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ABSTRACT
This article proposes a model-free and data-adaptive feature screening method for ultrahigh-dimensional
data. The proposed method is based on the projection correlation which measures the dependence
between two random vectors. This projection correlation based method does not require specifying a
regression model, and applies to data in the presence of heavy tails and multivariate responses. It enjoys
both sure screening and rank consistency properties under weak assumptions. A two-step approach, with
the help of knockoff features, is advocated to specify the threshold for feature screening such that the false
discovery rate (FDR) is controlled under a prespecified level. The proposed two-step approach enjoys both
sure screeningandFDRcontrol simultaneously if theprespecifiedFDR level is greater or equal to 1/s, where s
is the number of active features. The superior empirical performance of the proposed method is illustrated
by simulation examples and real data applications. Supplementary materials for this article are available
online.
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1. Introduction

The technological development has made extensive data col-
lection and storage feasible in diverse fields. Datasets with
ultrahigh-dimensional features characterize many contempo-
rary research problems in machine learning, computer science,
statistics, engineering, social science, finance, and so on. When
the features contain redundant or noisy information, estimating
their functional relationship with the response may become
quite challenging in terms of computational expediency, statis-
tical accuracy, and algorithmic stability (Fan, Samworth, and
Wu 2009; Hall and Miller 2009; Lv and Liu 2014). To over-
come such challenges caused by ultrahigh-dimensionality, Fan
and Lv (2008) proposed a sure independence screening (SIS)
method, which aims to screen out the redundant features by
ranking their marginal Pearson correlations. The SIS method
is named after the SIS property, which states the selected sub-
set of features contains all the active ones with probability
approaching one. The promising numerical performance soon
made SIS popular among ultrahigh-dimensional studies (Liu,
Zhong, and Li 2015; Liu and Li 2020). The sure screening
idea has been applied to many important statistical problems
including generalized linear model (Fan and Song 2010), multi-
index semiparametric model (Zhu et al. 2011), nonparametric
model (Fan, Feng, and Song 2011; Liu, Li, and Wu 2014),
quantile regression (He, Wang, and Hong 2013; Wu and Yin
2015), and compressed sensing (Xue and Zou 2011), among
others.

CONTACT Yuan Ke yuan.ke@uga.edu Department of Statistics, University of Georgia, Athens, GA 30602; Jingyuan Liu jingyuan@xmu.edu.cn MOE Key
Laboratory of Econometrics, Department of Statistics, School of Economics, Wang Yanan Institute for Studies in Economics, and Fujian Key Lab of Statistics, Xiamen
University, Xiamen 361005, China.
All authors equally contributed to this work, and the authors are listed in seniority.
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JASA.

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

In addition to the sure screening property, we argue an
appealing screening method should satisfy the following two
properties. First, the screening method should be model-free
in the sense that it can be implemented without specifying
a regression model. In the ultrahigh-dimensional regime, it
is challenging, if not impossible, to specify a correct regres-
sion model before removing a huge number of redundant fea-
tures. Hence, the model-free property is desired as it guaran-
tees the effectiveness of the screening method in the presence
of model misspecification. The model-free screening method
becomes a hot research topic in recent years (Zhu et al.
2011; Li, Zhong, and Zhu 2012; Mai and Zou 2015). The
second property is data-adaptive which means the screening
method should not be sensitive to assumptions like indepen-
dence, sub-Gaussianity, and univariate response. Such assump-
tions are usually not satisfied under ultrahigh-dimensional set-
tings. Even met on the population level, they can be vio-
lated in the observed sample due to ultrahigh-dimensionality.
Therefore, the screening methods that are sensitive to such
assumptions may perform poorly in real applications. The data-
adaptive screening methods also draw a certain amount of
attention recently. For instance, He, Wang, and Hong (2013),
Wu and Yin (2015), and Ma, Li, and Tsai (2017), among others,
considered quantile-based screening which adapts to heavy-
tailed data. In addition, Wang (2012) and Fan, Ke, and Wang
(2020) developed screening methods for strongly correlated
features.
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Unfortunately, none of the aforementioned screening meth-
ods enjoys sure screening, model-free, and data-adaptive prop-
erties simultaneously. For example, the SIS is tailored to the
linear regression and depends on the independence assump-
tion. Li, Zhong, and Zhu (2012) developed a model-free SIS
procedure based on the distance correlation. However, its sure
screening property requires sub-exponential assumption for
features and response. The Kolmogorov distance based screen-
ing method proposed in Mai and Zou (2012) is robust against
heavy-tailed data, but it only works for binary classification
problems. Pan, Wang, and Li (2016) proposed a pairwise sure
screening procedure for linear discriminant analysis, which is
not sensitive to the tail behavior of the features, but requires
balanced categories.

In this article, we propose a model-free and data-adaptive
feature screening method named PC-Screen. The PC-Screen is
based on ranking the projection correlations between features
and response variables. The projection correlation, proposed
by Zhu et al. (2017), is a measure of dependence between two
random vectors which enjoys several nice probability proper-
ties. The PC-Screen does not require specifying any regression
model and is insensitive to the correlations and moment condi-
tions of the dataset. As the projection correlation is dimension-
free to both random vectors, the PC-Screen can be applied
to multitask learning problems (Caruana 1997). For instance,
we can find a parsimonious set of features that are jointly
dependent on the multivariate response. As existing asymptotic
results are not suitable for the “large p small n problem” studied
in this article, we also develop nonasymptotic concentration-
type inequalities for empirical projection correlation. Further,
we demonstrate the proposed PC-Screen enjoys not only the
sure screening property but also a stronger result called rank
consistency property. The only condition required is a min-
imum signal strength gap between active and inactive fea-
tures. The extensive numerical examples show the proposed
method wins the horse racing against its competitors in various
scenarios.

Most feature screening methods depend on some threshold
parameter that controls the cut-off between active and inactive
features. The optimal choice of the threshold typically depends
on unknown parameters. Under a specific model assumption,
the threshold can be selected by cross-validation or information
criteria approaches. However, when no model assumption is
imposed, such parameter selection approaches are not applica-
ble as the loss function which measures the goodness of fit is
not well defined. In addition, existing screeningmethods tend to
sacrifice the false discovery rate (FDR) for sure screening prop-
erty by choosing a conservative threshold parameter, leading to
an inflated model size. Recently, Zhao and Li (2012) studied
the SIS for Cox models with a principled method to select the
threshold aiming at controlling the false positive rate. Song
et al. (2014) proposed a censored rank independence screening
for survival data and chose the threshold by estimating the
proportion of active features. The validity of this procedure
relies on the independence assumption of multiple test statis-
tics which may easily get violated in the model-free setup. In
this article, we tackle the issue of threshold selection with a
two-step procedure named PC-Knockoff. In the first step, we
apply the PC-Screen method to obtain an over-fitted subset of

moderate size from the ultrahigh-dimensional features. In the
second step, we construct knockoff counterparts for the features
which survive in the first step. Conditioning on the sure screen-
ing of the first step, we further select a parsimonious model
with FDR controlled below a prespecified level with a statistic
that using the knockoff features. Theoretical analysis shows
that when the prespecified level is not too aggressive, the PC-
Knockoff procedure enjoys sure screening property, as well as
conditional FDR control simultaneously with high probability.
We also validate the theoretical findings with various numerical
examples.

The rest of the article is organized as follows. In Sec-
tion 2, we briefly review the definition and properties of pro-
jection correlation and demonstrate its nonasymptotic prop-
erties. Then, we propose the PC-Screen procedure and show
its sure screening and rank consistency properties under very
mild conditions. Section 3 studies the PC-Knockoff procedure
which selects the threshold with FDR control as well as sure
screening property. Section 4 assesses the finite sample per-
formance of the PC-Screen and PC-Knockoff methods with
several simulated examples and a real data application. We
briefly summarize the article in Section 5. Due to the limited
space, we provide the proofs of some theoretical results in
Appendix A, and relegate the proofs of remaining results as well
as some additional numerical examples to the supplementary
materials.

2. Model-Free and Data-Adaptive Screening
Procedure

2.1. Projection Correlation

To pave the way for the proposed screening procedure, we first
provide some background on the projection correlation and its
properties introduced in Zhu et al. (2017). Let x ∈ R

p and y ∈
R
q be two random vectors. The projection correlation is elicited

by the following independence testing problem,

H0 : x and y are independent versus H1 : otherwise.

The null hypothesis holds if and only if U = αTx and V = βTy
are independent for all unit vectors α and β . Let FU,V(u, v)
be the joint distribution of (U, V), and FU(u) and FV(v) be
the marginal distributions of U and V . The squared projection
covariance is defined as

Pcov(x, y)2 =
∫∫∫

(FU,V (u, v) − FU(u)FV (v))2 dFU,V (u, v) dα dβ

=
∫∫∫

cov2{I(αTx ≤ u), I(βTy ≤ v)} dFU,V (u, v) dα dβ ,
(1)

where I(·) is the indicator function. Furthermore, the projection
correlation between x and y is defined as the square root of

PC(x, y)2 = Pcov(x, y)2

Pcov(x, x)Pcov(y, y)
, (2)

and we follow the convention 0/0 = 0.
In general 0 ≤ PC(x, y) ≤ 1, testing whether x and y are

independent amounts to testing whether PC(x, y) = 0. The
projection correlation is a measure of dependence between two
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randomvectors and enjoys some appealing properties. Let x and
y be two random vectors with continuous marginal and joint
probability distributions, PC(x, y) = 0 if and only if x and y
are independent. We remark here this property does not hold in
general without the assumption that (x, y) is jointly continuous.
When x and y are two dependent discrete random variables that
are constructed in a similar fashion as in Hoeffding (1948), it is
possible that we have PC(x, y) = 0.

