can be corrected using permutation-based critical
alues.
Chen and Qin [10] first noted that some strong moment conditions in [2] are due to the terms

∑Ni
j=1 x

⊤

ij xij, i ∈ {1, 2},
n the expansion of ∥x̄ − x̄ ∥

2. However, these two terms are not useful in the sample mean testing problem. Chen and
1 2

4



Y. Huang, C. Li, R. Li et al. Journal of Multivariate Analysis 188 (2022) 104813

Q
u

{

m
i
a
r
c
d

p
t
b

i

in [10] proposed the following test, referred to as the CQ test, with the test statistic that does not involve these two
nnecessary terms:

TCQ =
1

N1(N1 − 1)

N1∑
i̸=j

x⊤1ix1j +
1

N2(N2 − 1)

N2∑
i̸=j

x⊤2ix2j −
2

N1N2

N1∑
i=1

N2∑
j=1

x⊤1ix2j.

Chen and Qin [10] considered the two-sample mean problem with unequal covariance matrix. Specifically, let xij, j ∈
1, . . . ,Ni}, be a random sample from a population with mean µi and covariance matrix Σ i. Chen and Qin [10] derived
the mean and the asymptotic variance of TCQ. Under the null hypothesis, E(TCQ) = 0, and

Var(TCQ)−
{

2
N1(N1 − 1)

tr(Σ 2
1)+

2
N2(N2 − 1)

tr(Σ 2
2)+

4
N1N2

tr(Σ 1Σ 2)
}
→ 0.

Chen and Qin [10] established the asymptotic normality of TCQ under the null and the local alternative hypothesis, and
further derived the asymptotic power of their test under certain regularity conditions. Note that TCQ is the same as that
of the test proposed by [2], but Chen and Qin [10] studied the asymptotic properties of TCQ and derived its asymptotic
power under more general setting and weaker technical conditions than those given in [2].

Wang et al. [48] extended the CQ test to a nonparametric test, referred to as the WPL test, for high-dimensional one-
sample mean problem H0 : µ = 0. The WPL test shares the same form of the CQ test for the one-sample mean problem
with xi replaced by its spatial sign xi/∥xi∥. Under elliptical distribution assumption on the population and some other
regularity conditions, Wang et al. [48] further studied the asymptotic properties of their proposed nonparametric test,
and demonstrated that the nonparametric test can be more powerful than the CQ test when the sample is from heavy-
tailed elliptical distributions. Li et al. [32] illustrated that classical spatial-sign-based procedures for a low-dimensional
population are not robust for high-dimensional settings, and may lead to an inflated Type I error rate. Li et al. [32] further
developed a correction to make the sign-based tests applicable for high-dimensional data, and proved that the corrected
test statistic is asymptotically normal under elliptical distributions. Chakraborty and Chaudhuri [6] examined the CQ test
and WPL test closely under the ρ-mixing and randomly scaled ρ-mixing assumptions. The two cover some commonly seen
odels, e.g., spherical Gaussian distributions is a special case of ρ-mixing models and multivariate spherical t distribution

s a special case of randomly scaled ρ-mixing models. Chakraborty and Chaudhuri [6] concluded that the power of CQ test
nd WPL test tend to be the same as p → ∞ regardless of sample size given appropriate mixing conditions and some
egularity conditions; in addition, the WPL test can be asymptotically more powerful than the CQ test under a stronger
orrelation and both p, n → ∞. Other nonparametric tests including, but not limited to, [3,18,26,46] have also been
eveloped for the two-sample mean problem.
Chen et al. [8] noted that the non-signal components only inflate the variance of TCQ without any contribution to the

ower of the test when alternatives are sparse. As such, Chen et al. [8] proposed a hard thresholding method, referred to as
he CLZ test, to remove the components with no signal before carrying out the TCQ test. Although the actual statistic used
y [8] is of a similar nature as TCQ, we represent the test statistic proposed in [8] similar to TBS for notation simplicity. Let

X̄ (k)
1 and X̄ (k)

2 are kth elements of x̄1 and x̄2, respectively, and S1,kk and S2,kk are the sample variance for the kth component
n the first and second sample, respectively. Then,

TCLZ(s) =
p∑

k=1

{
(X̄ (k)

1 − X̄ (k)
2 )2

S1,kk/N1 + S2,kk/N2
− 1

}
I

{
(X̄ (k)

1 − X̄ (k)
2 )2

S1,kk/N1 + S2,kk/N2
> λp(s)

}
,

where I{·} is an indicator function, λp(s) = 2s log p, s ∈ (0, 1), and the form of λp(s) is based on the large deviation
results [36]. Chen et al. [8] further established the asymptotic normality of TCLZ(s) under certain regularity conditions and
derived the asymptotic power of TCLZ(s) under local alternatives.

