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Abstract

Eye-tracking has emerged as a popular method for empirical studies of cognitive processes across multiple
substantive research areas. Eye-tracking systems are capable of automatically generating fixation-location
data over time at high temporal resolution. Often, the researcher obtains a binary measure of whether or not,
at each point in time, the participant is fixating on a critical interest area or object in the real world or in a
computerized display. Eye-tracking data are characterized by spatial-temporal correlations and random vari-
ability, driven by multiple fine-grained observations taken over small time intervals (e.g., every 10 ms).
Ignoring these data complexities leads to biased inferences for the covariates of interest such as experimental
condition effects. This article presents a novel application of a generalized additive logistic regression model
for intensive binary time series eye-tracking data from a between- and within-subjects experimental design.
The model is formulated as a generalized additive mixed model (GAMM) and implemented in the mgcv R
package. The generalized additive logistic regression model was illustrated using an empirical data set aimed
at understanding the accommodation of regional accents in spoken language processing. Accuracy of param-
eter estimates and the importance of modeling the spatial-temporal correlations in detecting the experimental
condition effects were shown in conditions similar to our empirical data set via a simulation study.

Translational Abstract

A common technique for studying cognitive processes is the use of eye-tracking technology to monitor
where the eyes are looking as a participant completes a task. Eye-tracking systems can generate data
that is both spatially and temporally precise, and that can be used to make inferences about the underly-
ing cognitive processes that support the task at hand. A common way of examining eye-tracking data is
to obtain a measure of where, at each moment in time, the participant was looking. When the researcher
is interested in a single target interest area, the researcher is working with intensive binary time-series
data indicating whether or not, at each moment in time, the participant was fixating the target. In such
data structures, we can expect strong temporal autocorrelation, as well as spatial-temporal correlations,
because at certain time points, the distance between the current fixation position and the target location,
and potential nontarget lures, may predict whether an upcoming target fixation is likely. The present ar-
ticle introduces a novel application of a generalized additive logistic regression model to intensive bi-
nary time series eye-tracking data, with typical data complexities as encountered in experimental studies
of cognitive processes (i.e., experimental designs with within- and between-subjects factors, and crossed
random effects). The model is applied to a dataset concerning spoken language processing, and is imple-
mented in the mgcv R package. We show that modeling these spatial-temporal correlations is important
for accurate statistical inference regarding fixed experimental condition effects.

Keywords: eye tracking, generalized additive mixed model, intensive binary time series data, logistic
model, spatial-temporal correlations

Empirical studies of cognitive processes are used across multi-
ple substantive research areas to explain the mechanisms that
underlie fundamental processes such as perception, memory,

language, learning, and decision making in psychology. These
cognitive processes unfold over time and, as a result, researchers
often leverage time-sensitive measures such as event-related brain
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potentials (e.g., Kutas & Federmeier, 2011), reading times (e.g.,
MacDonald et al., 1994), and eye gaze during reading and other
tasks (e.g., Tanenhaus et al., 1995; Warren et al., 2009). In particu-
lar, the study of eye gaze as participants complete a task with real
world objects or a computerized display has emerged as a domi-
nant method for examining various cognitive phenomena includ-
ing visual memory (e.g., Hayhoe et al., 2003), problem solving
(e.g., Thomas & Lleras, 2009), reading (e.g., Warren et al., 2009),
children’s word learning (e.g., Creel, 2014), and developmental
research (e.g., Oakes, 2012). The resulting data exhibit a rich
structure with multiple types of complexities that current data ana-
Iytic approaches do not fully account for. The aim of the present
work is to improve analytic techniques for eye-tracking data.

Using analytic techniques to process data is important for two
major reasons. First, analytic techniques allow for a finer level of
detail when capturing the ongoing processes of interest. These
processes are complicated, and can change quickly over time in
nonlinear ways. For analytic techniques to pick up on the features
(i.e., characteristics) of these processes and to capture their com-
plex nature with precision, the process data needs to be time-inten-
sive, and the analytic methods need to be sufficiently flexible and
detailed. Second, experimental studies are often used to test theo-
ries involving a hypothesized effect on cognitive processes and
their outcomes. To test these effects in an accurate way, it is im-
portant to have accurate quantifications of the uncertainty of the
estimated effects. The standard error of estimation does not simply
depend on sample size, but it can be biased due to independence
assumptions not being fulfilled. Time intensive data often show
temporal (or serial) correlations' and trends, and the dynamic na-
ture of the processes of interest implies that these correlations and
trends may change over time. For eye-tracking data, there is also a
spatial aspect of the data, which may give rise to spatial correla-
tions. If these spatial and temporal aspects are not included in the
analysis model, one would not be able to capture important aspects
of the ongoing processes, and furthermore, the standard errors of
the effects one wants to test may not be accurate. An additional
challenge we are confronted with is that eye-tracking data are of-
ten coded as binary. Eye fixations can be registered in an (almost)
continuous space, but when one is interested in gaze at particular
objects, the eye-tracking data are categorical, indicating which of
several candidates the participant is gazing at. If the researcher is
interested in fixations to a specific (target) object, the data are thus
coded as binary (i.e., 1 for target fixation; O for nontarget fixation).
A binary coding scheme of this sort would be typical for cognitive
tasks with a correct response option.

Spatial-Temporal Correlations in Intensive Binary Eye-
Tracking Data

The temporal resolution of modern eye-trackers ranges from
~30 to 2,000 Hz depending on the eye-tracker model. The spatial
resolution is expressed in terms of degrees of visual angle. For
example, the data that we model in this article were recorded at
1,000 Hz and with a spatial resolution up to .1° visual angle. The
eye-tracking system generates information about where in space
the eye-tracked participant is looking at each moment in time.
This information can then be used to ask questions such as how
quickly and easily a participant understands an instruction or com-
pletes a task. For example, imagine we are studying how easily

people follow instructions. To address this research question, par-
ticipants are asked to view a computer screen with four different
buttons and then told to “Push the green button to continue.” As
the participant listens to this instruction, we can generate a binary
measure of whether or not the participant is fixating on the green
button at each time point. In a task like this, we would expect par-
ticipants to look for the green button (the “target”) and then push
it. As a result, whereas participants would initially be looking at
the target button at chance levels, eventually most participants will
have located the target button and thus fixations to the target will
be common. This change will result in a nonlinear increase in the
probability of fixating on the target over time. In addition to trend
effects, temporal autocorrelations (AR; correlation of a variable
with itself through time) from closely and equally time-spaced
eye-tracking data are expected. Once the eyes move to a new fixa-
tion location, they are likely to linger at that new location as the
participant comprehends the newly fixated information. As a
result, with fast sampling rates, it is expected that the fixation posi-
tion at prior time points is a strong predictor of fixation position at
the current time point. This AR is expected to be highest at the be-
ginning of the analysis time-window (before participants have had
a chance to move their gaze) and at the end of the analysis time-
window (once the participants have fixated on the target). The
temporal AR may be smaller in the middle of the time window,
when participants are likely to shift fixation from a nontarget but-
ton to the target button. Furthermore, all participants are presented
with a sequence of frials. A trial is a presentation of an item.
Because the same item can be presented multiple times, there can
be more trials than items. As will be explained, the number of tri-
als can differ across participants.

In addition to temporal trend and AR, spatial correlation is
expected as well. Consider that the green target button extends
over an area of space defined by the x, y coordinate boundaries of
the button. When the participant’s gaze is within the boundaries of
the target area, the binary fixation data are coded as 1 (target fixa-
tion), and when they are outside of the target area the data are
coded as O (nontarget fixation). In this example, nontarget fixations
may include fixations to one of the other buttons on the screen, fix-
ations to blank areas, or offscreen fixations. This type of data is
expected to exhibit spatial correlations because all fixations within
the area delimited by the x, y coordinates of the target will be
coded as 1, and all other fixations will be coded as 0. In addition,
due to the fact that the x, y coordinate location of an eye fixation
changes over time when a participant moves their gaze, we also
expect time-varying spatial effects. When the gaze fixates on a
particular location, there is a functional field of view around that
fixation location (Irwin, 2004). Following an initial saccade, par-
ticipants may explore the area or correct the fixation landing posi-
tion with secondary, corrective, or micro saccades (McCamy et
al., 2014; Viviani & Swensson, 1982; Wu et al., 2010). As a result,
we expect that the distance between the previous fixation point
and a given interest area will predict the probability of fixating on
that interest area in the current fixation point.