Zhu et al. (2017) gave an explicit formula for the squared
projection covariance in (1). Let (x1, y1), . . . , (x5, y5) be five
independent random copies of (x, y), then

Pcov(x, y)2

=S1 + S2 − 2S3

=E
[
arccos

{ (x1 − x3)T(x4 − x3)
‖x1 − x3‖‖x4 − x3‖

}
arccos

{ (y1 − y3)T(y4 − y3)
‖y1 − y3‖‖y4 − y3‖

}]
+E

[
arccos

{ (x1 − x3)T(x4 − x3)
‖x1 − x3‖‖x4 − x3‖

}
arccos

{ (y2 − y3)T(y5 − y3)
‖y2 − y3‖‖y5 − y3‖

}]
−2E

[
arccos

{ (x1 − x3)T(x4 − x3)
‖x1 − x3‖‖x4 − x3‖

}
arccos

{ (y2 − y3)T(y4 − y3)
‖y2 − y3‖‖y4 − y3‖

}]
,

(3)
where ‖ · ‖ is the L2 norm. Equation (3) shows that the pro-
jection covariance only depends on the vectors through forms
(xk − xl)/‖xk − xl‖ and (yk − yl)/‖yk − yl‖ whose second
moments are unity. This gives us the intuition that the projection
covariance is free of the moment conditions on (x, y) which are
usually required by some other measurements, such as distance
correlation (Li, Zhong, and Zhu 2012).

Let X = (x1, . . . , xn)T and Y = (y1, . . . , yn)T be an
observed sample of (x, y). Equation (3) leads to a straightfor-
ward estimator of Pcov(x, y)2 based on a U-statistic, yet it is
difficult to calculate (Székely and Rizzo 2010). An equivalent
form of theU-statistic is given in Zhu et al. (2017). In particular,
the squared sample projection variance and covariance between
X and Y can be calculated as

P̂cov(X,Y)2 = n−3
n∑

k,l,r=1
AklrBklr ,

P̂cov(X,X)2 = n−3
n∑

k,l,r=1
A2
klr , and

P̂cov(Y,Y)2 = n−3
n∑

k,l,r=1
B2klr ,

(4)

where k, l, r = 1, . . . , n,

aklr = arccos
{

(xk − xr)T(xl − xr)
‖xk − xr‖‖xl − xr‖

}
,

aklr = 0 if k = r or l = r,

āk·r = n−1
n∑
l=1

aklr ,

ā·lr = n−1
n∑

k=1
aklr ,

ā··r = n−2
n∑

k=1

n∑
l=1

aklr ,

Aklr = aklr − āk·r − ā·lr + ā··r ,

bklr = arccos
{

(yk − yr)T(yl − yr)
‖yk − yr‖‖yl − yr‖

}
,

bklr = 0 if k = r or l = r,

b̄k·r = n−1
n∑
l=1

bklr ,

b̄·lr = n−1
n∑

k=1
bklr ,

b̄··r = n−2
n∑

k=1

n∑
l=1

bklr ,

Bklr = bklr − b̄k·r − b̄·lr + b̄··r .

Then the sample projection correlation between X and Y is
defined as the square root of

P̂C(X,Y)2 = P̂cov(X,Y)2

P̂cov(X,X)P̂cov(Y,Y)
. (5)

Based on (4), the sample projection correlation can be computed
in O(n3).

We first provide exponential-type deviation inequalities for
squared sample projection covariance and correlation.

Theorem 1. For any 0 < ε < 1 satisfying n ≥ 10π2/ε, there
exists positive constants c1 and c2, such that

Pr
{|P̂cov(X,Y)2 − Pcov(x, y)2| > ε

} ≤ c1 exp{−c2nε2}, and

Pr
{|P̂C(X,Y)2 − PC(x, y)2| > ε

} ≤ 5c1 exp{−c2σnε2},
where σ = min{σ 3

x σ 3
y /4M4, σ 2

x σ 2
y /4M4}, σx = Pcov(x, x)2,

σy = Pcov(y, y)2, andM = 4π2.

The proof of Theorem 1 is based on an exponential-type
deviation inequality for U-statistic and can be found in the
supplementarymaterials. The above exponential inequalities do
not depend on the dimensionality and moment conditions of
both random vectors. The exception probability decays expo-
nentially with sample size nwhich guarantees good finite sample
performance of the proposed estimator.

2.2. PC-Screen Procedure

In this subsection, we propose a model-free and data-adaptive
screening procedure using the nice properties of projection
correlation. Let y = (Y1, . . . ,Yq)T be the response vector of
q variables and x = (X1, . . . ,Xp)T be the vector of p features.
To avoid the trivial discussion, we restrict ourselves to the non-
degenerate case. That is, min1≤k≤p Pcov(Xk,Xk)

2 ≥ σ 2
0 and

min1≤k≤q Pcov(Yk,Yk)
2 ≥ σ 2

0 for some σ0 > 0.
Denote F(y|x) the conditional distribution function of y

given x. Without specifying any regression model of y on x, we
define the index set of active features by

A = {k : F(y|x) functionally depends on Xk, k = 1, . . . , p}.
The number of active features is s = |A|, the cardinality of
A. The features that do not belong to A are inactive features.
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We use Ac, the complement of A, to denote the index set of
inactive features. The above setting abstracts a large number of
sparse regression problems including linear model, generalized
linear model, additive model, semiparametric model, nonlinear
model, and so on. Moreover, it also allows the multivariate
response and grouped predictors.

Suppose that {(xi, yi), i = 1, . . . , n} is a random sample of
(x, y). Denote X = (x1, . . . , xn)T and Y = (y1, . . . , yn)T. In
the ultrahigh-dimensional regime, it is natural to assume that
the number of features p greatly exceeds the sample size n, but
the number of active features s is smaller than n. For a given
feature Xk, k = 1, . . . , p, a sufficient condition for Xk to be an
inactive feature is the independence between Xk and y. This,
together with Theorem 1, motivates us to screen out the features
whose projection correlations with y are close to 0. As a result,
we estimate the set of active features by

Â(δ) = {k : P̂C(Xk,Y)2 ≥ δ, 1 ≤ k ≤ p},
where δ is a prespecified positive threshold, and Xk is the kth
column of X. With a proper choice of δ, we show that the
proposed feature screening procedure enjoys the sure screening
property, which states that with probability approaching 1, all
active features are included in Â(δ). We name this feature
screening procedure as projection correlation based screening,
or PC-Screen.

Denote ωk ≡ PC(Xk, y)2 and ω̂k ≡ P̂C(Xk,Y)2 to be the
squared population and sample projection correlations between
the kth feature and response, respectively. To analyze the prop-
erty of PC-Screen, we impose the following minimum signal
strength condition.

Condition 1 (Minimum signal strength).

(a) For some c3 > 0 and 0 ≤ κ < 1/2, mink∈A ωk ≥ 2c3n−κ .
(b) For some c3 > 0 and 0 ≤ κ < 1/2, mink∈A ωk −

maxk∈Ac ωk ≥ 2c3n−κ .

Remark 1. Condition 1(a) is a minimum signal strength condi-
tion that assumes the squared projection correlations between
active features and response are uniformly bounded below, and
cannot converge to zero too fast as n diverges. Condition 1(b)
imposes an assumption on the gap of signal strength between
active and inactive features. Condition 1(a) is weaker than
Condition 1(b), since ωk is always nonnegative. Such minimum
signal strength condition can be viewed as a sparsity assumption
that guarantees active features to be distinguished from the
inactive ones. Condition 1 is a very mild condition as we allow
the minimum signal strength to converge to zero as the sample
size diverges. Empirically, one may verify Condition 1 by plot-
ting the sorted empirical projection correlations of features in
descending order and visually identifying whether there exists
an “elbow” shape, or whether the sequence can be segmented
into two groups. A more rigorous verification approach is to
consider a multiple-testing procedure. For each feature, one can
calculate the projection correlation based test statistic proposed
in Zhu et al. (2017). Since it is not the main focus of this article,
we do not pursue more details.

The following two theorems state the sure screening property
and the rank consistency property of PC-Screen.

Theorem 2 (Sure screening). Under Condition 1(a), take δ ≤
mink∈A ωk/2, we have

Pr
(
A ⊆ Â(δ)

)
≥ 1 − O

(
s exp{−c4n1−2κ}

)
, (6)

where c4 is a positive constant.

In Theorem 2, if we set δ = c3n−κ , which satisfies the
condition δ ≤ mink∈A ωk/2, we have

Pr
(
A ⊆ Â(c3n−κ)

)
≥ 1 − O(s exp{−c4n1−2κ }). (7)

From (7), we know that if δ = c3n−κ , all active features are
selected with probability approaching 1 as n → ∞. In fact, any
choice of δ ≤ c3n−κ leads to the sure screening property. With
the same choice of δ, Li, Zhong, and Zhu (2012) showed that the
distance correlation based screening method (DC-SIS) satisfies

Pr
(
A ⊆ Â(c3n−κ )

)
≥ 1 − O(s exp{−c′4n1−2(κ+η)} + n exp{−c′′4nη}),

where c′4, c′′4 , and η are positive constants. Thus, PC-Screen
achieves a faster rate than the DC-SIS since (1) we do not have
the term n exp{−c′′4nη} and (2) we do not have an extra η in the
power of the first term. The faster rate of PC-Screen is due to the
fact that projection correlation is not sensitive to dimensionality
and free of moment conditions.

