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Many flowering plants rely on pollinators for their reproductive

success. Plant-pollinator interactions usually depend on a

complex combination of traits based on a fine-tuned

biosynthetic machinery, with many structural and regulatory

genes involved. Yet, the physiological mechanisms in plants

are the product of evolutionary processes. While evolution has

been modifying flowers through millions of years, it is also a

rapid process that can change plant traits within few

generations. Here we discuss both mechanistic and

evolutionary aspects of pollinator attraction. We also propose

how latest advances in biotechnology and evolutionary studies,

and their combination, will improve the elucidation of molecular

mechanisms and evolutionary dynamics of pollinator attraction

in changing environments.
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Introduction
Most flowering plants rely on pollinators for their repro-

ductive success and have evolved a diversity of strategies

to attract them. Past and recent evolution shaped the

attractiveness of plants, leading to complex combinations

of floral traits associated with pollinator attraction. These

multiple traits can be genetically correlated, impacting

their rate of evolution [1]. For example, as a response to

altered pollinator communities, linked traits may evolve

faster due to their simpler genetic architecture. The
www.sciencedirect.com 
ongoing natural and anthropogenic environmental

changes impact plant-pollinator associations in many

ways, for example, through decline of specific pollinator

species [2] or desynchronization of plant flowering and

pollinator activity [3,4] reducing plant reproductive suc-

cess. In this context, plants have to adapt rapidly to attract

novel pollinators [5]. Adaptive processes have typically

been studied in selfing model plant species such as

Arabidopsis or Boechera in the context of climate changes

[5,6]. However, few studies addressed the adaptive

potential of outcrossing plant species to changing polli-

nator niches, despite the dependence of a large majority

of angiosperms on pollinators. It is therefore essential to

better understand the adaptive potential of plants, in

regard to their ability to attract (novel) pollinators [7],

as well as the underlying genetic basis and molecular

mechanisms. Here, we briefly review the current knowl-

edge and identify gaps and future perspectives on both

mechanistic and evolutionary aspects of pollinator attrac-

tion. We also discuss how a merge of the latest break-

throughs in biotechnology and evolution will advance a

comprehensive study of plant attractiveness to

pollinators.

Floral attractiveness traits and their
underlying molecular pathways
For successful pollination, plants have to guide pollina-

tors towards their flowers by providing signals (scent,

color, size, CO2, temperature, etc.), and usually reward

them with nectar, pollen, oil, fragrance, or resin [8].

Pollinators are attracted to specific flowers because of

their preferences for signals that can be innate or learned

depending on pollinator species. Specialized pollinators

(i.e. a pollinator visiting one or few plant species) are often

particularly sensitive to specific signals [9] leading to

convergent evolution of signals in unrelated species,

called pollination syndromes [10]. For instance, the genus

Petunia is well known for its different pollination syn-

dromes among sister species [11,12]. Generalist pollina-

tors (i.e. those visiting several plant species), however,

typically learn to associate a signal with a reward, thus

attraction is usually based on learning [13]. Such associa-

tive learning, in connection with plant reproductive traits,

may select for the evolution of honest signals (i.e. those

that reliably indicate rewards) in plants [14].

Within the range of floral signals, odors and colors are

probably the most studied due to their important roles in
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many plant-pollinator interactions. To date, pathways

leading to pigment formation have been largely eluci-

dated. Three major groups of pigments contributing to

flower colors include (1) flavonoids, mainly anthocyanins,

responsible for orange, red, purple, and blue coloring, (2)

carotenoids providing red and yellow pigmentation, and

(3) betalains yielding red/violet or yellow/orange color in

flowers of the Caryophyllales (Figure 1) [15,16]. In con-

trast to pigments, less is known about the biosynthesis of

floral volatiles. Despite their extraordinary diversity, floral

volatile organic compounds (VOCs) are divided into three

major classes including terpenoids (monoterpenes and

sesquiterpenes), aromatics (phenylpropanoids/benze-

noids), and fatty acid derivatives [17,18]. In the last

two decades, a large number of genes encoding enzymes

responsible for the most widespread compounds have

been characterized, however, most scent biosynthetic

genes still remain unknown [19]. These recent discover-

ies have built a foundation for investigating the role of
Figure 1
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individual volatiles in pollinator attraction [16,17,20],

however, the effects of altered volatiles on pollinator

attraction has rarely been studied.

Evolutionary aspects of correlated traits
Analysis of the past and recent evolutionary processes can

teach us about the adaptive potential of plants to ongoing

changes. Plant attractiveness involves a combination of

traits that may be either independent, or associated with

linked genetic regions [21,22]. A good example are honest

signals (Figure 2a), which are signals quantitatively asso-

ciated with reward amounts (Figure 2b). Such signals may

be based on linkage, driven by selection for honesty, or on

pleiotropy (see below & Figure 2c) [13,23]. Genetic

correlation can lead to floral integration (i.e. correlation

among floral traits), as a consequence of past selection for

covariance of traits. Within floral scent bouquets, overall

phenotypic integration was shown to have low consis-

tency in the component’s ratios [24], however, strong
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Hypothetical causes of genetic correlation for honest signal.