' We use the term of correlation to refer to any statistical association,
although it commonly refers to the degree to which a pair of variables are
linearly related.
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Limitations and Strengths of Current Data Analysis
Methods

Different kinds of statistical methods have been applied to eye-
tracking data to answer research questions regarding visual atten-
tion while completing cognitive tasks as described above. Some
researchers have used a #-test or a linear regression model based
on an aggregate of binary eye-tracking data across a time window
(Hanna & Brennan, 2007; Trude & Brown-Schmidt, 2012). Others
have employed cluster randomization approaches in which a #-test
or a multilevel logistic regression model is conducted at each time
point to identify the time point at which proportions to an area of
interest (AOI) differ between groups or experimental conditions
(e.g., Barr et al., 2014; Oakes et al., 2013). These existing statisti-
cal methods are typically based on aggregated measures (i.e., pro-
portions or logistic-transformed proportions) and therefore do not
allow researchers to model spatial and temporal correlations and
all sources of variability in the data. Failure to correctly model
spatial and temporal correlations and all sources of variability can
result in biased estimates for the effects of interest and biased
standard errors. For example, Cho et al. (2018) showed that ignor-
ing temporal AR in binary time-series eye-tracking data led to bi-
ased estimates for experimental condition effects and their
standard errors.

Models that incorporate temporal AR have become increasingly
popular in psychological research. For instance, the temporal AR
in continuous time data has been modeled using multilevel linear
models (e.g., de Haan-Rietdijk et al., 2016; Schuurman et al.,
2016) and by using a state-space model (e.g., Oravecz et al., 2011)
in affect research.

For binary (fixation vs. nonfixation) eye-tracking data, the tem-
poral AR is modeled using a generalized linear mixed-effects
model (GLMM; Cho et al., 2018; Cho, Brown-Schmidt, De
Boeck, et al., 2020). However, previous studies did not consider
spatial correlations in eye-tracking data. Although considerable
work has been done on the visualization of spatial-temporal data
from eye-trackers (e.g., Yarbus, 1967; Wooding, 2002), statistical
modeling for such data is still very preliminary (see Cho, Brown-
Schmidt, Naveiras, et al., 2020; Nixon et al., 2016; for exceptions).
This article is among the first to model the spatial-temporal corre-
lations in eye-tracking data in psychology.

Generalized additive models (GAM; Hastie & Tibshirani, 1990;
Wood, 2017) have been used to model nonlinear temporal AR
(e.g., Bringmann et al., 2017, 2018); nonlinear trend (Sullivan et
al., 2015), nonlinear temporal AR and trend (Craigmile et al.,
2010), and spatial-temporal correlations (Fang & Chan, 2015).
The GAM was extended to the generalized additive mixed model
(GAMM; Fahrmeir & Lang, 2001; Lin & Zhang, 1999; Wood,
2017) which permits the response probability distribution to be
any member of the exponential family of distributions (e.g., Ber-
noulli, Poisson, Gamma). GAMM provides a flexible modeling
framework to model data complexities from eye-tracking data. As
with the GLMM, the GAMM allows for modeling variability, cor-
relations between observations, and temporal or spatial correla-
tions. A unique feature of the GAMM is that nonlinear
dependencies between an outcome variable and continuous covari-
ate(s) can be modeled using smooth functions. For example, tem-
poral trend effects can be modeled in a data-driven manner using
GAMM, instead of a parametric (e.g., linear or quadratic) trend.

However, GAMM has not been used previously to answer
research questions based on intensive binary time series data with
space and time related complexities.

Study Purpose

The purpose of this article is to illustrate how one can account
for temporal and spatial dynamics in eye-tracking data using a
generalized additive logistic regression model as a GAMM, so
that the effects of interest can be tested in a more accurate way. In
the generalized additive logistic regression model used here,
smooth functions are specified to model the following types of
possible nonlinearities:

* The level of the outcome variable (i.e., target fixations)
may change in a nonlinear way across time points within
trials and across the sequence of trials. The former is a
trend within the time series and the latter is a trend across
the time series.

e The trend within the time series may depend on the loca-
tion of the time series in the sequence of trials. The inter-
action between trial and trend within a time series may be
nonlinear.

e Temporal AR and correlations with the location of the
previous observation (i.e., the previous fixation) may
change in a nonlinear way within time series.

* The spatial correlations in the outcome variable from the
x, y coordinates of a computer screen are expected. These
spatial correlations are about the concentrations of eye
fixations.

Specitying these spatial and temporal aspects of the data in a
generalized additive logistic regression model leads to more accu-
rate statistical inference for the hypothesized effects of interest re-
ferring to the factors in an experiment. To the best of our
knowledge, the combination of these four effects listed have not
been considered in the application of GAMM for intensive binary
time series data. In addition, parametric random effects in GAMM
were also considered to take the variability of persons and items
into account, as is recommended for psycholinguistic data and as
is commonly implemented in GLMM (Baayen et al., 2008). We
utilize the mgcv package Version 1.8-28 (Wood, 2019) in R Ver-
sion 3.2.4 (R Core Team, 2016) for estimation of the generalized
additive logistic regression model.

This article is organized as follows. First, we explain how trend
and spatial-temporal correlations can be explored graphically and
descriptively. Second, we describe the smooth additive logistic
regression model and explain the estimation, model evaluation,
and testing in the mgcv package. Third, we illustrate the model
applied to the empirical data set from Trude et al. (2013). Subse-
quently, we provide a simulation study to investigate the accuracy
of parameter estimates and standard errors, and the consequences
of ignoring the spatial-temporal correlations in detecting experi-
mental condition effects. Finally, we end with a summary and a
discussion.

Characterizing Time, Space, and Related Correlations

A typical data structure for a visual world eye-tracking study is
a multilevel structure with three levels for binary data (Barr,
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2008). Specifically, time point data at Level 1 are nested within tri-
als at Level 2 (one time series per trial), which are cross-classified
by persons and items at Level 3. The data typically come from
more than one trial, which means that each person has time series
data for multiple items across multiple trials, and may experience
the same item multiple times on different trials. In this multilevel
data structure, an individual trial (which takes place over a
sequence of time points) constitutes a time series. As explained in
the Introduction, it is expected that there are change processes
(trend and temporal AR), spatial correlations, and spatial AR in
the time series for eye-tracking data. It is a common practice to
begin with an exploratory descriptive analysis of time series and
spatial data (e.g., Cressie & Wikle, 2011). Below, descriptive
methods are provided as a preliminary analysis.

Trend and Temporal AR

A time-series plot (with time on the x-axis and the outcome
variable on the y-axis) can be created to explore the trend over
time. In addition, autocorrelations (Box & Jenkins, 1976) can be
calculated to investigate whether there is a trend or AR or both. In
the presence of both trend and AR, the autocorrelations for small
lags tend to be large and positive because observations nearby in
time are also close by in value (Chatfield, 2004). Furthermore, par-
tial autocorrelations can be calculated to select the order of auto-
correlations (Chatfield, 2004). In this study, autocorrelations and
partial autocorrelations were calculated using the acf and pacf
functions respectively in the stats R package (R Core Team,
2016).

Spatial Correlations

In eye-tracking data measured using the x, y coordinates of eye
fixations on a computer screen, it is expected that eye fixations
close to each other are likely to be more similar than eye fixations
that are further apart. To investigate whether such spatial correla-
tions exist in eye-tracking data, a variogram (Cressie, 1993) can
be calculated. Similar to how temporal autocorrelations measure
temporal dependence by comparing values at time points ¢ and
(t + lag), the variogram measures spatial dependence by compar-
ing values in space (i.e., the x, y coordinates on a computer screen)
with the distances that separate those points. A low value of the
variogram indicates spatial dependence (e.g., eye fixations in close
proximity), whereas a large value indicates spatial independence
(e.g., eye fixations far apart).

Let yyj; for trial [ (I=1, ..., L), personj (j=1,...,J), and item
i(i=1,...,0] attime point ¢ (=1, ... T for equally-spaced time
points) denote a binary-coded fixation data point, coded 1 (y,; =
1) for a predefined fixation (i.e., looking at an image), and coded 0
(yuji = 0) otherwise. The variogram of residuals from a null model
can be investigated prior to modeling the spatial correlation (e.g.,
Zuur et al., 2009). The motivating data in this article come from
the field of psycholinguistics, where simultaneously modeling per-
son and item variability using crossed random person and item
effects has been widely advocated (Baayen et al., 2008; Barr,
2008; Jaeger, 2008; Quené & van den Bergh, 2008). Thus, the null
model can include a fixed intercept parameter Jy, a (parametric)
random person effect 0;, and a (parametric) random item effect ;,
as follows:

P(ytlji =1 |eja<;i)

lo
gl _P(ytlji =1 |e_i7Ci)

=80 +0; + ;. M

The null model is a Rasch, or 1-parameter logistic, model in
which a person parameter (a latent variable) and an item parameter
(item location) are random effects (De Boeck, 2008). As will be
shown later, the null model can also be formulated as a GLMM
with crossed person and item random effects (e.g., Baayen et al.,
2008). The person random effect is for modeling individual differ-
ences in target fixations, and the item random effect is for model-
ing variability in item location across items. The Pearson residuals
of the null model (denoted by R) are used to calculate the
variogram.

