
Journal of
Materials Chemistry A

PAPER

Pu
bl

is
he

d 
on

 0
2 

D
ec

em
be

r 2
02

1.
 D

ow
nl

oa
de

d 
by

 V
al

do
st

a 
St

at
e 

U
ni

ve
rs

ity
 o

n 
5/

11
/2

02
2 

2:
29

:4
2 

PM
. 

View Article Online
View Journal  | View Issue
High-throughpu
aDepartment of Mechanical Engineering, Un

29208, USA. E-mail: hu@sc.edu
bHunan Key Laboratory for Micro-Nano Ener

and Optoelectronics, Xiangtan University, X

ouyangtao@xtu.edu.cn

† Electronic supplementary informa
10.1039/d1ta07553e

Cite this: J. Mater. Chem. A, 2021, 9,
27596

Received 2nd September 2021
Accepted 17th November 2021

DOI: 10.1039/d1ta07553e

rsc.li/materials-a

27596 | J. Mater. Chem. A, 2021, 9, 2
t computation of novel ternary B–
C–N structures and carbon allotropes with
electronic-level insights into superhard materials
from machine learning†

Mohammed Al-Fahdi, a Tao Ouyang *b and Ming Hu *a

Discovering new materials with desired properties has been a dominant and crucial topic of interest in the

field of materials science in the past few decades. In this work, novel carbon allotropes and ternary B–C–N

structures were generated using the state-of-the-art RG2 code. All structures were fully optimized using

density functional theory with first-principles calculations. Several hundred carbon allotropes and ternary

B–C–N structures were identified to be superhard materials. The thermodynamic stability of some

randomly selected superhard materials was confirmed by evaluating the full phonon dispersions in the

Brillouin zone. The new carbon allotropes and ternary B–C–N structures possess a wide range of

mechanical properties generally and Vickers hardness specifically. Through 2D Pearson's correlation

map, we first reproduced the well-accepted explanation and relationship of the Vickers hardness of the

generated structures with other mechanical properties such as shear modulus, bulk modulus, Pugh's

ratio, universal anisotropy, and Poisson's ratio. We then propose two fundamentally new descriptors

from the electronic level, namely local potential and electron localization function averaged over a unit

cell, both of which exhibit a strong correlation with Vickers hardness. More importantly, these

descriptors are easy to access from first-principles calculations (at least two orders of magnitude faster

than the traditional calculation of elastic constants), and thus can serve as a fast and accurate approach

for screening superhard materials. We also combined these new descriptors with known composition

and structural descriptors in the machine learning training process. The new descriptors significantly

enhance the performance of the trained machine learning model in predicting the Vickers hardness of

unknown materials, which provides strong evidence for local potential and electron localization function

to be considered in future high-throughput computation. This work unravels more fundamental but

previously unexplored knowledge about superhard materials and the newly proposed electronic level

descriptors are expected to accelerate the discovery of new superhard materials.
I. Introduction

Materials with various mechanical properties are desired in
multiple applications, which range from so materials being
used as biological tissues and hard electronic materials such as
thermoelectric materials or solar cells to superhard materials
like concrete and steel materials. Superhard materials are
needed and desired in a wide variety of real-world applications
such as cutting tools, drilling, abrasives for lapping, grinding,
polishing, automated and aerospace applications, medical
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plants, and armor plating.1–5 Traditionally, the hardness of
materials is measured by the Vickers hardness test developed in
1921 by Robert Smith and George Sandland6. The machine has
a tip that indents through materials and evaluates how much
the materials are able to resist the indentation through
assessing the plastic deformation of those materials.7,8 The load
applied by the tip has some effect on the values of Vickers
hardness which might make the value of Vickers hardness
different with different loads, and this phenomenon is named
the indentation size effect.8 In the indentation size effect, the
hardness decreases as the load keeps increasing, which can be
attributed to the change in the microstructure or sizable elastic
recovery.9,10 Materials with a hardness of 40 GPa or higher are
considered to be superhard materials.1,11–13 However, these
experiments are very expensive to perform. High-throughput
computation has been widely performed to accelerate new
materials discovery. This process can be further sped up by
This journal is © The Royal Society of Chemistry 2021
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combining with the state-of-the-art machine learning approach.
Therefore, machine learning is highly expected to predict
Vickers hardness in a faster and cheaper way.1,14 In fact,
a machine learning model named the support vector machine
has already been used to screen thousands of materials to
predict superhard materials.14 Themachine learning model was
able to identify promising ternary superhardmaterials: ReWC0.8

and Re0.5W0.5C which were later synthesized and proved to be
superhard materials experimentally at low indentation loads.14

Extreme Gradient Boosting (XGBoost) was developed in 2016
(ref. 15) and improved from gradient boosting by Friedman in
2001.16 Gradient Boosting can also be named Gradient Boosting
Machine (GBM) or Gradient Boosted Regression Tree (GBRT).15

Extreme Gradient Boosting is considered to be an ensemble
learning algorithm in the machine learning world. The Extreme
Gradient Boosting algorithm builds a tree ensemble model in
which each tree makes predictions with regularized terms to
avoid overtting. Then, the sum of each prediction from each
tree is the nal prediction of the algorithm from the provided
data. Gradient Tree Boosting has been demonstrated to yield
the state-of-the-art results in classication problems17 and was
used in the Netix prize.18 The Extreme Gradient Boosting
algorithm is available as an open source package and free for
everyone to use.15 The algorithm was used in winning compe-
titions in Kaggle, a website for data scientists to participate and
show their coding skills in real-world data science competi-
tions.15 Among the 29 challenges at Kaggle, Extreme Gradient
Boosting was used in 17 codes of the winning and best per-
forming machine learning models. The highly efficient perfor-
mance of the Extreme Gradient Boosting algorithm in capturing
hidden trends that prevail in datasets is the reason why we
utilize the algorithm in our work.

Several carbon allotropes are known for being superhard
materials as reported in previous studies.19–22 Carbon can
exhibit a wide range of allotropic forms due to its ability to form
various hybridizations with different bond angles.23,24 Carbon
can have different forms of hybridization states such as sp3, sp2,
and sp-hybridized states because it has four valence electrons,
so it can make single, double, triple, and aromatic carbon–
carbon bonds. It is known scientically that three carbon allo-
tropes exist naturally. Those natural carbon allotropes are
amorphous carbon, diamond, and graphite with hybrid sp2/sp3,
sp3, and sp2 hybridized carbon atoms, respectively.25 A
substantial amount of research has been conducted to discover
and explore new carbon allotropes in which some were
synthesized and fabricated experimentally. The newly discov-
ered carbon allotropes can have different dimensionalities and
hybridizations. Some examples of newly discovered carbon
allotropes with different dimensionalities are fullerenes (zero-
dimensional carbon allotrope (0-D)), carbon nanotubes (one-
dimensional material (1-D)), and nally graphene (two-dimen-
sional material (2-D)).26–33 Some examples of carbon allotropes
with various hybridizations and dimensionalities that were
synthesized experimentally or predicted theoretically are one-
dimensional (1-D) sp-carbyne, two-dimensional (2-D) sp–sp2-
graphyne, and three-dimensional (3-D) sp–sp3-yne-diamond.34,35

Several methods were utilized to synthesize those carbon
This journal is © The Royal Society of Chemistry 2021
allotropes. One of the methods that was recently used in 2011 is
cold-compressing graphite with a pressure equivalent to 17 GPa,
which also transformed the hybridization state of graphite from
sp2 to sp2/sp3.34 Aer this discovery, more carbon allotropes
were synthesized experimentally through high-pressure tech-
niques; examples of those carbon allotropes are bct-C4 carbon,30