One has to determine s to implement TCLZ(s). However, the optimal choice of the threshold s depends on the difference
between the true population means, which is unknown in general. If all of the signals in the population mean difference
are strong enough, the threshold s can be chosen very close to one to remove all the components with no signal while
preserving all the components with signals. However, if some signals are weak, s has to be chosen according to the strength
of the weak signals, which is usually unknown in practice. To deal with this issue, Chen et al. [8] proposed to choose the
most significant test statistic among possible choices of threshold values as their final test statistic:

TCLZ = max
s∈(0,1−η)

{TCLZ(s)− µ̂TCLZ(s),0}/σ̂TCLZ(s),0 ,

where η is a parameter with a small positive value, and µ̂TCLZ(s),0 and σ̂TCLZ(s),0 are estimates of the mean and standard
deviation of TCLZ(s) under the null hypothesis derived in [8]. Chen et al. [8] further derived the asymptotic null distribution
for TCLZ using the theory of extreme value distributions. Although the asymptotic null distribution can be derived using
the extreme value theory, Chen et al. [8] found that the convergence rate of TCLZ is slow. As a result, Chen et al. [8]
proposed to use the bootstrap method to calculate the p-value of their test. Zhong et al. [56] developed a new test for
high-dimensional means under sparsity, as an alternative to higher criticism (HC), which was introduced to determine
whether there are any nonzero signals in the settings in which there is only a small fraction of significant signals against
a predominantly null background. A comprehensive review on the basics of HC in both the testing and feature selection
settings is given in Donoho and Jin [15].
5
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. L∞-type tests

Note that the two-sample mean problem is equivalent to testing simultaneously the following hypotheses:

H0k : µ1k = µ2k versus H1k : µ1k ̸= µ2k,

or k ∈ {1, . . . , p}. For each k, we may construct a z-test for each one-dimensional two-sample mean problem:

zk =
X̄1k − X̄2k√

S1,kk/N1 + S2,kk/N2
,

here the notation is the same as that in Section 3. Under mild conditions, zk asymptotically follows a normal
distribution. Cai et al. [4] proposed a L∞-type test, referred to as the CLX test, with the test statistic accounting for sparse
alternatives,

TCLX = max
1≤k≤p

|X̄1k − X̄2k|
2

S1,kk/N1 + S2,kk/N2
,

hich equals ∥u∥∞ with u = (z21 , . . . , z
2
p )

⊤.
Using the extreme value theory and under some regularity conditions, Cai et al. [4] derived the asymptotic null

distribution of TCLX and proposed an asymptotic test accordingly. The idea behind the construction of the L∞-type statistic
TCLX is to pick up the strongest signals in the difference of means while ignoring other signals. Thus it will have advantages
over the L2-type testing methods when the signals are sparse, which has been shown in various simulation studies
[2,10,41]. Chang et al. [7] advocated a data-driven approach to obtain critical values using Monte Carlo simulations based
on the facts that convergence rate to the extreme value distribution for maximum-type statistics is usually slow and that
the strong structural assumptions on the covariance matrices may be difficult to justify in applications. Chang et al. [7]
also proposed a screening step to reduce the dimension and enhance power.

Xue and Yao [52] proposed a distribution and correlation-free two-sample mean test built upon an L∞-type test,
referred to as the XY test, with the test statistic defined as

TXY =

√
N1∥x̄1 − x̄2∥∞,

hich only depends on the infinity norm of the sample mean difference. Xue and Yao [52] further derived theoretical
roperties of TXY based on a high-dimensional central limit theorem, and provided a data-driven critical value which
an be easily computed via a multiplier bootstrap method. Notably, the result of [52] does not require samples to be
ndependent and identically distributed and allows two samples to have highly unequal sizes. From the definition of TXY,
t is not invariant under scale transformation. In practice, one may have to scale it by using the trick of the SD test.

