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Recent works have provided evidence that an axial anomaly can arise in Weyl semimetals. If
this is the case, then the electromagnetic response of Weyl semimetals should be governed by
the equations of axion electrodynamics. These equations capture both the chiral magnetic and
anomalous Hall effects in the limit of linear response, while at higher orders their solutions can
provide detectable electromagnetic signatures of the anomaly. In this work, we consider three
versions of axion electrodynamics that have been proposed in the Weyl semimetal literature. These
versions differ in the form of the chiral magnetic term and in whether or not the axion is treated
as a dynamical field. In each case, we look for solutions to these equations for simple sample
geometries subject to applied external fields. We find that in the case of a linear chiral magnetic
term generated by a non-dynamical axion, self-consistent solutions can generally be obtained. In
this case, the magnetic field inside of the Weyl semimetal can be magnified significantly, providing
a testable signature for experiments. Self-consistent solutions can also be obtained for dynamical
axions, but only in cases where the chiral magnetic term vanishes identically. Finally, for a nonlinear
form of the chiral magnetic term frequently considered in the literature, we find that there are no
self-consistent solutions aside from a few special cases.

I. INTRODUCTION

Weyl semimetals (WSMs) have garnered substantial
interest in recent years due to their topological proper-
ties and unusual transport phenomena [1–3]. While they
were first theorized long ago [4, 5], only in recent years
have explicit candidate materials been put forward and
confirmed [6–9]. They were first predicted theoretically
to arise in pyrochlore iridates [10, 11], and their exis-
tence was later confirmed experimentally in compounds
such as TaAs and NbAs [12–17]. More recently, addi-
tional WSMs have been discovered in ferromagnetic ma-
terials [18–20]. The low-energy quasiparticle excitations
in WSMs are Weyl fermions, which leads to the possi-
bility of observing interesting phenomena such as the
chiral magnetic effect [21]. These Weyl fermion quasi-
particles exist near band touching points (Weyl nodes),
which carry chiral topological charges. The linearly dis-
persing bands in the vicinity of Weyl nodes, as well as
the Fermi arc states connecting node projections on the
WSM surface [10, 22, 23], have been observed experimen-
tally through angle-resolved photoemission spectroscopy
(ARPES) [11–17]. When the Weyl nodes are close to
the Fermi energy, it has been reported that electrons can
achieve ultrahigh mobility [24]. Other effects such as the
Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts can
also be produced in WSMs [25]. While the GH shift is
valley-independent, the IF shift is valley-dependent in
WSMs due to the opposite chiral charge of the Weyl
nodes in momentum space. This provides an alterna-
tive way to detect Weyl node properties. Another pre-
diction of WSMs that has drawn much attention is the
axial anomaly, which can be understood to arise from
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the pairing of opposite chiral charges [26–32]. Effects of
axial anomalies have previously been seen in high energy
physics [33, 34] and in superfluids [35].

In WSMs, the axial anomaly produces two topolog-
ical effects related to the Berry curvature of the Weyl
nodes: the chiral magnetic effect (CME) and the anoma-
lous Hall effect (AHE) [21, 27–32, 36]. In the CME, an
external magnetic field produces a current in the same
direction as the field. This effect is expected to occur in
WSMs because the left and right chiral Weyl fermions
become separated in energy in the presence of the ex-
ternal field, inducing a current referred to as the chiral
magnetic current. To observe the CME experimentally,
transport signatures such as a negative longitudinal mag-
netoresistance have been proposed and measured [37–39].
However other effects, including giant magnetoresistance
and large-angle scattering, can also lead to negative longi-
tudinal magnetoresistance [39–45], making it difficult to
confirm the CME in such experiments. In the AHE, an
antisymmetric off-diagonal resistivity is produced from
a magnetization in the sample rather than an external
magnetic field [46, 47]. An applied electric field then gen-
erates current in a transverse direction. In general, the
AHE can be rooted in the material itself (intrinsic) or
arise from impurity scattering (extrinsic). In WSMs, the
separation of Weyl node pairs in momentum space, com-
bined with an axial anomaly, would cause a purely intrin-
sic AHE [36]. Like with negative longitudinal magnetore-
sistance, transport measurements showing an AHE also
do not provide a unique indicator of the axial anomaly, as
this effect can occur in any material that has a nonzero
integral of Berry curvature [46]. Thus, other experimen-
tal signatures beyond transport measurements would be
helpful in confirming the CME and the axial anomaly in
WSMs.

Axion electrodynamics provides an alternative route
for verifying the existence of the axial anomaly. If one in-
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tegrates out the low-energy Weyl fermions and is left with
only the electric and magnetic fields, one arrives at an ef-
fective description known as axion electrodynamics. In
the literature, several approaches have been taken to de-
rive the equations of axion electrodynamics for WSMs. In
the first, one starts with a microscopic model of a WSM
[22] and integrates out the electrons. This approach
yields a non-dynamical axion field and produces a linear
chiral magnetic term in Ampère’s law [27, 28, 31]. Here,
we use the term “non-dynamical” to refer to fields that
have a fixed form, while we use “dynamical” to refer to
fields whose form is determined by solving the equations
of axion electrodynamics. It was subsequently found that
the CME can occur in this case if time-dependent fields
are applied to the WSM [27, 29]. In a second approach,
one incorporates axial anomaly effects in a semiclassi-
cal Boltzmann equation [32]. This leads to CME and
AHE currents that can then be included in Maxwell’s
equations to produce a different form of axion electrody-
namics. Here, the CME term is nonlinear in the fields
and proportional to the inner product of the electric and

magnetic fields ( ~E · ~B) [21, 39]. In this case, a chiral
current can be generated by applying time-independent
external fields. Experimental observations of negative
longitudinal magnetoresistance have been explained us-
ing this version of the CME term [37, 38]. In the case
of parallel electric and magnetic fields, similar behav-
ior can also arise from a one-dimensional axial anomaly
that generically emerges in three-dimensional metals (not
necessarily WSMs) if the magnetic field is sufficiently
strong [42]. Finally, a third approach considers chiral
symmetry breaking via the formation of charge density
waves in WSMs. The resulting axion insulator phase is
characterized by an order parameter whose phase is a
dynamical axion field [48]. This axion couples to the
electric and magnetic fields through a topological θ term
in the Maxwell action. This action yields axion electro-
dynamics equations that are similar to those of the first
approach described above, except that now the axion is
an independent dynamical field with its own equation
of motion. In both the first and third approaches, the
new term in the Maxwell action can also be obtained by
performing a chiral transformation on the path integral
measure, following the standard anomaly derivation first
introduced by Fujikawa [28, 31, 49].

Regardless of which approach one takes to derive axion
electrodynamics, one has a modified form of Maxwell’s
equations that govern the behavior of electric and mag-
netic fields in the presence of an axial anomaly. Their
self-consistent solutions in the presence of applied exter-
nal fields can be used to guide experiments that look
for signatures of the axial anomaly. This constitutes an
alternative strategy that is complementary to transport-
based experiments. A first pass at this approach was
taken by a subset of the authors in Ref. [50]. However,
this earlier work neglected the AHE term altogether and
did not consider dynamical axions. A full analysis of
the self-consistency of the different versions of axion elec-

trodynamics that have been put forward in the context
of WSMs has yet to be carried out. It is not yet clear
how the different versions relate to one another or which
provides the most accurate description of a given exper-
imental setup. These questions could also be addressed
through experimental observation, provided the solutions
to these equations are well understood.

In this work, we address these open questions by at-
tempting to solve all three versions of axion electrody-
namics self-consistently for simple sample geometries and
various external field configurations. In the case of ver-
sion 1 (non-dynamical axion, linear CME term), we solve
the equations for a semi-infinite WSM slab in the pres-
ence of time-dependent, external electric and magnetic
fields. We find that self-consistent solutions can gen-
erally be obtained, and that the magnetic field inside
the slab can be substantially enhanced depending on the
Weyl node separation and on the frequency of the applied
fields. This provides a potential experimental diagnostic
of the axial anomaly. For version 2 (non-dynamical ax-
ion, nonlinear CME term), we find that for a semi-infinite
slab immersed in time-independent fields, self-consistent
solutions generically do not exist, aside from a few spe-
cial cases. We also find that while self-consistent solu-
tions can be obtained in the case of an infinite WSM
wire, the solutions always exhibit unphysical divergences
along the axis of the wire. Finally, in the case of version 3
(dynamical axions, linear CME term), we show that self-
consistent solutions can be obtained, but only when the
CME term vanishes identically. Otherwise, the solutions
violate energy conservation.

The paper is organized as follows. In Sec. II, we solve
the axion electrodynamics equations for non-dynamical
axions in a semi-infinite slab subject to time-dependent
fields. In Sec. III, we consider non-dynamical axions in a
semi-infinite slab, an infinite slab, and an infinite cylin-
der, all subject to time-independent fields. In Sec. IV,
we generalize to the case of dynamical axions in a semi-
infinite slab. We conclude in Sec. V. Several appendices
contain details of the calculations summarized in Secs. II-
IV.

Before moving on to our explicit solutions, we first
note that throughout this work, we neglect the role of
Fermi arc surface states in our analysis. One reason for
this is because most of the sample geometries we focus
on, namely semi-infinite slabs with the inter-Weyl node
axis oriented perpendicular to the surface and cylindri-
cally symmetric infinite wires, do not exhibit Fermi arcs.
However, even in cases where Fermi arcs could arise, such
as in the case of semi-infinite slabs with non-orthogonal
inter-Weyl node axes, we do not expect them to signifi-
cantly impact our results because their effect should be
restricted to a small region close to the surface. We also
note that, to our knowledge, axion electrodynamics equa-
tions that incorporate Fermi arc effects have not yet been
derived.
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II. NON-DYNAMICAL AXIONS AND LINEAR
CHIRAL MAGNETIC TERM

The axial anomaly was first proposed theoretically in
the context of high-energy physics [33, 34]. Its presence
leads to an additional term Lθ1 in the Lagrangian density:

L0 = − 1

4µ0
FαβFαβ −AαJα, (1)

Lθ1 = −κ
4
θFαβ

1

2
εαβγλFγλ =

κ

c
θ ~E · ~B, (2)

where L0 is the Lagrangian density for the original elec-
tromagnetic fields, and Lθ1 is the term that describes
the axion-electromagnetic interaction. Aα is the vector
potential, while Jα is the source current. The signature
of the metric ηµν is (1,−1,−1,−1), the field strength
is Fαβ = ∂αAβ − ∂βAα, µ0 is the vacuum permeability,
c is the speed of light, and κ is the coupling constant
between the axion field θ and the electromagnetic field.