M-carbon,36 O-carbon,26 W-carbon,37 and Z-carbon.38 In all these
previous studies, carbon was the sole element that was used in
the process of superhard materials discovery. However, light
elements such as B, C, N, and O are known for having higher
Vickers hardness because they make strong covalent bonds,
which makes them difficult to break.39 Carbon allotropes40,41

and ternary compositions were formed from these elements
such as BC4N,42 BC2N,43 C–N–O,44 B–N–O,45,46 and B–C–O.41,47

However, in those previous studies, experiments were utilized to
implement their ideas for new materials discovery and synthe-
size the previously mentioned structures, which was extremely
expensive in terms of time, resources, and cost. Recently,
computational tools were developed to help the materials
discovery process become easier and more accessible. These
methods hold great promise to promote the new material
discovery process. Some of those crystal structure prediction
(CSP) tools are CALYPSO48 and USPEX.49 In this work, the RG2

package50–54 was used to generate new and novel carbon allo-
tropes with new ternary B–C–N structures.
II. Procedure of materials generation,
screening, and computational methods
(A) Structure generation

The RG2 package20,50–54 was used to generate novel carbon and
B–C–N structures. The main input parameters of the RG2

package are the target constitute elements in the new materials
e.g. B, C, N to generate new B–C–N structures, a range for the
number of bonded atoms for all species, number of inequiva-
lent atoms in the unit or primitive cell, target space group/
groups, and bond feature information such as the bond length,
bond angle and the tolerance allowed for both derivations. With
these input parameters, the RG2 package builds the correct
labeled quotient graph. In this work regarding the generated
carbon allotropes, various carbon allotrope structures with
different numbers of carbon atoms were arbitrarily distributed
in a stochastic unit cell with a random lattice constant and
arbitrarily selected space group, and the same applies for B–C–
N system structures. This will allow for a global search of all
possible space groups. The number of symmetrically indepen-
dent atoms usually ranges between 2 and 10, the majority
between 3 and 7. Then, an initial structure with the same
number of atoms is generated which is also predicated on
symmetry. The package computed the matrix that consists of
the distances of the carbon (or B–C–N) atoms in a specic
generated carbon allotrope (or B–C–N) structure and build the
labeled quotient graph (LQG). The code can also relax the
structure if the structures have physically reasonable bond
lengths and angles. The new structures generated by the RG2

package were named according to the rules which are
J. Mater. Chem. A, 2021, 9, 27596–27614 | 27597
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essentially the input parameters used to generate the structure.
Those parameters are separated by a hyphen to distinguish the
parameters and add another parameter aer each hyphen. The
naming procedure applied to the generated structures start
from le to right. The naming rules are implemented in the
following order (from le to right): number of space groups,
number of nonequivalent atoms in the structures, the names of
elements (C in carbon allotropes and B#C#N# in B–C–N struc-
tures), loop or ring (predominantly ring), structure local ID, and
possible additional hyphen to differentiate two IDs.

(B) Structure optimization using density functional theory
(DFT)

First-principles calculations by density functional theory (DFT)
were carried out with computational chemistry soware: Vienna
ab initio simulation package (VASP).55–57 The structures were
optimized at rst before performing any following calculations.
The structure optimization convergence criteria of force and
energy are 10�4 eV A�1 and 10�7 eV, respectively. VASP per-
formed structure relaxation with full degree of freedom in terms
of allowing the atomic coordinates, lattice size, lattice constant,
and lattice shape to change to reach the convergence criteria of
force and energy in the structure optimization process. The
Perdew–Burke–Ernzerhof (PBE) of the generalized gradient
approximation (GGA) was used for exchange–correlation func-
tional.58 The kinetic energy cutoff was set to be 520 eV for the
electronic wavefunction having a plane wave basis set which
was obtained using the projector augmented-wave method.57,59

The chosen kinetic energy cutoff (520 eV) was selected as rec-
ommended by the VASP manual which should be at least 1.3
times the largest ENMAX of an atomic species in a composition.
In both B–C–N structures and carbon allotropes, the largest
ENMAX was 400 eV which means that the kinetic energy cutoff
should be at least 520 eV which was implemented in the
calculations. The Monkhorst–pack k-mesh grids60 selected to
sample the Brillouin zone in the calculations were determined
depending on the lattice constants. The product of the number
of k-meshes in one direction and the lattice constant in the
same direction is roughly set as 60, which is dense enough and
equivalent to a regular diamond lattice (primitive cell contain-
ing 2 carbon atoms) at a k-mesh size of 16 � 16 � 16. The local
potential is a measure of repulsive and attractive interactions in
the unit cell. Local potential was calculated throughout the unit
cell using VASP which is outputted in a le named “LOCPOT”.
The electron localization function is a measure of the proba-
bility of nding an electron at a certain point in the unit cell
which is calculated by using VASP and outputted in a le named
“ELFCAR”.

(C) Mechanical properties calculations

The nite difference method implemented in VASP was used to
calculate the elastic stiffness tensor matrix of the optimized
conventional cell. The results can be read from the OUTCAR le
outputted from VASP calculations. The elastic stiffness matrix is
computed through performing six different distortions on the
lattice or unit cell and calculating the elastic constants using the
27598 | J. Mater. Chem. A, 2021, 9, 27596–27614
relationship between stress and strain.61 The elastic stiffness
matrix is different for each crystal system in terms of the
number of independent elastic constants and zero elastic
constant in some of the terms in the matrix depending on the
type of crystal system.62 The general form of the elastic stiffness
matrix in which all the elastic constants are independent (21
independent elastic constants) is applied to the least symmet-
rical crystal system which is the triclinic crystal system. The
elastic stiffness tensor for the triclinic crystal system is shown
below:

C ¼

2
6666666666664

c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66

3
7777777777775

(1)

where cij is the elastic constant element in direction ij in the
elastic stiffness matrix given that cij ¼ cji in all the elements in
the elastic stiffness matrix. The number of independent elastic
constants in the previous matrix shown in eqn (1) is 21 which is
the maximum number of independent elastic constants for
a crystal system. The number of independent elastic constants
decreases if the crystal system becomes more symmetrical. In
fact, some elements in the elastic stiffness matrix become zeros
when the crystal system is more symmetrical. The previous
statements about the elastic constants in the elastic stiffness
matrix are demonstrated in eqn (2) which shows the elastic
stiffness matrix of a cubic crystal system which is the most
symmetrical crystal system.

ccubic ¼

2
6666666666664

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

3
7777777777775

(2)

In the cubic crystal system, the following elastic constants
are equal: c21 ¼ c31, c33 ¼ c22 ¼ c11, and c66 ¼ c55 ¼ c44. The
number of independent elastic constants for the cubic crystal
system is therefore 3 which is the minimum number of inde-
pendent elastic constants. That conrms the statement
mentioned earlier that the number of independent elastic
constants decreases as the crystal system becomes more
symmetrical. It is also shown that several elastic constants in
the elastic stiffness tensor have a value of zero. The elastic
stiffness matrices for all other crystal systems can be found in
ref. 62.

The compliance matrix is the inverse of the elastic matrix.
The compliance matrix shown below will be useful in the
This journal is © The Royal Society of Chemistry 2021
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coming equations which will be used in calculating the
mechanical properties.