. Adaptive tests

L2-type tests like [2,10] and L∞-type tests like [4,52] present two extremes — the L2-type tests use all the information
n all the dimensions, while the L∞-type tests use only the dimension with the strongest signal as evidence against the null
ypothesis. Typically, the L2-type tests are powerful against dense alternatives, where the difference of two population
eans has a large proportion of non-zero elements; while the L∞-type tests are powerful against sparse alternatives,
here the mean difference only has a small proportion of non-zero elements. In practice, it is unknown whether the
lternative is dense or sparse. To deal with this issue, adaptive tests have been proposed to achieve high power against
arious kinds of alternatives simultaneously.
Xu et al. [51] developed an adaptive testing procedure, referred to as the XLWP test, which is powerful against both

he sparse and dense alternatives or alternatives in-between in the high-dimensional setting. They incorporated the idea
f L2-type tests and L∞-type tests and proposed a family of sum-of-powers tests with a power index γ as follows.

TXLWP(γ ) =
p∑

k=1

|X̄1k − X̄2k|
γ
,

or 1 ≤ γ < ∞ and

TXLWP(∞) = max
1≤k≤p

|X̄1k − X̄2k|
2

S1,kk/N1 + S2,kk/N2
.

ote that TXLWP(γ ) coincides with TBS if γ = 2 and TCLX if γ = ∞. Xu et al. [51] demonstrated that there are settings in
hich TXLWP(γ ) with some γ between 2 and ∞ is more powerful than TBS and TCLX. Furthermore, Xu et al. [51] proposed
n adaptive test to combine various sum-of-powers tests with different γ ’s as follows.

TXLWP = min PTXLWP(γ ),

γ∈G

6
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here G is a candidate set of γ and PTXLWP(γ ) is the p-value calculated from TXLWP(γ ). Note that since TXLWP is the minimum
of some p-values, it is no longer a genuine p-value. In order to perform the proposed adaptive test, Xu et al. [51] derived
the asymptotic null and alternative distributions for TXLWP under certain regularity conditions. Also note that to use the
test TXLWP, G needs to be pre-specified. Xu et al. [51] suggested using G = {1, 2, . . . , 6,∞}, and more details can be found
in [51].

He et al. [22] proposed an adaptive testing procedure which combines p-values computed from U-statistics of different
orders. While He et al. [22] focused on a general framework of high-dimensional testing, their test can also be applied in
the high-dimensional mean testing problem. For the two-sample mean testing problem, define

THXWP(a) =
p∑

j=1

a∑
c=0

(
a
c

)
(−1)(a−c)

PN1
c PN2

a−c

∑
(k1,...,kc )∈A

N1
c

(s1,...,sa−c )∈A
N2
a−c

c∏
t=1

x1kt j
a−c∏
m=1

x2smj, (3)

for 1 ≤ a < ∞, where PN
a = N!/(N − a)! is the arrangement number, AN

c = {(a1, . . . , ac) : 1 ≤ a1 ̸= · · · ̸= ac ≤ N}
s the set of arrangements and xikj is the jth element of xik. He et al. [22] noted that THXWP(a) is an unbiased U-statistic
stimator for

∑p
j=1(µ1j − µ2j)a, and also defined THXWP(∞) to be the same as TXLWP(∞). Similar to TXLWP(γ ), THXWP(2) is

owerful against dense alternatives, THXWP(∞) is powerful against sparse alternatives, and THXWP(a) with an appropriate
can be powerful for alternatives in-between.
He et al. [22] derived the asymptotic null distribution for THXWP(a) with a finite integer a and a = ∞, and they further

howed that THXWP(a) asymptotically follows a normal distribution for a finite integer a and an extreme value distribution
or a = ∞ under certain regularity conditions. From the property of U-statistics, He et al. [22] showed that THXWP(a) with
ifferent a’s are asymptotically independent with each other. Similar to [51], He et al. [22] proposed to use an adaptive
est to combine p-values from statistics of different orders as