We set κ = e2c
2π2~2 following Ref. [28]. The corresponding

Euler-Lagrange equations yield the first version of axion
electrodynamics we consider in this work [51, 52]:

~∇ · ~E =
ρ

ε0
− µ0cκ~∇θ · ~B, (3)

~∇× ~E = −∂
~B

∂t
, (4)

~∇ · ~B = 0, (5)

~∇× ~B =
1

c2
∂ ~E

∂t
+ µ0

~j +
µ0κ

c
(∂tθ ~B + ~∇θ× ~E), (6)

where c2 = 1
µ0ε0

. In WSMs, effective axions form due

to linear band crossings, creating Weyl fermions with
definite chiralities. Ref. [28] obtained the following ex-
pression for the axion field θ for WSMs using Fujikawa’s
method [49]:

θ(~r, t) = ∆~p · ~r −∆εt, (7)

where ∆~p and ∆ε are the momentum and energy separa-
tion of a pair of Weyl nodes, respectively. Here, we have
defined the coordinates (~r, t) = (x, y, z, t). Although the
axion field θ(~r, t) itself depends on the choice of coordi-
nate origin, this choice does not affect the solutions of the
axion electrodynamics equations since only derivatives of
θ(~r, t) enter into these equations. As shown in Ref. [53],
the AHE term ∆~p · ~r can lead to interesting electromag-
netic responses such as Kerr and Faraday rotations. For
simplicity, here we focus on materials with a single pair
of Weyl nodes separated in both momentum and energy,
as can occur in WSMs with broken time-reversal symme-
try [18–20]. Multiple Weyl node pairs near the Fermi sur-
face would lead to a linear superposition of θ-dependent
terms (one term for each node pair) in Eqs. (3) and (6),
which would effectively modify the coefficients multiply-
ing the electromagnetic fields in these terms but other-
wise leave the axion equations intact. In order for the

CME term—the term proportional to ∂tθ in Eq. (6)—to
be present in these equations, the electric and magnetic
fields have to be time-dependent [27, 29]. Using the same

coordinates defined above, we set ~E(~r, t) = eiωt ~E(~r),
~B(~r, t) = eiωt ~B(~r). Hence the system is driven by a sin-
gle frequency, and the spatial part can be separated from
the time-dependent part for the electromagnetic fields.
For the current ~j, we implement Ohm’s law,

~j = σ0
~E. (8)

In principle, the conductivity σ is frequency and temper-
ature dependent (calculated by Ref. [54]):

σ(ω) =
1

iω + 1
τ

× v2
F e

2g

3π2(~vF )3

∫ ∞
0

dεε2(−∂f
0(ε, T )

∂ε
).

(9)

Here e, vF , g and τ are the electron charge, Fermi ve-
locity, light-matter coupling and scattering time, respec-
tively. f0(ε, T ) is the Fermi-Dirac distribution. The in-
tegral above leads to a constant decided by the temper-
ature. Considering the limit ω → 0 and T → 0, denoting
σ0 = σ(0), we have (see App. A)

σ0 =
e2gτk2

F vF
3π2~3

, (10)

whereas the carrier density is n = gk3
F /6π. Thus we have

the relation σ0 ∝ n
2
3 . In WSMs, n is typically very low

since kF is small around Weyl nodes. When this happens,
the Ohmic conductivity can be ignored, and we can set
~j = 0 in the axion equations. If n is increased sufficiently
(e.g., through doping), at some point the conductivity
can no longer be ignored, and the current cannot be set
to zero. Below, we consider each of these two cases sep-
arately. In both cases, we consider a semi-infinite slab
where the WSM fills the half-space z ≥ 0. By symmetry,
the fields can only depend on the z coordinate. Further-
more, the relaxation time τ in Eq. (10) is related to the
Weyl separations [39] since the scattering happens be-
tween the Weyl nodes. However, this does not affect the
fact that σ0 is a constant spatially.

A. Zero current case: ~j = 0

We first consider the case where the electron density
is very low, so that σ0 is small, and we can set ~j = 0.
We show in Appendix B 1 that Eqs. (3)-(6) reduce to the
following set of equations governing the fields inside the
WSM:

∂2
zEy +

ω2

c2
Ey −

µ0κ

c
∆ε∂zEx − iω

µ0κ

c
∆pzEx

− µ2
0κ

2∆px(∆pxEy −∆pyEx) = 0, (11)

∂2
zEx +

ω2

c2
Ex +

µ0κ

c
∆ε∂zEy + iω

µ0κ

c
∆pzEy

+ µ2
0κ

2∆py(∆pxEy −∆pyEx) = 0. (12)
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FIG. 1. (a) Electric field components and (b) magnetic field components as a function of distance z inside a semi-infinite slab for
t = 0. Here we set ∆ε = 6 meV, ∆pzc = 9.873 × 104 meV, ω = 3.0 GHz. The boundary conditions are Ex(0) = Ey(0) = Eout,

∂zEx(0) = ∂zEy(0) = 0 and Bout = Eout

c
. The parameters in Eq. (15) are d1 = −4831.62 − 70.95i, d2 = −4761.73i,

d3 = 4903.63i and d4 = 4831.62− 70.95i in units of m−1. Here d4 is the only root with a positive real value, and this gives rise
to the exponential growth of the fields with z in this example.

Ez = µ0κc
i

ω
(∆pxEy −∆pyEx). (13)

Bz = 0, By =
i

ω
∂zEx, Bx = − i

ω
∂zEy. (14)

The general solutions to Eqs. (11) and (12) have the form

Ey =

4∑
i=1

aie
diz, Ex =

4∑
i=1

bie
diz, (15)

where the parameters di depend on the frequency ω of
the applied fields and on the energy and momentum sep-
arations of the Weyl nodes, ∆ε and ∆~p. The di are the
roots of a characteristic equation whose explicit form is
given in Appendix B 1. The remaining 8 coefficients, ai
and bi, are determined by Eqs. (11) and (12) and by the
boundary conditions. We show in the Appendix that the
fields are always continuous at the surface of the WSM.
In general, we find self-consistent solutions for any choice
of the applied external fields.

As an explicit example, consider the case where the
Weyl node momentum separation is in the z direction,
i.e., ∆px = ∆py = 0 and ∆pz 6= 0. In this case, the
characteristic equation is (see Appendix B 1):

d4 + (2
ω2

c2
+ ∆ε2µ

2
0κ

2

c2
)d2 + 2iω∆ε

µ2
0κ

2

c2
∆pzd

+
ω4

c4
− µ2

0κ
2ω2

c2
∆p2

z = 0. (16)

The energy and momentum separations of Weyl nodes
are typically on the order of ∆ε ∼ 1 meV to 20 meV [16]
and ∆k ∼ 0.05 Å−1 [8, 16, 55], respectively. Note that
the energy separation can arise as a consequence of break-
ing both inversion and time-reversal symmetry, as dis-

cussed theoretically in Ref. [22, 56, 57]. This can oc-
cur for example in noncentrosymmetric and ferromag-
netic WSMs, as predicted by first-principles studies [58].
Alternatively, one can start with a noncentrosymmetric
compound and apply a static magnetic field to break
time-reversal symmetry [59]. Based on these possibili-
ties, we make the following parameter choices: ∆ε = 6
meV, ∆pzc = ~∆kzc = 9.873 × 104 meV, and we set the
frequency to ω = 3.0 GHz. We take the fields outside the
WSM (z < 0) to be

Ex = Ey = Eout cos
ω

c
z, (17)

Bx = −By =
i

c
Eout sin

ω

c
z. (18)

This choice then implies the following boundary condi-
tions for the fields inside the slab: Ex(0) = Ey(0) = Eout

and ∂zEx(0) = ∂zEy(0) = 0. The resulting electric and
magnetic fields inside the WSM for these parameters at
t = 0 are shown in Fig. 1. We see that both fields increase
quickly with depth z into the slab, providing a detectable
signature of the anomaly. The fields also oscillate, but
the oscillation period is very long, approximately 89 mm
for the parameters chosen in this example. This value
is determined by the di, the precise values of which are
quoted in the figure caption. It is also evident in Fig. 1(b)
that the magnetic field grows particularly fast with in-
creasing z, reaching an amplitude that is approximately
1.5×104 larger than the magnetic field outside the WSM
at a depth of z = 1 mm. This rapid growth must ulti-
mately saturate at a maximal value in a real sample,
perhaps due to impurity scattering or other effects not
accounted for here.

The magnification of the magnetic field inside the slab
is due to the fact that the momentum separation between
the Weyl nodes is much larger than their energy separa-
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FIG. 2. (a) Electric field components and (b) magnetic field components as a function of distance z inside a semi-infinite slab
for t = 0. Here we set ∆ε = 6 meV, ∆pzc = 98.73 meV, ω = 3.0 GHz. The boundary conditions are Ex(0) = Ey(0) = Eout,

∂zEx(0) = ∂zEy(0) = 0 and Bout = Eout

c
. The parameters in Eq. (15) are d1 = −134.966 − 70.95i, d2 = −97.8207i,

d3 = 239.721i and d4 = 134.966 − 70.95i in units of m−1. Here, d4 is the only root with a positive real value, and this causes
the slow growth of the fields with increasing z.

tion. If we reduce the momentum separation by a factor
of 103 (∆pzc = 98.73 meV), which is still significantly
larger than the energy separation (keeping other param-
eters fixed), we obtain the results in Fig. 2 at t = 0. Here
we see that the amplitude of the magnetic field still in-
creases with z, but now only reaches about 2.5 times the
applied field at z = 1 mm. Note that the momentum
separation between Weyl nodes is in principle adjustable
using an applied magnetic field [59, 60], making it pos-
sible to probe this transition in behavior. We generally
find exponentially growing solutions like those shown in
Figs. 1 and 2 when the frequency ω is higher than 105

Hz. However, when ∆pzc is on the order of the energy
separation, for example ∆pzc = 9.873 meV, the field am-
plitudes inside can be 3 or more orders of magnitude
smaller than those of the applied fields (E ∼ 1.5Eout

and B ∼ 0.0004Bout) and the solutions become purely
oscillatory with strictly imaginary di rather than expo-
nentially growing. In this regime, the oscillation period
is in the range 10 - 200 mm. In addition to decreasing the
Weyl node momentum separation, one can also lower the
frequency of the applied fields to get oscillatory solutions.
When ω . 105 Hz, all the di become purely imaginary
even if ∆pz remains large (e.g, ∆pzc = 9.873×104 meV),
in which case the fields inside are purely oscillatory. In
this case, the maximal amplitudes of the fields inside are
comparable to those outside the WSM (E ∼ 1.5Eout and
B ∼ 4Bout). The oscillation period remains in the range
of 10 - 200 mm in this case.

One might worry about whether energy is conserved
in our solutions in light of the substantial magnifica-
tion of the magnetic field inside the slab that occurs for
ω & 105 Hz. On each side of the boundary, the energy
and momentum are conserved if the energy-momentum
tensor obeys the equations ∂µT

µν = 0. This is auto-

matically satisfied if Tµν is derived from the Lagrangian
and if we assume the energy density is continuous across
the boundary. We show the explicit form of the energy-
momentum tensor in Sec. IV, where we find that the
energy density is continuous across the boundary pro-
vided we choose the right boundary conditions for the
axion field. With this consideration in mind, we con-
clude that this version of axion electrodynamics (with a
fixed background axion field and a linear chiral magnetic
term) generally has self-consistent solutions.

B. Non-zero current case: ~j 6= 0

Next, we consider the case where the electron density
is sufficiently large that the Ohmic current cannot be
neglected. Adapting the same form for the electromag-

netic fields as before, ~E(~r, t) = eiωt ~E(~r) and ~B(~r, t) =

eiωt ~B(~r), and using Ohm’s law ~j = σ0
~E, we can write

the current in a separated form as well: ~j(~r, t) = eiωt~j(~r).
When the conductivity is nonzero, the charge density ρ
must also be nonzero unless ∆px = ∆px = 0, as we show
in Appendix B 2.