[cij] ¼ [sij]
�1 (3)

Two common denitions can be used to calculate bulk (B)
and shear (G) moduli using the elastic constants in the elastic
stiffness matrix or the compliance matrix. The two denitions
are Voigt's62,63 and Reuss'64 approximations. Reuss' approxima-
tion assumes uniform stress throughout the lattice. On the
other hand, Voigt's approximation assumes uniform strain
throughout the lattice. Voigt's approximation equations of bulk
(BV) and shear (GV) moduli are as follows:

9BV ¼ (c11 + c22 + c33) + 2(c12 + c23 + c31) (4)

15GV ¼ (c11 + c22 + c33) � (c12 + c23 + c31) + 4(c44 + c55 + c66)

Reuss approximation equations for bulk (BR) and shear (GR)
moduli are as follows:

1

BR

¼ ðs11 þ s22 þ s33Þ þ 2ðs12 þ s23 þ s31Þ (5)

15/GR ¼ 4(s11 + s22 + s33) � 4(s12 + s23 + s31) + 3(s44 + s55 + s66)

In Hill's65 approximation, Voigt's and Reuss' approximations
are lower and upper bounds, respectively. Hill found that the
average of these two approximations yields better results that
are close to the experimental results, i.e.

BVRH ¼ ðBV þ BRÞ
2

(6)

GVRH ¼ ðGV þ GRÞ
2

In this work, the results from Hill's approximations will be
considered for the calculations of bulk and shear moduli.

Young's modulus and Poisson's ratio are calculated using
the following formulae:

E ¼ 9BG

3Bþ G
(7)

n ¼ 3B� 2G

2ð3Bþ GÞ (8)

Researchers have carried out a great deal of effort to quantify
and calculate the anisotropy of a material. In 1948, a denition
to quantify anisotropy was introduced by Zener. He used some
elastic constants in his denition. The formula that he came up

with was A ¼ 2c44
c11 � c12

.66 Chung in 1967 presented another
This journal is © The Royal Society of Chemistry 2021
formula to calculate anisotropy which includes both Voigt's and

Reuss' approximations.67 Chung's formula is Ac ¼ GV � GR

GV þ GR
. The

denitions of anisotropy developed by Zener and Chung yielded
sufficiently accurate results for the cubic crystal systems since
cubic crystal systems possess an isotropic bulk resistance. The
previous two denitions did not give acceptable results
regarding other crystal systems besides cubic crystal systems
because other crystal systems -not cubic- manifest anisotropic
bulk resistance.62 Therefore, quantifying anisotropy accurately
required that all the contributions of anisotropy must be rep-
resented in an equation for all the crystal systems. To this date,
Ranganathan68 was able to mathematically formulate anisot-
ropy which was able to overcome and solve the obstacles in the
previous two denitions of anisotropy. Ranganatha's denition
is written below in eqn (9):

AU ¼ 5
GV

GR

þ BV

BR

� 6 (9)

In this work, Ranganatha's denition of anisotropy will be
implemented in the calculations.

A signicant amount of effort and research was performed to
understand and build a model for Vickers hardness. In fact, it
was explained with various approaches and theories. The
following is a brief summary of some of the theories that
explained Vickers hardness: (1) strength of the chemical bond
between the atoms;69 (2) a thermodynamic concept that explains
how the chemical bonding pertains to the density of energy;70

(3) bond length, charge density, and ionicity;71 (4) how the
electron holding energy of a bond and electronegativity
contribute to hardness.72 Progress was also made to mathe-
matically calculate the Vickers hardness. In 1998, Teter
observed a correlation between the shear modulus and Vickers
hardness,73 which was successful to a certain extent. The
formula that Teter developed is shown below:

HV,Teter ¼ 0.151 � G (10)

Chen observed the existence of a discrepancy between the
calculations performed with Teter's model and the experi-
mental results.74 Chen hypothesized that plastic deformation
was not considered in Teter's model. Chen suggested that the
newmathematical model should include Pugh's ratio to add the
plastic deformation contribution to hardness. Pugh's ratio (k) is
calculated from the ratio of shear modulus and bulk modulus
as shown below in eqn (11).

k ¼ G

B
(11)

Pugh's ratio is a measure of how brittle a material is. As the
value of Pugh's ratio increases, the more brittle the material
becomes.74 Chen and coworkers proposed another mathemat-
ical formula which was more accurate than Teter's model:

HV,Chen ¼ 2(k2G)0.585 � 3 (12)
J. Mater. Chem. A, 2021, 9, 27596–27614 | 27599
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Chen's model demonstrated high
hardness when compared with the experimental results.

However, Chen's mathematical model did not yield physically
accurate results when calculating the Vickers hardness of
ductile materials. The reason for that is the presence of an
intercept term which does not hold any physical meaning. Tian
observed this phenomenon in 2012 when calculating the Vick-
ers hardness of some ductile materials which turned out to have
negative Vickers hardness according to Chen's model.19 Tian
then proposed another model for Vickers hardness with supe-
rior performance in calculating Vickers hardness for both
ductile and brittle materials, as shown below:

HV,Tian ¼ 0.92k1.137G0.708 (13)

Tian's model considered the plastic deformation repre-
sented in Pugh's ratio in his mathematical model which was not
considered in Teter's model.19,73 Moreover, results from Tian's
model for ductile materials were in good agreement with the
experimental results unlike Chen's model which gave unreal-
istic and negative Vickers hardness when calculating the hard-
ness of ductile materials.19,74 Tian's model surpassed the other
models in a wide range of ductile and brittle materials with
various values of Vickers hardness and had extraordinarily
accurate results when compared with the experimental
results.19 Therefore, in this work Tian's model is used in
calculating the Vickers hardness of all carbon allotropes and
ternary B–C–N structures.

(D) Phonon dispersion calculations

The phonon dispersion of selected carbon allotropes and B–C–
N structures was calculated. The supercell used to calculate the
Fig. 1 Supercell structures of carbon allotropes (a) 56-4-32-C-r567-
180030, and ternary B–C–N structures, (c) 217-5-64-B15CN16-r6-n
20210507-093520. Color code: dark brown, carbon; green, boron; ligh
section II: Procedure of materials generation, screening, and computatio

27600 | J. Mater. Chem. A, 2021, 9, 27596–27614
phonon dispersion of those structures is 2 � 2 � 2 for all the
structures. The PHONOPY75 package was utilized in calculating
the second order harmonic constant. The phonon dispersion
for all the selected structures was calculated by using PHONOPY
through the nite displacement method except for 217-5-64-
B15C5N12-r6-np-id0-20210507-093520. The phonon dispersion
of 217-5-64-B15C5N12-r6-np-id0-20210507-093520 was calcu-
lated by using PHONOPY using the ALM method,76 since the
ALM method gave no negative frequency by considering the
nite temperature effect. The dynamical matrix in the recip-
rocal space was then derived from the derivative of energy to
plot the phonon dispersion for the selected structures.

III. Results and discussion
(A) Superhard structure screening and thermodynamical
stability

682 carbon allotropes were initially generated from the RG2

package.20,50–54 578 carbon allotropes were not found in the
SACADA database77 (pure carbon) aer cross-checking.
However, 669 carbon allotropes were selected and screened
from the 682 original carbon allotropes because anisotropy (AU
Ranganathan's denition)68 set in this work is between 0 and 3.
Out of the screened 669 carbon allotropes, 635 structures fulll
the condition of being superhard materials with Vickers hard-
ness higher than 40 GPa.1,11–13,20 Regarding B–C–N structures,
the RG2 package initially generated 977 B–C–N structures, and
833 structures remained aer screening the materials with AU
outside the 0–3 range. 404 B–C–N structures are found to be
superhard out of the remaining 833 B–C–N structures aer the
elastic constants are calculated. Fig. 1 shows some selected
structures from B–C–N systems and carbon allotropes. All
np-id0-20210426-175823, (b) 122-2-20-C-r567-np-id0-20210426-
p-id0-20210507-094012, and (d) 217-5-64-B15C5N12-r6-np-id0-
t silver, nitrogen. Naming procedure of the structures can be found in
nal methods in subsection (A) Structure generation.