Theorem 3 (Rank consistency). Under Condition 1(b), we have

Pr
(
min
k∈A

ω̂k − max
k∈Ac

ω̂k > 0
)

> 1 − O(p exp{−c5n1−2κ}),

where c5 is some positive constant. If log p = o(n1−2κ) with
0 ≤ κ < 1/2, then we have

lim infn→∞
(
min
k∈A

ω̂k − max
k∈Ac

ω̂k

)
> 0, almost surely.

The rank consistency in Theorem 3 is a stronger result
than the sure screening property. When the signal strength gap
between active and inactive features satisfies Condition 1(b), the
active features are always ranked ahead of the inactive ones with
high probability. In other words, there exists a choice of δ on the
solution path that can perfectly separate the active and inactive
sets with high probability.

3. ScreeningWith FDR Control

3.1. Motivation

In the PC-Screen procedure, the threshold δ controls the cut-
off between active and inactive features. Theorem 2 suggests
choosing δ = cn−κ for some positive constants c and κ < 1/2.
With certain model assumptions, the threshold δ (or equiva-
lently c and κ) can be selected by cross-validation or information
criterion approaches. However, in the model-free setup, such
approaches are not directly applicable as the loss functions that
measure the goodness of fit are not well defined. More recently,
Zhao and Li (2012) and Song et al. (2014) suggested to select the
threshold by controlling the false positive rate and estimating
the proportion of active features s/p, respectively. These two
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methods are tailored for survival analysis and are not directly
applicable to model-free setup.

In practice, one can arbitrarily select a conservative threshold
to ensure that all active features are included with high prob-
ability. However, it will include too many inactive features and
inflate the FDR. Therefore, selecting the threshold parameter for
model-free screening methods will inevitably cause the issue of
balancing the trade-off between the sure screening property and
FDR control. In this section, we propose a two-step procedure
to address this issue by using knockoff features. The construc-
tion of knockoff features does not depend on the regression
model, and hence is suitable for themodel-free setting. Also, the
second-order knockoff features can be easily computed by an
equicorrelated construction or solving a semidefinite program
(Barber and Candès 2015). The proposed procedure enjoys sure
screening property and controls FDR simultaneously with high
probability.

3.2. Knockoff Features: A Brief Review

Recently, knockoff has drawn huge attention due to its success
in variable selection and many important applications such as
genome-wide association studies. The concept of knockoff was
first proposed in Barber and Candès (2015) for the fixed design
matrix problem and then extended to the randomdesignmatrix
setting known as Model-X knockoffs (Candès et al. 2018). For a
more detailed development of knockoff, see Barber and Candès
(2015), Candès et al. (2018), Fan, Demirkaya, Li and Lv (2020),
and references therein. In this subsection, we briefly review the
notations and definitions of knockoffs for further discussions.

Let y = (Y1, . . . ,Yq)T be a response vector of q variables
and x = (X1, . . . ,Xp)T be a covariate of p features. We say x̃ =
(X̃1, . . . , X̃p) is a knockoff copy of x if it satisfies the following
conditions.

Condition 2 (Exact knockoff features).

(a) Swap Xj with its knockoff counterpart X̃j does not change
the joint distribution of (x, x̃) for j = 1, . . . , p;

(b) Given x, x̃ is independent of y, that is, x̃ ⊥⊥ y|x.
Remark 2. Condition 2(a) requires the original and knockoff
features to be pairwise exchangeable. Condition 2(b) indicates
that knockoff features are conditionally independent of response
variables; this is trivially satisfied if x̃ is generated without using
the information of y.

Constructing knockoff features that exactly follow Condi-
tion 2 is challenging, especially when the dimensionality of
features p is large. In general, generating exact knockoff features
requires the knowledge of the underlying distribution of x,
which is usually not available in practice. Barber and Candès
(2015) studied the variable selection problem with knockoffs
for fixed design matrix X ∈ R

n×p. The construction of exact
knockoffs is not necessary if assuming the response y follows
a linear regression model with Gaussian error and n ≥ 2p. A
more recent study (Candès et al. 2018) proposed to construct
exact knockoff features in a manner of generating sequential

conditional independent pairs under the assumption that the
distribution of x is known.

Without the knowledge of the distribution of x, one can
construct approximate second-order knockoff features such that
(x, x̃) is pairwise exchangeable with respect to the first two
moments. In other words, the mean vector and covariance
matrix of (x, x̃) is invariant if we swap Xj and X̃j for any j =
1, . . . , p. The invariant of mean is trivial, and can be achieved by
forcing E(x) = E(̃x). Suppose cov(x) = 	, the second-order
pairwise exchangeable condition is equivalent to

cov(x, x̃) = G, where G =
[

	 	 − diag{h}
	 − diag{h} 	

]
,

(8)
where h = (h1, . . . , hp)T is a vector that makes G a positive
semidefinite covariance matrix.

Barber and Candès (2015) introduced two approaches to
construct the second-order knockoffs. The first approach is
known as the equicorrelated construction, which sets

hj = 2λmin(	) ∨ 1 for j = 1, . . . , p, (9)

where λmin(	) is the minimum eigenvalue of 	, and a ∨ b
denotes the larger one between a and b. The second method,
named semidefinite program, finds hj by solving a semidefinite
program of the following form

minimize
∑
j

|1 − hj|,

subject to hj ≥ 0, diag{h} 
 2	.
(10)

However, both methods are not directly applicable in the high-
dimensional scenarios since both (9) and (10) require 2p < n.

Remark 3. When (x, x̃) is jointly Gaussian, the equivalence
of the first two moments implies the equivalence of the joint
distribution and hence (8) constructs exact knockoff features.
However, when the Gaussian assumption does not hold, the
accuracy of the second-order approximation depends on the
impact of ignoring higher order moments of x. Also, the covari-
ance matrix 	 is usually unknown and needs to be estimated.
Hence, the estimation accuracy of 	 also affects the validation
of the second-order approximation of exact knockoff features.
In addition to sample covariance estimator, more sophisticated
estimators of 	 can be obtained under additional structure or
moment conditions, see Fan, Liao, and Mincheva (2013) and
Ke et al. (2019), among others. As the above two issues are not
of key interest in this article, we do not pursue further in these
directions.

3.3. FDR ControlWith Knockoff Features

Suppose x̃ = (X̃1, . . . , X̃p)T is a knockoff copy of x =
(X1, . . . ,Xp)T, we propose to measure the population level
dependence between Xj and response y by the following quan-
tity

Wj = PC(Xj, y)2 − PC(X̃j, y)2, j = 1, . . . , p, (11)

where PC(Xj, y) and PC(X̃j, y) are the projection correlations
as defined in (2). When X̃j is an exact knockoff feature of Xj,
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Wj will be a nonnegative quantity. Further,Wj > 0 implies the
distribution of y depends on Xj andWj = 0 if y is independent
with Xj conditioning on active features.

Given a random sample {Y,X, X̃} drawn from {y, x, x̃}, we
estimateWj by

Ŵj = P̂C(Xj,Y)2 − P̂C(X̃j,Y)2, j = 1, . . . , p. (12)

where P̂C(Xj,Y) and P̂C(X̃j,Y) are sample projection corre-
lations defined in (5). Intuitively, a large positive value of Ŵj
provides some evidence that the distribution of y depends on
Xj. On the other hand, if Xj is an inactive feature, |Ŵj| is likely
be small and Ŵj is equally likely to be positive or negative. This
intuition is justified by the following lemma.

Lemma 1. Let x̃ be an exact knockoff copy of x and Ac =
{j1, . . . , jr}. Then
(i) Wjk = 0 for all jk ∈ Ac.
(ii) Conditioning on |ŵ| = (|Ŵ1|, . . . , |Ŵp|)T, Ij1 , . . . , Ijr fol-

low iid Bernoulli(0.5), where Ijk = 1 if Ŵjk > 0 and 0
otherwise.

For a fixed threshold t > 0, the false discovery proportion
(FDP) is defined as

FDP(t) = #{j ∈ Ac : Ŵj ≥ t}
#{j : Ŵj ≥ t} ,

where #{·} is the cardinality of a set andwe follow the convention
that 0/0 = 0. The FDR is defined as the expectation of FDP,
that is, FDR(t) = E [FDP(t)]. According to Lemma 1, Ŵj is
equally likely to be positive or negative ifXj is an inactive feature.
Therefore, we have

#{j ∈ Ac : Ŵj ≥ t} ≈ #{j ∈ Ac : Ŵj ≤ −t} ≤ #{j : Ŵj ≤ −t},

which leads to a conservative estimation of FDP(t),

F̂DP(t) = #{j : Ŵj ≤ −t}
#{j : Ŵj ≥ t} .