For simplicity, we consider the solutions under the as-
sumption ∆px = ∆py = 0, as in the previous subsection.
In this case we have Ez = 0 (see Appendix B 2). We
also show in Appendix B 2 that Eqs. (3)-(6) reduce to
the following set of equations governing the fields inside
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the WSM:

∂2
zEy +

ω2

c2
Ey − iµ0σ0ωEy

−µ0κ

c
∆ε∂zEx − iω

µ0κ

c
∆pzEx = 0, (19)

∂2
zEx +

ω2

c2
Ex − iµ0σ0ωEx

+
µ0κ

c
∆ε∂zEy + iω

µ0κ

c
∆pzEy = 0. (20)

Similarly to before, the operator equation becomes

d4 + [2(
ω2

c2
− iµ0σ0ω) + ∆ε2µ

2
0κ

2

c2
]d2 + 2iω∆ε

µ2
0κ

2

c2
∆pzd

+ (
ω2

c2
− iµ0σ0ω)2 − µ2

0κ
2ω2

c2
∆p2

z = 0. (21)

Here we make the same parameter choices as in the
previous subsection: ∆ε = 6 meV, ∆pzc = ~∆kzc =
9.873 × 104 meV, and we set the frequency to ω = 3.0
GHz. We take the fields outside the WSM (z < 0) to be

Ex = Ey = Eout cos
ω

c
z, (22)

Bx = −By =
i

c
Eout sin

ω

c
z. (23)

This choice then implies the following boundary condi-
tions for the fields inside the slab: Ex(0) = Ey(0) = Eout

and ∂zEx(0) = ∂zEy(0) = 0. The typical conductivity
of a WSM is smaller than that of a metal. For concrete-
ness, we set σ0 = 105 S/m, corresponding to the bulk
conductivity of the WSM NbAs [61]. We also consider a
conductivity that is two orders of magnitude smaller, 103

S/m, to better understand how the conductivity impacts
the behavior of the electromagnetic fields. The result-
ing electric and magnetic fields inside the WSM for these
parameters at t = 0 are shown in Figs. 3 and 4 with
σ0 = 105 S/m and σ0 = 103 S/m, respectively. In both

figures, we choose the same parameters as in the ~j = 0
case considered in the previous subsection, and we keep
the outside fields the same as well.

In Fig. 3, the electric and magnetic fields are both en-
hanced much more than in the case without the Ohmic
current. We find that there are two solutions to Eq. (21)
that have a positive real part: d3 = 7124.17 + 7121.41i
and d4 = 26516.2 + 26519.6i in units of m−1. The real
part of d4 is much larger than before (see the caption of
Fig. 1), and it dominates the growth of the fields. This
means that in a real WSM system with a large enough
Ohmic conductivity, the magnification of the electromag-
netic fields should be more easily detected. Again, we
expect that this effect will be weakened in a real sample
due to scattering or other effects not accounted for here.

In Fig. 4, the electric and magnetic fields are of a sim-
ilar magnitude compared to the case of Fig. 1. This
means that for low conductivity, the main contribution
to the magnification of the fields comes from the non-
Ohmic terms. As one can see from the solutions in

Fig. 4, although d3 = 785.543 + 4874.93i and d4 =
4797.94 + 711.514i (in units of m−1) both have positive
real parts, the main contribution is from d4, which is of
similar magnitude as in Fig. 1. Therefore, it is legitimate
to neglect the Ohmic term and set ~j = 0.

Before concluding this section, we comment on possi-
ble methods to experimentally detect the field magnifi-
cation effect. To this end, it may be advisable to reach
beyond magnetotransport and quantum transport mea-
surements. Instead, it may be more suitable to consider
measurements of the magnetic permeability and electri-
cal permittivity for verification of the effects described
above. The magnetic permeability quantifies the mag-
netic field inside the material upon application of an ex-
ternal magnetic field, and experiments can be performed
in various sample sizes and applied field configurations.
Similarly, the electrical permittivity quantifies the elec-
tric field inside the material upon application of an exter-
nal electric field, and measurements can likewise be per-
formed for various configurations and sample sizes. The
effect of an applied external magnetic field on the electric
field inside the material, known as the magnetodielectric
effect, and the electric field-induced magnetic permeabil-
ity are both studied in magnetoelectric materials, and
should be considered. Given the importance of boundary
conditions and sample geometry, the measured perme-
ability, permittivity, magnetodielectric coefficient, and
electric field-induced magnetic permeability have to be
considered as tensors. Further, the frequency dependence
of the tensors can be studied following approaches simi-
lar to dielectric spectroscopy. The frequency-dependence
should include detection of higher harmonics to ascertain
the possible existence of nonlinear behavior.

III. NON-DYNAMICAL AXIONS AND
NONLINEAR CHIRAL MAGNETIC TERM

In this section we keep the axion non-dynamical, but
we consider a different, nonlinear form of the chiral mag-
netic term. This form was derived from kinetic theory in
Ref. [32]. In this approach, one starts from a Boltzmann
equation that includes contributions due to a nonzero
Berry curvature. These contributions give rise to a chi-
ral magnetic term and an anomalous Hall term. This
is the case even for a finite but small chemical poten-
tial, such that the system is in a Weyl metal rather than
semimetal phase. In this approach, the chiral chemical
potential is now proportional to the inner product of the

electric and magnetic fields, ~E · ~B, while the anomalous
Hall term is the same as in Eq. (6). As we discussed in
the previous section, the Ohmic term can be ignored in
the limit of low conductivity. Here, we assume this is the
case and set ~j = 0 throughout this section. We consider
the case of a nonzero source current in Appendix C. The
conclusions of this section are largely unaffected by the
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FIG. 3. (a) Electric field components and (b) magnetic field components as a function of distance z inside a semi-infinite slab
for t = 0. Here we set ∆ε = 6 meV, ∆pzc = 9.873 × 104 meV, ω = 3.0 GHz and σ0 = 105 S/m. The boundary conditions are

Ex(0) = Ey(0) = Eout, ∂zEx(0) = ∂zEy(0) = 0 and Bout = Eout

c
. The parameters in Eq. (15) are d1 = −26521.3 − 26519.6i,

d2 = −7119.09− 7121.41i, d3 = 7124.17 + 7121.41i and d4 = 26516.2 + 26519.6i in units of m−1. Here d3 and d4 are both roots
with a positive real value, and this gives rise to the exponential growth of the fields with z in this example. We see that the
field magnification is strongly enhanced for high conductivity (compare to Fig. 1).
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FIG. 4. (a) Electric field components and (b) magnetic field components as a function of distance z inside a semi-infinite slab
for t = 0. Here we set ∆ε = 6 meV, ∆pzc = 9.873 × 104 meV, ω = 3.0 GHz and σ0 = 103 S/m. The boundary conditions are

Ex(0) = Ey(0) = Eout, ∂zEx(0) = ∂zEy(0) = 0 and Bout = Eout

c
. The parameters in Eq. (15) are d1 = −4797.92 − 859.31i,

d2 = −785.564− 4727.14i, d3 = 785.543 + 4874.93i and d4 = 4797.94 + 711.514i in units of m−1. Here d3 and d4 are both roots
with a positive real value, and this gives rise to the exponential growth of the fields with z in this example. The magnification
of the fields is comparable to that evident in Fig. 1, indicating that for this lower value of the conductivity, the Ohmic term
does not contribute significantly to the magnification effect.

Ohmic term. The modified Maxwell’s equations are then

~∇ · ~E = −µ0cκ∆~p · ~B, (24)

~∇× ~E = 0, (25)

~∇ · ~B = 0, (26)

~∇× ~B = µ0σa( ~E · ~B) ~B +
µ0κ

c
∆~p× ~E, (27)

where σa is a constant, and we have again set the source
charges and currents to zero: ρ = 0 = ~j. We see that

now the chiral magnetic term in Eq. (27) is nonlinear in ~E

and ~B. Unlike the linear chiral magnetic term in Eq. (6),
a chiral magnetic current is expected to arise even for
stationary electric and magnetic fields in this case. In
Eqs. (24)-(27), we have already assumed that the fields
are time-independent, since this is the case we focus on
here. Here, we again assume a single Weyl node pair,
although a similar analysis applies for multiple pairs, in
which case the anomaly-induced terms in Eqs. (24) and
(27) receive contributions from each pair. These contri-
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butions add linearly [32], and so effectively this amounts
to a simple modification of the coefficients multiplying
the electromagnetic fields in these equations. We exam-
ine three different geometries: a semi-infinite slab as in
the previous section, a case in which the WSM occupies
all of space, and a case in which the WSM is an infinite
cylindrical wire. In each case, we find that self-consistent
solutions do not exist for arbitrary choices of the applied
external fields, although solutions can be found in special
cases.

A. Semi-infinite slab

We first consider a semi-infinite slab of WSM occupy-
ing z ≥ 0 and where z < 0 is vacuum. If we consider the
case in which the fields outside the slab (z < 0) are in the

xy plane, ~E = Eoutx x̂ + Eouty ŷ and ~B = Boutx x̂ + Bouty ŷ,

where Eoutx and Eouty are constants, then we immediately
run into a problem. From Eq. (27) we see that the num-
ber of equations is greater than the number of variables,
which leads to a constraint on the fields outside the WSM
(see Appendix C 1 for details):

∆pxE
out
y =∆pyE

out
x . (28)

This imposes a strong constraint on the angle between
the electric field outside the WSM and the orientation of
the WSM crystal lattice, since the latter determines the
orientation of the momentum separation, ∆~p, between
Weyl nodes. Once we choose the directions of the out-
side fields, Eq. (28) either forces ∆~p to point in a par-
ticular direction in the xy plane, or the electric field in
the xy plane is forced to be zero. There thus appears to
be a fundamental inconsistency in this version of axion
electrodynamics, at least as it applies to the semi-infinite
slab geometry.

Let us leave this inconsistency aside for the moment
and assume that ∆px = ∆py = 0, in which case the issue
is avoided. We then obtain the following equations for
the fields inside the WSM:

Ex = const. = Eoutx , Ey = const. = Eouty , (29)

Bz = 0, ∂zEz = 0, (30)

∂zBy = −µ0σa(Eoutx Bx + Eouty By)Bx +
µ0κ

c
∆pzE

out
y ,

(31)

∂zBx = µ0σa(Eoutx Bx + Eouty By)By +
µ0κ

c
∆pzE

out
x .

(32)

Here, we have used that the fields are continuous across
the surface, which is shown in Appendix C 1. Since we are
assuming there is no Ez component outside of the sample,
we have Ez = Eoutz = 0. Suppose that we also have
Eouty = 0 = Bouty , i.e., the applied electric and magnetic
fields are parallel and lie in the x direction, transverse to
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FIG. 5. (a) x and (b) y components of the magnetic field
as a function of depth z inside a semi-infinite slab. Here

k1 = µ0σaB
out
x Eoutx , k2 =

µ0κ∆pzE
out
x

cBoutx
= 0.1 mm−1, where

Eoutx and Boutx are the nonzero components of the applied
fields outside the slab.

the surface. The last two equations above then become

∂zBy = −µ0σaE
out
x B2

x, (33)

∂zBx = µ0σaE
out
x BxBy +

µ0κ

c
∆pzE

out
x . (34)

We can render these equations dimensionless by dividing
both sides by Boutx and then defining k1 = µ0σaB

out
x Eoutx

and k2 =
µ0κ∆pzE

out
x

cBoutx
. Because the fields must be con-

tinuous at the boundary, we impose Bx(0) = Boutx and
By(0) = 0. We show the solution of these equations in
Fig. 5. As one can see, although we have set By(0) = 0 at
the surface, the equations still yield a nonzero By inside
the WSM. In addition, the magnetic field component in
the x direction decreases with increasing depth into the
slab. In the limit of very large z, Bx becomes arbitrar-
ily close to zero. These solutions reveal that the electric
and magnetic fields are trying to become perpendicular
at large z. Thus, the fields inside the slab arrange them-
selves in such a way that the CME is suppressed. Similar
results were found in Ref. [50] in the absence of the AHE
term.

Let us now consider the case where the outside fields
are in the z direction, i.e., ~E = Eoutz ẑ and ~B = Boutz ẑ.
We again assume ∆px = ∆py = 0. As shown in Ap-
pendix C 1, solutions only exist if Bz = Boutz = 0. This
is a contradiction, since we assumed Boutz 6= 0 at the out-
set, and we should be free to choose the applied fields
any way we like. This again suggests that there may be
an intrinsic inconsistency with Eqs. (24)-(27). Next, we
examine whether similar issues arise for other geometries.
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B. Whole space case

Now we consider the case where the whole space is a
WSM. In this case, all the fields must be constant due to
symmetry. Eqs. (24)-(27) reduce to

~∇ · ~E = −µ0cκ∆~p · ~B = 0, (35)

~∇× ~B = µ0σa( ~E · ~B) ~B +
µ0κ

c
∆~p× ~E = 0. (36)

If we pick the direction of the Weyl node momentum

separation to be ẑ, ∆~p = ∆pz ẑ, we have ~B = (Bx, By, 0)
from the first equation. After some steps shown in Ap-
pendix C 2, we obtain

Ex = Ey = 0, Ez = const. (37)

Thus the conclusion for this case is that the electric field
must be parallel to ∆~p, and the magnetic field is perpen-
dicular to it. Therefore, the CME disappears automati-
cally in this case.