This journal is © The Royal Society of Chemistry 2021
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Fig. 2 Phonon dispersion of carbon allotropes (a) 56-4-32-C-r567-np-id0-20210426-175823, (b) 122-2-20-C-r567-np-id0-20210426-
180030, and B–C–N ternaries, (c) 217-5-64-B15CN16-r6-np-id0-20210507-094012, and (d) 217-5-64-B15C5N12-r6-np-id0-20210507-
093520. Naming procedure of the structures can be found in section II: Procedure of materials generation, screening, and computational
methods in subsection (A) Structures generation.
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structures were obtained from VESTA soware.78 4 � 4 � 1 and
3 � 3 � 3 supercells are plotted in Fig. 1(a) and (b), respectively,
while 2 � 2 � 2 supercells are plotted in both Fig. 1(c) and (d).

Fig. 2 shows the phonon dispersion plots of all the previously
mentioned selected structures in the same previous order as
well. No negative or imaginary frequency was found in any of
the phonon dispersions of the selected structures. The absence
of negative frequencies in the phonon dispersion plots indi-
cates the thermodynamical stability of those structures,20,79–81

which means that these structures could be synthesized exper-
imentally82 provided that the formation energy is also negative
for all the reported materials. Table 1 shows information about
the material IDs of some selected materials and information
about their composition, Vickers hardness, and their classi-
cation in terms of whether they are superhard materials or not.
Table 1 Vickers hardness of the selected carbon allotropes and ternary

Materials Composition Crystal s

122-2-20-C-r567-np-id0-20210426-180030 C20 I�42d (122
57-4-24-C-r56-np-id0-20210426-175825 C24 Pbcm (57
63-4-40-C-r567-np-id0-20210426-175904 C40 Cmcm (6
56-4-32-C-r567-np-id0-20210426-175823 C32 Pccn (56)
217-5-64-B15CN16-r6-np-id0-20210507-094012 B30C2N32 I�43m (21
217-5-64-B15C5N12-r6-np-id0-20210507-093520 B30C10N24 I�43m (21
217-5-64-B4CN3-r6-np-id0-20210507-093640 B32C8N24 I�43m (21
215-3-8-B4CN3-r6-np-id0-20210506-082304 B4C1N3 P�43m (21

This journal is © The Royal Society of Chemistry 2021
We show the structures of some reported materials (two carbon
allotropes and two ternary B–C–N structures) in Fig. 1 and the
corresponding phonon dispersions of those materials in Fig. 2.
(B) Correlation between Vickers hardness and other
mechanical properties

Descriptors from the composition of the materials were used to
predict mechanical properties in previous studies.1,14,83

Composition along with structural descriptors was also used to
predict mechanical properties.84,85 Combining the structural
descriptors with the composition descriptors for machine
learning training to predict mechanical properties proved to
enhance the results of the model, yielding a lower mean abso-
lute error when compared to using the composition descriptors
alone which yielded a higher mean absolute error.84 Here, we
B–C–N compounds with crystal system information

ystem (space group number)
Vickers hardness
(GPa)

Superhard materials
classication

) 93.5658 Superhard
) 89.2500 Superhard
3) 89.1263 Superhard

88.3379 Superhard
7) 43.2490 Superhard
7) 41.5995 Superhard
7) 32.7131 Not superhard
5) 24.0686 Not superhard

J. Mater. Chem. A, 2021, 9, 27596–27614 | 27601
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investigate the electron localization function (ELF) and local
potentials (LOCPOT) as potential promising descriptors to
predict Vickers hardness.

Local potential reects the interatomic interactions between
positive (protons in the nucleus) and negative (electrons
surrounding the nucleus) charges in the unit cell.86,87 The local
potential varies in different areas of the unit cell depending on
the strength of the surrounding charges and the distance from
those charges. Positive local potentials convey the repulsive
interactions taking place at a particular spatial point. Negative
local potential values signify the attractive interactions at
a specic point of space. The local potentials used in the unit
cells88 can be expressed as

VLOCPOTðrÞ ¼ VðrÞ þ
ð ​ n�r0���r� r

0 �� dr0 þ VXCðrÞ (14)

where V(r) is the ionic potential, VXC(r) is the exchange-corre-
lation potential, and the middle (second) term is the Hartree
potential. Local potentials for each material can be obtained
Fig. 3 Pearson correlationmatrix for various properties. The properties w
modulus (G), Pugh's ratio (k), bulk modulus (B), Young's modulus (E), Un
(vpa), packing fraction (PF), maximum local potential (max_LOCPOT
(Avg_LOCPOT), maximum local ELF (max_ELF), minimum local ELF (min

27602 | J. Mater. Chem. A, 2021, 9, 27596–27614
from the le named “LOCPOT” outputted by VASP. ELF
measures the probability of an electron localized at a specic
point in a lattice or unit cell89 and can be expressed as

ELF ¼ 1

1þ
�
D

Dh

�2
(15)

The ratio
�
D
Dh

�
is a dimensionless localization index which

indicates the electron localization for the uniform electron gas.
The ELF value has a range between 0 and 1. The value 0 in ELF
means that it is unlikely that there will be an electron at that
spatial point in space (lattice or unit cell in our work).90,91 The
value 1 in ELF denotes that the electrons are localized at that
point of space. When ELF is equal to 0.5, it suggests that the
electron cloud density is delocalized like in metallic bonds. The
ELF information for each material can be obtained from the le
“ELFCAR” which is generated by VASP.
ith their symbols are: Vickers hardness from Tian's model (VHTian), shear
iversal Anisotropy (AU), Poisson's ratio (n), density (r), volume per atom
), minimum local potential (min_LOCPOT), average local potential
_ELF), and average ELF (Avg_ELF).

This journal is © The Royal Society of Chemistry 2021
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A Pearson correlation matrix was created by open-source
Python to give insights into how much each property correlates
with the other properties.92 The Pearson correlation matrix is
shown in Fig. 3. Fig. 3 shows howmuch each property correlates
with the other properties starting with Vickers hardness from
Tian's model and ending with average ELF. Atomic properties
shown in Fig. 3 such as the packing fraction (PF), volume per
atom (vpa), and density were produced byMatminer.93 Although
the Pearson correlation matrix shows the full information about
the correlation of each property with the other properties,
Vickers hardness will be the dominant topic of the discussion to
expound compared to other properties.

A Pearson correlation matrix correlates two parameters with
each other having the values of the correlation between �1 and
1 as seen in the color bar of Fig. 3. The order of the parameters
in columns is the same order of the parameters in the rows, so
the diagonal elements in the correlation matrix represent the
correlation results of the same identical parameters, that is why
the value +1 always appears in the diagonal. The �1 value
denotes the complete opposite correlation between two
parameters. The value +1 indicates that there is absolute
commensurate correlation between two parameters. In the
correlation matrix shown in Fig. 3, no perfect inverse correla-
tion (value of �1) exists, but perfect direct correlation exists
between the same parameters in columns and rows (diagonal
parameters). For example, the shear modulus (G) in the second
row is in perfect direct correlation with the shear modulus in
the second column (G) which is represented by the value 1, and
the same applies to all the diagonal elements (correlation
results between two identical parameters) in the correlation
matrix shown in Fig. 3. The value 0 denotes a non-existent
correlation between two parameters. Although no correlation
has the value of zero, some correlation results are extremely
close to 0 which conveys insignicant inverse or direct corre-
lation between those two parameters. Also as seen in Fig. 3,
most values are not �1, 0, or +1, but somewhere between two of
those values. The values between 0 and +1 connotes direct
correlation, but the degree of direct correlation depends on
whether that value is closer to 0 or +1. If the value is closer to 0,
then the direct correlation is weak. However, if the value is
closer to +1, then the direct correlation is strong. The same
applies to the values between 0 to �1 which represent the
reverse correlation results between two parameters. If the value
is close to �1, the inverse relationship is strong. On the other
hand, the inverse correlation is weak if the value is close to 0.