To explore spatial dependence, the variogram can be plotted for
points separated by the same euclidean distance Q. Denote the
residuals R of two data points with Q distance between them by R
(n, m) and R(n + d,,, m + d,,), with distance d,, between the x coor-
dinates and distance d,, between the y coordinates such that

\/d? + d2, = Q. Figure Al of Appendix A illustrates the distance
O between the x, y coordinates of R(n, m) and R(n + d,, m + dy,).
In practice, it is difficult to find enough data points separated by
exactly the same distance Q. Thus, the set of all possible distances
Q is partitioned into classes. As an example, Figure A2 of Appen-
dix A presents four classes separated by “Distance 1,” “Distance
2,” “Distance 3,” and “Distance 4.” Data points within each ring in
Figure A2 of Appendix A are grouped into one class. For each
class, the variogram is calculated as the variance of the differences
of residuals among pairs of data points:

. 1 N,
7(Qe) = FZ{R(nq + dngymg + dug) — R(ng, mq)}2v 2
¢ g=1

where ¢ is an index for a pair of data points within class Q. (c = 1,
..., ), and N, is the number of pairs of data points within class
Q.. In practice, a semivariogram (i.e., the semivariance) is used,
which is equal to half the value of the variogram (0.5Y(Q.)). A
semivariogram includes the variance for each pair of points once,
rather than once for each point within that pair (e.g., Webster &
Oliver, 2007). The calculated semivariogram can be plotted for all
classes against the distance to observe patterns in spatial depend-
ence. The expected pattern in the plot is that the value of the semi-
variogram is zero for a distance of zero, and that increasing the
distance increases the value of the semivariogram. Such a plot
would indicate that a decrease in spatial dependence (i.e., an
increase in the distance between points) is associated with an
increase in the value of the semivariogram (i.e., an increase in the
variance of the difference of residuals; see Figure A3 of Appendix
A). In Appendix A, the calculation of the semivariogram is illus-
trated in R using 40 observations.

Data points from all possible locations within a class (i.e.,
within the ring associated with that class, see Figure A2 in Appen-
dix A) are used for calculating the semivariogram using Equation
2, with the assumption that the spatial dependence of the residuals
is the same in every direction (e.g., 0° [north], 45° [northeast], 90°
[east], and 135° [southeast], see Figure A4 of Appendix A for dif-
ferent directions of x, y coordinates). This assumption, called
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isotropy, can be tested by calculating the semivariogram for each
direction (e.g., four semivariograms, one for each direction of
north, northeast, east, and southeast). Figure A4 of Appendix A
illustrates this test of isotropy, separating the data to calculate the
variogram using the northeast (red dots) data points and then again
using the southeast (blue dots) data points. The isotropy assump-
tion is reasonable when the strength and pattern of the semivario-
gram is similar for each direction. The variogram function in
the gstat R package (Pebesma, 2004) is used in this study.

Spatial by Temporal Interactions

There are a few different ways to characterize spatial by tempo-
ral interactions (see Cressie & Wikle, 2011 for a review). First,
spatial correlations can be presented using a semivariogram at dif-
ferent time points. When there are many time points, and each
with a small time interval (e.g., 132 time points at 10-ms inter-
vals), time points can be grouped into blocks (e.g., six time blocks;
each consisting of 22 time points of 10 ms) for calculating the
semivariogram. Second, patterns in x or y coordinates over time
can be investigated, that is, x coordinate versus time and y coordi-
nate versus time. Third, temporal correlations can be investigated
within a location in a grid of the x, y coordinates on a computer
screen. In this study, we chose the first approach (i.e., spatial cor-
relations by time blocks) to show the spatial-by-temporal interac-
tion because we are interested in exploring whether the effect of
spatial information (e.g., distance from a fixation to a target loca-
tion or a competitor location) differs over time.

The Generalized Additive Logistic Regression Model

In this section, existing GAMM applications are first reviewed to
highlight the limitations of the current methods of analyzing binary
time series eye-tracking data. Then, the generalized additive logistic
regression model is specified as a GAMM. Subsequently, the estima-
tion, model evaluation, and testing are explained in the mgcv package.

Existing GAMM Applications to Time Series Data

GAMMs have been applied to different kinds of time series: pupil
dilation data (e.g., Loo et al., 2016; Vogelzang et al., 2016), event-
related brain potential (ERP) data (e.g., Tremblay & Newman,
2015), reaction time (RT; e.g., Baayen, 2010; Baayen et al., 2017);
and educational intervention data from single case designs (Shadish
et al., 2014). Furthermore, there are recent GAMM applications in
which temporal AR was also modeled for continuous time series
data (with an identity link; e.g., Baayen et al., 2018; Baayen et al.,
2017; Wieling et al., 2016). GAMMs have also been applied to con-
tinuous time-series pupilometric data with temporal AR in the resid-
uals and spatial gaze information, with x, y coordinates of the gaze
position on screen as a covariate (van Rij et al., 2019). Related to
GAMM, a linear spline model as a mixed model was applied to
model a nonlinear trend over time and temporal AR of the residuals,
based on an aggregated measure (proportion of time that participants
were looking at the target) from eye-tracking data (Yamashiro et al.,
2019). In addition to using gaze position to model spatial correlation
as a covariate as in van Rij et al. (2019), the distance between the fix-
ation point and the centroid of the target interest area can be consid-
ered as another kind of spatial information. Nixon et al. (2016)

considered GAMM for eye-tracking data and the Euclidean distance
between the current fixation position and the centroid of the target
and competitor pictures as continuous outcome variables (instead of
as covariates) in the GAMM. Cho, Brown-Schmidt, Naveiras, et al.
(2020) considered fixed spatial lag effects in a model which showed
the probability of a target fixation at a time point ¢ is higher when the
fixation at the previous time point ¢ — 1 is close to the target. More
flexible spatial lag effects can be modeled such as nonlinear spatial
lag and time-varying spatial lag effects (as covariates) in the
GAMM, which has not been illustrated before.

Except for Cho, Brown-Schmidt, Naveiras, et al. (2020), all the
aforementioned applications have in common that the outcome vari-
able data are continuous so that the model specifications are not ap-
plicable to binary data. For binary data, a correlated residuals
approach is difficult to implement (Cox & Snell, 1989). Instead, it is
more common to model AR using the regression of current outcomes
on past outcomes (e.g., Bartolucci & Nigro, 2010; Cox & Snell,
1989; Fokianos & Kedem, 2003, Chapter 2; Hung et al., 2008; Zeger
& Qaqish, 1988). Cox and Snell (1989, pp. 100-101) noted that this
approach is observation driven in the sense that the probability at
time t is determined by the observations at previous time points. The
observation driven approach is appealing because it is easy to fit a
GAMM without further development of estimation algorithms and
inference, so that one can rely on the mgcv package.

Generalized Additive Logistic Regression Model

Below, we present GLMM as a model related to GAMM and
then introduce a general form of GAMM (e.g., Wood, 2017). Sub-
sequently, the generalized additive logistic regression model is
specified as GAMM for space-time modeling of intensive binary
time series eye-tracking data.

GLMM and GAMM

GLMM (e.g., Laird & Ware, 1982) is specified for an outcome
variable y distributed as an exponential family distribution (EF;
e.g., Bernoulli, Poisson, Gamma distributions) with mean p and
scale parameter ¢:

y~EF(p, ). 3)

The mean p is related to the linear predictor X'é 4+ Z'b with a
link function g:

g(w) =X'6+2Z', )

where X is a design matrix for fixed effects, Z is a design matrix
for random effects, 4 is the vector of fixed parameters, and b is the
vector of random parameters. The vector of random parameters b
is assumed to follow a multivariate normal (MVN) distribution
with a mean vector of O and a variance-covariance matrix X,
b~MVN(0,X%).

The null model presented in Equation 1 can be presented as
GLMM as follows:

logit[P(yuyi = 16;,5;)] = x'80 + Z;ej +2G;, )

where x’ is a design matrix for a fixed intercept (a vector of 1s), z;
is a design matrix for a parametric random person effect (a vector
of 1s for a random person intercept), and z; is a design matrix for a
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parametric random item effect (a vector of 1s for a random item
intercept).