THXWP = min
a∈A

PTHXWP(a),

here PTHXWP(a) is the p-value calculated from THXWP(a) and A is some set of candidate a’s. Given the asymptotic
ndependence among THXWP(a) with different a’s, He et al. [22] derived the asymptotic p-value for THXWP as 1 − (1 −

HXWP)|A|, where |A| is the size of the candidate set A. For implementation, the candidate set A needs to be pre-
pecified. He et al. [22] proposed to use A = {1, 2, . . . , 6,∞}. Note that [51] and [22] are quite similar in the setting of
he mean testing problem. A main difference is that He et al. [22] derived better theoretical properties such as asymptotic
ndependence between testing statistics of different orders by using U-statistics instead of V -statistics as in [51]. However,
he U-statistics in (3) is hard to compute directly when a is large. To solve this problem, He et al. [22] also proposed a
alculation scheme which can calculate (3) with time complexity O(p2(N1+N2)) instead of O(p2(N1+N2)a) as in the naive
alculation approach. He et al. [22] also discussed other p-value combination methods such as Fisher’s method beyond
he minimum p-value combination method.

. Projection tests

Test statistics introduced in Sections 3, 4, and 5 do not utilize correlation among the variables and therefore do not
equire an estimation of Σ−1, which may result in loss of power. Projection tests have been considered to achieve higher
ower by taking into account correlation. Earlier work on projection tests such as [27] target exact tests with finite p
nd n. The exact tests proposed in [27] were further extended to linear multivariate tests on mean structures of matrix
ormal distribution in [28] with a correction in [29].
Lopes et al. [34] proposed a random projection test, referred to as the LJW test, that projects the sample to a randomly

enerated lower dimensional space such that the classical Hotelling T 2 test can be applied. Specifically, the LJW test is
rocessed under the normality assumption when p ≥ n/2. Let P⊤

k be a k × p projection matrix with independent and
dentically distributed N(0, 1) entries, where k is suggested to take [n/2], where [a] is the largest integer less than a.
he projected samples {P⊤

k x11, . . . ,P
⊤

k x1N1} and {P⊤

k x21, . . . ,P
⊤

k x2N2} can be considered as independent and identically
istributed samples from N(P⊤

k µ1, P⊤

k ΣPk) and N(P⊤

k µ2, P⊤

k ΣPk), respectively. The Hotelling T 2 test can be processed by
esting the two projected samples with

Hp0 : P⊤

k µ1 = P⊤

k µ2 versus Hp1 : P⊤

k µ1 ̸= P⊤

k µ2.

uppose that (µ1 − µ2)⊤Σ
−1(µ1 − µ2) = o(1) and N1/(N1 + N2) → κ ∈ (0, 1), Lopes et al. [34] showed that under all

equences of projections P⊤

k , the asymptotic power function of the LJW test satisfies, as n → ∞,

β{(µ1 − µ2),Σ , P⊤

k } − Φ{−ξα + κ(1− κ)
√
n/2∆2

k} → 0,

here ∆2
k = (µ1 − µ2)⊤Pk(P⊤

k ΣPk)−1P⊤

k (µ1 − µ2).
The seemingly intuitive idea of the random projection test is motivated from the consideration that the test is designed

to reduce the dimension to prevent accumulation of variance from the high-dimensional variables and meanwhile not
to bring the distance too close so that it is harder to distinguish. Thulin [43] proposed a modification of the LJW test,
7
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llowing the test statistics to be invariant under linear transformations of the marginal distributions. Multiple random
rojections are conducted and the test statistic averages the individual random projection Hotelling tests, whose power
s then calculated by permutation. Thulin [43] demonstrated that its test offers a higher power when the variables are
ependent. On a similar note, Srivastava et al. [42] proposed a test using multiple random projections with the test
tatistic averaging over the individual random projection Hotelling test p-values. These tests are referred to as the random
rojection (RP) tests.
A key question to projection tests is whether there exists an optimal projection so that the resulting projection test

s the most powerful. To address this question, Huang [24] formulated this issue as follows. For k ≪ p, let A be a p × k
onzero constant matrix with rank k. Based on the projected sample y ij = A⊤xij, the two-sample Hotelling T 2 test for
0A : A⊤(µ1 − µ2) = 0 can be written as

T 2
A =

N1N2

N1 + N2
(x̄1 − x̄2)⊤A(A⊤SA)−1A⊤(x̄1 − x̄2),

rovided that A⊤SA is invertible. Under the normality assumption,
N1 + N2 − k− 1

kn
T 2
A ∼ Fk,N1+N2−k−1,

under H0, which implies H0A holds. Huang [24] proved that T 2
A reaches its best power at k = 1 and A = Σ−1(µ1 − µ2).