The mechanical and atomic features (descriptors) that are
strongly and directly commensurate with Vickers hardness are
the shear modulus, Pugh's ratio, bulk modulus, Young's
modulus, density, minimum local potential, minimum ELF,
and average ELF. The mechanical and atomic features
(descriptors) that conversely affect Vickers hardness are
universal anisotropy, volume per atom, maximum local poten-
tial, and average local potential. Packing fraction andmaximum
ELF descriptors were not included in either inverse or direct
correlations since their correlations to Vickers hardness are
extremely low which is �0.087 for packing fraction and �0.202
for maximum ELF. The Pearson correlation matrix conrmed
This journal is © The Royal Society of Chemistry 2021
some obvious and well-known correlations between Vickers
hardness and some other material properties. The shear
modulus and Pugh's ratio are vastly proportional to Vickers
hardness with correlation coefficients of 0.987 and 0.960,
respectively. The shear modulus and Pugh's ratio are part of the
equation of Vickers hardness shown in eqn (13) which is why
the correlation coefficients are tremendously high. Although
the elastic modulus is not part of the denition of Vickers
hardness, the correlation between the elastic modulus and
Vickers hardness was extraordinarily high with a correlation
coefficient of 0.978 which is higher than the correlation coeffi-
cient of Pugh's ratio (part of the denition of Vickers hardness).
Having a higher elastic modulus was reported to be an indicator
of having higher Vickers hardness as seen from ref. 19, 74, and
94–96. Furthermore, a machine learning model for elastic
modulus prediction was used to predict new superhard mate-
rials.14 Besides, the bulk modulus correlation coefficient of
0.838 is also noticeably high from Fig. 3. One of the denitions
of Vickers hardness was a linear correlation with the bulk
modulus which manifested its success in accurately calculating
Vickers hardness in materials such as diamond, Si, Ge, GaSb,
and InSb.97,98 However, the linear model of the bulk modulus
failed to calculate Vickers hardness in a diverse range of other
materials.97,98 It was also reported that a non-linear correlation
between Vickers hardness and the bulk modulus failed to
calculate Vickers hardness in a wide range of materials.99 The
linear and non-linear correlations of the bulk modulus to
calculate Vickers hardness failed, because the variation of the
shear modulus with the bulk modulus must also be considered
in calculating Vickers hardness which was shown in ref. 19
and 74.

Fig. 4 shows the 2D map of bulk modulus vs. shear modulus
with (a) Poisson's ratio, (b) Pugh's ratio, and (c) Vickers hard-
ness as color bars. Fig. 4(c) directly shows how to alter the
results of Vickers hardness even with the same values of the
bulk modulus. As can be seen from Fig. 4(c), the bulk modulus,
shear modulus, and Vickers hardness have a relationship
among each other. When the shear modulus is equal to 200 GPa
the Vickers hardness decreases as the bulk modulus increases
which conveys some inverse relationship between the Vickers
hardness and bulk modulus having a constant shear modulus
which explains why the correlation between the Vickers hard-
ness and bulk modulus is not closer to 1 compared to the shear
modulus as an example. However, the general trend as can be
seen from Fig. 4(c) is that the Vickers hardness increases as the
bulk modulus rises as well. Therefore, a direct correlation is
conrmed between the bulk modulus and Vickers hardness
which is in good agreement with Pearson's correlation matrix
shown in Fig. 3. Furthermore, when the bulk modulus is
constant with a value of 300 GPa as an example, the value of the
Vickers hardness increases as the shear modulus rises as well,
which implies that the Vickers hardness rises as the shear
modulus increases with a constant bulk modulus. The previous
few statements illustrated from Fig. 4(c) elucidate why the
model of the linear97,98 or non-linear99 bulk modulus that
calculates Vickers hardness failed. Although the overall trend
from Fig. 3 is that the Vickers hardness of the materials
J. Mater. Chem. A, 2021, 9, 27596–27614 | 27603
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Fig. 4 A 2D map of bulk modulus vs. shear modulus with (a) Poisson's ratio, (b) Pugh's ratio, and (c) Vickers hardness as a color bar to show the
wide range of Vickers hardness in terms of new brittle and ductile carbon allotropes, how both bulk and shearmoduli affect Vickers hardness, and
where superhard carbon allotropes are located with respect to both shear and bulk moduli.
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increases as the bulk modulus rises, Fig. 4(c) reveals some
visual insight into Vickers hardness which decreases as the bulk
modulus increases with a constant shear modulus. Generally
speaking, materials with a high Vickers hardness are likely to be
found in the upper-right corner of the 2D map of bulk modulus
vs. shear modulus.
27604 | J. Mater. Chem. A, 2021, 9, 27596–27614
Poisson's ratio has an extremely high opposite correlation
with Vickers hardness with a correlation coefficient of �0.948.
This result of the Pearson correlation matrix conrms that
brittle materials have high Vickers hardness. Poisson's ratio
and Pugh's ratio can be used as criteria to distinguish brittle
and ductile materials. According to Pugh's ratio, a material is
This journal is © The Royal Society of Chemistry 2021
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Fig. 5 Composition triangle of contour distribution of the (a) bulk modulus, (b) shear modulus, and (c) Vickers hardness for the new ternary B–
C–N materials reported in this work.
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brittle when k $ kcr and ductile when k < kcr where kcr z
0.571.100–103 According to Poisson's ratio, a material is brittle
when y# 0.33 and ductile or malleable when y > 0.33.104 Fig. 4(a)
and (b) show how Pugh's ratio and Poisson's ratio differ with the
bulk modulus and shear modulus to further explain the rela-
tionship between Vickers hardness and brittle and ductile
materials.

As can be observed from Poisson's and Pugh's ratios' criteria
for brittle and ductile materials, they are opposite to each other
in the sense that brittle (ductile) materials exist when Poisson's
ratio is low (high) and Pugh's ratio is high (low).105 That was also
visually seen in Fig. 4(a) and (b). The areas where Pugh's ratio is
high are the same areas where low Poisson's ratio values occur,
and vice versa. Fig. 4(a) and (b) conrm that superhardmaterials
usually have low Poisson's ratio and high Pugh's ratio. That also
explains why the correlation between Pugh's ratio and Poisson's
ratio is�0.998 in the Pearson correlation matrix (Fig. 3). In fact,
if eqn (8) and (11) that represent Poisson's ratio and Pugh's ratio
equations, respectively, are combined, they will yield eqn (16) in
ref. 106:

y ¼ 3� 2k

2ð3þ kÞ ¼
3� 2k

6þ 2k
(16)
Table 2 Selected superhard B–C–N structures and carbon allotropes w

Materials ID Composition

Vickers
hardness,
(GPa)

Universal
anisotropy

165-4-24-BC4N-r46x-np-id0-
20210507-094212

B4C16N4 84.589 0.0393

160-4-24-BC6N-r6-p-id0-
20210506-082421

B3C18N3 83.800 0.0448

164-4-16-BC6N-r46-np-id0-
20210507-093548

B2C12N2 83.359 0.0804

166-8-48-C-r6-np-id0-
20210426-180510

C48 92.816 0.0216

194-8-100-C-r567-np-id0-
20210426-180626

C100 92.329 0.0932

194-6-64-C-r567-np-id0-
20210426-180618

C64 89.191 0.0953

This journal is © The Royal Society of Chemistry 2021
Eqn (16) also proves that Poisson's ratio and Pugh's ratio are
inversely proportional to each other. Note that eqn (16) restricts

the Poisson's ratio value in the range �1\n#
1
2
, while for

Pugh's ratio N $ k > 0.105

In Fig. 5, we also plot the composition triangle of contour
distribution of the bulk modulus, shear modulus, and Vickers
hardness for the new ternary B–C–N compounds reported in
this work. Fig. 5(a) illustrates that high bulk modulus
compounds are concentrated in the region where B atoms are
about 50% while C and N atoms have diverse percentages. A
similar trend is found for the shear modulus of ternary B–C–N
structures in Fig. 5(b). As clearly seen in Fig. 5(c), the contour
distribution of Vickers hardness is vastly similar to that for the
shear modulus, while it has large differences with the contour
of the bulk modulus. We also see that high Vickers hardness
compounds are likely to occur in the region where the B to N
ratio is around 1 : 1 or less with a higher concentration of C
atoms (more than 50% to both B and N).
(C) Insights into Vickers hardness from atomic and
electronic level features