GAMM (e.g., Wood, 2017) is a GLMM in which the linear pre-
dictor partly depends linearly on some unknown smooth functions
(fn) of the covariate(s):

H
gW) =X +Zb+ filw)+ Y fulwinxn), ©6)

N

h=1 h=h"+1
where £ is an index for the smooth function (k2 = 1, ..., 4’ for univari-
ate smooth functions; h = i’ + 1,..., H for bivariate smooth func-

tions), f;,(x;,) is a univariate smooth function of a covariate x;, and
Su(x1p,x2,) is a bivariate smooth function of the two covariates
X1hyX2h-

The univariate smooth function f,(x;) of a covariate x;, is the
weighted sum of a set of basis functions defined over the covariate x;,:

K
Fon) = Viabme (), (M

k=1
where k is an index for a basis function (k=1,...,K), x; is a

covariate for a smooth function A, v, is the kth basis coefficient,
and by (x) is the kth basis function for smooth function #.

The bivariate smooth function of the two covariates (x;, and
Xap,) is the weighted sum of a set of basis functions defined over
the covariates:

K K
Suin, Xon) = Z Z Yikae Dk (X115 X20) 5 (3

K x
where k is an index for a basis function (k = 1, ..., K) for a covari-
ate x1;, kK is an index for a basis function (K =1,...,K’) for a

covariate Xz, Y 18 @ basis coefficient, and by (x15,X21) is a
bivariate basis function. For a tensor product smooth as an example,
the bivariate basis function is by (xlh,xzh) = bhk(xlh)bhk/ ()Czh),
which is all pairwise products of univariate basis functions in
x1, and x,;, directions.

Generalized Additive Logistic Regression Model as GAMM

Binary time series eye-tracking data yy; (for time point 7, trial I,
person j, and item i) have an independent Bernoulli distribution
with mean p and variance p(1 — p):

yuji ~ Bernoulli(1), 9)

where L is a probability of a fixation conditional on random person
effect 6; and random item effect {;, P(yyi = 16;,(;). The scale pa-
rameter ¢ in Equation 3 is equal to 1 for Bernoulli distributions
(e.g., Wood, 2017, p. 104). The mean p in the Bernoulli distribution
is related to the linear predictor of GAMM with a logit link function:

P(ytlji =1 |6j7Ci)
1 _P(ytlji =1 ‘ ejaCi)

H
= X0+ 0+ 25+ Y filw) + Y Sl xm).

H
h=1 h=h+1

log = logit[P(yui = 116;,(;)]

(10

In the following, smooth functions are specified to model non-
linear spatial-temporal effects in eye-tracking data based on

Equation 10. Table 1 illustrates the covariates of the smooth func-
tions for the first 40 time points of data for a single combination of
trial, person, and item, as an example.

Smooth Functions for Time and Trials

The following model includes smooth functions for time and tri-
als to model processes in the eye-tracking data:

logit[P(yyi = 116;,G)] = X' +20; + 2,
+fi(time;) + f(trialy) + f3(timey, trialy) + ¥, fa(time;),

Y

where

* time,is an equally-spaced time covariate,

* trial; is an equally-spaced trial covariate indicating the or-
dinal position of the trial (the same for all persons),

*  Y(—1)i 1 the first-order temporal lag covariate, which is cre-
ated for a unique combination of a trial, a person, and an
item. As shown in Table 1, y(_;);; allows the researcher to
use the prior time point (# — 1) as a covariate of fixations at
the current time point (¢) in order to address the AR between
time points that is commonly observed in eye-tracking data,

* fi(time,) and f>(trial;) are univariate smooth functions to
model nonlinear and possibly even non-monotonic trends
in the probability of target fixations over time within the
time series and across trials, respectively,

* f3(time,, trial;) is a bivariate smooth function to model the
interaction between time and trials, as in the analysis of var-
iance (ANOVA) decomposition. The interaction of time and
trials indicates that trend over time differs across trials, and

. yztil)lﬁ fa(time,) is a univariate smooth function of time
for the first-order lag temporal lag covariate. The temporal
AR effect is considered to model temporal autocorrela-
tions between adjacent binary responses (Cox & Snell,
1989), which may vary over time. As explained earlier, it
is expected that the temporal AR is the highest at the be-
ginning and end of the time-window and is smaller in the
middle of the time-window.

Smooth Functions for Time and Trials and Their
Interactions With Space

We hypothesize that the probability of a target fixation is higher
the closer the fixation at the previous time point # — 1 was to the
target, and the further the fixation at # — 1 was from the competitor.
Thus, spatial lag covariates were created to account for variation
in the probability of target fixation. Adding smooth functions of
these spatial lag covariates to Equation 11 leads to:

logit[P(yyi = 116;,5)] = X'o+ Z}ej + 2
+fi(time,) + fa(trial;) + f3 (timey, trial)) + y(, ;. fa(time;)
+ dEr—l)ljifS (time;) + C/(,,l)ljl-fﬁ(lime,)
(12)

where
* d(_1) is the first-order spatial lag covariate for the target.
In order to create the covariate, the Euclidean distance
between the fixation point in terms of x, y coordinates of the
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Table 1
An lllustration of Covariates: Data Over First 40 Time Points for a Trial, a Person, and an Item
Locations Euclidean distance Lag covariates
Time Trial Yuji g gji My ji n, m, Ry ny Dtlji Crl_/'i Ya—1)iji d(t— Dlji Ca—1)lji
1 1 0 1,247 137 690 270 1,230 270 572.66 134.08 — — —
2 1 0 1,247 137 690 270 1,230 270 572.66 134.08 0 572.66 134.08
3 1 0 1,247 137 690 270 1,230 270 572.66 134.08 0 572.66 134.08
4 1 0 1,247 137 690 270 1,230 270 572.66 134.08 0 572.66 134.08
5 1 0 1,247 137 690 270 1,230 270 572.66 134.08 0 572.66 134.08
6 1 0 1,247 137 690 270 1,230 270 572.66 134.08 0 572.66 134.08
7 1 0 1,247 137 690 270 1,230 270 572.66 134.08 0 572.66 134.08
8 1 0 1,247 137 690 270 1,230 270 572.66 134.08 0 572.66 134.08
9 1 1 678 150 690 270 1,230 270 120.60 564.89 0 572.66 134.08
10 1 1 678 150 690 270 1,230 270 120.60 564.89 1 120.60 564.89
11 1 1 678 150 690 270 1,230 270 120.60 564.89 1 120.60 564.89
12 1 1 678 150 690 270 1,230 270 120.60 564.89 1 120.60 564.89
13 1 1 678 150 690 270 1,230 270 120.60 564.89 1 120.60 564.89
14 1 1 678 150 690 270 1,230 270 120.60 564.89 1 120.60 564.89
15 1 1 690 146 690 270 1,230 270 124.00 554.05 1 120.60 564.89
16 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
17 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
18 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
19 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
20 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
21 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
22 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
23 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
24 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
25 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
26 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
27 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
28 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
29 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
30 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
31 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
32 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
33 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
34 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
35 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
36 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
37 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
38 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
39 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
40 1 1 690 146 690 270 1,230 270 124.00 554.05 1 124.00 554.05
Note. - indicates a missing value; the nz,; and my; are the x and y coordinates for the fixation location f; the n, and m, are the x and y coordinates for

the target location v; the n, and m, are the x and y coordinates for the competitor location v'.

computer screen (1 i, my.;;) at time ¢ and the centroid of
the target location (n,, m, )?, is first calculated as follows:

dyji = \/ (ny = npai)” + (my — myi)”. (13)

Based on dy;;, d(;—1); is obtained. To illustrate the calculation of
dtlji and d(z—l)lji’ (nf.“j,-,m/‘“j,-) = (12477 137) and (nv,m‘,) =
(690, 270) from the first trial / = 1 at the first time point ¢ = 1 are cho-
sen from Table 1 and the Euclidean distance between the fixation
point and the centroid of the target location are calculated as follows:

diiji = \/ (690 — 1247)% + (270 — 137)* = 572.66. (14)

The dy;; = 572.66 is then used to obtain the first-order spatial
lag covariate for the target at time point t = 2, dy;; = 572.66.

* Cu—1yi 18 the first-order spatial lag covariate for the com-
petitor. The Euclidean distance between the fixation point
in terms of x, y coordinates of the computer screen
(nf.qjis mp.g5) at time ¢ and the centroid of the competitor
location (n,/,m,)?, is first calculated as follows:

Cji = \/(W - n/ﬂﬁ)z + (my — mf.llji)2~ (15)

The cu_1y; is then obtained using cgu; As an example,
(I’lf‘_]]ji,mf'_llji) = (124-77 137) and (I’lv, m‘,) = (1230, 270) from the
first trial / = 1 at the first time point # = 1 are chosen from Table 1
and the Euclidean distance between the fixation point and the cent-
roid of the competitor location are calculated as follows:

2 Note that the n, and m, for a target is fixed per trial, person, and item.

3 Note that the n, and m, for a competitor is fixed per trial, person, and
item.
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Crji = \/(1230 —1247)% 4 (270 — 137)% = 134.08. (16)

The first-order spatial lag covariate for the competitor at the sec-
ond time point ¢ = 2, ¢yyj;, is then 134.08, and
. dzH)Zﬁ fa(time,) and c’(H i fs(time,) are univariate smooth
functions of time to model time-varying effects of the first-
order spatial lag covariates of target and competitor,
respectively.