To control FDR at a prespecified level α, we follow the
knockoff+ procedure (Barber and Candès 2015) to choose the
threshold Tα as

Tα = min

{
t ∈ W :

1 + #{j : Ŵj ≤ −t}
#{j : Ŵj ≥ t} ≤ α

}
, (13)

where W = {|Ŵj| : 1 ≤ j ≤ p}/{0}. The extra term 1 in the
numerator makes the choice of Tα slightly more conservative.
Then, the active set is selected as

Â(Tα) = {j : Ŵj ≥ Tα , 1 ≤ j ≤ p}. (14)

3.4. PC-Knockoff Procedure

The knockoff feature construction methods discussed in Sec-
tion 3.2 require 2p < n and hence are not applicable to
high-dimensional scenarios. To address this issue, we propose
a two-step procedure, named PC-Knockoff, to screen active
features and control the FDR. To avoidmathematical challenges
caused by the reuse of sample, we follow the simple sample
splitting idea, which has beenwidely used in statistics and recent
examples include hypothesis testing (e.g., Fan et al. 2019), error
variance estimation (e.g., Chen, Fan, and Li 2018), variable
selection (e.g., Barber and Candès 2019), large scale inference
(e.g., Fan, Demirkaya, Li and Lv 2020), and so on. We partition
the full sample into two disjoint subsamples with sample sizes
n1 and n2 = n − n1. More specifically, let X(1) ∈ R

n1×p and
X(2) ∈ R

n2×p be a random partition of X, and let Y follow the
same partition. Without loss of generality, we write

X =
[
X(1)

X(2)

]
and Y =

[
Y(1)

Y(2)

]
.

The two steps of PC-Knockoff procedure are introduced as
follows:
1. Screening step: We rank all p features in descending order
based on the sample projection correlation P̂C(X(1)

j ,Y(1)).
Then, we select the top d features such that 2d < n2. Denote
the set of selected d features by Â1. In practice, one can set d to
be a relatively large value as long as it satisfies 2d < n2.

2. Knockoff step: Let

X(2) =
(
X(2)
Â1

,X(2)
Âc

1

)
.

We construct knockoff features for X(2)
Â1

by either the equicorre-
lated construction as in (9) or the semidefinite program as in (10).
Denoted X̃(2)

Â1
the constructed knockoff features for X(2)

Â1
. Then,

we calculate

Ŵj = P̂C(X(2)
Â1,j

,Y(2))2 − P̂C(X̃(2)
Â1,j

,Y(2))2, j = 1, . . . , d,
(15)

where X(2)
Â1,j

and X̃(2)
Â1,j

are the jth columns of X(2)
Â1

and X̃(2)
Â1

,
respectively. For a prespecified FDR level α, we use (13) to
choose the threshold Tα and the set of selected active features
is given by

Â(Tα) = {j : j ∈ Â1, Ŵj ≥ Tα}.

The proposed two-step approach has two advantages. First,
we apply the PC-Screen procedure to reduce the number of
features from p to d, which allows us to construct second-
order knockoff features. Second, by ruling out p − d inactive
features in the screening step, we reduce the total computation
cost from O(n3p) to O(n31p + n32d). We summarize the PC-
Knockoff procedure in Algorithm 1. In fact, the Algorithm 1
provides a general framework for feature screening with FDR
control. One can easily modify Algorithm 1 by replacing PC
with other measurement statistics such as Pearson correlation,
distance correlation, etc.
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Algorithm 1 PC-Knockoff
Input: (X,Y) ∈ R

n×p × R
n×q, α, n1, and d < n2/2, where

n2 = n − n1.
Partition (X,Y) into (X(1),Y(1)) ∈ R

n1×p × R
n1×q and

(X(2),Y(2)) ∈ R
n2×p × R

n2×q.
1. Screening step

For j = 1, . . . , p, compute the sample squared PC: ω̂(1)
j =

P̂C(X(1)
j ,Y(1))2.

Select the top d features, that is, Â1 = {j :
ω̂

(1)
j is among the largest d}.

2. Knockoff step
Construct second-order knockoff features X̃(2)

Â1
for X(2)

Â1
using (9) or (10).

For all j ∈ Â1, compute Ŵj = P̂C(X(2)
Â1,j

,Y(2))2 −
P̂C(X̃(2)

Â1,j
,Y(2))2.

Choose the threshold Tα by solving (13).
Output: Set of selected active features Â(Tα) = {j : j ∈
Â1, Ŵj ≥ Tα}.

Remark 4. Wewant to add a note that Algorithm 1 is not tuning
free as one needs to specify the subsample size n1 and target
dimension d for the screening step. However, Algorithm 1 is not
sensitive to the choice of these two hyper-parameters as Theo-
rem 2 guarantees the sure screening property of the screening
step under mild conditions. In practice, we suggest small n1. As
a result, we leave a relatively large subsample for the knockoff
step. A relatively large n2 allows more features to be selected in
the screening step (larger d) and more accurate second-order
knockoff features constructed in the knockoff step.

Denote E the event that the sure screening property is satis-
fied in the screening step, that is,

E = {All active features are selected in the screening step}.
The sure screening property in Theorem 2 ensures that, with a
relatively large choice of d, the event E holds with high prob-
ability. To be specific, let ω̂

(1)
(1) ≥ ω̂

(1)
(2) ≥ · · · ≥ ω̂

(1)
(p) be the

order statistics of sample squared projection correlations based
on (X(1),Y(1)). If Condition 1(a) holds and ω̂

(1)
(d) ≤ c3n−κ

1 , then
event E holds with probability at least 1 − O(s exp{c4n1−2κ

1 }).
Conditioning on E , the following theorem states that the PC-
Knockoff procedure can control the FDR of selected features
under the prespecified level of α.

Theorem 4. Let X̃Â1
be a knockoff copy of XÂ1

satisfying
Condition 2. For any α ∈ [0, 1], the set of selected features
Â(Tα) given by Algorithm 1 satisfies

FDR = E

[
#{j : j ∈ Ac ∩ Â(Tα)}
#{j : j ∈ Â(Tα)} ∨ 1

∣∣ E]
≤ α.

Theorem 4 states that, with exact knockoff features and
conditioning on E , the PC-Knockoff procedure can control the
FDR under the prespecified level α ∈ [0, 1]. As E occurs with

probability close to 1, the FDR can be controlled even without
conditioning on E (Barber andCandès 2019).We refer to Barber
and Candès (2019) and Fan, Demirkaya, Li and Lv (2020) for
more discussion regarding FDR control in two-step procedures.

We hope the PC-Knockoff procedure can maintain sure
screening property and control FDR simultaneously. This task
is challenging as the procedure needs to balance the trade-
off between Type I and Type II errors. To guarantee the sure
screening property, the procedure is likely to select an over-
fitted model which leads to higher Type I errors as well as FDR.
On the other hand, the FDR control forces a parsimonious but
possibly under-fitted model that can increase Type II errors
and ruin the sure screening property. In the following, we
study the conditions under which this challenging task can be
achieved by the PC-Knockoff procedure. Conditioning on E , the
following theorem states that the simultaneous achievement of
sure screening property and FDR control under level α, which
depends on the relationship between s and α.

Theorem 5. Under the conditions of Theorem 4 and further
assume mink∈AWj ≥ 4c3n−κ

2 for some c3 > 0 and 0 ≤ κ <

1/2.

(i) If α ≥ 1/s, we have Pr(A ⊆ Â(Tα)|E) ≥ 1 −
O(n2 exp{−c4n1−2κ

2 }).
(ii) If α < 1/s, we have Pr(A ⊆ Â(Tα) ∪ Â(Tα) = ∅|E) ≥

1 − O(n2 exp{−c4n1−2κ
2 }). Furthermore, if s > 2, we have

Pr(A ⊆ Â(Tα)|E) ≤ C(s) + O(n2 exp{−c4n1−2κ
2 }), where

0 < C(s) < 1 is a constant that only depends on s.

The part (i) of Theorem 5 together with Theorem 4 suggest
that if α is chosen to be greater or equal to 1/s, the PC-Knockoff
procedure enjoys the sure screening property and controls FDR
under α with high probability. When α is chosen to be smaller
than 1/s, we either recover the active set or end upwith an empty
setwith high probability. The probability of recovering the active
set is upper bounded by some constant C(s) depending on s.
Therefore, there is no guarantee that PC-Knockoff can select
all active features while controlling FDR under α. As we know,
the value of α controls the amount of Type I errors that we
can tolerate. One can imagine that the smaller the α is, the
more challenging the task is to achieve sure screening and FDR
control simultaneously. It is because we allow fewer and fewer
inactive features to be selected. There is a phase transition that
happens when α goes below 1/s. To satisfy the sure screening
property, the procedure will fail to control the FDR at α with
nonnegligible probability if any inactive feature is selected. In
other words, the procedure has to exactly recover the true active
set to satisfy FDR control and sure screening simultaneously.We
numerically validate this phase transition phenomenon through
a simulated example in the supplementary materials.

Theorem 5 discourages us to pursue a too aggressive α in
practice as the PC-Knockoff proceduremay lose the sure screen-
ing property. The phase transition between part (i) and part (ii)
can also be used as a rule of thumb guideline to estimate s in
practice. For a sequence of grid points of α in (0, 1), we find
the largest grid point α∗ such that the PC-Knockoff procedure
selects an empty set. Then, we can roughly estimate ŝ as the
integer part of 1/α∗.
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Remark 5. As a two-step procedure, the power of the PC-
Knockoff is conditioned on the event that the sure screening
property is satisfied in the screening step, that is,E . This together
with the results in Theorem 5 yield that the probability that
the PC-Knockoff procedure does not lose any power is at least
1 − O(s exp{−c4n1−2κ

1 }) − O(n2 exp{−c4n1−2κ
2 }). Empirically,

one may follow the “data recycling” idea proposed in Barber
and Candès (2019) to improve the power of the PC-Knockoff
procedure.