In the previous discussions, mechanical properties such as
bulk, shear, and elastic moduli, Poisson's ratio, and Pugh's ratio
ith the corresponding material properties

Elastic
modulus,
(GPa)

Density,
(kg m�3)

Volume
per atom,
(m3 per atom)

Average
local
potential

Average
ELF

983.533 3.4271 5.8839 �12.9668 0.42604

990.202 3.4414 5.8433 �13.0187 0.42762

982.632 3.4208 5.8787 �12.9803 0.42629

1098.295 3.4904 5.7141 �13.1787 0.43122

1039.989 3.4153 5.8396 �13.0537 0.42916

1001.570 3.3795 5.9015 �12.9823 0.42762

J. Mater. Chem. A, 2021, 9, 27596–27614 | 27605
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Table 3 Selected non-superhard B–C–N ternaries and carbon allotropes with the corresponding material properties

Materials ID Composition

Vickers
hardness,
(GPa)

Universal
anisotropy

Elastic
modulus,
(GPa)

Density,
(kg m�3)

Volume per atom,
(m3 per atom)

Average local
potential Average ELF

103-4-32-B2CN-r468-p-id0-
20210506-085316

B16C8N8 5.584 2.3552 221.851 2.7062 7.3079 �11.3952 0.41134

230-3-96-B2CN-r46-np-id0-
20210506-084739

B48C24N24 8.403 2.9596 260.923 2.5922 7.6294 �11.0451 0.38016

169-4-24-BCN2-r46-p-id1-
20210507-093500

B6C6N12 8.902 1.7577 197.058 2.3904 8.8285 �10.0149 0.32822

14-5-20-C-r3489x-np-id0-
20210426-175559

C20 17.008 2.6245 366.645 2.7341 7.2947 �11.6681 0.39784

166-3-108-C-r456x-np-id0-
20210426-180505

C108 22.759 1.0010 444.769 2.6250 7.5977 �11.1035 0.37629

191-3-36-C-r4568-np-id0-
20210426-180605

C36 32.523 1.5164 554.205 2.9314 6.8037 �11.8796 0.39783
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were used to explain Vickers hardness. Although they are useful
to explain Vickers hardness, atomic descriptors are still needed
to explain Vickers hardness at the atomic level. Atomic
descriptors can be consistent and proportional to Vickers
hardness as is shown in the Pearson correlation matrix in Fig. 3.
Therefore, Table 2 and Table 3 will show some atomic
descriptors that will help in expounding Vickers hardness in
more detail. Table 2 shows carbon allotropes and B–C–N
structures with high Vickers hardness and their respective
material properties, while Table 3 shows carbon allotropes and
B–C–N structures with low Vickers hardness and their material
properties. The two tables are presented to differentiate the
materials with high Vickers hardness from the materials with
low Vickers hardness in terms of their material properties. Six
materials will be shown in each table: the rst three are ternary
B–C–N structures, and the second three materials are carbon
allotropes.

Table 2 shows some instances of superhard materials and
their material properties, and Table 3 shows other instances in
which the materials are not superhard. It can be noticed that
universal anisotropy tends to be lower in superhard materials
shown in Table 2, whereas anisotropy is higher in materials
with low Vickers hardness shown in Table 3. Therefore, aniso-
tropic materials tend to have lower Vickers hardness. The
results shown in Tables 2 and 3 conrm the inverse correlation
between Vickers hardness and universal anisotropy shown in
Fig. 3 in the Pearson correlation matrix which has a correlation
coefficient of �0.586. Regarding density, superhard materials
tend to be denser than non-superhard materials which conveys
that superhard materials are more packed. The correlation
coefficient between density and Vickers hardness is 0.782 as
shown in Fig. 3 in the Pearson correlation matrix. Volume per
atom is essentially the volume divided by the number of atoms.
If the volume per atom is low, then the material has a higher
density and vice versa. Therefore, volume per atom and Vickers
hardness are inversely commensurate with each other having
a correlation coefficient of �0.787 as shown in the Pearson
correlation matrix in Fig. 3. Furthermore, B–C–N materials in
Table 3 have a lower carbon fraction than those in Table 2,
which conrms the results in Fig. 5 that the B–C–N structures
27606 | J. Mater. Chem. A, 2021, 9, 27596–27614
with high Vickers hardness have higher carbon atomic fractions
or concentrations compared to B–C–N structures with low
Vickers hardness.

At the electronic level, local potential reects the type of
interaction between the nucleus with positive charge and the
electrons with negative charge.86,87 Negative local potential
indicates attraction and positive local potential signies repul-
sive interactions. Interesting enough, the average local potential
for superhard materials is more negative which implies that
more attractive interactions exist in superhard materials which
might also explain why superhard materials are denser and
more packed. Pearson's correlation map (Fig. 3) clearly shows
that the correlation coefficient between Vickers hardness and
average local potential is �0.784, which essentially indicates
that materials with higher Vickers hardness tend to have lower
(more negative) local potentials, and vice versa. Moreover,
average ELF indicates the probability of nding electrons at
a certain point in the unit cell. Superhard materials are more
inclined to have higher average ELF which suggests that
superhard materials have higher electron density and are more
packed since the electrons are distributed throughout the unit
cell whereas non-superhard materials have lower average ELF
which implies that some empty spaces exist in the unit cell of
non-superhard materials which also explains why they have
lower density. It is also known from the literature that electron
concentration is directly proportional to hardness.19 The
correlation coefficient between average ELF and Vickers hard-
ness is 0.658, which indicates that Vickers hardness positively
correlates with the average ELF distribution throughout the unit
cell. It is also worth pointing out that both average local
potential and ELF are easy to access in rst-principles calcula-
tions, e.g. they can be immediately outputted aer structure
optimization. Our rst-principles calculations of several
hundred carbon allotropes and B–C–N ternaries have shown
that the average CPU time for obtaining local potential and ELF
is only a few minutes, while traditional calculations of elastic
constants by using the Hessian matrix (matrix of the second
derivatives of the energy with respect to the atomic positions,
i.e. IBRION ¼ 6 DFPT calculations in VASP runs) take several
hours for each structure. Then, obtaining local potential and
This journal is © The Royal Society of Chemistry 2021
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ELF is at least two orders of magnitude faster than direct
calculations of elastic constants. Therefore, local potential and
ELF are tremendously promising and helpful for fast and
accurate screening of superhard materials once the structures
are optimized.
(D) Machine learning insights from local potential and
electron localization function