Smooth Functions for Time and Trials, Space, and the
Interactions of Time and Trials With Space

To model spatial correlations in the binary fixation data, a
bivariate smooth function for values on the x, y coordinates of the
computer screen is added to Equation 12:

logit[P(yyi = 119;,5,)] = X'+ Z],'ej + 24
+fi(time,) + fa(trialy) + f3(timey, trialy) + y{,_ ) fa (time,)
+ dEt—l)]jif5 (time,) + C;,_l)ljij%(lime,)
+ f7 (xpositiony;, ypositiony;;), 17

where

* (xpositionyj;, ypositionyj;) = (ng.gji, mysg5;) are values of the
X, y coordinates of the computer screen in which binary
fixation data points are located and

* fi(xpositiony;, ypositiony;) is a bivariate smooth function
to model spatial correlations in the binary fixation data
based on the x, y coordinates of a computer screen. The
closer fixation points on a computer screen are over time,
the higher the spatial correlations are.

In Equation 17, spatial-temporal effects (seven smooth func-
tions) and random effects (0; and {;) are controlling parameters for
the fixed focal parameters (e.g., experimental condition effects).

Estimation

Below, we explain estimation details of smooth functions and
model parameters in the mgcv package.

Smooth Functions in the mgcv Package

For the univariate smooth function (fj,(x;)), a cubic regres-
sion spline (CRS; Wood, 2017) and a thin plate regression
spline (TPRS; Wood, 2017, 5.5.1), which are commonly used
splines in GAMM applications, are used with the mgcv R pack-
age. The CRS is a smooth curve comprised of sections of cubic
polynomials in which the sections are joined together at some
specified locations (called knots). At the knots, the two sections
of the cubic polynomials that meet have the same value (other-
wise, the function is not continuous), as well as the same first
and second derivative (Wood, 2017, 5.3.1). The knot points are
automatically placed (with equal spacing) over the entire range
of the observed covariate by default in the mgcv package. To
illustrate the CRS, an additive logistic model with one smooth
function of a time covariate (x;; t = 1,...,132) is considered
using a binary time series with 132 time points with K = 10

(where K is the number of basis functions). Figure 1 (top left)
illustrates the CRS basis function (bx(x;)) with 10 knots evenly
distributed through the range of the time covariate (x,). Figure 1
(left top) presents nine CRS basis expansions (10 — 1 basis
functions due to model identification constraint, explained
below shortly) spread evenly through the range of the time
covariate (1.000, 15.556,30.111,44.667,59.222,73.778, 88.333,
102.889,117.444,132.000). In addition, Figure 1 (top right)
shows the same CRS basis functions weighted by the estimated
coefficients (y = [4.127,4.208,3.429,3.765,3.082,0.966, 1.991,
1.977, —0.278]’) and the resulting trend line (dotted line in the
figure) created by summing up the weighted basis function at
the different values of x,.

Unlike setting the knots in the CRS, the TPRS uses an eigen-
decomposition of the basis functions to find the basis coefficients
that maximally account for the variances in the data. Thus, arbitrarily
choosing knot locations can be avoided. However, the eigen-decom-
position and related steps can be costly for a large data set (~1, 000
observations). Figure 1 (bottom left) presents the TPRS basis func-
tion (bx(x)) with K = 10 for the same data set used in the CRS illus-
tration. Furthermore, Figure 1 (bottom right) shows the same TPRS
basis functions weighted by the estimated coefficients (§ = [46.853,
—5.779, —13.846, —1.964,7.701, 1.613,0.732, —1.483, 10.813]),
with the resulting trend line (dotted line in the figure).

In the univariate smooth function, the TPRS provides very simi-
lar results to the CRS spline in applications (e.g., Finch & Finch,
2018), which is also illustrated in Figure 1. In this study, the CRS
was chosen for the univariate and bivariate smooth functions
(except for one bivariate smooth function as will be explained
below) because of its computational efficiency for a large scale
eye-tracking data set. However, we also considered the TPRS to
check whether an alternative smoother provides the same results.

For bivariate smooth functions (f;(time,, trial;)) and
ﬁ(xpasition,ljhyposition,lj,-) in Equation 17), different kinds of
smoothing basis functions can be chosen depending on
whether the variables are measured in the same units or in dif-
ferent units (Wood, 2017, p. 227). In a scale-invariant smooth-
ing function such as a tensor product smooth, a unit change in
one variable is equivalent to a unit change in another variable.
Thus, the tensor product smooth can be used when the relative
scaling of the covariates of the smooth is quantified in differ-
ent units. Because time, and trial; are measured in different
units, a tensor product smooth interaction was chosen for
f3(time,, trial;). In contrast, the TPRS is an isotropic smooth
function, which uses the same smoothness per unit change in
the two covariates (xj;, and xp,). Accordingly, the TPRS is
appropriate when the relative scaling of the covariates of the
smooth is naturally measured in the same units. Because the x,
y coordinates of the gaze locations on a screen are expressed
in the same units (in pixels), the TPRS was chosen for
fr(xpositiony;;, ypositiony;). In Appendix B, we present how
random effects and smooth functions in Equation 17 (a model
having all smooth functions considered) can be specified in
the mgcv package.

In the mgcv package, a model is estimated with an identifi-
cation constraint that the function f;, sum over the observed

covariate values is 0 (i.e., vah (xny) = O for each h with v as

a subscript for observations; called a sum-to-zero constraint). The
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Figure 1
Hllustrations of Basis and Scaled Functions

NVS.0.9.9.9.9.9.0:

CRS: Basis functions
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time

TPRS: Basis functions
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CRS: Weighted Basis Functions and Their Sum

TPRS: Weighted Basis Functions and Their Sum
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time
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Note. Basis functions of the CRS with knots spread evenly through the range of a time covari-
ate (top left), the scaled CRS functions weighted by the estimated coefficients y with the result-
ing trend line (dotted line; top right), basis functions of the TPRS with knots spread evenly
through the range of a time covariate (bottom left), and the scaled TPRS functions weighted by
the estimated coefficients \gamma with the resulting trend line (dotted line; bottom right).

identification constraint is set by estimating K — 1 basis coefficients
with K — 1 basis functions for each smooth function (where K is the
number of basis functions in Equation 7). The result of this constraint
is that the (fixed) intercept in the model is the mean of smooth func-
tions in the model. To illustrate the sum-to-zero constraint, a data set
is generated under a simple logistic model with a smooth function of
a covariate x; (logit[P(y = 1)] = fi(x;) = sin(x; +2)) for 5,000
observations in R:

library (mgcv)

set.seed (1242)

#generate a covariateof x1

x1<-runif (5000,0,1)

#generate a smooth function of f1 using a sin
#function; mean(f1l) =intercept

f1<-sin(xl+2)

mean.fl <-mean (f1)

mean.fl

>mean. fl

[1] 0.5699139

#generate the probability of a response
#equalingl

probability <-1/(1+exp(-£f1))

#generate Bernoulli response variable

y <-rbinom(5000,1,probability)

#creatingadata set

data <-data.frame (x1,vy)

#fit a logistic model using the bam function
#withK=4

model <- bam(y ~ 1 + s(x1,k = 4) ,data=data,
family=binomial, method="ML")
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#extract intercept and basis coefficient

#estimates
gamma <-modelsScoefficients
gamma
> gamma
(Intercept) s(x1).1 s(xl) .2 s(x1) .3
5.311421e- —6.570583e- —6.570583e- —2.121355e-
01 04 04 01

The mean of the generated smooth function is 0.5699139, which
is estimated as an intercept estimate, 5.311421e — 01 = 0.5311421,
as shown above. Three basis coefficients (for three basis functions;
K —1=3 where K =4 in estimation due to the sum-to-zero
constraint) are estimated as [—6.570583¢ — 04, —6.570583¢ — 04,
—2.121355¢ — 01]'. For the bivariate smooth functions of
(x1, and xy;), the sum-to-zero constraint is imposed for each
covariate prior to constructing the tensor product basis.

For the selected basis functions for univariate and bivariate
smooths, the number of basis functions (K) should be selected to
obtain a good fit. The role of K is to set the dimensionality of the
basis expansion. Oversmoothing is expected when the number of
basis functions is too small. Wiggly curves and slower computa-
tion time are expected when the number of basis functions is too
large. In this study, we set K = 10 (default in mgcv) for all
smooth functions. One way to check whether a selected K is large
enough is to examine the value of the k-index (which is provided
in the output from the gam.check function in mgcv). If the k-index
(see Wood, 2017, p. 330 for the technical details) is lower than 1,
a larger number of K should be considered.