As a byproduct of the PC-Knockoff procedure, the statistic
Ŵj defined in (12) can also be used to measure the marginal
dependence between the response and the jth feature. Given a
threshold δ, we can screen a model based on Ŵj by considering
the following set

ÂW(δ) = {j : Ŵj ≥ δ, 1 ≤ j ≤ p}.
The next theorem states that the screening procedure based
on Ŵj also enjoys the sure screening and rank consistency
properties.

Theorem 6. Suppose X̃ is an exact knockoff copy for X and
mink∈AWj ≥ 2c3n−κ for some positive constants c3 > 0 and
0 < κ < 1/2, then

(i) Pr
(
A ⊆ ÂW(δ)

)
≥ 1 − O

(
s exp{−c4n1−2κ}

)
for δ ≤

c3n−κ .

(ii) Pr
(
min
k∈A

Ŵk − max
k∈Ac

Ŵk > 0
)

≥ 1−O(p exp{−c4n1−2κ}).

Recall that the rank consistency property in Theorem 3
requires a minimum signal gap between active and inactive sets,
that is, mink∈A ωk −maxk∈Ac ωk > 2c3n−κ . However, the rank
consistency result in Theorem 6 only requires aminimum signal
strength of active features and no condition is imposed on the
inactive set. Due to the construction of Wj, signals of inactive
features are canceled out by their knockoff counterparts. As a
result, the rank consistency property holds even when some
inactive features are spuriously correlated with the response. If
we can construct high-quality knockoff features, the screening
procedure based on Ŵj can be more powerful than PC-Screen.

4. Numerical Examples

4.1. Screening Performance

In this subsection, we use simulated examples to assess the finite
sample performance of the proposed projection correlation
based feature screening procedure (PC-Screen) and compare
it with SIS (Fan and Lv 2008), DC-SIS (Li, Zhong, and Zhu
2012), and bias-corrected distance correlation based screening
(bcDC-SIS, Székely and Rizzo 2014). Within each replication,
we rank the features in descending order by the above four
screening criteria and record theminimummodel size that con-
tains all active features. The screening performance is measured
by the 5%, 25%, 50%, 75%, and 95% quantiles of the minimum
model size over 200 replications. Throughout this subsection,
we denote	 = (σij)p×p with σij = 0.5|i−j|. To mimic ultrahigh-
dimensional scenario, we set n = 100 and p = 5000, 10,000 for
each example.

4.1.1. Example 1: Linear and PoissonModels
Consider the linear model Y = xTβ + ε with β = (1T5 , 0Tp−5)

T.
We generate covariates x and ε independently from the follow-
ing four scenarios.

Model 1.a: x ∼ N(0,	) and ε ∼ N(0, 1).
Model 1.b: x ∼ N(0,	) and ε ∼ Cauchy(0, 1).
Model 1.c: u ∼ Cauchy(0, Ip), x = 	1/2u, and ε ∼ N(0, 1).
Model 1.d: u ∼ Cauchy(0, Ip), x = 	1/2u, and ε ∼

Cauchy(0, 1).

In above models, Cauchy(0, Ip) stands for the p-dimensional
standard Cauchy distribution which is heavy-tailed. Hence, in
Models 1.b–1.d, at least one of x and ε is heavy-tailed. We also
consider the following two Poisson regression models

Model 1.e: (Continuous) Y = exp{xTβ} + ε, where ε ∼
N(0, 1).

Model 1.f: (Discrete) Y ∼ Poisson(exp{xTβ}).
Let β = (2T5 , 0Tp−5)

T and we draw x from N(0,	). Model 1.e
is the Poisson regression model with continuous response while
the response in Model 1.f is discrete.

The quantiles of the minimum model size that includes
all five active features are summarized in Table 1. In the lin-
ear benchmark Model 1.a, all four competitors perform well.
For Models 1.b–1.d, the SIS completely fails at the presence
of heavy-tailed features and errors. Both distance correlation-
based methods struggle to maintain a reasonable model size
at 75% and 95% quantiles. In contrast, PC-Screen works rea-
sonably well in all scenarios and outperforms the other three
methods by big margins. Similarly, for the Poisson models 1.e
and 1.f, PC-Screen can recover the true active set with a model
size close to 5 while the other three methods can perform as bad
as random guesses at 75% and 95% quantiles.

4.1.2. Example 2: NonlinearModels
Consider the following four nonlinear data generating models

Model 2.a: Y = 5X1 + 2 sin(πX2/2) + 2X31{X3 > 0} +
2 exp{5X4} + ε.

Model 2.b: Y = 3X1 + 3X3
2 + 3X−1

3 + 51{X4 > 0} + ε.
Model 2.c: Y = 1 − 5(X2 + X3)

3 exp{−5(X1 + X2
4)} + ε.

Model 2.d: Y = 1 − 5(X2 + X3)
−3 exp{1 + 10 sin(πX1/2) +

5X4} + ε.

Models 2.a and 2.b admit additive structure while Models 2.c
and 2.d havemore challenging nonlinear structures. In addition,
we generate x ∼ N(0,	) and ε ∼ N(0, 1). Hence, for each
model above, the active set contains the first four covariates in x.

The quantiles of the minimum model size that includes all
four active features are presented in Table 2. Again, we observe
that PC-Screen significantly outperforms the other three meth-
ods in all scenarios. For Model 2.a, the 50% quantile of the
minimum model size of PC-Screen is exactly four while the
other three methods need much larger model sizes to recover
the active set. For Model 2.b, DC-SIS and bcDC-SIS preform
comparably to PC-Screen at 5% and 25% quantiles but much
worse for other higher quantiles. For Models 2.c and 2.d, PC-
Screen performs reasonably well while the other methods fail to
effectively screen out the inactive features. The 95% quantiles
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Table 1. The quantiles of minimummodel size for linear and Poisson models in Example 1 over 200 replications.

Model 1.a Model 1.b

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 5000

PC-Screen 5.0 5.0 5.0 5.0 8.0 5.0 5.0 6.0 14.0 125.0
DC-SIS 5.0 5.0 5.0 5.0 6.0 5.0 5.0 10.0 81.2 1305.0

bcDC-SIS 5.0 5.0 5.0 5.0 6.0 5.0 5.0 6.0 20.5 231.4
SIS 5.0 5.0 5.0 5.0 5.0 6.0 238.0 1833.0 3878.5 4915.0

p = 10,000

PC-Screen 5.0 5.0 5.0 5.0 7.0 5.0 5.0 8.0 23.0 233.5
DC-SIS 5.0 5.0 5.0 5.0 6.0 5.0 6.8 21.0 204.2 3511.2

bcDC-SIS 5.0 5.0 5.0 5.0 6.0 5.0 5.0 10.0 43.2 718.8
SIS 5.0 5.0 5.0 5.0 5.0 16.0 703.2 3418.5 7432.0 9651.0

Model 1.c Model 1.d

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 5000

PC-Screen 5.0 5.0 6.0 8.0 50.9 5.0 5.0 6.0 10.2 139.9
DC-SIS 5.0 8.0 42.5 143.0 722.5 5.0 16.0 54.0 189.0 701.6

bcDC-SIS 5.0 5.0 6.0 14.2 80.4 5.0 5.0 8.0 21.8 156.8
SIS 5.0 39.0 81.5 374.0 3244.4 5.0 45.8 130.5 523.5 3241.0

p = 10,000

PC-Screen 5.0 5.0 6.0 8.0 92.4 5.0 6.0 6.0 13.0 176.2
DC-SIS 5.0 18.2 78.0 277.5 1567.5 5.0 30.8 113.0 410.0 2036.5

bcDC-SIS 5.0 5.0 7.0 19.2 179.1 5.0 5.0 10.0 27.0 412.6
SIS 6.0 58.8 180.5 773.2 4189.0 8.9 73.0 244.5 959.8 5777.7

Model 1.e Model 1.f

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 5000

PC-Screen 5.0 5.0 5.0 5.0 17.2 5.0 5.0 5.0 5.0 7.0
DC-SIS 90.3 396.0 897.5 1762.5 3787.3 76.3 396.0 893.5 1764.8 3471.8

bcDC-SIS 22.7 82.2 259.5 669.2 2358.7 15.0 87.2 266.5 821.2 2471.5
SIS 178.6 604.8 1137.0 2319.8 4303.4 186.0 606.2 1210.5 2253.0 4261.6

p = 10,000

PC-Screen 5.0 5.0 5.0 6.0 23.0 5.0 5.0 5.0 5.0 12.0
DC-SIS 138.0 788.8 1878.5 3301.0 6831.9 154.2 729.2 1725.5 3424.0 6832.8

bcDC-SIS 45.7 163.5 534.5 1520.5 5415.2 30.0 175.8 509.0 1513.2 5580.0
SIS 462.8 1276.8 2460.0 4164.5 8622.5 512.6 1271.2 2484.5 4281.0 8416.3

NOTE: The true model size is 5.

of SIS, DC-SIS, and bcDC-SIS are almost as large as p. This
indicates, in the worst-case scenario, SIS, DC-SIS, and bcDC-
SIS are hopeless to effectively reduce the dimensionality without
missing any active feature.