From the previous results and discussion through the Pearson
correlation matrix, we know that the generated descriptors of
local potential and ELF are (directly or inversely) proportional to
Vickers hardness depending on the descriptor. A machine
learning algorithm needs to be implemented to conrm that the
generated descriptors from local potential and ELF affect the
results of trained machine learning models for predicting
Vickers hardness by reducing the error in the machine learning
models, which will also verify the novelty of the generated
descriptors to enhance the predictions performed by the
machine learning models. Composition descriptors have been
widely utilized in machine learning to predict mechanical
properties with acceptable successful results.1,14,83 Combining
structural descriptors with composition descriptors has also
proved to generally enhance the machine learning models to
predict material properties, in particular for mechanical prop-
erties.84 The composition descriptors that were used in ref. 1, 14
and 83 utilized the atomic and chemical properties of constit-
uent elements as follows: (1) atomic number, (2) atomic weight,
(3) period, (4) group, (5) families, (6) Mendeleev number, (7)
atomic radius, (8) covalent radius, (9) Zunger radii sum, (10)
ionic radius, (11) crystal radius, (12) Pauling electronegativity,
(13) Martynov and Batsanov (MB) electronegativity, (14) Gordy
electronegativity, (15) Mulliken electronegativity, (16) Allred and
Rockow (AR) electronegativity, (17) metallic valence, (18)
number of valence electrons, (19) Gilmore number of valence
electrons, (20) valence s, (21) valence p, (22) valence d, (23) outer
shell electrons, (24) 1st ionization potential (kJ mol�1), (25)
polarizability (A2), (26) melting point (K), (27) boiling point (K),
(28) density (g mL�1), (29) specic heat (J g�1 K�1), (30) heat of
fusion (kJ mol�1), (31) heat of vaporization (kJ mol�1), (32)
thermal conductivity (W mK�1), (33) heat atomization (kJ
mol�1), (34) cohesive energy, and (35) electron affinity (kJ
mol�1). The composition descriptors that are produced based
on the atomic features from the elements are the maximum,
minimum, difference (range) between the maximum and
minimum, and average of the elemental properties of the
constituent elements in a composition, which in total produces
35 � 4 ¼ 140 descriptors for each material from the composi-
tion. The descriptors from the structures are density, packing
fraction, volume per atom, and space group (a total of 4
descriptors for each material). The new descriptors from local
potential and ELF that will be added to the machine learning
model are the maximum, average, and minimum values of local
potential (a total of 3 descriptors for each material) and ELF (a
total of 3 descriptors for each material).

The machine learning models were trained based on three
levels of descriptors. The rst machine learning model is
This journal is © The Royal Society of Chemistry 2021
trained with composition descriptors only as in ref. 1, 14 and 83.
The second machine learning model is trained with both
composition and structural descriptors, while the third
machine learning model is trained with the combination of
composition, structural, local potential, and ELF descriptors. To
gauge the novelty of the new local potential and ELF descrip-
tors, the results from the machine learning model that uses
local potential and ELF descriptors must be compared to those
from the machine learning model that uses previously existing
descriptors namely composition descriptors used in previous
work14,83 and see whether the new descriptors enhance the new
machine learning model. Carbon allotropes have the same
composition descriptors which makes it impossible to train
a machine learning model based on carbon allotropes using
composition descriptors solely. Machine learning models learn
from the variance that exists in the features, and carbon allo-
tropes have no variance due to having the same values (zero
variance) in the features generated from composition. For that
reason, B–C–N materials are selected for training the machine
learning model since B–C–N structures can be distinguished
from composition descriptors due to the various B–C–N
elemental fractions from one B–C–N material to another. The
machine learning algorithm used in the training process is the
ensemble learning algorithm named Extreme Gradient Boost-
ing15 implemented in the open-source soware, Python. Some
hyperparameters in the machine learning algorithm, Extreme
Gradient Boosting, are 0.03 for the learning rate and 600 for the
number of trees in the forest. The data were split into 80% for
training and 20% for testing. The quality of the machine
learning models is judged based on two parameters: (1) Mean
Absolute Error (MAE), and (2) R2 score between the predictions
and test data. MAE represents the average error quantity
between the “true” values and predicted values. In this work,
MAE measures the error between test DFT data for Vickers
hardness and the predicted Vickers hardness from machine
learning. R2 score is a statistical measure which measures the
variance proportion between an independent variable with
a dependent variable. In this work, R2 is a manifestation of how
consistent the predicted results are with the test data.
Comparing the testing data, which is usually 20% of the total
data, with the machine learning model predicted results is
a standard procedure in machine learning, which can conrm
that the machine learning model was able to capture the trends
in the training dataset and can predict the test data whether
with/without undertting or overtting. Undertting occurs
when the machine learning model cannot accurately predict the
testing data due to the lack of descriptors that can capture the
trends which can be shown by a large MAE and low R2 score
while comparing the predicted results with the test data. Over-
tting occurs when themachine learningmodel learns from the
noise in the training set which will show a low MAE for the
training set. However, when the machine learning model has
the issue of overtting, the machine learning model will have
a high MAE and low R2 score in the testing dataset. The goal
from this scheme is to conrm that the generated descriptors
from local potential and ELF affect the results of machine
learning models trained on Vickers hardness by reducing the
J. Mater. Chem. A, 2021, 9, 27596–27614 | 27607
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Fig. 6 Comparison of the prediction results with the test data using the two gauging machine learning parameters: (a) MAE and (b) R2 score
among three machine learning models with the three different types of descriptors.
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MAE and increasing the R2 score in the testing dataset to verify
the novelty of the generated descriptors to enhance Vickers
hardness predictions. In Fig. 6, the results of the MAE and R2

score are compared among the three machine learning models
between the test data and the machine learning model pre-
dicted results.

As seen in Fig. 6(a), the MAE decreases as the number of
descriptors increases from 1- composition descriptors only with
MAE¼ 11.7, and then 2- composition and structural descriptors
with anMAE score of 5.7 to 3- combined composition, structure,
local potential, and ELF descriptors with an MAE of 4.3. This
proves that adding local potential and ELF descriptors improves
the performance of machine learningmodels trained on Vickers
hardness. With combined descriptors, the model predicts
Vickers hardness closer to the “true” value calculated from DFT
with a much lower error (i.e., MAE in this work). R2 scores show
the consistency levels of the machine learning predicted Vickers
hardness with the calculated values by DFT. The machine
learning model trained on solely composition descriptors has
the worst consistency levels between the test data and the pre-
dicted results with an R2 score of only 27.8%, but the R2 score
has signicantly improved to 72.8% by adding structural
descriptors to the original composition descriptors. The novelty
of our work manifests itself by improving the R2 score further to
88.9% through adding new descriptors of local potential and
electron localization function. The results prove that adding
local potential and ELF descriptors improved the MAE score
from 11.7 using composition descriptors only used in previous
work14,83 to an MAE score of 4.3 combining descriptors from
previous work to the novel local potential and ELF descriptors
which is an impactful novelty in this work for future studies on
superhard materials.
27608 | J. Mater. Chem. A, 2021, 9, 27596–27614
Fig. 7 shows the predicted Vickers hardness results against
the test data calculated by DFT for all three machine learning
models which should give more insights into the results of the
MAE and R2 score. It shows how the predicted results of Vickers
hardness from the three machine learning models vary with the
test data of Vickers hardness calculated by DFT. In the rst
machine learning model shown in Fig. 7(a) that only used
composition descriptors, the R2 score was substantially low
which shows enormous inconsistency of the predicted Vickers
hardness frommachine learning with the calculated test results
from DFT, and the MAE was substantially high consequently.
The reason for the colossal inconsistency in the predicted
Vickers hardness is that the machine learning model predicted
that many materials have the same Vickers hardness close to 50
GPa which can be shown as a straight horizontal-like line of
points when in fact those materials have different values of
Vickers hardness as shown by their respective Vickers hardness
values from the test results on the x-axis. Those materials
located on the horizontal-like line might have the same
composition, and that is why the machine learning model
predicted their Vickers hardness to be equal. What caused the
machine learning model to have the same prediction of Vickers
hardness for the materials in the horizontal-like line is the
weights from training the machine learning model in which the
machine learning model was not able to identify the difference
in all those materials based on composition only which reveals
the necessity for another descriptor or descriptors to be used by
the machine learning model as an input to distinguish those
materials from each other. The phenomenon that occurred in
Fig. 7(a) shows what is known in data science as undertting
which occurs when a machine learning model is unable to
capture the relationship between the features and the predicted
This journal is © The Royal Society of Chemistry 2021
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Fig. 7 Predicted Vickers hardness vs. tested Vickers hardness data from three machine learning models trained on Vickers hardness using the
following descriptors in each model: (a) composition descriptors only, (b) composition and structural descriptors, (c) combined composition,
structural, local potential (LOCPOT), and electron localization function (ELF) descriptors. The dashed lines define the perfect prediction slope as
the consistency indicator between the predicted results and test data.
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output. In Fig. 7(b), the machine learning model was trained
using the same composition descriptors plus structural
descriptors, and the model shows better consistency between
the predicted results with the tested Vickers hardness data
compared to the rst one which used composition descriptors
only. The second machine learning model has a noticeably
lower MAE and higher R2 score compared to the rst one which
in consequence yieldedmore consistency between the predicted
results and test data. Adding the structural descriptors solved
the undertting issue in the results from the machine learning
model that used the composition descriptors shown Fig. 7(a).
The results shown in Fig. 7(c) were from the third machine
learning model that used the same composition and structural
descriptors from themachine learning model shown in Fig. 7(b)
along with a total of six other descriptors from ELF and local
potential. In the third machine learning model, the predicted
and test data look even less dispersed and more consistent than
the second machine learning model in Fig. 7(b) which explains
why the machine learningmodel has a lower MAE and higher R2