C. Infinite cylindrical wire

Next, we study an infinite cylindrical wire with ra-
dius R. We use cylindrical coordinates, taking the axis
of the wire to lie in the z direction and defining r to
be the radial coordinate. The wire is a WSM, and out-
side is vacuum. For simplicity, we choose the Weyl node
separation in momentum space to be in the z direction:
∆px = ∆py = 0 and ∆pz 6= 0. With these assumptions
and switching to cylindrical coordinates, Eqs. (24)-(27)
become (see Appendix C 3 for details):

Ez = Eoutz , Eφ = 0, Br = 0, (38)

1

r

∂

∂r
(rEr) + µ0cκ∆pzBz = 0, (39)

∂Bz
∂r

+ µ0σaE
out
z BzBφ +

µ0κ

c
∆pzEr = 0, (40)

−1

r

∂

∂r
(rBφ) + µ0σaE

out
z B2

z = 0. (41)

A similar set of equations was solved in Ref. [50], al-
though there the AHE term was neglected. We first re-
visit this case before solving the full equations with the
AHE term present, as we will find that both cases exhibit
common pathologies. The solution that was obtained in
Ref. [50] has a diverging electric field along the axis of
the wire, Er →∞ as r → 0, as we now show. Inside the
WSM, Bz was found to be

Bz =
2B0Λk

r2 + k2
, (42)

where Λ = (µ0σaE0B0)−1 and k = Λ +
√

Λ2 −R2, with

applied fields ~Eout = E0ẑ, ~B
out = B0ẑ outside the wire.

Plugging this result for Bz into Eq. (39), one obtains

∂

∂r
(rEr) = −2µ0cκ∆pzB0Λkr

r2 + k2
(43)

⇒ Er = −2µ0cκ∆pzB0Λk

r

∫
rdr

r2 + k2

= −µ0cκ∆pzB0Λk

r
[ln
(
r2 + k2

)
+ C1], (44)

which is singular at r = 0.
The singular behavior of the solution above persists

for arbitrary choices of the outside fields. Define k1 =
µ0σaE0B0 and k3 = µ0cκ∆pzB0

E0
, Eqs. (39)-(41) become

1

r

∂

∂r
(r
Er
E0

) + k3
Bz
B0

= 0, (45)

∂

∂r

Bz
B0

+ k1
Bz
B0

Bφ
B0

= 0, (46)

−1

r

∂

∂r
(r
Bφ
B0

) + k1
B2
z

B2
0

= 0. (47)

Here, E0 and B0 parameterize the fields outside the wire.
We should be able to choose the outside fields as desired.
In Appendix C 3, we show that the fields must be contin-
uous at the surface of the wire, meaning that we should
be free to choose the boundary conditions of the fields
at r = R; these boundary values then determine the
fields inside the WSM. As a concrete example, we set
R = 5 mm and choose Er(R) = 0.5E0, Bz(R) = B0, and
Bφ(R) = 0, which correspond to a radial electric field and
an axial magnetic field outside. The solution is shown in
Fig. 6. In these solutions, we do not restrict ourselves
to finite values for Bφ at r = 0 as in Ref. [50], since the
singularity at r = 0 arises regardless of how Bφ behaves
along the cylinder axis. We can identify two possible
explanations for these unavoidable divergences at r = 0:
(i) The axion equations may be intrinsically problematic;
(ii) In this cylindrical WSM, the axial anomaly creates
an effective line charge and current at r = 0. We do not
currently see a way to establish which interpretation is
correct. Interestingly, notice that since Ez is constant
inside the wire, and Bz decreases while the magnitude
of Bφ increases as r → 0, we again find that the electric
and magnetic fields become perpendicular as we go fur-
ther into the WSM, just as we saw for the semi-infinite
slab above.

Now we return to the full axion electrodynamics equa-
tions with the anomalous Hall term restored. If we define
k1 = µ0σaE0B0, k3 = µ0cκ∆pzB0

E0
, and k2 = µ0κ∆pzE0

cB0
,

Eqs. (39)-(41) become

1

r

∂

∂r
(r
Er
E0

) + k3
Bz
B0

= 0, (48)

∂

∂r

Bz
B0

+ k1
Bz
B0

Bφ
B0

+ k2
Er
E0

= 0, (49)

−1

r

∂

∂r
(r
Bφ
B0

) + k1
B2
z

B2
0

= 0. (50)
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FIG. 6. Three different electric and magnetic field compo-
nents as a function of the radius r inside an infinite cylindrical
WSM wire without the anomalous Hall term [Eqs. (45)-(47)].
Here Einφ = Eoutφ = 0, Einz = Eoutz = E0, Binr = Boutr = 0,

k1 = µ0σaE0B0 and k3 = µ0cκ∆pzB0
E0

= 107mm−1. At the

boundary R = 5 mm, we set Er(R) = 0.5E0, Bz(R) = B0

and Bφ(R) = 0. These solutions show that the electric and
magnetic fields become perpendicular to each other at the
center of the wire.

All the solutions of these equations face the same prob-
lem as before, namely they exhibit singularities at r = 0.
We show one example in Fig. 7. Here we choose R = 5
mm, Er(R) = 0.5E0, Bz(R) = B0, and Bφ(R) = 0,
corresponding to radial electric and magnetic fields out-
side the wire. We also find that even when turning off
Er outside, this component still increases inside the wire
and diverges as r → 0. Thus, singularities in the fields
along the cylinder axis again appear to be unavoidable.
However, unlike the case above where we neglected the
AHE term, now the electric and magnetic fields are no
longer becoming perpendicular to each other as r → 0
in these solutions. Instead, Bz(0) is a nonzero constant
that depends on the parameters ki.

In summary, we find that in the cylindrical wire case,
we can always find solutions for the electric and magnetic
fields inside the wire. This is in contrast to the semi-
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FIG. 7. Three different electric and magnetic field compo-
nents as a function of the radius r inside an infinite cylin-
drical WSM wire with the anomalous Hall term restored
[Eqs. (48)-(50)]]. Here Einφ = Eoutφ = 0, Einz = Eoutz = E0,

Binr = Boutr = 0, k1 = µ0σaE0B0, k3 = µ0cκ∆pzB0
E0

= 107

mm−1, and k2 = µ0κ∆pzE0
cB0

= 0.1 mm−1. At the bound-

ary R = 5 mm, we set Er(R) = 0.5E0, Bz(R) = B0 and
Bφ(R) = 0. In this case, the electric and magnetic fields do
not become perpendicular at the center of the wire. Instead,
Bz tends to a constant at r = 0 that depends on the param-
eters ki.

infinite slab, where we saw that when the chiral mag-
netic term is nonlinear, self-consistent solutions are not
available. However, the fields inside the wire necessarily
exhibit singularities along the wire axis.

IV. DYNAMICAL AXIONS

In the previous sections, we considered two different
versions of axion electrodynamics. Both are based on
a non-dynamical axion, i.e., the axion arises as a back-
ground field that interacts with the electric and magnetic
fields. However, axions in topological materials can have
their own dynamics [48, 62]. Ref. [48] showed that dy-
namical axions can arise in WSMs, for example as fluctu-
ations in the phase of an order parameter associated with
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a charge density wave. In this section, we consider a third
version of axion electrodynamics in which the axion is an
independent, dynamical field.

Allowing the axion to be dynamical introduces an ad-
ditional, fifth equation: the equation of motion for the
axion. This equation can be derived from a Lagrangian
density as in Eqs. (1) and (2), except that now we in-
troduce an additional kinetic term for the pseudo-scalar
axion field θ:

Lθ2 =
1

2
κ0∂αθ∂

αθ =
1

2
κ0∂αθ∂βθη

αβ , (51)

where κ0 is a constant. Combining this with Eqs. (1)
and (2), our total Lagrangian density is

L = L0 + Lθ1 + Lθ2 . (52)

In addition to Eqs. (3)-(6), the Euler-Lagrange equations
now also give the equation of motion for the axion:

∂ν∂
νθ =

κ

κ0c
~E · ~B. (53)

For simplicity, we set the source terms to zero in this
section:, ~j = 0, ρ = 0. Restricting attention to stationary
~E and ~B fields, we have the following version of axion
electrodynamics:

~∇ · ~E = −µ0cκ~∇θ · ~B, (54)

~∇× ~E = 0, (55)

~∇ · ~B = 0, (56)

~∇× ~B =
µ0κ

c
(∂tθ ~B + ~∇θ× ~E), (57)

1

c2
∂2
t θ − ~∇2θ =

κ

κ0c
~E · ~B. (58)

Here as in the previous sections, we assume a single Weyl
node pair. Multiple pairs would introduce additional ax-
ion fields and corresponding kinetic equations of the form
of Eq. (58). Because our focus is on the self-consistency
of the axion equations, we consider the simplest case of a
single node pair to more clearly highlight the issues that
arise. Notice that the above equations do not contain
any information about the band structure of the WSM.
In Ref. [48], the Weyl separations appear only implicitly
as a shift of the derivatives of the axion field ∂µθ. We
return to this point shortly. Let us first focus on solving
the equations above.

As a concrete example, we again consider a semi-
infinite slab of WSM occupying the upper half-space
z ≥ 0. Because we are focusing on the case where the
electric and magnetic fields are stationary, Eqs. (57) and
(58) imply that θ is at most a linear function of t. Futher-

more, for the semi-infinite slab symmetry, ~∇θ can depend
on z only. Therefore, the most general form of θ is

θ = fx(z)x+ fy(z)y + ft,0t+ θ̃(z), (59)

where ft,0 is a constant due to the fact that ∂tθ does not
depend on t. The symmetry of the slab geometry also
implies that ∂zθ depends on z only. This in turn means
that fx(z) = fx,0 and fy(z) = fy,0 are constants. De-

noting ∂z θ̃(z) = fz(z), the derivatives of the axion thus
have the following generic form for the semi-infinite slab
geometry in the case of stationary electric and magnetic
fields:

~∇θ = ~f = fx,0x̂+ fy,0ŷ + fz(z)ẑ, ∂tθ = ft,0. (60)

Eqs. (54)-(58) then reduce to the following set of alge-
braic and ordinary differential equations:

Ex =Eoutx , Ey = Eouty , Bz = Boutz , (61)

0 =ft,0B
out
z + fx,0E

out
y − fy,0Eoutx , (62)

∂zEz =− µ0cκ(fx,0Bx + fy,0By + fzB
out
z ), (63)

∂zBx =
µ0κ

c
(ft,0By + fzE

out
x − fx,0Ez), (64)

∂zBy =− µ0κ

c
(ft,0Bx + fy,0Ez − fzEouty ), (65)

∂zfz =− κ

κ0c
(Eoutx Bx + Eouty By + EzB

out
z ). (66)

Here, we have used that all components of the electric and
magnetic fields are again continuous across the surface,
as follows from arguments similar to those used in the
context of the other two versions of axion electrodynam-
ics considered in this work. Eq. (62) gives a constraint
for the axion derivative fµ; the effect of this constraint
depends on how we choose the applied fields outside the
WSM, as is evident in the examples given below. The
examples we consider include the case where the applied
fields are orthogonal to the WSM surface (Sec. IV A),
and where they are parallel to the surface (Sec. IV B).
We also examine energy conservation in Sec. IV C, where
we find evidence that time-independent solutions should
not exist in the case of a dynamical axion.