4.1.3. Example 3: Multivariate ResponseModels
In this experiment, we investigate the performance of PC-Screen
for multivariate response models. We omit SIS method in this
experiment as it is not applicable to multivariate response prob-
lems. We generate y = (Y1,Y2)T from a bivariate normal
distribution with conditional mean μY|X = (μ1(x),μ2(x))T
and covariance matrix 	Y|X = (σij)2×2, where σ11 = σ22 = 1
and σ12 = σ21 = σ(x). Following the setting in Li, Zhong, and
Zhu (2012), we set θ = (2T4 , 0Tp−4)

T and generate μ1(x), μ2(x),
and σ(x) from the two models below.

Model 3.a: μ1(x) = exp{2(X1 + X2)}, μ2(x) = X3 + X4, and
σ(x) = sin(xTθ).

Model 3.b: μ1(x) = 2 sin(πX1/2)+X3+exp{1+X4},μ2(x) =
X−2
1 + X2, and σ(x) = (exp{xTθ} − 1)/(exp{xTθ} + 1).

The union of the active sets of μ1(x), μ2(x), and σ1(x) con-
tains the first four covariates in x. The simulation results are
summarized in Table 3. Again, the PC-Screenmethod performs
strikingly well compared to the other two methods.

4.2. FDR Control Performance

In this subsection, we use simulated examples to numerically
assess the FDR control as well as sure screening property of the
proposed PC-Knockoff procedure. We refer to Algorithm 1 for
implementation details.

4.2.1. Example 4: FDR Control for Linear and PoissonModels
Consider the following five regression models with ten active
variables.

Model 4.a: Same as Model 1.a except that β = (1s, 0p−s) with
s = 10.

Model 4.b: Same as Model 4.a except that ε ∼ t2, the t
distribution with degrees of freedom 2.
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Table 2. The quantiles of minimummodel size for nonlinear models in Example 2 over 200 replications.

Model 2.a Model 2.b

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 5000

PC-Screen 4.0 4.0 4.0 5.2 19.1 4.0 5.0 9.5 26.5 261.9
DC-SIS 600.0 1880.2 2994.5 4052.2 4701.3 4.0 7.8 61.0 541.5 2310.9

bcDC-SIS 488.4 1480.8 2863.0 3967.8 4855.9 4.0 6.0 21.5 88.0 893.8
SIS 709.0 2065.8 3062.5 4160.0 4869.4 54.0 658.5 2692.5 4213.0 4829.1

p = 10,000

PC-Screen 4.0 4.0 4.0 5.0 31.0 4.0 5.8 13.0 48.8 393.9
DC-SIS 664.0 3162.5 5655.5 7605.8 9490.1 4.0 13.8 86.0 843.2 5529.2

bcDC-SIS 663.4 2605.8 5578.5 7745.2 9208.4 4.0 8.0 24.5 150.5 1403.9
SIS 986.2 4048.2 6068.0 8298.5 9752.6 64.5 1193.8 4488.0 8139.5 9725.6

Model 2.c Model 2.d

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 5000

PC-Screen 4.0 4.0 4.0 6.0 21.3 4.0 5.0 9.5 36.0 169.4
DC-SIS 397.6 1536.8 2750.5 3930.0 4721.8 1639.1 3138.5 3851.5 4434.8 4902.4

bcDC-SIS 196.5 1267.5 2774.0 4236.0 4986.2 605.5 1251.8 2073.5 2972.5 4209.1
SIS 421.2 1615.8 2920.0 4057.0 4761.0 2065.0 3487.8 4083.5 4659.0 4950.3

p = 10,000

PC-Screen 4.0 4.0 4.0 7.2 25.0 4.0 5.0 13.0 62.5 297.4
DC-SIS 668.8 3628.2 6243.5 7920.5 9531.6 3409.6 6380.8 7705.0 8756.5 9790.6

bcDC-SIS 288.2 2006.5 4714.5 7370.2 9869.9 776.4 2567.8 4154.5 5517.8 8251.0
SIS 760.9 3609.5 6155.5 8129.8 9577.1 3333.4 6387.8 8007.5 9252.8 9847.2

NOTE: The true model size is 4.

Table 3. The quantiles of minimummodel size for multivariate response models in Example 3 over 200 replications.

Model 3.a Model 3.b

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

p = 5000

PC-Screen 4.0 4.0 4.0 4.0 6.0 4.0 4.0 6.0 18.0 114.4
DC-SIS 53.0 463.0 1211.0 2349.0 3774.2 641.1 2308.8 3307.0 4257.8 4838.0

bcDC-SIS 24.0 215.5 758.5 1965.0 3999.8 225.2 1270.2 2494.5 3596.8 4709.0

p = 10,000

PC-Screen 4.0 4.0 4.0 4.0 9.0 4.0 4.0 8.0 30.2 302.9
DC-SIS 136.8 978.5 2237.5 4506.0 8106.6 1804.7 4510.5 6445.5 8153.5 9707.6

bcDC-SIS 83.0 546.0 1828.5 4264.5 7711.3 444.4 2217.0 4695.0 7122.5 9076.4

NOTE: The true model size is 4.

Model 4.c: Same as Model 4.a except that x = 0.9x1 + 0.1x2,
where x1 and x2 are independently drawn from x1 ∼ N(0,	)

and x2 ∼ t2(0,	), respectively.
Model 4.d: Same as Model 1.e except that β = 2 · (1s, 0p−s)

with s = 10.
Model 4.e: Same asModel 1.f except that β = 2·(1s, 0p−s)with

s = 10.

In this example, we set n = 1000, p = 5000 and repeat 200
replications for each scenario. In each replication, we randomly
divide the sample into two nonoverlapping subsamples. The
sample size and target dimension in the screening step are set to
be n1 = 250 and d = 100, and the sample size used to construct
knockoff features isn2 = 750. In addition, the covariancematrix
is set to be 	 = (σij) with σij = 0.5|i−j|. The performance of
FDR control is examined under a sequence of specified levels:
α = 0.1, 0.15, 0.20, 0.25, and 0.30.

We summarize the results in Table 4 in which α is the
prespecified FDR level, |Â| is the average number of selected

variables, the column “Xj” represents the probability that the
active variableXj is selected, the column “All” represents the sure
screening probability (i.e., the probability that all active variables
are selected) and the column “F̂DR” is the empirical FDR (i.e.,
the average of empirical FDP).

According to Table 4, the proposed PC-Knockoff procedure
controls the empirical FDR under the prespecified level α for
almost all scenarios. The only exception is in Model 4.c we have
F̂DR = 0.254 at α = 0.25. In Model 4.c, x is drawn from
a mixture of multivariate normal and multivariate t2 distribu-
tions. As a result, the second-order knockoffs may not approx-
imate the exact ones very well. For the other four models, the
second-order knockoffs perform well as features are normally
distributed. Besides FDR control, the PC-Knockoff procedure
maintains the sure screening property reasonably well in all
scenarios. For Models 4.a–4.d, the probabilities of selecting all
active variables are ranging from 91.5% to 99.5% regardless of
the prespecified level α. Even for the more challenging scenario
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Table 4. FDR control for linear and Poisson models in Example 4.

α |Â| X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 All ˆFDR
Model 4.a

0.10 11.245 0.995 0.995 1.000 0.995 0.995 0.995 0.995 0.995 0.995 0.990 0.990 0.097
0.15 11.935 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.990 0.130
0.20 12.860 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.995 0.188
0.25 14.095 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.995 0.244
0.30 15.270 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.995 0.285

Model 4.b

0.10 10.545 0.945 0.945 0.960 0.950 0.955 0.950 0.955 0.955 0.955 0.945 0.915 0.079
0.15 11.350 0.985 0.990 0.995 0.995 0.995 1.000 0.995 1.000 0.990 0.970 0.920 0.100
0.20 12.460 0.990 0.995 1.000 0.995 0.995 1.000 0.995 1.000 1.000 0.985 0.955 0.164
0.25 13.570 0.995 1.000 1.000 0.995 0.995 1.000 0.995 1.000 1.000 0.985 0.965 0.216
0.30 14.705 1.000 1.000 1.000 0.995 0.995 1.000 1.000 1.000 1.000 0.990 0.980 0.260

Model 4.c

0.10 11.165 0.995 0.995 0.995 1.000 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.092
0.15 11.660 1.000 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.995 0.116
0.20 13.075 1.000 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.995 0.193
0.25 14.420 1.000 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.995 0.254
0.30 15.570 1.000 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.995 0.299

Model 4.d

0.10 10.630 0.940 0.945 0.940 0.945 0.955 0.940 0.950 0.940 0.950 0.940 0.925 0.092
0.15 11.660 0.985 0.980 0.995 0.985 0.995 0.990 1.000 1.000 0.990 0.990 0.930 0.122
0.20 12.870 0.990 0.990 1.000 1.000 1.000 0.995 1.000 1.000 0.990 0.990 0.965 0.193
0.25 13.830 0.990 0.995 1.000 1.000 1.000 0.995 1.000 1.000 0.995 0.995 0.975 0.242
0.30 15.020 0.995 0.995 1.000 1.000 1.000 0.995 1.000 1.000 0.995 0.995 0.980 0.288

Model 4.e

0.10 9.790 0.855 0.870 0.860 0.860 0.865 0.870 0.875 0.870 0.865 0.865 0.815 0.086
0.15 11.590 0.955 0.985 0.975 0.965 0.980 0.995 0.980 0.970 0.965 0.970 0.825 0.123
0.20 12.895 0.970 0.990 0.995 0.995 1.000 1.000 0.995 0.990 0.985 0.980 0.935 0.189
0.25 14.025 0.980 0.995 0.995 0.995 1.000 1.000 0.995 0.990 0.990 0.990 0.935 0.244
0.30 15.040 0.985 1.000 0.995 0.995 1.000 1.000 0.995 0.990 0.990 0.990 0.945 0.283

NOTE: The true model size is 10.