score. The results from the machine learning model show that
the issue of undertting shown in Fig. 7(a) was enhanced.
Moreover, overtting does not occur since the machine learning
model was able to accurately predict the results in the test data
which proves that the machine learning model did not learn
from the noise data during the training process. The results
shown in Fig. 7(c) validate the novelty of the descriptors from
local potential and ELF as is already shown in Fig. 6(c) as well. It
is also worth noting that, we have run the machine learning
code multiple times in which the machine learning code gave
different results in each run. However, the R2 score andMAE did
not change much in all of the runs. For example, when all the
composition, structural, ELF and local potential descriptors
were combined, we had R2¼ 90% as the highest percentage and
R2 ¼ 87.8% as the lowest percentage. This is normal since the
shuffle function is activated in the train and test split part of the
This journal is © The Royal Society of Chemistry 2021
code. However, the results were always similar and consistent in
each run among all the three machine learning models. The
train and test data might differ between different runs, which is
why the R2 score and MAE results differ in each run. However,
the testing and training sets have a wide range of Vickers
hardness values, which was ensured in each run. The tested
Vickers hardness in Fig. 7 shows that the testing data in all the
models have a wide range of data points from low Vickers
hardness to high Vickers hardness.

Before closing, we would like to explain Vickers hardness
from a more fundamental electronic level. In Fig. 8 we compare
the spatial distribution of local potentials between two repre-
sentative B–C–N ternaries, i.e. a non-superhard material
(B6C6N12) and superhard material (B3C18N3). The plots were
produced through the VESTA code.78 Both plots were produced
from the same plane which was [001]. The plots were made at
different distances from the origin to nd the image in which
the comparison between the local potential in both materials
can be explained more clearly. The blue color in the VESTA
code78 represents extremely low values of local potentials which
signies attractive interactions.86–88 The opposite is imple-
mented to the red color which represents positive values of local
potentials (repulsive interactions).86–88

For B6C6N12 shown in Fig. 8(a) the Vickers hardness is 8.9 GPa,
which belongs to a non-superhard material, while for B3C18N3

shown in Fig. 8(b) its Vickers hardness is 83.8 GPa and the
material is superhard. The blue color in Fig. 8 denotes attractive
interactions between positive and negative charges (i.e., nucleus
and surrounding electrons). That is why the blue color in both
plots in Fig. 8 is almost perfectly circular. As the distance
increases from the nucleus, the color changes from blue, to light
blue, to green, to yellow, and nally red, which is where the
electrons have increasingly more repulsive interaction between
each other. Fig. 8(a) was taken at a distance where the blue color
was more common and the red color was less dominant
J. Mater. Chem. A, 2021, 9, 27596–27614 | 27609

https://doi.org/10.1039/d1ta07553e


Fig. 8 Spatial distribution of local potentials in (a) 169-4-24-BCN2-r46-p-id1-20210507-093500 (B6C6N12, a non-superhard material) with
a distance of 0.3 Å from the origin and (b) 160-4-24-BC6N-r6-p-id0-20210506-082421 (B3C18N3, a superhard material) with a distance of 1.8 Å
from the origin. The plots were created with the VESTA code78 and viewed along the [001] plane.
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compared to the other distances from the origin. Fig. 8(b) was
produced where the blue color could be viewed, and the red color
could also be viewed clearly compared to the other distances. It is
shown that in Fig. 8(a) the red color is more dominant even
though at that distance the red color is less prevalent compared
to the other distances from the origin, which means that the red
color is even more pervasive in other distances compared to the
selected distance. Therefore, the interactions are extremely
repulsive at the selected distance and more repulsive at other
distances. In Fig. 8(b) the local potential was less red in other
distances, but that distance was selected for comparison
purposes to show that even when red is more common in
B3C18N3 at some distance, the red color in B3C18N3 is still less
prevalent than B6C6N12. The fact that the local potential in
B6C6N12 shown in Fig. 8(a) has a higher red color concentration
than B3C18N3 shown in Fig. 8(b) essentially demonstrates that
more repulsive interactions prevail in B6C6N12 as compared to
B3C18N3. The higher concentration of negative and attractive
local potentials also explains why superhard materials have
higher density and are generally more packed compared to low
dense and less packed non-superhard materials which have
higher repulsive, positive local potentials as was seen in B3C18N3

and B6C6N12. This observation made from Fig. 8 conrms the
difference of local potentials between superhard materials and
non-superhard materials, which was initiated by the correlation
coefficient in the Pearson correlation matrix in Fig. 3, and then
was perceived by the machine learning model through reducing
the MAE as presented in Fig. 7.
IV. Conclusions

Materials discovery has been a crucial topic in recent years with
the goal to generate and discovermaterials with specic demands
and desirable properties. In this work, we report hundreds of new
ternary B–C–N compounds and carbon allotrope structures with
27610 | J. Mater. Chem. A, 2021, 9, 27596–27614
super high hardness generated by the state-of-the-art RG2

package. The atomic conguration of each material was opti-
mized using high precision rst-principles calculations. Vickers
hardness was calculated using Tian's model. Several descriptors
(atomic andmechanical descriptors) were used to explain Vickers
hardness fromPearson correlation in this work. To the best of our
knowledge, we introduce, for the rst time, new descriptors
namely local potential and electron localization function to
further explain and enhance machine learning based models to
boost the accuracy for Vickers hardness predictions with a lower
mean absolute error and higher R2 score. The spatial distribution
of local potentials has successfully, for the rst time, provided
deep insights into interpreting Vickers hardness at the atomic
level, and the average local potentials can be used as a measure to
give some initial idea on themagnitude of Vickers hardness of the
material. The machine learning model was utilized in deducing
physical insights from atomic level features, i.e., local potential
and electron localization function on Vickers hardness. We
believe that this work pushes our knowledge and understanding
of superhard materials into a promising direction through
introducing new but easily accessible electronic level descriptors
(at least two orders of magnitude faster than the traditional direct
calculation of elastic constants from rst-principles), which will
help in accelerating the materials discovery procedure that uses
machine learning algorithms to discover advancedmaterials with
fascinating and captivating properties.
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