In the mgcv package, a measure of nonlinearity is provided
using the effective degrees of freedom (edf). The edf is an esti-
mate of the degrees of freedom that are used by a smooth with a
given number of basis functions and a given smoothing parameter.
The higher the edf, the more wiggly the estimated smooth function
is. An edf of 1 indicates a linear effect of a covariate on the out-
come, an edf of 2 indicates an approximately quadratic effect of a
covariate on the outcome, and an edf of 3 indicates an approxi-
mately cubic effect of a covariate on the outcome. The edf also
gives an indication of how much penalization of a smooth function
took place and thus may serve as a way to select the number of ba-
sis functions K (Wood, 2017, pp. 242-243). Having the edf close
to K indicates a small penalization. Thus, it may be appropriate to
increase K in such a case to describe the shape of the function.

Parameter Estimation

The main GAMM fitting routine in the mgcv package is the
gam () function. The bam () function in the mgcv package pro-
vides an alternative for very large data sets such as eye-tracking
data. Thus, we use the bam () function to fit the generalized addi-
tive logistic regression model. Below, we describe the details of
the implementation in the mgcv package for the model.

The generalized additive logistic regression model can be writ-
ten as a GLMM:

logit[P(yyi = 116;,;)] = X', (18)

where X is a design matrix having all components of the model
including parametric components and all the basis functions
(bpi(xp) or by (x1p,x2,) for h=1,... H), B is a set of parame-
ters including the coefficients of fixed effects (9), random effects
(b = [0,¢]"), and the basis coefficients (y) (i.e., B = [8,0,¢,y]).

The “wiggliness” of smooth function f}, is controlled by a quad-
ratic smoothing penalty. The multiple quadratic smoothing penalty
for the model can be written as:

H
> My'Suy, (19)
h=1

where A, is a smoothing parameter, y is a vector of basis coefficients,
and Sy, is a penalty matrix embedded as a diagonal block in a matrix.
For smooth functions, the elements of S, are known and are deter-
mined by chosen basis functions (b (x,) or bp (x1p, X2 ) (see Fig-
ure 1 for illustrations). For random effects, S is an identity matrix 7
(Kimeldorf & Wahba, 1970). The A;, controls the trade-off between
goodness of fit and smoothness of a smooth function. Having A, ~
oo results in a straight line estimate for f, whereas having A, = 0
leads to an unpenalized piecewise linear regression estimate.

Estimation has two components, (a) estimating model parame-
ters (B) and (b) estimating smoothing parameters (A;). In the
mgcv package, the smooth parameter (A;) can be selected by ei-
ther prediction error (GCV.Cp and GACV.Cp in the mgcv pack-
age) or marginal likelihood (REML and ML in the mgcv
package). REML and ML are preferable to the other criteria, as
they are less prone to local minima. In the bam () function of the
mgcv package, fast restricted maximum likelihood estimation
(fREML) can be used. However, fREML cannot be used to com-
pare models with different fixed effects. Thus, in this study, ML
was chosen in the bam () function.

Given smoothing parameters (4) and the variance matrix of the
random effects b (X = diag(0,()), parameters (f) are estimated
using a penalized iteratively reweighted least squares (PIRLS;
Wood, 2017) with a default option, optimizer=c(“outer,” “new-
ton”), in the mgcv package. In the PIRLS, the ML based 4 can be
inserted. Specifically, the following weighted least squares objec-

tive can be minimized to obtain ﬁ:

H
D(B)+ OB B+ D MB'SiB, (20)
h=1

where D(p) is the model deviance (D(B) = 2{lnsx — I(B)}, Where
1 is the log-likelihood) and ¢ is the scale parameter in an exponen-
tial family distribution (for binary responses, ¢ = 1).

Imposing the penalty (Equation 19) is equivalent to having a
prior on basis coefficients y using a multivariate normal (MVN)

distribution with mean vector O and the variance matrix

(ZhH 71;,8;,)71 (e.g., Wood, 2017):

H -1
y~MVN| 0, (Z thh> , @n
h=1
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where £ is an index for a smooth function (A =1, ..., H), 71,1 is an
estimated smoothing parameter for a smooth function fj,, and Sy, is
the known penalty matrix for smooth function fj,. The penalty ma-
trix can be extracted using the smoothCon function in the mgcv
package. To illustrate Equation 21, the same generated data used to
explain the sum-to-zero constraint earlier was employed:

#extract penaltymatrix S for a smooth
#functionof f£1

#with the number of basis functionsequal to4

smooth.spec.object <- interpret.gam(y~s
(x1,k=4))$smooth.spec[[1]]

SM <- smoothCon (smooth. spec.object,data=
data, knots=NULL, absorb.cons=TRUE) [[1]]

S <- SMSS

>SS

[[11]

[,1] [, 2] [,3]

.1 3.039366e+01 —3.015506e + 00 —5.654629e-16
[2,] -3.015506e+ 00 6.670763e + 00 1.250891e-15
.1 -5.654629%9e-16 1.250891e-15 2.345651e-31

#extract estimatedpenalty parameter
model <-bam(y~1+4+s(x1l,k=4),data=data,
family=binomial, method="ML")
lambda <- model$sp
lambda
> lambda
s (x1)
2587.993
ftextract basis coefficient estimates
gamma <- models$coefficients

gamma
> gamma
(Intercept) s(x1).1 s(x1) .2 s(x1) .3
5.311421e- —6.570583e- 5.19619%4e- 5.19619%4e-
01 04 06 06

Basis coefficient estimates ([—6.570583¢ — 04,5.196194¢ — 06,
5.196194¢ — 06]') are obtained with MVN(O, (2587.9938) ),
where A = 2587.993 and S is the 3 X 3 penalty matrix shown above
(instead of 4 X 4 due to the sum-to-zero constraint).

As mentioned earlier, the random effects (0;, {;) are equivalent
to a smooth with penalty matrix I (i.e., S = I, where [ is an iden-
tity matrix). That is, the variances of the random effects
(6; and ;) are the inverse of the estimated smoothing parameters
(4): Var(8;) = (hoI)"" and Var(§;) = (heI)”" where Lo and ¢
are estimated smoothing parameters for 0; and {;, respectively.
The gam. vcomp function in mgcv converts smoothing parameter
estimates to the variance estimates of the random effects.

First Time Point Data Treatment for AR Effects

As illustrated in Table 1, there are missing values at the first time
point (¢ = 1) for the three AR covariates (y(;_1);; for the temporal
AR; d(;_1yi» and ¢y for the time-varying spatial lag effects). In
this study, the first time points were deleted prior to estimation with
minimal consequences because of two reasons (as discussed in detail
in Cho et al., 2018). First, for eye-tracking data, the number of time
points is often larger than 100 (e.g., Mirman et al., 2011), so that the
effect of deleting the first time point on parameter estimation is min-
imal (Hsiao, 2003). Second, the critical eye gaze data concerned fix-
ations made between 180 ms and 1,499 ms in our motivating
example. This time window is expected to capture the processing of
the critical information. Signal-driven fixations are expected approx-
imately 200 ms after onset. Thus, a baseline of 20 ms (180-200 ms)
is included to facilitate calculation of the AR, indicating that the first
20 ms is not a data point to be modeled.

Model Selection and Evaluation

Prior to adding focal effects (e.g., experimental condition effects)
to the model, we considered candidate models that have different
spatial and temporal correlations to find the best-fitting model to
explain correlations and variabilities in the data. The Akaike infor-
mation criterion (AIC; Akaike, 1974) and the Bayesian information
criterion (BIC; Schwarz, 1978) developed for GAMM were used
for model comparisons. Instead of using the number of parameters
in the penalty term of AIC and BIC, corrected AIC (Wood et al.,
2016) and BIC (Wood, 2017) for GAMM use the effective degrees
of freedom (edf) in the penalty term of AIC and BIC. The corrected
AIC and BIC are specified as follows:

CorrectedAIC = —2I(B) + (2 X edf) (22)

and

BIC = —2I(B) + (log(N) X edf), (23)

where [(B) is the log-likelihood and N is the total number of obser-
vations. The log-likelihood and edf for GAMM can be extracted
using the function logLik.gam for a fitted model in the mgcv
package. After fitting a model in the mgcv package, the corrected
AIC and BIC can be calculated using the AIC () and BIC() func-
tions in the mgcv R package.