Table 5. Comparison between Â1 and Â(Tα).

PC-Screen PC-Knockoff

|Â1| All ˆFDR |Â(Tα)| All ˆFDR
Model 4.a 100 0.995 0.90 12.9 0.995 0.188
Model 4.b 100 0.995 0.90 12.5 0.955 0.164
Model 4.c 100 0.995 0.90 13.0 0.995 0.193
Model 4.d 100 0.995 0.90 12.9 0.965 0.193
Model 4.e 100 0.995 0.90 12.9 0.935 0.189

NOTE: The number active features is s = 10 and prespecified FDR level for PC-
Knockoff is α = 0.2.

Model 4.e, the probability of selecting all active variables simul-
taneously is greater than 93.5%when α ≥ 0.2. Please notice that
this is achieved under very small model sizes (i.e., small |Â|),
thanks to the knockoff features.

To illustrate how the two steps in PC-Knockoffwork together,
we also compare the active set Â1 selected by the screening step
without knockoff features (i.e., selected by PC-Screen) and the
active set Â(Tα) selected by PC-Knockoff. Table 5 summarizes
the average number of selected features |Â|, the sure screening
probability “All” and empirical FDR F̂DR for Models 4.a–4.e.
For the screening step, we conservatively select active features
by including the top d = 100 features. The results show that
Â1 enjoys the sure screening property but has a very high
empirical FDR (F̂DR = 0.90). On the contrary, the active

set Â(Tα) selected by the PC-Knockoff is able to control the
FDR below the prespecified level with only a little sacrifice
of power.

4.3. Supermarket Data

In this subsection, we apply the PC-Knockoff procedure to study
a supermarket dataset (Wang 2009; Chen, Fan, and Li 2018).
The dataset consists of n = 464 observations of daily records
from a supermarket. The responseY is the number of customers
visited the supermarket on that day. The covariates are sale
volumes of p = 6398 products. Due to data privacy, the detailed
product codes are not released in the dataset. Instead, we name
the covariates by their indices, that is, X1, . . . ,X6398. Both the
response and predictors have been standardized to have zero
mean and unit variance. The goal is to screen a parsimonious
set of products whose sale volumes significantly contribute to
the daily number of customers. Meanwhile, we want to control
the FDR at level α = 0.1.

The implementation of PC-Knockoff follows Algorithm 1.
We set n1 = 200 and d = 50 in the screening
step. That is, we randomly choose 200 observations and
use PC-Screen to prescreen 50 features in the screening
step. Then we construct second-order knockoffs for the pre-
screened 50 features using the remaining 264 observations in
the knockoff step. Under the prespecified FDR level α =
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Figure 1. Scatterplots between the response and variables X3, X6, X10, X30, X42, X48, X129, X139, and X176. The blue dots are observations. The black solid curves are fitted
local polynomial regression curves. The gray shaded areas are corresponding confidence regions.

0.1, the PC-Knockoff procedure selects a model of 12 vari-
ables: X3,X6,X10,X11,X30,X42,X48,X71,X129,X139,X176, and
X400. For each selected variable, we draw a scatterplot between
this variable and the response. We observe obvious outliers in
the scatterplots ofX11,X71, andX400.We report this observation
in Figure 2, where red triangles denote potential outliers and
blue dots denote the rest data points. Besides, red dashed curves
and blue solid curves are the fitted local polynomial regression
curves with and without potential outliers, receptively. The gray
shaded areas are the 95% confidence regions. By comparing blue
and red curves, we find the existence of outliers visually alters
the fitted curves. This justifies the PC-Knockoff procedure is
insensitive to the presence of outliers. The scatterplots between
the response and other nine variables (X3,X6,X10,X30,X42,X48,
X129, X139, and X176) are presented in Figure 1, which includes

the local polynomial regression curves with the 95% confidence
regions. Figure 1 indicates that PC-Knockoff can detect various
functional relationships.

This supermarket dataset has also been analyzed by Chen,
Fan, and Li (2018). They first apply DC-SIS to screen vari-
ables and then fit an additive model with selected variables.
They further employ the Wald’s χ2-test with the refitted
cross-validation error variance estimate to determine if the
selected features are significant at a prespecified level. As a
result, Chen, Fan, and Li (2018) selected seven significant vari-
ables X3,X6,X11,X39,X42,X62, and X139. Next, we compare the
in-sample fitting and out-of-sample prediction performance
between the model selected by PC-Knockoff and the one in
Chen, Fan, and Li (2018) through a bootstrap experiment. In
each replication, we randomly split the dataset into a training set



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 13

Figure 2. Scatterplots between the response and variables X11, X71, and X400. The red triangles are the potential outliers and blue dots are the rest observations. The
red dashed curves and blue solid curves are fitted local polynomial regression curves with and without the potential outliers, receptively. The gray shaded areas are
corresponding confidence regions.

Table 6. Samplemean and sample standard deviation of R2 for training set and test
set over 200 bootstrap replications for supermarket data.

Training set Test set

Mean SD Mean SD

PC-Knockoff 0.8681 0.0042 0.8608 0.0281
DC-SIS with χ2-test 0.8534 0.0043 0.8488 0.0276

of size 400 and a test set of size 64. We fit two additive models
with the features selected by the two competitive methods,
respectively. Then, we calculate and record the training and
testing R2’s for the twomodels. We repeat it for 200 replications.
The sample mean and sample standard deviation of R2’s are
reported in Table 6, which show that the model selected by PC-
Knockoff yields higher sample means of R2 for both training set
and test set.

Due to the limited space, we present an additional real appli-
cation to microarray data in Section S.2 of the supplementary
materials.

5. Conclusion

We study the feature screening problems under a general setup.
The proposed PC-Screen method developed in Section 2 is
novel in the sense that it does not impose any regression model
assumption and is robust against possibly heavy-tailed data.
The response variable is also allowed to be multidimensional.
Regarding the theoretical aspect, the asymptotic results devel-
oped in Zhu et al. (2017) do not apply to the “large p small
n problem,” and hence we develop nonasymptotic results for
the empirical projection correlation. The theoretical analysis
shows that the PC-Screen method satisfies sure screening and
rank consistency properties. Numerically, we show PC-Screen
outperforms popular competitors over various data generative
processes. Moreover, this article tackles the FDR control prob-
lem in feature screening. In Section 3, we propose a two-step
procedure named PC-Knockoff to determine the threshold of
active features.With the sample splitting idea, we first screen the
ultrahigh-dimensional features to a moderate model size and
then further select a model with FDR control using a statistic

built upon knockoff features. The PC-Knockoff procedure con-
trols FDR under a prespecified level while maintaining sure
screening property with high probability. In practice, the PC-
Knockoff procedure works well in various scenarios.

Appendix A: Proof of Results in Section 3

In the appendix,we provide the proofs of Theorems 4 and 5 in Section 3.
We relegate the proofs of remaining results as well as some additional
numerical examples to the supplementary materials.

A.1. Proof of Theorem 4

Denote Â1, the set of features that are selected in the screening step.
Throughout this proof, we restrict ourselves to the event E = {A ⊂
Â1}. According to Theorem 2, the probability of E is at least 1 −
O(s exp{−c4n1−2κ

1 }). To simplify the notations, we omit the condition
on E .

Denote byB = A∩Â1 andBc = Ac∩Â1 the intersections between
active and inactive sets with Â1, respectively. Notice that any feature
with |Ŵj| = 0 will not be included in the final selected set Â(Tα).
Hence, without loss of generality, we assume Â1 = {1, 2, . . . , d} and
|Ŵ1| ≥ |Ŵ2| ≥ · · · ≥ |Ŵd| > 0. For ease of presentation, we further
define Ŵd+1 = 0. Then we have

E

[
#{j : j ∈ Bc ∩ Â(Tα)}
#{j : j ∈ Â(Tα)} ∨ 1

]

= E

[
#{j : j ∈ Bc and Ŵj ≥ Tα}

#{j : j ∈ Â(Tα)} ∨ 1

]

= E

[
#{j : j ∈ Bc and Ŵj ≥ Tα}

1 + #{j : j ∈ Bc and Ŵj ≤ −Tα}

·1 + #{j : j ∈ Bc and Ŵj ≤ −Tα}
#{j : j ∈ Â(Tα)} ∨ 1

]

≤ E

[
#{j : j ∈ Bc and Ŵj ≥ Tα}

1 + #{j : j ∈ Bc and Ŵj ≤ −Tα}

·1 + #{j : j ∈ Â1 and Ŵj ≤ −Tα}
#{j : j ∈ Â(Tα)} ∨ 1

]
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≤ E

[
#{j : j ∈ Bc and Ŵj ≥ Tα}

1 + #{j : j ∈ Bc and Ŵj ≤ −Tα} · α

]
. (A.1)

The first inequality holds since {j : j ∈ Bc and Ŵj ≤ −Tα} ⊂ {j :∈
Â1 and Ŵj ≤ −Tα} and the second inequality is due to the definition of
Tα in (13). To find Tα , one can simply try different values of t starting
from the smallest value t = |Ŵd+1| = 0, then move to the second
smallest value t = |Ŵd|, then move to t = |Ŵd−1|, and so on. The
procedure stops as soon as it finds a value of t satisfying (13). In this
process, Tα can be regarded as a stopping time. More rigorously, for
k = d + 1, d, d − 1, . . . , 1, we define

M(k) = #{j : j ∈ Bc and Ŵj ≥ |Ŵk|}
1 + #{j : j ∈ Bc and Ŵj ≤ −|Ŵk|}

= #{j : j ∈ Bc, j ≤ k, Ŵj > 0}
1 + #{j : j ∈ Bc, j ≤ k, Ŵj ≤ 0}

=:
V+(k)

1 + V−(k)
,

where V+(k) = #{j : j ∈ Bc, j ≤ k, Ŵj > 0} and V−(k) = #{j : j ∈
Bc, j ≤ k, Ŵj ≤ 0}. Let Fk be the σ -algebra generated by {V±(d +
1),V±(d), . . . ,V±(k),Zd+1,Zd . . . ,Zk} where Zd+1 = 0 and

Zj =
{
1 if j ∈ B,
0 if j ∈ Bc.