Denote the optimal projection by a = Σ−1(µ1 − µ2). As a result, H0A becomes H0a : (µ1 − µ2)⊤Σ
−1(µ1 − µ2). Suppose

that Σ is positive definite, then H0a is equivalent to H0 : µ1 = µ2.
The estimation of the optimal projection a is challenging since it involves the estimation of Σ−1. To construct an

exact projection test, Huang [24] proposed a sample-splitting strategy to estimate a where the data are partitioned into
a subset for estimation and a subset for conducting the test. Let x̄(1)1 − x̄(1)2 and S (1) be the sample mean difference and
pooled sample covariance matrix obtained from the subset for estimation, respectively. Since S (1) is not invertible when
p > n, Huang [24] proposed to estimate a by

â =
(
S (1)

+ λDS(1)
)−1

(
x̄(1)1 − x̄(1)2

)
,

where DS(1) = diag(S (1)) and λ is a ridge tuning parameter. Thus, the projection test with the optimal direction, referred
to as the OP test, is

T 2
OP =

N (2)
1 N (2)

2

N (2)
1 + N (2)

2

(
x̄(2)1 − x̄(2)2

)⊤
â
(
â⊤S (2)â

)−1
â⊤

(
x̄(2)1 − x̄(2)2

)
,

here x̄(2)1 − x̄(2)2 and S (2) are the sample mean difference and pooled sample covariance matrix obtained from the subset
or conducting the test, and N (2)

1 and N (2)
2 are the sample sizes for the two samples in this subset. The authors also

emonstrated that under the local alternative

H1 : µ1 − µ2 = δ

√
1
N1

+
1
N2

,

here δ is a constant vector, the asymptotic power of the OP test is no less than those of BS, DS, and CQ test under certain
onditions.
Li and Li [31] investigated the projection tests for the linear hypothesis testing problem in linear models with high-

imensional responses, which includes the high-dimensional mean testing problem as a special case. In the setting of the
wo-sample mean problem, the test proposed by [31], referred to as the LL test, can be seen as a multiple data-splitting
xtension of [24] to solve the power loss problem of a single data splitting. Li and Li [31] derived the asymptotic normality
f their test statistic under certain regularity conditions and proposed to use bootstrap methods to carry out the test. Li
nd Li [31] further showed that their test has similar asymptotic power with those of TBS and TCQ in the presence of low

correlation among variables, and that their test can be much more powerful than some existing tests in the presence of
high correlation.

In the construction of T 2
OP , a ridge-type estimator is used to estimate the optimal projection direction. However, the

ridge type estimator is not consistent in high-dimensional settings in general. To deal with the problem of optimal
projection direction estimation, Liu et al. [33] proposed to use nonconvex regularized quadratic programming to estimate
the optimal projection direction. Although Liu et al. [33] mainly focused on the one-sample mean testing problem,
we can easily modify it for the two-sample high-dimensional mean testing problem. Denote w∗

= Σ−1(µ1 − µ2),
the optimal projection direction to be estimated. Note that w∗ is the solution to the following optimization problem
w∗

= argminw

[ 1
2w

⊤Σw − (µ1 − µ2)⊤w
]
. Liu et al. [33] considered the following optimization problem to estimate the

ptimal projection direction

ŵ = argmin
w

⎡⎣1
2
w⊤Σ̂w − (x̄1 − x̄2)⊤w +

p∑
Pλ(wj)

⎤⎦ , (4)

j=1

8



Y. Huang, C. Li, R. Li et al. Journal of Multivariate Analysis 188 (2022) 104813

w

a
l
A

7

s
s

t
I

t
c

here w = (w1, . . . , wp)⊤, Σ̂ = S is the pooled sample covariance matrix, and Pλ(w) is a penalty function with a tuning
parameter λ to promote the sparseness of the estimator. Commonly used penalty functions include the Lasso [44], the
SCAD [16], the MCP [53], and others [17]. Liu et al. [33] further established that any stationary point ŵ of the problem
(4) is a good estimator for optimal projection direction w∗ under some regularity conditions.