A. ~E, ~B ‖ ẑ outside of the WSM

When both the electric and magnetic fields are orthog-
onal to the surface, we have Eoutx = Eouty = 0, and so
Eq. (62) implies that the CME term vanishes, ft,0 = 0,
when Boutz 6= 0. The other boundary conditions are
Bx(0) = By(0) = 0 and Ez(0) = Eoutz . The solutions
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to Eqs. (63)-(66) in this case are (see Appendix D 1)

Bx =
κ2µ2

0fx,0fz,0B
out
z

D2
(−1 + coshDz)− Eoutz

cD
sinhDz,

(67)

By =
κ2µ2

0fy,0fz,0B
out
z

D2
(−1 + coshDz)− Eoutz

cD
sinhDz,

(68)

Ez =Eoutz coshDz − Boutz cfz,0κµ0

D
sinhDz, (69)

fz =
fz,0(κ0D

2 −Boutz
2
κ2µ0 +Boutz

2
κ2µ0 coshDz)

κ0D2

− Boutz Eoutz κ sinhDz

cκ0D
, (70)

where we have defined

D2 =
κ2µ0[Boutz

2
+ (f2

x,0 + f2
y,0)κ0µ0]

κ0
. (71)

Here, we allow for the possibility of a finite jump in the
derivative of the axion at the surface: fz(0) = fz,0. We
see that the fields grow exponentially with z, where the
rate of growth is set by D, which depends on the applied
magnetic field and on the transverse derivatives of the ax-
ion. This growth should ultimately saturate for a finite
slab. Aside from this unbounded growth, which is a sim-
ple consequence of the infinite slab geometry considered
here, no pathologies appear to arise in this case.

Following Ref. [48], one would expect the scale of spa-
tial and temporal variations in θ to depend on the Weyl
momentum and energy separations ∆~p and ∆ε. Since the
space-time dependence of θ is determined by the bound-
ary values fx,0, fy,0, fz,0, and ft,0, it follows that these
quantities should depend on the Weyl momentum and
energy separations, and thus they depend on the type of
WSM under consideration. It is not clear whether the
precise relationship between the boundary values of fµ
and the Weyl node separation can be obtained in closed
form.

B. ~E, ~B ‖ x̂ outside of the WSM

Now we consider the case where the fields outside the
slab are parallel to the WSM surface. In particular, we
will take them to both point in the x direction for con-
creteness. Explicitly, we have Boutz = Eouty = 0, and from
the constraint in Eq. (62), we can see that ft,0 and fx,0
are no longer restricted, while fy,0 = 0. The remain-
ing boundary conditions in this case are Bx(0) = Boutx ,
By(0) = 0, Ez(0) = 0, and we again allow for a possi-
ble discontinuity in fz(z) at the surface: fz(0) = fz,0.
The solutions to Eqs. (63)-(66) in this case are (see Ap-

pendix D 2)

Bx =Boutx cosD0z +
Eoutx fz,0κµ0

cD0
sinD0z, (72)

By =
ft,0E

out
x fz,0κ

2µ2
0

c2D2
0

(−1 + cosD0z)

− Boutx ft,0κµ0

cD0
sinD0z, (73)

Ez =
fx,0E

out
x fz,0κ

2µ2
0

D2
0

(−1 + cosD0z)

− Boutx cfx,0κµ0

D0
sinD0z, (74)

fz =
κ

c2D2
0κ0

[cD0fz,0
√
κ0µ0 − Eoutx

2
fz,0κµ0(1− cosD0z)

−Boutx Eoutx cD0 sinD0z], (75)

where now

D2 = −D2
0 =
−κ2µ0[Eoutx

2
+ κ0µ0(f2

t,0 − c2f2
x,0)]

c2κ0
. (76)

The solutions in this case exhibit oscillating behavior for
all choices of the remaining parameters. Again, no in-
consistencies appear in this case.

C. Energy conservation

Now let us check whether energy is conserved in a
WSM described by a dynamical axion field subject to
stationary electric and magnetic fields. In dielectric me-
dia, the energy-momentum tensor of the electromagnetic
fields might not be conserved. This is related to the long-
standing Abraham–Minkowski controversy, which con-
tinues to be debated [63–65]. While the electromag-
netic stress-energy tensor is generally not conserved in
the presence of matter, here we still expect it to be con-
served because the material has been replaced by an ax-
ion field, and so we are effectively dealing with axion elec-
trodynamics in vacuum. We can obtain the stress-energy
tensor from the Lagrangian density L in Eq. (52) [66]:

Tµν =
∂L

∂(∂µAσ)
∂νAσ +

∂L
∂(∂µθ)

∂νθ − ηµνL, (77)

or more explicitly,

Tµν =κ0∂
µθ∂νθ − 1

µ0
Fµγ∂νAγ

− κ

2
θεµγσλFσλ∂

νAγ − ηµνL. (78)

After simplification, the energy density T 00 reads

T 00 =
1

2
(ε0

~E2 +
1

µ0

~B2) +
1

2
κ0(∂0θ∂0θ + ∂iθ∂iθ), (79)

where there is an implicit sum over the index i. The first
term is the energy density of the electromagnetic field,
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while the second term is the energy density of the dy-
namical axion field. On one hand, if one does not have
a kinetic term in the Lagrangian, one would only get the
energy density of the electromagnetic fields, which is the
case considered in Sec. II. The energy density is continu-
ous across the boundary in this case since the electromag-
netic fields are continuous. On the other hand, when one
includes the kinetic terms for θ, demanding that the en-
ergy density be continuous across the boundary requires
the kinetic term to vanish at the boundary:

f2
x,0 + f2

y,0 + f2
z,0 +

1

c2
f2
t,0 = 0. (80)

This can only be satisfied if all the axion derivatives van-
ish at the surface:

fx,0 = fy,0 = fz,0 = ft,0 = 0. (81)

Referring back to Eqs. (57) and (59), we see that this
forces the chiral magnetic term to vanish. We also see
that the constraint shown in Eq. (62) holds automatically
and does not place any restriction on the electromagnetic
fields. Although fx,0 and fy,0 will always be zero inside of
the WSM, fz could still be nonzero. Therefore, nontrivial
solutions can still be obtained. However, these solutions
only provide signatures of the AHE term. Perhaps one
way to obtain a response from the chiral magnetic term
would be to relax the assumption of static applied fields
and to instead consider time-dependent fields. Where or
not self-consistent solutions can be obtained in this case
will be investigated in future work.

Before we finish this section, it is worth considering
whether the solutions to the dynamical axion equations
have any relation to the solutions obtained in Sec. II in
the case of a non-dynamical axion (with a linear chiral
magnetic term). Naively, one can try to insert the lat-
ter into the dynamical axion equations. However, one
immediately finds that this does not work, because the
left-hand side of Eq. (58) evaluates to zero, yielding a con-
straint on the electric and magnetic fields (they must be
orthogonal), while the other equations remain the same.
Even if we chose the applied fields to be orthogonal to
each other, it is not guaranteed that they will remain
orthogonal inside the WSM. Indeed, we have checked

whether ~E · ~B = 0 is approximately obeyed by the so-

lutions of Sec. II, and we found that ~E · ~B instead grows
quickly with depth into the WSM. (Note that this is un-
like the solutions obtained in the case of a nonlinear chi-
ral magnetic term, where in Sec. III we found several in-

stances in which ~E · ~B → 0 as z →∞.) Therefore, there
does not appear to be a sense in which the non-dynamical
axion solutions (Sec. II) approximate the dynamical ax-
ion solutions obtained in the present section.

V. CONCLUSIONS

Whether or not the axial anomaly exists in WSMs re-
mains a subtle question. The motivation for our work is

to identify alternative diagnostics based on electromag-
netic signatures that could be exploited to experimentally
confirm the presence of an anomaly. To this end, we con-
sidered three versions of axion electrodynamics that have
been put forward in the literature. In each case, we at-
tempted to solve the equations in simple geometries.

In the first version, we started from an effective action
for non-dynamical axions given by Refs. [27, 28]. In the
case of a semi-infinite slab, we found that the magnetic
field inside the WSM can be magnified substantially as-
suming the Weyl node momentum separation and the
frequency of the applied fields are both sufficiently large,
which happens with or without the Ohmic current term.
We also found that when the conductivity is sufficiently
large, this magnification effect is further enhanced. This
potentially provides a detectable signature of the axial
anomaly. The solutions are generally self-consistent for
this version of axion electrodynamics.

In the second version, rather than starting from an ef-
fective action, the axion equations are instead obtained
from a semi-classical kinetic theory as in Ref. [32]. In
contrast to the first version, this yields a nonlinear chiral
mangnetic term. We found that the resulting equations
generally do not admit self-consistent, physical solutions.
In the case of a semi-infinite slab, no solutions exist aside
from a few special cases, while for an infinite cylindrical
wire, solutions exist but exhibit unphysical field diver-
gences. These findings suggest that this version of axion
electrodynamics, which has been considered in several
recent experimental works, may not be self-consistent.

The third version of axion electrydnamics we consid-
ered involves dynamical axions. That is, the axions
are described by independent fields rather than by fixed
background fields as in the previous two versions. We
found that self-consistent solutions can be obtained only
in cases where the chiral magnetic term is exactly zero,
as otherwise the solution violates energy conservation. It
is possible that this issue could be lifted in the case of
time-dependent applied fields.

Going forward, more work needs to be done, both the-
oretically and experimentally, to better understand the
nature of the axial anomaly in WSMs and the impact it
has on the electromagnetic response of these materials.
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Appendix A: Conductivity

From the calculation by Ref. [54], we write down the
conductivity

σ(ω) =
1

iω + 1
τ

× v2
F e

2g

3π2(~vF )3

∫ ∞
0

dεε2(−∂f
0(ε, T )

∂ε
).

(A1)

Here e, vF , g and τ are the electron charge, Fermi ve-
locity, light-matter coupling and scattering time, respec-
tively. f0(ε, T ) is the Fermi-Dirac distribution. The in-
tegral above leads to a constant Γ(T ) decided by the
temperature. Considering the limit ω → 0 and T → 0,
denoting Γ0 = Γ(0) and σ0 = σ(0), we have

σ0 =
v2
F e

2gτΓ0

3π2(~vF )3
. (A2)

Now we calculate this Γ0; since

f0(ε) =
1

e
ε−µ
kBT + 1

, (A3)

we integrate by parts

lim
T→0

∫ ∞
0

dεε2(−∂f
0(ε, T )

∂ε
)

=− lim
T→0

ε2f0(ε, T )|∞0 + lim
T→0

∫ ∞
0

2εf0(ε, T )dε

=2 lim
T→0

∫ ∞
0

εdε

e
ε−µ
kBT + 1

= µ2 = ε2
F = Γ0. (A4)

Therefore, we obtain

σ0 =
e2gτε2

F

3π2~3vF
=
e2gτk2

F v
2
F

3π2~3vF
=
e2gτk2

F vF
3π2~3

. (A5)

Meanwhile the zero-temperature carrier density is [54]

n =
gk3
F

6π2
. (A6)

Therefore the conductivity and the carrier density have
the relation σ0 ∝ n

2
3 .

Appendix B: Non-dynamical axions and linear chiral
magnetic term

Here, we show in detail how we obtain the solutions
described in Sec. II. Starting with Eqs. (3) - (7), we con-
sider both vanishing current and non-zero current cases.
Based on Ohm’s law, we assume

~j = σ0
~E, (B1)

where the conductivity σ0 is calculated in App. A. In
WSMs, n can be very low. When this happens, the
Ohmic conductance can be ignored, and we can set ~j = 0
in the axion equations. In other cases when n is large
enough, the conductivity cannot be ignored, and thus
~j 6= 0.