To show explained variance when adding spatial-temporal
effects, the percentage deviance explained (D,) for each model is
calculated as follows:

Dnu 7D
D, = (L) X100, (24)
D

null

where D, is the deviance for a null model having a fixed inter-
cept only and D is the deviance of the fitted model. Based on D,
for each model, the percentage explained variance for a spatial-
temporal effect is calculated as

De.l 7De.27 (25)

where D, is the percentage deviance explained for a complex
model including the spatial-temporal effect and D, ; is the percent-
age deviance explained for a simpler model omitting the spatial-
temporal effect.
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In addition, the Pearson residuals are calculated for model check-
ing, calculated as

- E()’tlji)

_ uji (26)
Var (ytlji)

€1ji =

where E(yyi) = P(yqi = 1190;,C;) and Var(yy;) = P(yqi = 196,
H{a - Plyyi =1 |6J7Z,))} When the model is correct, the Pear-
son residuals follow approximately a standard normal distribution. A
standardized residual for one observation from a time point, a trial, a
person, and an item can be far from normally distributed. However,
observations with a standardized residual exceeding 1.96 in absolute
value is worth a close look for misfit. Furthermore, the Somers’ rank
correlation between the binary data y,; and the model-based probabil-
ities were calculated as a measure of the ordinal predictive power of
the model. The somers?2 () functioninthe hmisc R package (Har-
rell, 2019) was used to calculate Somers’ rank correlation.

Testing

To test whether or not the unpenalized parametric fixed effects
(0) are 0 (Hp : 6 =0), Wald tests using the covariance matrix
(which can be extracted for a fitted model using the vcov function)
are conducted in the mgcv package. To test whether or not each
smooth function f;,(x) is needed in the model, the following null hy-
pothesis can be tested for each & (Wood, 2017, pp. 305-306): Hop:
fu(x) = 0O for all x in the range of interest. Under Hy, the test statistic
T, follows a chi-square distribution (7, ~ xf) with degrees of freedom
r (Wood, 2013). In the output from the mgcv package, the r is called
ref .df , the reference degree of freedom used for hypothesis testing.

Smooths have credible intervals around them, which are
obtained by taking the quantiles from the posterior distribution of
the fj,(x;,) (Marra & Wood, 2012). To obtain the posterior distribu-
tion of the f,(x;), a large number of replicated parameters are
simulated from a posterior distribution of parameters f using a
multivariate normal (MVN) distribution:

B~MVN(B,Vp), @7

where ff is the vector of parameter estimates and V,; is the covari-
ance matrix of parameter estimates. Based on replicated parame-
ters, the predicted smooth functions can be calculated using the
following equation:

£, = XB, (28)

where X is the design matrix of parameters . The design matrix X
includes the basis functions for smooth functions f;, evaluated at
each value of the covariates x;, and includes columns of zeros
corresponding to parameters unrelated to the smooth functions.

Using the model we fit to illustrate Equation 21, logit[P(y = 1)] =
S1(x1) = sin(x; + 2), the 95% credible interval for a smooth function
fi1(x1) can be generated in R as follows:

library (ggplot2)

#fittedmodel

model <- bam(y ~ 1 4+ s(x1,k = 4) ,data=data,
family=binomial, method="ML")

#extract avector of parameter estimates

coef <- coef (model)

#extract a covariance matrix of parameter
estimates

vcov <- as.matrix(vcov (model))

#replicate parameters fromaposterior
#distribution1, 000 times

beta <-rmvn(n=1000,coef,vcov)

dim(beta) #1000 replications times 4
#parameters (1 intercept 4+ 3 basiscoeff.)

#extract adesignmatrixX for the model

X <-predict (model, type="1pmatrix”)

dim(X) #5000 observations times 4 parameters
# (1 intercept 4+ 3 basis coeff.)

#f1 has results of 5000 observations by 1000
#replications.

Mean.fi <-rep(NA,1000)

f1<-X%*%t (beta)

for (iin1:1000) {

Mean.fl[1i] <-mean(f1[i,])

}

#calculate .025and . 975 quantiles of
#predictedvalues for £1 across 1000
#replications

CI <- apply(fl,1,quantile, probs = c(0.025,
0.975))

lower <- as.matrix(CI[1,]) #values of 0.025
#quantile

upper <- as.matrix(CI[2,]) #values of 0.975
#quantile

#icreateaplot of credible interval

datal <- data.frame (data$xl,mean.fl, lower,
upper)

ggplot (datal, aes(data.x1l, mean.fl))+

geom_ribbon (aes (ymin=datal$lower, ymax=
datalSupper), linetype=2, alpha=0.1)

Illustration

In this section, we illustrate a generalized additive logistic regression
model using an empirical data set from Trude et al. (2013). We pro-
vide R scripts to conduct all analyses in this section in Appendix C.

Eye-Tracking Experiment With Visual World Paradigm

A popular technique in the study of language processing (psy-
cholinguistics) is the visual world eye-tracking paradigm (Tanen-
haus et al., 1995). In this and related techniques, participants view
a scene as they interpret or produce a spoken or signed utterance
(e.g., Allopenna et al., 1998; Griffin & Bock, 2000; Lieberman et
al., 2014; Pechmann, 1989). Eye movements are typically time-
locked to an external event, such as the onset of a critical word in
the utterance, and the researcher examines where the eyes are fix-
ated over time as the person produces or interprets the utterance.
This process is repeated over many (~10 — 400) trials (e.g., utter-
ances) per person to generate a sufficient quantity of data to make
inferences regarding the cognitive processes involved.

The Eyelink eye-tracker (Eyelink, 2000; SR research) generated
data with a temporal resolution of 1,000 Hz and a spatial resolu-
tion of .01° of visual angle. The data were downsampled in the
temporal dimension to bins of 10 ms of time. As shown in Figure
2, on each trial, four pictures appeared on the screen in 200 X 200
pixel squares, then the participant heard an instruction to click one
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Figure 2
Hllustration of Spatial-Temporal Eye-Tracking Data

Note.

Participants saw four images on each trial (for the purposes of illustration, the images have been replaced with their corresponding labels; partici-

pants viewed actual images). Images included the target referent (e.g., “back,” represented by an image of a person’s back), a competitor (e.g., “bag,” rep-
resented by an image of a bag), and two unrelated images (e.g., an image of a person playing in a soccer “league,” and an image of a “lock”).
Participants were trained on image names prior to the eye-tracking task. The gray haloes around the images show the interest areas used to determine
whether a person was fixating that image. The centroid of the target and competitor image areas correspond to the central point of each interest area.
Superimposed on the image are circles corresponding to individual fixations to the target (blue), competitor (red), and unrelated objects (gray). The text
in each circle indicates the time-range for each fixation in milliseconds, from 180 ms—1,499 ms following word onset. Solid lines indicate the distance
between each fixation and the centroid of the target. Dotted lines indicate the distance between each fixation and the centroid of the competitor. This fig-
ure shows an example of a full screen display, with on-screen coordinates (in pixels) ranging from (0, 0) to (1,920, 1,080). See the online article for the

color version of this figure.

of the four pictures, for example, “Click on back.” The location of
the target across the four possible picture locations was randomly
varied for each trial. A training session preceded the trials so that
participants were familiar with the image-label mappings. The crit-
ical eye gaze data concerned fixations made between 180 ms and
1,499 ms following the onset of the critical word (e.g., “back”).
This window is expected to capture the processing of the critical
word. The end of the time window corresponds to the point in
time when, across all conditions, participants had identified the tar-
get, based on inspection of where the target fixation curves asymp-
toted. We use a measure of whether or not the participant was
fixating the target at each of the 10-ms equally spaced time bins,
resulting in 132 time points between 180 ms and 1,499 ms follow-
ing the onset of the target word (e.g., “back”). In some cases, track
loss due to difficulties in tracking eye-gaze resulted in data loss. In
this dataset, 54% of the trials had 132 time points, and the remain-
ing 46% had 47 to 131 time points.

The eye-tracking system automatically generated the fixation
location based on the eye-tracker output. In the application, at each
point in time, the on-screen fixation position was extracted in terms

of x, y pixel coordinates relative to the 1920 X 1080 pixel sized com-
puter screen. Note that on-screen fixations appeared within the pixel
coordinates of the screen boundaries ([0, 0] to [1920, 1080]) and off-
screen fixations occurred beyond those boundaries (including nega-
tive values for x, y coordinates and values > 1920 or > 1080 for x, y
coordinates, respectively). Offscreen fixations are included in the
analysis because these nontarget fixations also provide spatial infor-
mation, with offscreen fixations varying considerably in the distance
to the target and competitor. For further details about the processing
and coding of the eye-tracking data, see Appendix D. If a fixation
appeared within 50 pixels of the 200 X 200 pixel location of the tar-
get, this fixation was coded as a target fixation; otherwise it was
coded as a nontarget fixation so that the data for the outcome variable
are binary.