To reduce the power loss from the data splitting, Liu et al. [33] further proposed a multiple-splitting projection test
which repeats the single projection procedure m times, obtaining p-values pk, k ∈ {1, . . . ,m} for some fixed integer m.
Liu et al. [33] noted that these p-values are exchangeable in distribution. That is, (p1, . . . , pm)

d
= (pπ1 , . . . , pπm ) for any

permutation π on {1, . . . ,m}. They further proposed a p-value combination method which utilizes the exchangeability
of the p-values. More specifically, let Zk = Φ−1(pk), k ∈ {1, . . . ,m}. Under the null hypothesis, Zk, i ∈ {1, . . . ,m} are
exchangeable standard normal random variables. Denote ρ to be the correlation between Zi and Zj, 1 ≤ i < j ≤ m,
and let ρ̂ be some consistent estimator of ρ, Liu et al. [33] established that Mρ̂ = Z̄/

√
{1+ (m− 1)ρ̂}/m follows an

symptotic standard normal distribution under the null hypothesis. However, the asymptotic distribution needs m to be
arge enough. Liu et al. [33] further proposed a critical value calculation method to control the finite-sample Type I error.
lso, Liu et al. [33] proposed to choose m ∈ [30, 60] for a trade-off between testing power and computational cost.

. Numerical comparisons

In this section, we conduct intensive simulation to compare the performance of the tests introduced in the previous
ections using R version 3.4.3. All simulations results are based on 5000 independent replicates. In our simulations, we
et the dimension p = 1000, n1 = n2 = n and the significance level 0.05.
We consider two types of alternatives: the sparse alternative where µ1 = 0 and µ2 = c(1⊤10, 0p−10)⊤ and dense local

alternative where µ1 and µ2 are generated from Np(0, (c2/n)Ip). The sparse alternative is designed to challenge the L2-type
ests, while the dense local alternative is to challenge the L∞-type tests. We set c = 0, and 0.5 and 1 to examine the Type
error rate, and the power of the tests, respectively.
We consider two covariance structures: (1) compound symmetry (CS) with Σ 1 = (1 − ρ)Ip + ρ1p1⊤p , where Ip is

he p × p identity matrix; and (2) autoregressive (AR) correlation with Σ 2 = (ρ|i−j|), both with ρ = 0.5 for a moderate
orrelation and 0.8 for a high correlation. Denote Ω = Σ−1 with (i, j)-element ωij. Then for the CS correlation structure,

ωij is a constant for i ̸= j; for the AR correlation structure, ωij = 0 for |i− j| ≥ 2. The correlation among the variables
is not utilized in the tests introduced in Sections 3, 4, and 5. Thus, the CS correlation structure is designed to challenge
these tests, which may take advantage of the AR correlation structure whose inverse is very close to the identity matrix.
The projection tests introduced in Section 6 may take advantage of the CS correlation structure since the correlation is
taken into account.

We generate data from two multivariate distributions, multivariate normal and multivariate t with degrees of freedom
6. A multivariate normal distribution belongs to the class of ICM, while a multivariate t distribution is a special case of
elliptical distributions. Using these two distributions enables us to examine how sensitive the performance of the tests is
to the ICM assumption, and how the limiting null distributions are related to the ICM assumption.

In our simulations, we directly use the R package highmean version 3.0 to implement several tests, including [2]
(aBS, eBS), [51] (aXLWP, eXLWP), [4] (aCLX, eCLX), [10] (aCQ, eCQ), [8] (aCLZ, eCLZ), and [41] (aSD, eSD). Here ‘‘a-’’ and
‘‘e-’’ represent asymptotic-based and permutation-based tests, respectively. The permutation parameter is set to 200 for
permutation-based tests in the R package. For random projection tests, we conduct an asymptotic-based test with a single
projection (aRP1) following [34], and a permutation-based test with a single projection (eRP1) and 30 projections (eRP30)
following [43] and the codes provided in its supplementary material. Both permutation parameters are set to 100 for
eRP30. We use the R package ARHT version 0.1.0 to implement [30] (ARHT). We also include [13] (DEM), [22] (HXWP), [27]
(LAU), [24] (OP), [31] (LL), and [52] (XY) in this numerical comparison.