1. Zero current case: ~j = 0

Now we set ρ = 0, ~j = 0 and ~E(~r, t) = eiωt ~E(~r),
~B(~r, t) = eiωt ~B(~r). Since the EM fields are necessarily
real, considering the time derivative relations, if we focus

on the real part of eiωt in ~E(~r, t), we should take the real

part of ~E(~r) as well, and correspondingly we should take

the imaginary part of eiωt and ~B(~r) in ~B(~r, t). Thus, we
have

~∇ · ~E = −µ0cκ∆~p · ~B (B2)

~∇× ~E = −iω ~B (B3)

~∇ · ~B = 0 (B4)

~∇× ~B = i
ω

c2
~E +

µ0κ

c
(−∆ε ~B + ∆~p× ~E). (B5)

We consider a semi-infinite slab with WSM filling z ≥
0. According to the symmetry of this setup, one should
expect the fields to only depend on z. First let us consider
the fields outside the WSM. In this region (z < 0), we
have

~∇ · ~E = 0 (B6)

~∇× ~E = −iω ~B (B7)

~∇ · ~B = 0 (B8)

~∇× ~B = i
ω

c2
~E (B9)

Thus, we have

∂zEz = 0 (B10)

∂zExŷ − ∂zEyx̂ = −iω ~B (B11)

∂zBz = 0 (B12)

∂zBxŷ − ∂zByx̂ =
1

c2
iω ~E. (B13)

The solution is

Ex = Ex,1e
iωc z + Ex,2e

−iωc z (B14)

Ey = Ey,1e
iωc z + Ey,2e

−iωc z (B15)

Bx =
1

c
Ey,1e

iωc z − 1

c
Ey,2e

−iωc z (B16)

By = −1

c
Ex,1e

iωc z +
1

c
Ex,2e

−iωc z (B17)

For the explicit example discussed in Sec. II, we choose
Ez = 0 = Bz, Ex,1 = Ex,2 = 1

2Ex,0, and Ey,1 = Ey,2 =
1
2Ey,0, and so we have

Ex = Ex,0 cos
ω

c
z (B18)

Ey = Ey,0 cos
ω

c
z (B19)

Bx =
i

c
Ey,0 sin

ω

c
z (B20)

By = − i
c
Ex,0 sin

ω

c
z. (B21)
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To obtain the boundary conditions at the surface of the
WSM (z = 0), one can integrate over an infinitely small
volume or area that overlaps the boundary. This leads
to the requirement that the fields be continuous at the
boundary, as we now show. Eq. (B2) gives the integral

lim
V→0

∫
~∇ · ~EdV = lim

V→0

∮
~E · d~S

=− lim
V→0

κc2
∫

∆~p · ~BdV = 0 (B22)

Einz |z=0 = Eoutz |z=0. (B23)

By doing the loop line integral, Eq. (B3) gives

lim
S→0

∫
(~∇× ~E) · d~S = lim

S→0

∮
~E · d~l

=− iω lim
S→0

∫
~B · d~S = 0 (B24)

Einx = Eoutx (B25)

Einy = Eouty . (B26)

Again, by doing the volume and loop line integrals of
Eq. (B4) and Eq. (B5) respectively, we obtain

Binz =Boutz (B27)

Binx =Boutx (B28)

Biny =Bouty . (B29)

Therefore, for the particular example of Eqs. (B18)-
(B21), at the boundary z → 0 one has

Ex(0) = Ex,0 = Eoutx (B30)

Ey(0) = Ey,0 = Eouty (B31)

Bx(0) = 0 (B32)

By(0) = 0 (B33)

Ez(0) = 0 (B34)

Bz(0) = 0. (B35)

Inside the WSM, according to Eqs. (B2) - (B5), we

have

∂zEz =− µ0cκ(∆pxBx + ∆pyBy + ∆pzBz)

(B36)

∂zExŷ − ∂zEyx̂ =− iω ~B (B37)

∂zBz =0 (B38)

∂zBxŷ − ∂zByx̂ =
1

c2
iω ~E − µ0κ

c
∆ε ~B +

µ0κ

c
[(∆pyEz

−∆pzEy)x̂+ (∆pzEx −∆pxEz)ŷ

+ (∆pxEy −∆pyEx)ẑ]. (B39)

Eq. (B37) gives

Bz = 0 (B40)

By =
i

ω
∂zEx (B41)

Bx = − i
ω
∂zEy, (B42)

which also satisfies Eq. (B38). Now we take a look at the
z component of Eq. (B39):

Ez = µ0κc
i

ω
(∆pxEy −∆pyEx). (B43)

Taking the derivative with respect to z on both sides, we
obtain

∂zEz = µ0κc
i

ω
(∆px∂zEy −∆py∂zEx). (B44)

Replacing the electric field derivatives by B field compo-
nents, we have

∂zEz = −µ0κc(∆pxBx + ∆pyBy), (B45)

which is exactly Eq. (B36). This is consistent with the
interpretation of Eq. (B36) as a boundary condition in
time, as discussed in Ref. [67, 68]. Plugging Eq. (B43)
into Eq. (B39) allows us to reduce the number of variables
down to only Ex and Ey. Thus we have

∂2
zEy +

ω2

c2
Ey −

µ0κ

c
∆ε∂zEx

−µ2
0κ

2∆px(∆pxEy −∆pyEx)− iωµ0κ

c
∆pzEx = 0

(B46)

∂2
zEx +

ω2

c2
Ex +

µ0κ

c
∆ε∂zEy

+µ2
0κ

2∆py(∆pxEy −∆pyEx) + iω
µ0κ

c
∆pzEy = 0.

(B47)

Now we can use the operator method to solve these two
equations. First we replace the derivatives with a pa-
rameter: ∂z = d, which converts the differential equa-
tions into algebraic equations that can then be cast into
a vanishing determinant condition:
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(d2 + ω2

c2 − µ
2
0κ

2∆p2
x)Ey − (∆εµ0κ

c d− µ2
0κ

2∆px∆py + iω µ0κ
c ∆pz)Ex = 0

(∆εµ0κ
c d+ µ2

0κ
2∆px∆py + iω µ0κ

c ∆pz)Ey + (d2 + ω2

c2 − µ0κ
2∆p2

y)Ex = 0
(B48)

∣∣∣∣∣ d2 + ω2

c2 − µ
2
0κ

2∆p2
x −(∆εµ0κ

c d− µ2
0κ

2∆px∆py + iω µ0κ
c ∆pz)

∆εµ0κ
c d+ µ2

0κ
2∆px∆py + iω µ0κ

c ∆pz d2 + ω2

c2 − µ0κ
2∆p2

y

∣∣∣∣∣ = 0, (B49)

which gives

d4 + (2
ω2

c2
− µ2

0κ
2(∆p2

x + ∆p2
y) + ∆ε2µ

2
0κ

2

c2
)d2

+ 2iω∆ε
µ2

0κ
2

c2
∆pzd+

ω4

c4

− µ2
0κ

2ω2

c2
(∆p2

x + ∆p2
y + ∆p2

z) = 0 (B50)

The four roots d1, d2, d3, d4 of this characteristic equation
are generically all different. The solution for the trans-
verse electric field components can then be expressed in
terms of these roots:

Ey =
4∑
i=1

aie
diz, Ex =

4∑
i=1

bie
diz. (B51)

One can put these expressions back into Eq. (B48) to
reduce the 8 unknown coefficients ai and bi to 4, the rest
of which are determined by boundary conditions.

Now if we assume the momentum separation is only
along the z direction, i.e. ∆px = ∆py = 0, we have
Ez = 0 and the two equations become

∂2
zEy +

ω2

c2
Ey −

µ0κ

c
∆ε∂zEx − iω

µ0κ

c
∆pzEx = 0

(B52)

∂2
zEx +

ω2

c2
Ex +

µ0κ

c
∆ε∂zEy + iω

µ0κ

c
∆pzEy = 0.

(B53)

Thus the operator equation becomes

d4 + (2
ω2

c2
+ ∆ε2µ

2
0κ

2

c2
)d2 + 2iω∆ε

µ2
0κ

2

c2
∆pzd

+
ω4

c4
− µ2

0κ
2ω2

c2
∆p2

z = 0. (B54)

2. Non-zero case: ~j 6= 0

Here we set ~j = σ0
~E and ~E(~r, t) = eiωt ~E(~r), ~B(~r, t) =

eiωt ~B(~r). Therefore the current can also be separated

into temporal and spatial parts: ~j(~r, t) = eiωt~j(~r). As
for ρ, one will find this cannot be zero, as we will see
later. Again, since the EM fields are necessarily real,
considering the time derivative relations, if we focus on

the real part of eiωt in ~E(~r, t), we should take the real

part of ~E(~r) as well, and correspondingly we should take

the imaginary part of eiωt and ~B(~r) in ~B(~r, t). Thus, we
have

~∇ · ~E =
ρ

ε0
− µ0cκ∆~p · ~B (B55)

~∇× ~E = −iω ~B (B56)

~∇ · ~B = 0 (B57)

~∇× ~B = i
ω

c2
~E + µ0σ0

~E +
µ0κ

c
(−∆ε ~B + ∆~p× ~E).

(B58)

The boundary conditions and outside fields are the same
as when ~j = 0 since charges and currents are in the bulk
instead of on the surface. Therefore, at the boundary
z → 0 one has

Ex(0) = Ex,0 = Eoutx (B59)

Ey(0) = Ey,0 = Eouty (B60)

Bx(0) = 0 (B61)

By(0) = 0 (B62)

Ez(0) = 0 (B63)

Bz(0) = 0. (B64)

Now we have

∂zEz =
ρ

ε0
− µ0cκ(∆pxBx + ∆pyBy + ∆pzBz)

(B65)

∂zExŷ − ∂zEyx̂ =− iω ~B (B66)

∂zBz =0 (B67)

∂zBxŷ − ∂zByx̂ =
1

c2
iω ~E + µ0σ0

~E − µ0κ

c
∆ε ~B

+
µ0κ

c
[(∆pyEz −∆pzEy)x̂

+ (∆pzEx −∆pxEz)ŷ

+ (∆pxEy −∆pyEx)ẑ]. (B68)

Eq. (B66) leads

Bz = 0 (B69)

By =
i

ω
∂zEx (B70)

Bx = − i
ω
∂zEy, (B71)

Now let us look at the z component of Eq. (B68):

Ez = i
µ0σ0c

2

ω
Ez + µ0κc

i

ω
(∆pxEy −∆pyEx). (B72)
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Taking the derivative with respect to z on both sides, we
obtain

∂zEz = i
µ0σ0c

2

ω
∂zEz + µ0κc

i

ω
(∆px∂zEy −∆py∂zEx).

(B73)

Replacing the electric field derivatives by B field compo-
nents, we have

∂zEz = i
µ0σ0c

2

ω
∂zEz − µ0κc(∆pxBx + ∆pyBy). (B74)

Comparing this equation to Eq. (B65), we see that self-
consistency requires

ρ

ε0
= i

µ0σ0c
2

ω
∂zEz. (B75)

If the charge density were zero here, we would have

Ez = Ez0 = ∆pxEy −∆pyEx (B76)

∂zEz = 0 = ∆px∂zEy −∆py∂zEx, (B77)

which means Ex and Ey should be linearly dependent on
each other. The same is true for the magnetic fields due
to Eq. (B70) and (B71). However, we are free to choose
the boundary conditions outside, and so it requires fine
tuning to obey these conditions. Therefore, if we include
the non-zero current, we must have non-zero net bulk
charges, which means ρ 6= 0 as well. Another possibility
is that ∆px = ∆py = 0. In this special case we can have
zero net bulk charge. This is also the simple case we will
consider next.