(a) Example of honest signal in Brassica incana. (b) Potential genetic correlation between scent compounds and nectar. (c) Illustration of causes of

potential genetic correlation between floral traits; the pleiotropy that is, one genetic variant controls the phenotypic traits variations, the linkage

disequilibrium that is, two genetic variants are linked controlling different phenotypic traits, and the regulatory gene that is, a transcription factor

(TF) controls the gene expressions of two loci involved in the variation of different phenotypic traits.
correlation among groups of scent compounds has been

detected [25,26�], leading sometimes to a relatively sim-

ple genetic architecture involving only few quantitative

trait loci [27]. Moreover, there is strong evidence for the

existence of pleiotropic links between volatile com-

pounds and color pigments as they often derive from

common biosynthetic precursors (Figure 1) [16,19]. Mul-

tiple studies showed that white flowers of different plant

species emit higher levels of benzenoid/phenylpropanoid

scent compounds than their colored counterparts

(reviewed in [28]). Color-odor interconnections were also

confirmed by metabolic engineering where the suppres-

sion of pigment production in transgenic plants resulted

in an increase in scent emission [29], and vice versa, the

reduction of scent compounds lead to an increase of color

pigments [30,31]. These insights into the link between

color and scent suggest that biosynthetic pleiotropy may

often be important, thus slowing down or prohibiting the
www.sciencedirect.com 
independent evolution of both signals. A fascinating

example of linkage between floral traits comes from

the crucifer genus Moricandia, showing seasonal pheno-

typic plasticity in flower types, with large, cross shaped

lilac flowers produced in spring, and small, round shaped

white flowers in summer [32��]. Such unique plasticity

based on differential gene expression offers novel insights

into the function and evolution of correlated floral traits.

Genetic correlation of multiple traits involved in plant

attractiveness can facilitate or constrain plant adaptation

[1]. An advantageous genetic correlation, causing simul-

taneous trait changes and reducing antagonist effects

among traits, may allow rapid answers to pollinator

changes [11,21,33]. Such correlations may be caused by

linkage disequilibrium (i.e. correlation of the linked

genetic variants), real pleiotropy (i.e. one genetic variant

involves multiple traits), or regulatory genes (i.e.
Current Opinion in Biotechnology 2021, 70:213–219
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transcription factors controlling two genes impacting two

different traits), with different implications on evolution-

ary trajectories and rates of change (Figure 2c) [21,34].

While it was difficult to distinguish among the causes of

genetic linkage up till a decade ago [35], the development

of new sequencing technologies with higher resolution, as

well as powerful analytical tools (e.g. Genome-Wide

Association: GWA) opens the door to a deeper under-

standing of the genetic architecture underlying linked

phenotypic traits (Figure 3).

Studies identifying the genetic basis of traits associated

with attractiveness, linkage of traits, and plasticity are in

their infancy and need further investigation. Better char-

acterization of the genetic architecture of correlated traits

on a whole genome level (identity of genes, number of
Figure 3
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genes, effect of genes on phenotypic trait variation, gene

interactions, etc.) is essential in the understanding of

rapid adaptive evolution of attractiveness in plants and

a complementary approach for elucidating the underlying

molecular pathways and their overlap. In addition, the

combination of genomic studies with functional biotech-

nology offers novel insights by combining genetic archi-

tecture with gene function, thus providing an invaluable

link to the phenotype.

Metabolic engineering to unravel the
mechanisms of pollinator attraction
Metabolic engineering has been already successfully used

to modify floral color and fragrance to increase aesthetic

and commercial values of ornamentals [15]. As such, the

assessments of attractiveness of manipulated traits were
(c)

(d)
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the mechanisms of pollinator attraction.
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limited to humans’ perception and the effects of these

perturbations on pollinator attraction were only rarely

studied. The contribution of color to attraction of polli-

nators was investigated mainly without applying biotech-

nological approaches. Indeed, field tests with near-iso-

genic Antirrhinum majus lines with red, pale pink, ivory

and white flowers revealed that flowers with full red color

were more preferred by bumblebees, natural pollinators

of snapdragon flowers [36]. Moreover, in contrast to palely

pigmented or white lines, bumblebees visited signifi-

cantly more flowers per plant in the red-flowered plants.