Due to the limited space, we present and discuss the results with (n, ρ) = (40, 0.5). Results for (n, ρ) = (40, 0.8),
(100, 0.5) and (100, 0.8) are given in the supplementary material of this paper. It can be seen from the figures presented
in the supplement that the overall patterns for (n, ρ) = (40, 0.8), (100, 0.5) and (100, 0.8) are similar to those for
(n, ρ) = (40, 0.5).

Fig. 1 depicts the Type I error and power for multivariate normal data. From Fig. 1(a) and (b), it can be seen that all
tests retain the Type I error rate 0.05 very well except for aCLX and aCLZ. The aCLZ test inflates the Type I error rate
for both correlation structures significantly, while the aCLX test inflates the Type I error rate only for the AR correlation
structure. Fortunately, both eCLX and eCLZ retain the Type I error rate well. Thus, we should use the power of eCLX and
eCLZ rather than that of aCLX and aCLZ for the power comparison.

Fig. 1(c) depicts the power for the AR correlation structure and dense local alternative, and implies that LL, eBS, eCQ,
eSD tests have the highest power, followed by the adaptive tests and ARHT. The L∞-type tests, and both RP1 (aRP1 & eRP1)
tests have low power. Fig. 1(d) depicts the power for CS correlation structure and dense local alternative, and indicates
that the ARHT test, LL test, OP test, and eRP30 test have the highest power. For a larger signal with c = 1, the XY test and
eCLX perform quite well, and the adaptive tests introduced in Section 5 have reasonable power. The L2-type tests have
the lowest power. This is expected since the L2-tests ignore the correlation.

The power for the AR correlation structure and sparse constant alternative is depicted in Fig. 1(e), from which it can
be seen that the adaptive tests perform the best, the L∞-type tests perform well. The eBS, eCQ, eSD and LL tests perform

similarly. The ARHT, OP, aRP1, eRP1, and eRP30 tests have the lowest power.

9
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Fig. 1. Simulation results under the multivariate normal distribution with different values of c , the strength of signals. The null hypothesis corresponds
o c = 0. The left and right panels are for the autoregressive (AR) and compound symmetric (CS) correlation structure, respectively. The top, middle,
nd bottom panels are for the Type I error, power for a dense local alternative, and power for a sparse constant alternative, respectively. Results
re based on 5000 replications. Tests DEM [13], LAU [27] and ARHT [30] are introduced in Section 2. Tests BS (aBS and eBS, [2]), CQ (aCQ and
CQ, [10]), SD (aSD and eSD, [41]) and CLZ (aCLZ and eCLZ, [8]) can be found in Section 3. Tests CLX (aCLX and eCLX) [4] and XY [52] are defined
n Section 4, tests HXWP [22] and XLWP (aXLWP, eXLWP, [51]) are introduced in Section 5. Tests OP [24], LL [31], eRP (eRP1, eRP30,[43]) are given
n Section 6.

The power for the CS correlation structure and sparse constant alternative is depicted in Fig. 1(f), from which we can
ee that the LL and eRP30 tests perform the best, and followed by the XY test and ARHT test. The eCLX test and the

daptive tests have good performance too. The L2-type tests, the aRP1, and eRP1 tests have the lowest power.

10
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Fig. 2. Simulation results under the multivariate t distribution with different values of c , the strength of signals. The null hypothesis corresponds to
= 0. The left and right panels are for the autoregressive (AR) and compound symmetric (CS) correlation structure, respectively. The top, middle,
nd bottom panels are for the Type I error, power for a dense local alternative, and power for a sparse constant alternative, respectively. Results
re based on 5000 replications. Tests DEM [13], LAU [27] and ARHT [30] are introduced in Section 2. Tests BS (aBS and eBS, [2]), CQ (aCQ and
CQ, [10]), SD (aSD and eSD, [41]) and CLZ (aCLZ and eCLZ, [8]) can be found in Section 3. Tests CLX (aCLX and eCLX) [4] and XY [52] are defined
n Section 4, tests HXWP [22] and XLWP (aXLWP, eXLWP, [51]) are introduced in Section 5. Tests OP [24], LL [31], eRP (eRP1, eRP30, [43]) are given
n Section 6.