In this case, we can still use our previous approach to
solve these new equations. For simplicity, we still con-
sider the momentum separation to be only along the z
direction, i.e. ∆px = ∆py = 0, we have Ez = 0 and the
two equations become

∂2
zEy +

ω2

c2
Ey − iµ0σ0ωEy

−µ0κ

c
∆ε∂zEx − iω

µ0κ

c
∆pzEx = 0 (B78)

∂2
zEx +

ω2

c2
Ex − iµ0σ0ωEx

+
µ0κ

c
∆ε∂zEy + iω

µ0κ

c
∆pzEy = 0. (B79)

The operator equation becomes

d4 + [2(
ω2

c2
− iµ0σ0ω) + ∆ε2µ

2
0κ

2

c2
]d2 + 2iω∆ε

µ2
0κ

2

c2
∆pzd

+ (
ω2

c2
− iµ0σ0ω)2 − µ2

0κ
2ω2

c2
∆p2

z = 0. (B80)

The remaining steps are described in the main text.

Appendix C: Non-dynamical axions with nonlinear
chiral magnetic term

Here, we provide details about the solutions described
in Sec. III. We consider three geometries for the WSM: a

semi-infinite slab, whole space, and an infinite cylindri-
cal wire. In all cases, the starting point is a version of
axion electrodynamics in which the chiral magnetic term
is nonlinear:

~∇ · ~E =
ρ

ε0
− µ0cκ∆~p · ~B (C1)

~∇× ~E = 0 (C2)

~∇ · ~B = 0 (C3)

~∇× ~B = µ0σ0
~E + µ0σa( ~E · ~B) ~B +

µ0κ

c
∆~p× ~E. (C4)

First let us consider a semi-infinite slab case when ~j =

σ0
~E 6= 0. The WSM occupies z ≥ 0, while z < 0 is

vacuum. We assume the outside fields are in the xy

plane: ~E = Ex,0x̂+Ey,0ŷ and ~B = Bx,0x̂+By,0ŷ. From
Eq. (C1), we have

∂zEz =
ρ

ε0
− µ0cκ(∆pxBx + ∆pyBy + ∆pzBz) (C5)

From Eq. (C2), we have

∂zExŷ − ∂zEyx̂ = 0 (C6)

Ex = const = Ex,0 (C7)

Ey = const = Ey,0 (C8)

From Eq. (C3), we have

Bz = const. (C9)

From Eq. (C4), we have

∂zBxŷ − ∂zByx̂

=(µ0σ0Ex + µ0σaEiBiBx +
µ0κ

c
∆pyEz −

µ0κ

c
∆pzEy)x̂

+(µ0σ0Ey + µ0σaEiBiBy +
µ0κ

c
∆pzEx −

µ0κ

c
∆pxEz)ŷ

+(µ0σ0Ez + µ0σaEiBiBz +
µ0κ

c
∆pxEy −

µ0κ

c
∆pyEx)ẑ

(C10)

Now we have three variables Ez, Bx and By and four
equations:

∂zEz =
ρ

ε0
− µ0cκ(∆pxBx + ∆pyBy) (C11)

∂zBy =µ0σ0Ex,0 − [µ0σa(Ex,0Bx + Ey,0By)Bx

+
µ0κ

c
∆pyEz −

µ0κ

c
∆pzEy,0] (C12)

∂zBx =µ0σ0Ey,0 + µ0σa(Ex,0Bx + Ey,0By)By

+
µ0κ

c
∆pzEx,0 −

µ0κ

c
∆pxEz (C13)

µ0σ0Ez =∆pyEx,0 −∆pxEy,0. (C14)

The last equation tells us Ez is a constant determined by
the Weyl separations and the boundary conditions of Ex
and Ey, which implies

Ez = Ez,0 =
∆pyEx,0 −∆pxEy,0

µ0σ0
. (C15)
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However, as we know Ez,0 should be chosen freely. Thus,
this fine-tuning problem leads a generic inconsistency.
For simplicity, from now on, we assume that the current
and charge are both zero, i.e., ρ = 0 and ~j = 0:

~∇ · ~E = −µ0cκ∆~p · ~B (C16)

~∇× ~E = 0 (C17)

~∇ · ~B = 0 (C18)

~∇× ~B = µ0σa( ~E · ~B) ~B +
µ0κ

c
∆~p× ~E. (C19)

1. Semi-infinite slab case

We first consider a semi-infinite slab of WSM occupy-
ing z ≥ 0, while z < 0 is vacuum. First, we assume the

outside fields are in the xy plane: ~E = Ex,0x̂+Ey,0ŷ and
~B = Bx,0x̂+By,0ŷ. From Eq. (C16), we have

∂zEz = −µ0cκ(∆pxBx + ∆pyBy + ∆pzBz) (C20)

From Eq. (C17), we have

∂zExŷ − ∂zEyx̂ = 0 (C21)

Ex = const = Ex,0 (C22)

Ey = const = Ey,0 (C23)

From Eq. (C18), we have

Bz = const. (C24)

From Eq. (C19), we have

∂zBxŷ − ∂zByx̂

=(µ0σaEiBiBx +
µ0κ

c
∆pyEz −

µ0κ

c
∆pzEy)x̂

+ (µ0σaEiBiBy +
µ0κ

c
∆pzEx −

µ0κ

c
∆pxEz)ŷ

+ (µ0σaEiBiBz +
µ0κ

c
∆pxEy −

µ0κ

c
∆pyEx)ẑ (C25)

Now we have three variables Ez, Bx and By and four
equations:

∂zEz =− µ0cκ(∆pxBx + ∆pyBy) (C26)

∂zBy =− [µ0σa(Ex,0Bx + Ey,0By)Bx

+
µ0κ

c
∆pyEz −

µ0κ

c
∆pzEy,0] (C27)

∂zBx =µ0σa(Ex,0Bx + Ey,0By)By

+
µ0κ

c
∆pzEx,0 −

µ0κ

c
∆pxEz (C28)

∆pxEy,0 =∆pyEx,0. (C29)

Following the same logic as in Appendix B, it again
follows that all the fields are continuous at the boundary.
Thus, Eq. (C29) gives a strong constraint on the fields
outside of the Weyl semimetal. Since the separation of

two Weyl nodes is given and fixed, this is inconsistent
with the free choice of the fields outside the sample.

Let us ignore this inconsistency for the time being and
consider the case where the outside fields are in the z
direction, i.e. ~E = Ez,0ẑ and ~B = Bz,0ẑ, and further
assume ∆px = ∆py = 0. Directly from Eq. (C16), we
have

∂zEz = −µ0cκ∆pzBz (C30)

From Eq. (C17), we have

∂zExŷ − ∂zEyx̂ = 0 (C31)

Ex = const = Eoutx,0 = 0 (C32)

Ey = const = Eouty,0 = 0 (C33)

From Eq. (C18), we have

Bz = const = Bz,0 (C34)

From Eq. (C19), we have

∂zBxŷ − ∂zByx̂
=µ0σaEzBz,0Bxx̂+ µ0σaEzBz,0By ŷ + µ0σaEzB

2
z,0ẑ.

(C35)

Since we are free to choose Bz,0 (which is a component
of the applied magnetic field), the z component of this
last equation gives

Ez = 0, (C36)

while the other two components yield

Bx =Bx,0 = 0 (C37)

By =By,0 = 0 (C38)

∂zEz =0 = −µ0cκ∆pzBz (C39)

Bz =Bz,0 = 0. (C40)

This contradicts the assumption that the applied mag-
netic field is nonzero, Bz0 6= 0. Thus, we again arrive at
an inconsistent solution.

2. Whole space case

Here, we consider the case where the whole space is a
WSM. Thus, the fields must be constant due to symme-
try. We have

~∇ · ~E = −µ0cκ∆~p · ~B = 0 (C41)

~∇× ~B = µ0σa( ~E · ~B) ~B +
µ0κ

c
∆~p× ~E = 0. (C42)

The WSM has the momentum separation ∆~p. We choose
the direction of this vector to be ẑ, i.e. ∆~p = ∆pz ẑ, and
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so we have ~B = (Bx, By, 0) from the first equation. From
the second equation, we obtain

µ0σa(ExBx + EyBy)Bx −
µ0κ

c
∆pzEy = 0 (C43)

µ0σa(ExBx + EyBy)By +
µ0κ

c
∆pzEx = 0, (C44)

which gives

Ex = −
µ0σaBxBy − µ0κ

c ∆pz

µ0σaB2
x

Ey (C45)

Ex = −
µ0σaB

2
y

µ0σaBxBy + µ0κ
c ∆pz

Ey. (C46)

So we have Ex = Ey = 0 or

µ2
0σ

2
aB

2
xB

2
y − (

µ0κ

c
)2∆p2

z = µ2
0σ

2
aB

2
xB

2
y . (C47)

Since ∆pz 6= 0, the only possibility is

Ex = Ey = 0, (C48)

Ez = Ez,0. (C49)

This means the electric field can only exist along the
direction of the Weyl separation, while the magnetic field
must be perpendicular to this direction. Thus, the CME
cannot exist in this case.

3. Cylindrical wire case

Here, we consider an infinite cylindrical wire with ra-
dius R made from a WSM. The axis of the cylinder is
along the ẑ direction. Again we start with Eqs. (C16)-
(C19). To maintain cylindrical symmetry, we focus on
the case ∆~p = ∆pz ẑ. Because of this symmetry, all fields
should depend on r only. We obtain the equations

1

r

∂

∂r
(rEr) = −µ0cκ∆pzBz (C50)

∂Ez
∂r

= 0 (C51)

1

r

∂

∂r
(rEφ) = 0 (C52)

1

r

∂

∂r
(rBr) = 0 (C53)

− ∂Bz
∂r

φ̂+
1

r

∂

∂r
(rBφ)ẑ

=µ0σa(ErBr + EφBφ + EzBz) ~B

+
µ0κ

c
∆pzErφ̂−

µ0κ

c
∆pzEφr̂. (C54)

Thus we have

1

r

∂

∂r
(rEr) + µ0cκ∆pzBz = 0 (C55)

Ez = Ez,0 (C56)

Eφ =
C1

r
= 0 (C57)

Br =
C2

r
= 0 (C58)

∂Bz
∂r

+ µ0σaEz,0BzBφ +
µ0κ

c
∆pzEr = 0 (C59)

−1

r

∂

∂r
(rBφ) + µ0σaEz,0B

2
z = 0. (C60)

Choosing C1 = C2 = 0 prevents some of the field compo-
nents from becoming singular at r = 0. The continuity
of the fields across the WSM surface can again be es-
tablished by performing volume or area integrations, as
we showed for the semi-infinite slab geometry. In the
case of the cylindrical wire, the same analysis yields the
following continuity conditions:

Einr |r=R = Eoutr |r=R (C61)

Einz = Eoutz = Ez,0 (C62)

Einφ = Eoutφ = 0 (C63)

Binr = Boutr = 0 (C64)

Binφ |r=R = Boutφ |r=R (C65)

Binz |r=R = Boutz |r=R. (C66)

In summary, all fields are continuous across the bound-
ary.

Appendix D: Dynamical axions

Here, we show details of the solutions for dynamical ax-
ions obtained in Sec. IV. We consider a semi-infinite slab
of WSM occupying the half-space z ≥ 0. We consider
two cases: one in which the applied fields are orthogonal
to the surface, and one in which the fields are parallel
to the surface. The solution details for both cases are
given below. In both cases, all the fields are continuous
across the surface, as follows from an analysis similar to
the one we performed for the other two versions of axion
electrodynamics considered in this work.