As a result, given Fk, we know whether k is in the active set B or not.
Next we show that the processM(d+1),M(d), . . . ,M(1) is a super-

martingale running backward with respect to the filtration Fd+1 ⊂
Fd ⊂ · · · ⊂ F1. On one hand, if k ∈ B, we have V+(k) = V+(k − 1),
V−(k) = V−(k − 1) and thusM(k) = M(k − 1). On the other hand,
if k ∈ Bc, we have

M(k − 1) = V+(k) − Ik
1 + V−(k) − (1 − Ik)

= V+(k) − Ik
(V−(k) + Ik) ∨ 1

,

where Ik = I{Wk > 0} and I{·} is the indicator function. Let d0 = #{j :
j ∈ Bc} with the inactive set Bc = {j1, j2, . . . , jd0}. From Lemma 1
part (ii), we know that Ij1 , Ij2 . . . , Ijd0 are iid Bernoulli(0.5) random
variables. Thus conditioning on Fk (hence V+(k), V−(k) are known),
we have

Pr(Ik = 1|Fk) = Pr(Ik = 1|V+(k),V−(k)) = V+(k)
V+(k) + V−(k)

.

Thus in the case k ∈ Bc,

E[M(k − 1)|Fk] = V+(k)
V+(k) + V−(k)

· V+(k) − 1
V−(k) + 1

+ V−(k)
V+(k) + V−(k)

· V+(k)
V−(k) ∨ 1

,

=
{ V+(k)
V−(k)+1 , if V−(k) > 0,
V+(k) − 1, if V−(k) = 0,

=
{
M(k), if V−(k) > 0,
M(k) − 1, if V−(k) = 0.

Therefore, E[M(k − 1)|Fk] ≤ M(k), implying that M(k), k = d +
1, . . . , 1 is a super-martingale with respect to {Fk}. By definition, Tα is
a stopping time with respect to the backward filtration {Fk}. According
to the optional stopping theorem for super-martingale, we know

E[M(kTα
)] ≤ E[M(kd+1)] = E

[
#{j : j ∈ Bc,Wj > 0}

1 + #{j : j ∈ Bc,Wj ≤ 0}

]

= E
[

X
1 + d0 − X

]
,

where X = #{j : j ∈ Bc,Wj > 0}. Since X ∼ Binomial(d0, 1/2), we
have

E
[

X
1 + d0 − X

]
=

d0∑
k=1

(
d0
k

) (
1
2

)k (
1
2

)d0−k
· k
1 + d0 − k

=
d0∑
k=1

(
d0

k − 1

)(
1
2

)k (
1
2

)d0−k

=
d0−1∑
k=0

(
d0
k

)(
1
2

)k+1 (
1
2

)d0−k−1

≤1.

Therefore, E[M(kTα
)] ≤ 1. From (A.1), we have

E

[
#{j : j ∈ Bc ∩ Â(Tα)}
#{j : j ∈ Â(Tα)} ∨ 1

]
≤ αE[M(kTα

)] ≤ α.

Since Â(Tα) ⊂ Â1, we have #{j : j ∈ Ac ∩ Â(Tα)} = #{j : j ∈
Bc ∩ Â(Tα)}. Then, we conclude

E

[
#{j : j ∈ Ac ∩ Â(Tα)}
#{j : j ∈ Â(Tα)} ∨ 1

]
≤ α.

A.2. Proof of Theorem 5

Now we restrict ourselves to the subset (X(2),Y(2)). For j ∈ Â1, define
ω̂j = P̂C(X(2)

j ,Y(2))2, ω̃j = P̂C(X̃(2)
j ,Y(2))2, ωj = PC(Xj, y)2, and

ω′
j = PC(X̃j, y)2. Theorem 1 implies that

Pr(|ω̂j − ωj| > c3n−κ
2 ) ≤ 5c1 exp{−c4n1−2κ

2 } and
Pr(|ω̃j − ω′

j| > c3n−κ
2 ) ≤ 5c1 exp{−c4n1−2κ

2 }.
Thus, we have

Pr(|Ŵj − Wj| > 2c3n−κ
2 )

=Pr(|ω̂j − ω̃j − (ωj − ω′
j)| > 2c3n−κ

2 )

≤Pr(|ω̂j − ωj| > c3n−κ
2 ) + Pr(|ω̃j − ω′

j| > c3n−κ
2 )

=O(exp{−c4n1−2κ
2 }).

(A.2)

On the other hand, part (i) in Lemma 1 implies that ωj = ω′
j for all

j ∈ Ac. We have

Pr

(
max
j∈Bc

|Ŵj| ≤ 2c3n−κ
2

)

=Pr

(
max
j∈Bc

|ω̂j − ωj + ω′
j − ω̃j| ≤ 2c3n−κ

2

)

≥Pr

(
max
j∈Bc

|ω̂j − ωj| ≤ c3n−κ
2 and max

j∈Bc
|ω̃j − ωj| ≤ c3n−κ

2

)
≥1 −

∑
j∈Bc

Pr
(
|ω̂j − ωj| ≥ c3n−κ

2

)
−

∑
j∈Bc

Pr
(
|ω̃j − ωj| ≥ c3n−κ

2

)
≥1 − O(n2 exp{−c4n1−2κ

2 }),
(A.3)

where the last equality is implied by Theorem 1 and the assump-
tion n2 > d. Since mink∈B Wk ≥ 4c3n−κ

2 and d <

n2, (A.2) implies that mink∈B Ŵk ≥ 2c4n−κ
2 with probabil-

ity at least 1 − O(n2 exp{−c4n1−2κ
2 }). Together with (A.3), we

know that minj∈B Ŵj > maxj∈Bc |Ŵj| with probability 1 −
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O(n2 exp{−c4n1−2κ
2 }). In other words, with probability at least 1 −

O(n2 exp{−c4n1−2κ
2 }), the active features will be ranked ahead of the

inactive features. Recall that to find the cutoff value Tα , we start from
the smallest value t = |Ŵd+1| = 0, then move to the second smallest
value t = |Ŵd|, then move to t = |Ŵd−1|, and so on. The procedure
stops once it finds a value of t satisfying (13). Restrict on the event E ′ =
{minj∈B Ŵj > maxj∈Bc |Ŵj|}, which holds with probability at least
1−O(n2 exp{−c4n1−2κ

2 }) and let tmin = minj∈B |Ŵj| = minj∈B Ŵj.
If 1/s ≤ α, then

1 + #{j : Ŵj ≤ −tmin}
#{j : Ŵj ≥ tmin}

= 1 + 0
s

≤ α.

From the inequality above, we known this process must stop no later
than t reaches tmin and hence Tα ≤ tmin. As a result,

Â(Tα) = {j : Ŵj ≥ Tα} ⊇ {j : Ŵj ≥ tmin} = A.

If 1/s > α, to satisfy (13), we must have Tα < tmin or Tα >

maxj |Ŵj|. Tα < tmin indicates all active features are selected and
Tα > maxj |Ŵj| leads to an empty Â(Tα), as stated in the second part.
Notice that |Ŵs+k| satisfies the rule (13) is equivalent to that at most
�(k− 1)/(s+1)� of the signs of {Ŵs+1, . . . , Ŵs+k} are negative. Let ak
be the probability that |Ŵs+k| satisfies (13) and bk be the probability
that the process stops at |Ŵs+k| for k = 1, . . . , d − s. Let a0 = 0, we
have

ak =
�(k−1)/(s+1)�∑

i=0

(
k
i

) (
1
2

)k
, bk = ak(1 − ak−1 − · · · − a0).

It is easy to verify that for s > 2,

Pr(A ⊂ Â(Tα)|E ′) =
d−s∑
k=1

bk =
d−s∑
k=1

ak(1 − ak−1 − · · · − a0)

≤
∞∑
k=1

ak(1 − ak−1 − · · · − a0) = C(s) < 1,

where 0 < C(s) < 1 is some constant only depending on s. This
completes the proof.

Supplementary Materials

The supplementary pdf file provides additional technical proofs and
numerical results. In Section S.1, we present the proofs of theoretical results
in Section 2 as well as Theorem 6 in Section 3. In Section S.2, we report one
additional simulated example and a real data application to complement the
numerical analysis in the main document. The supplementary python file
provides the codes of main functions for the article.
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