The Type I error and power for the multivariate t distributions are depicted in Fig. 2, from which we can see that in
addition to the aCLZ and aCLX tests, the aXLWP test cannot retain the Type I error rate, and the DEM, aBS, aCQ, aSD, and
11
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Fig. 3. Computation time (second) per replicate. The left and right panels are for the autoregressive (AR) and compound symmetric (CS) correlation
structure, respectively. The upper and lower panels are for the multivariate normal and t distributions with different values of c , the strength of
signals, respectively. The null hypothesis corresponds to c = 0. Results are based on 5000 replications. Tests DEM [13], LAU [27] and ARHT [30] are
introduced in Section 2. Tests BS (aBS and eBS, [2]), CQ (aCQ and eCQ, [10]), SD (aSD and eSD, [41]) and CLZ (aCLZ and eCLZ, [8]) can be found in
Section 3. Tests CLX (aCLX and eCLX) [4] and XY [52] are defined in Section 4, tests HXWP [22] and XLWP (aXLWP, eXLWP, [51]) are introduced in
Section 5. Tests OP [24], LL [31], eRP (eRP1, eRP30, [43]) are given in Section 6.

ARHT tests have much more conservative Type I error rates, when data are generated from the multivariate t distribution
with an AR correlation structure. As the result, it can be seen from Fig. 2(c) and (e) that these tests have much lower
powers for multivariate t distributions than for multivariate normal distributions. We also observe a conservative Type I
error rate for ARHT under a CS correlation structure. The patterns of the Type I error and power of tests other than the
DEM, aBS, aCQ and aSD tests are similar to those in Fig. 1.

In summary, there is no single test dominating all the other tests in all settings. The performance of the tests is related
to the type of alternatives, correlation structures, and the population from which the data are generated. In general, we
would recommend the LL and eXLWP tests since their performance is very good in all different settings.

Fig. 3 depicts the computing time for each test. The computing time may vary under settings. From Fig. 3, HXWP is
the most costly one, followed by LL and eRP30.

8. Conclusions and discussion

This paper presents a selective overview on testing two-sample means of high dimensional data along with their
motivations and properties. We classify these tests into several categories: the Hotelling T 2 related tests, L2-type tests,
L∞-type tests, adaptive-type tests, and projection tests. We conduct a comprehensive numerical comparison to demon-
strate the strength and weakness of these tests. In general, the permutation-based test can retain the Type I error rate
better than their asymptotic counterparts. As expected, there is no test which dominates all other tests in all scenarios.
In general, we would recommend the LL and eXLWP tests since their performance is very good in all different settings.
12
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There are many works on testing high-dimensional means. It is impossible to include all of them in a review article.
For instance, this paper does not review tests for one-sample mean problem and two-sample mean problem based on
empirical likelihood [11,49]. In addition, this paper does not include tests that are developed more specifically for data
with special structures, such as compositional data [5] or genetic data incorporating pathway topology [25].

We conclude this paper by outlining a few future research directions. It has been common to impose sparsity in the
high-dimensional data modeling. For two-sample mean problems, it is reasonable to assume that many variables have
the same means. That is, many elements in µ1−µ2 are 0. This implies that the vector µ1−µ2 is sparse. How to construct
a test that utilizes the sparsity to achieve better power would be an interesting topic for future research.

The challenge of testing high-dimensional means comes from the singularity of the sample covariance matrix or the
estimation of the precision matrix high-dimensional data, i.e, the inverse of high-dimensional covariance matrix. There
are some interesting works on estimation of the precision matrix of high-dimensional data such as high-dimensional
Gaussian graphical models. How to incorporate the recent advances on high-dimensional precision matrix estimation to
construct a high-dimensional mean test with better power and controlled Type I error is another interesting topic for
future research.

Statistical inference for regression coefficient vectors in high-dimensional linear and generalized linear models have
been a very active research topic. See, e.g., Zhang and Zhang [55], Van de Geer et al. [20], Ning and Liu [35], Tibshirani
et al. [45], Shi et al. [38] and Shi et al. [39]. Extending the techniques developed in the context of testing high-dimensional
means to testing linear hypothesis in high-dimensional regression models is also a great topic for future research.
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