1. ~E, ~B ‖ ẑ outside of the WSM

From the main text Eqs. (61) - (66), we have

Ex,0 = Ey,0 = 0 (D1)

ft,0 = 0. (D2)
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Replcing ∂z with operator P , we have four variables and
four equations:

fx,0Bx + fy,0By +
1

µ0cκ
PEz +Bz,0fz =0 (D3)

PBx +
µ0κ

c
fx,0Ez =0 (D4)

PBy +
µ0κ

c
fy,0Ez =0 (D5)

κ

κ0c
Bz,0Ez + Pfz =0 (D6)

The determinant is then∣∣∣∣∣∣∣∣
fx,0 fy,0

1
µ0cκ

P Bz,0
P 0 µ0κ

c fx,0 0
0 P µ0κ

c fy,0 0
0 0 κ

κ0c
Bz,0 P

∣∣∣∣∣∣∣∣ = 0. (D7)

The operator equation reads

P 2(P 2 −D2) = 0, (D8)

where

D2 =
κ2µ0[B2

z,0 + (f2
x,0 + f2

y,0)κ0µ0]

κ0
. (D9)

This means we have four roots for P:

P1 = P2 = 0 (D10)

P3 = D (D11)

P4 = −D (D12)

The solutions of the ODEs are of the form

xi = aie
Dz + bie

−Dz + ciz + di, (D13)

where we associate the indices to the fields as follows:
Bx → 1, By → 2, Ez → 3, fz → 4. Putting the gen-
eral forms of the solutions back into the 4 equations, we

obtain

fx,0a1 + fy,0a2 +
1

µ0cκ
Da3 +Bz,0a4 =0 (D14)

Da1 +
µ0κ

c
fx,0a3 =0 (D15)

Da2 +
µ0κ

c
fy,0a3 =0 (D16)

κ

κ0c
Bz,0a3 +Da4 =0 (D17)

fx,0b1 + fy,0b2 −
1

µ0cκ
Db3 +Bz,0b4 =0 (D18)

−Db1 +
µ0κ

c
fx,0b3 =0 (D19)

−Db2 +
µ0κ

c
fy,0b3 =0 (D20)

κ

κ0c
Bz,0b3 −Db4 =0 (D21)

fx,0c1 + fy,0c2 +Bz,0c4 =0 (D22)
µ0κ

c
fx,0c3 =0 (D23)

µ0κ

c
fy,0c3 =0 (D24)

κ

κ0c
Bz,0c3 =0 (D25)

fx,0d1 + fy,0d2 +
1

µ0cκ
c3 +Bz,0d4 =0 (D26)

c1 +
µ0κ

c
fx,0d3 =0 (D27)

c2 +
µ0κ

c
fy,0d3 =0 (D28)

κ

κ0c
Bz,0d3 + c4 =0 (D29)
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Thus we can fix many coefficients based on the equations above

a2 = a1
fy,0
fx,0

(D30)

a3 = a1

c
√
B2
z,0 + (f2

x,0 + f2
y,0)κ0µ0

fx,0
√
κ0µ0

(D31)

a4 = a1
Bz,0

fx,0κ0µ0
(D32)

b2 = b1
fy,0
fx,0

(D33)

b3 = b1
c
√
B2
z,0 + (f2

x,0 + f2
y,0)κ0µ0

fx,0
√
κ0µ0

(D34)

b4 = b1
Bz,0

fx,0κ0µ0
(D35)

c1 = c2 = c3 = c4 = 0 (D36)

d3 = 0 (D37)

d4 = −d1fx,0 + d2fy,0
Bz,0

, (D38)

where a1, b1, d1, d2 are determined by the boundary conditions of the four fields.

If we set Bx(0) = By(0) = 0, Ez(0) = Ez,0 and fz(0) = 0, we obtain

a1 = −b1 = − Ez,0fx,0

2c

√
f2
x,0 + f2

y,0 +
B2
z,0

κ0µ0

(D39)

d1 = d2 = 0. (D40)

And the solutions of the unknown fields are

Bx = −Ez,0fx,0κµ0 sinh(Dz)

cD
(D41)

By = −Ez,0fy,0κµ0 sinh(Dz)

cD
(D42)

Ez = Ez,0 coshDz (D43)

fz = −Bz,0Ez,0κ sinhDz

cκ0D
(D44)

If we set Bx(0) = By(0) = 0, Ez(0) = Ez,0 and fz(0) = fz,0, we obtain

a1 = −
fx,0
√
κ0µ0[B2

z,0Ez,0 + Ez,0(f2
x,0 + f2

y,0)κ0µ0 −Bz,0cfz,0
√
κ0µ0

√
B2
z,0 + (f2

x,0 + f2
y,0)κ0µ0]

2c[B2
z,0 + (f2

x,0 + f2
y,0)κ0µ0]

3
2

(D45)

b1 =
fx,0
√
κ0µ0[B2

z,0Ez,0 + Ez,0(f2
x,0 + f2

y,0)κ0µ0 +Bz,0cfz,0
√
κ0µ0

√
B2
z,0 + (f2

x,0 + f2
y,0)κ0µ0]

2c[B2
z,0 + (f2

x,0 + f2
y,0)κ0µ0]

3
2

(D46)

d1 = − Bz,0fx,0fz,0κ0µ0

B2
z,0 + (f2

x,0 + f2
y,0)κ0µ0

(D47)

d2 = − Bz,0fy,0fz,0κ0µ0

B2
z,0 + (f2

x,0 + f2
y,0)κ0µ0

(D48)
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And the solutions of the unknown fields are

Bx =
fx,0κµ0[Bz,0cfz,0κµ0(−1 + coshDz)−DEz,0 sinhDz]

cD2
(D49)

By =
fy,0κµ0[Bz,0cfz,0κµ0(−1 + coshDz)−DEz,0 sinhDz]

cD2
(D50)

Ez = Ez,0 coshDz − Bz,0cfz,0κµ0

D
sinhDz (D51)

fz =
cfz,0(κ0D

2 −B2
z,0κ

2µ0 +B2
z,0κ

2µ0 coshDz)−Bz,0Ez,0κD sinhDz

cκ0D2
. (D52)

2. ~E, ~B ‖ x̂ outside of the WSM.

Now we consider the case where the fields outside the
slab are parallel to the surface. Setting Bz = Bz,0 = 0
and Ey,0 = 0, we immediately find that ft,0, fx,0 are free
parameters, and

fy,0 =0 (D53)

∂zEz =− µ0cκfx,0Bx (D54)

∂zBx =
µ0κ

c
(ft,0By − fx,0Ez + Ex,0fz) (D55)

∂zBy =− µ0κ

c
ft,0Bx (D56)

∂zfz =− κ

κ0c
Ex,0Bx. (D57)

Replacing ∂z with operator P , again, we have four vari-
ables and four equations:

− c

µ0κ
PBx + ft,0By − fx,0Ez + Ex,0fz =0 (D58)

ft,0Bx +
c

µ0κ
PBy =0 (D59)

fx,0Bx +
1

µ0cκ
PEz =0 (D60)

Ex,0Bx +
κ0c

κ
Pfz =0. (D61)

The determinant is then∣∣∣∣∣∣∣∣
− c
µ0κ

P ft,0 −fx,0 Ex,0
ft,0

c
µ0κ

P 0 0

fx,0 0 1
µ0cκ

P 0

Ex,0 0 0 κ0c
κ P

∣∣∣∣∣∣∣∣ = 0. (D62)

The operator equation reads

P 2(P 2 −D2) = 0, (D63)

where

D2 =
−κ2µ0[E2

x,0 + κ0µ0(f2
t,0 − c2f2

x,0)]

c2κ0
(D64)

This means we have four roots for P:

P1 = P2 = 0 (D65)

P3 = D (D66)

P4 = −D (D67)

The solutions of the ODEs have the general form

xi = aie
Dz + bie

−Dz + ciz + di, (D68)

where the indices are associated with the field compo-
nents according to Bx → 1, By → 2, Ez → 3, fz → 4.
Plugging the general forms of the solutions into the 4
equations, we obtain

− c

µ0κ
Da1 + ft,0a2 − fx,0a3 + Ex,0a4 =0 (D69)

ft,0a1 +
c

µ0κ
Da2 =0 (D70)

fx,0a1 +
D

µ0cκ
a3 =0 (D71)

Ex,0a1 +
κ0c

κ
Da4 =0. (D72)

c

µ0κ
Db1 + ft,0b2 − fx,0b3 + Ex,0b4 =0 (D73)

ft,0b1 −
c

µ0κ
Db2 =0 (D74)

fx,0b1 −
D

µ0cκ
b3 =0 (D75)

Ex,0b1 −
κ0c

κ
Db4 =0. (D76)

ft,0c2 − fx,0c3 + Ex,0c4 =0 (D77)

ft,0c1 =0 (D78)

fx,0c1 =0 (D79)

Ex,0c1 =0. (D80)

− c

µ0κ
c1 + ft,0d2 − fx,0d3 + Ex,0d4 =0 (D81)

ft,0d1 +
c

µ0κ
c2 =0 (D82)

fx,0d1 +
1

µ0cκ
c3 =0 (D83)

Ex,0d1 +
κ0c

κ
c4 =0. (D84)
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Solving these equations we obtain

a2 =ia1

ft,0
√
κ0µ0√

E2
x,0 + f2

t,0κ0µ0 − c2f2
x,0κ0µ0

(D85)

a3 =ia1

c2fx,0
√
κ0µ0√

E2
x,0 + f2

t,0κ0µ0 − c2f2
x,0κ0µ0

(D86)

a4 =ia1
Ex,0

√
κ0µ0

√
E2
x,0 + f2

t,0κ0µ0 − c2f2
x,0κ0µ0

(D87)

a2 =− ib1
ft,0
√
κ0µ0√

E2
x,0 + f2

t,0κ0µ0 − c2f2
x,0κ0µ0

(D88)

a3 =− ib1
c2fx,0

√
κ0µ0√

E2
x,0 + f2

t,0κ0µ0 − c2f2
x,0κ0µ0

(D89)

a4 =− ib1
Ex,0

√
κ0µ0

√
E2
x,0 + f2

t,0κ0µ0 − c2f2
x,0κ0µ0

(D90)

c1 =c2 = c3 = c4 = 0 (D91)

d1 =0 (D92)

d4 =
d2ft,0 + d3fx,0

Ex,0
. (D93)

Now denoting

D0 =
D

i
, (D94)

if we set Bx(0) = Bx,0, By(0) = 0, Ez(0) = 0 and fz(0) =
0, we obtain

a1 =b1 =
1

2
Bx,0 (D95)

d2 =d3 = 0, (D96)

which gives

Bx =Bx,0 cosD0z (D97)

By =− Bx,0ft,0κµ0

cD0
sinD0z (D98)

Ez =− Bx,0cfx,0κµ0

D0
sinD0z (D99)

fz =− Bx,0Ex,0κ

cκ0D0
sinD0z (D100)

If we set Bx(0) = Bx,0, By(0) = 0, Ez(0) = 0 and fz(0) =
fz,0, we obtain

a1 =
1

2
(Bx,0 −

iEx,0fz,0
√
κ0µ0√

E2
x,0 + f2

t,0 − c2f2
x,0

) (D101)

b1 =
1

2
(Bx,0 +

iEx,0fz,0
√
κ0µ0√

E2
x,0 + f2

t,0 − c2f2
x,0

) (D102)

d2 =− Ex,0ft,0fz,0κ0µ0

E2
x,0 + f2

t,0 − c2f2
x,0

(D103)

d3 =− c2Ex,0fx,0fz,0κ0µ0

E2
x,0 + f2

t,0 − c2f2
x,0

(D104)

which gives

Bx =Bx,0 cosD0z +
Ex,0fz,0κµ0

cD0
sinD0z (D105)

By =
ft,0Ex,0fz,0κ

2µ2
0

c2D2
0

(−1 + cosD0z)

− Bx,0ft,0κµ0

cD0
sinD0z (D106)

Ez =
fx,0Ex,0fz,0κ

2µ2
0

D2
0

(−1 + cosD0z)

− Bx,0cfx,0κµ0

D0
sinD0z (D107)

fz =
κ

c2D2
0κ0

[cD0fz,0
√
κ0µ0 + E2

x,0fz,0κµ0(−1 + cosD0z)

−Bx,0Ex,0cD0 sinD0z]. (D108)
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