Interestingly, expression of Venosa gene encoding the

R2R3 MYB transcription factor in a pale or acyanic

snapdragon background led to formation of pigment

stripes associated with veins and increased flower attrac-

tiveness to a level comparable with that of the full-red

flower [36]. Unfortunately, scent profiles and their con-

tribution to pollinator attraction were not examined in

this study.

The first investigation of the consequences of metabolic

engineering of floral VOCs on pollinator visitation was

performed in transgenic tobacco Nicotiana attenuata
plants. Silencing genes in the targeted biosynthetic path-

ways reduced the levels of benzyl acetone and nicotine,

the most abundant attractant and repellent compounds,

respectively, present in both tobacco flower bouquet and

nectar [37]. Monitoring the activity of floral visitors in

their native habitat revealed that plants lacking benzyl

acetone (both with and without nicotine) received fewer

visits from hawkmoths and hummingbirds than flowers

emitting this volatile. Reduction in nicotine, which com-

prises 25% of the nectar constituents, increased consump-

tion of nectar by the native community of flower visitors,

suggesting that a single defense compound can pro-

foundly influence nectar removal [37,38]. The obtained

results also imply that by regulating nicotine concentra-

tion in flowers plants can decrease nectaring time and

nectar volume removal and increase the number of flower

visitors, while keeping their nectar volume small [37,38],

and promote outcrossing rate in N. attenuata by triggering

hummingbirds to visit more flowers in search for low-

nicotine flowers [39]. Changes in more than one volatile

compound can also influence pollinator behavior. Indeed,

ectopic expression of the Arabidopsis Production of

Anthocyanin Pigment 1 (PAP1) transcription factor in

rose flowers enhanced production of phenylpropanoid

and terpene volatiles, which was easily distinguished

by honeybees [40], the native pollinators of some wild

rose species [41].

In general, floral scent is a complex mixture of volatile

compounds containing in most species between 20 and

60 different volatiles [24,42]. To date little is known

about the contribution of individual compounds to

plant-insect interactions [but see: 9,43]. However, utili-

zation of various Petunia transgenic lines with RNAi
www.sciencedirect.com 
silenced ability to produce different flower volatiles in

field experiments allowed elucidation of the distinct roles

of individual volatile compounds in attraction of mutu-

alists and deterrence of antagonists [44]. Indeed, within

the Petunia scent profile, isoeugenol and benzyl benzoate

specifically control infestation rate by florivores, whereas

methyl benzoate is involved in pollinator attraction. As

pollinators and florivores use the same visual and olfactory

landscape to locate the host, plants have to balance

attracting and deterring functions of floral volatiles. In

addition to having deterrent compounds in the scent

bouquet [44], flowers can protect their reproductive

organs via inter-organ aerial transport of volatiles via

natural fumigation [45�]. For example, in Petunia flowers

tube-produced sesquiterpenes are released inside the

buds and accumulate in the stigma, thus not only affect-

ing bacterial growth on stigma but are also supporting

optimal pistil growth and seed yield.

Perspectives
A powerful way to understand the evolutionary potential

and the constraints involved in plant attractiveness are

evolution experiments (Figure 3). When combined with

high-throughput sequencing, this approach allows the

identification of the genomic changes involved in pheno-

typic evolution and their underlying molecular mecha-

nisms [46]. This method, traditionally developed in

microorganisms (Escherichia coli, Pseudomonas, yeast)

and insects with short generation time (Drosophila) has

recently been also applied to plants [5,47]. The power of

experimental evolution is the possibility of precise

manipulation of selective factors, and the observation

of real-time phenotypic and genomic evolutionary

changes as a consequence. Using semi-natural selective

factors (e.g. pollinators) [5], or artificial selection [48], this

approach allows the study of the evolution of specific

traits or trait combinations such as those involved in

honest signaling or pollination syndromes, the (in)depen-

dency of their evolution, and their plasticity [49�]. The

recent improvement of gene editing technologies (e.g.

CRISPR-Cas9), and the premises of polygenic engineer-

ing allowing for multi-gene knockouts [50] are promising

tools for future generation of mutants for functional

validation of genes involved in complex and correlated

traits. Based on these validated genes, new genotypes can

be selected for experimentally evolving populations. For

example, novel nectarless “cheater” genotypes could be

added to otherwise honestly signaling plant populations,

to study the conditions under which they may stabilize or

even spread. Alternatively, novel color and scent geno-

types would provide the opportunity to test the impact of

more attractive individuals on the stability of plant-polli-

nator networks. The genus Petunia or Nicotiana may be

good candidates for such approaches due to the rich data

on molecular mechanisms and availability of gene trans-

formation. Such novel approaches will provide insights

into functions of floral traits as well as into the evolvability
Current Opinion in Biotechnology 2021, 70:213–219
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of pollinator-attracting traits and trait combinations,

essential for improving the ecosystem management and

the breeding of crop species more attractive to pollinators.
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