Experimental Design

Participants (/ = 60) completed two experimental sessions
spaced either 12- or 24-hr apart. Each participant was assigned to
one of three between-subjects conditions that varied when those
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sessions occurred (in the morning, a.m., or in the evening, p.m.).
In two of the conditions, participants slept between sessions (p.m.
to a.m.; p.m. to p.m.), and in the third condition participants did
not sleep between sessions (a.m. to p.m.). Participants completed
512 trials in each of the two sessions. Of the 512 trials per session,
half (256) were filler trials used to prevent the participants from
guessing the target object, and were not submitted for analysis.
The other half of the trials (256) were critical trials, each of which
featured a target, a competitor that shared the same onset syllable
as the target, and two other pictures. Eight item groups were cre-
ated by manipulating the identity of the target and competitor, and
each item group featured a different critical word that ended in the
sound “-ag” (e.g., bag, rag, sag). Each item group had four items
nested within it, resulting in 32 items in total. Each participant was
exposed to each item four times with each of two talkers (a female
and a male talker), resulting in the 256 critical trials (32 items X 4
repetitions X 2 talkers = 256). These 256 critical trials were com-
bined with 256 filler trials in a random order. Participants com-
pleted these 512 trials (half of which featured the male talker, and
half of which featured the female talker) twice—once in Session 1
and again in Session 2, resulting in 1,024 trials in total.

The data analyzed here represent a subset of the data described by
Trude et al. (2013). In the experimental condition that we focus on,
the eye-tracked participant heard a word like “back” and viewed a
scene with four pictures: “back,” “bag,” “leak,” and “league” (see
Figure 2). For the present purpose of illustrating the space-time mod-
eling of eye-tracking data using a generalized additive logistic
regression model, we focus on the subset of trials in which partici-
pants heard a word like “back” in a scene containing pictures of the
back (target), bag (competitor), leak, and league (fillers). The
remaining critical trials featured other target types (e.g., bag, bake),

and while these are of interest to the original empirical questions,
they will not be addressed further here. Table 2 (top) illustrates the
data structure for these 64 critical trials. Analysis of the full data set
is reserved for a future article focusing on the substantive issues par-
ticular to the psycholinguistics questions in play with the same analy-
sis approach. We measure fixations to the target, following the onset
of the target word “back.” The focus of the experiment is how listen-
ers learn to accommodate an unfamiliar regional accent of English.
Following prior work (Trude & Brown-Schmidt, 2012), we test proc-
essing of the speech of two talkers, a male and female. For the female
talker, the words back and bag share a vowel and should be confusa-
ble; however, for the male talker, the words back and bag are pro-
nounced with different vowels so they should be less confusable.
Following prior work (Dahan et al., 2001), talkers with stereotypi-
cally male and female sounding voices are used so that listeners can
easily distinguish the two talkers, allowing us to examine whether
listeners can accommodate the speech of the accented talker. Thus, if
the listener has learned this property of the male talker’s accent, we
expect more target (“back”) and fewer competitor (“bag”) fixations
when perceiving the speech of the male talker. We measure interpre-
tation using a binary measure of whether or not, at each (equally
spaced) time point, the participant’s gaze is fixated on the target.
In sum, the experimental conditions are summarized as follows:

» Each participant was assigned to one of three between-sub-
jects manipulations that tested for effects of sleep on learn-
ing. Each participant completed two sessions that each
occurred either in the morning (a.m.) or evening (p.m.),
and that were separated by either 12 hr or 24 hr. These
effects of sleep condition were coded using Helmert con-
trasts. The first contrast (sleepl) tested for an effect of

Table 2
An Experimental Design of the Empirical Study: Item Design (Top) and Person Design (Bottom)
Session 1 Session 2
Item group ID Item ID Talker female Talker male Talker female Talker male
1 3 4 4 4 4
2 7 4 4 4 4
3 11 4 4 4 4
4 15 4 4 4 4
5 19 4 4 4 4
6 23 4 4 4 4
7 27 4 4 4 4
8 31 4 4 4 4
Total 32 Trials 32 Trials 32 Trials 32 Trials
Participant ID Sleep Talker Female Talker Male Talker Female Talker Male
1 a.m. to p.m. 32 Trials 32 Trials 32 Trials 32 Trials
20 a.m. to p.m. 32 Trials 32 Trials 32 Trials 32 Trials
21 p.m. to a.m. 32 Trials 32 Trials 32 Trials 32 Trials
40 p.m. to a.m. 32 Trials 32 Trials 32 Trials 32 Trials
41 p-m. to p.m. 32 Trials 32 Trials 32 Trials 32 Trials
60 p.m. to p.m. 32 Trials 32 Trials 32 Trials 32 Trials

Note.
sequence of IDs.

ID indicates an identifier. Participants were randomly assigned to the three levels of sleep condition. Participant ID in table (bottom) indicates the
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sleep, comparing the two groups who did sleep between
sessions (p.m. to a.m. and p.m. to p.m. groups), with the
group that did not sleep between sessions (a.m. to p.m.
group). The second contrast (sleep2) tested whether the
time of day at the second testing session affected perform-
ance, directly comparing the two groups who did sleep
between sessions (p.m. to a.m. vs. p.m. to p.m. groups).

e Session (1, 2) was a within-subjects factor used to capture
learning across the sessions.

* Talker (accented vs. unaccented) was a within-subjects
factor to test for adaptation to the accented talker.

This between- and within-subjects design (or a mixed two-fac-
tor within-subjects factorial design; Keppel, 1991, Chapter 18) is
summarized in Table 2 (bottom). In the design, the set of all possi-
ble experimental condition effects are as follows: (a) sleep, (b)
talker, (c) session, (d) sleep X talker, (e) sleep X session, (f)
talker X session, and (g) sleep X talker X session. As mentioned
earlier, the analytic goal of the present study is to test these experi-
mental condition effects, while accounting for all possible correla-
tions and variabilities in the data, as captured with the generalized
additive logistic model.

For each session, time points (which vary within trials) at
Level 1 are nested within 64 trials at Level 2, which are cross-
classified by 60 persons and eight items at Level 3. There were
32 items total in this experiment: four nested within each of
eight item groups; in the present analysis we examine eight of
the items. In this data structure, a trial is a series of time points
which constitute time series. The total number of observations
is 927,286.%

Research Question and Hypothesis

The focus of this research is whether learning a feature of a
talker’s regional accent, and then using this to shape online
processing, is a cognitive process that is dependent on sleep.
That is, we are interested in testing whether the Talker X Ses-
sion interaction was stronger in the group who slept between
sessions. The (male) accented talker spoke a dialect of Ameri-
can English in which the vowel in words like “bag” is shifted
such that it sounds more similar to the vowel in a word like
“bake.” Prior research showed that, when exposed to this dia-
lect, listeners readily learned this feature of the dialect and
decreased their consideration of words like “bag” when hearing
a word like “back,” because the talker would have produced it
with a different vowel (Dahan et al., 2008; Trude & Brown-
Schmidt, 2012; Trude et al., 2014). Thus, we expect more target
fixations for the accented talker compared with the unaccented
talker. Furthermore, learning about the accented talker’s accent
is expected to increase across trials within a session, and
between sessions. We predict that there will be more target fix-
ations for the accented talker than for the unaccented talker,
and that this talker difference will increase across sessions. If
sleep plays an important role in this process, learning will be
magnified in the groups that slept between sessions. If sleep
plays a role in learning, then in the conditions where the partici-
pants slept, we expect a larger Talker X Session interaction.

Exploratory Descriptive Analysis: Spatial-Temporal
Correlations

Trend and Temporal AR

For the exploratory descriptive analysis, the data were aggre-
gated across persons and items, based on a binary response yy; for
time point ¢, trial /, person j, and item i. The proportion of binary
responses can be linearized by a logistic transformation in order to
use statistics developed for linear models (Cox & Snell, 1989).
For the empirical data, the proportion of binary fixations for each

trial / over time can be calculated as P, = (Z;:l y,,ﬁ) /J and it

bounds between 0 and 1. Thus, the proportion can be transformed
using a logistic transformation as follows to calculate autocorrela-
tions and partial autocorrelations for continuous outcomes:

Pt[

I
61_P,

= logit(Py). 29

Here, a subscript i is for a set of items which can be identified
by a trial subscript and a person subscript. As a result, we did not
consider summation across items. The logistic-transformed pro-
portion measure of binary responses yy; is called empirical logit,
which has the full range of real numbers.

Figure 3 presents box plots of trend, autocorrelations, and par-
tial autocorrelations (all based on empirical logit), plotted using R
to show variability in values across trials. Patterns in trend are
explored by plotting the change in empirical logit over time, which
results in the nonlinear (S-shaped) patterns observed in Figure 3.
This S-shaped pattern may be due to the fact that at the beginning
of the time-series participants do not know where the target is
located, but by the end of the time series they have heard the target
word and identified the target. Furthermore, the existence of trend
and AR, and the order of AR are explored using the autocorrela-
tions and partial autocorrelations based on the empirical logit. The
autocorrelations for small lags presented in Figure 3 (middle) were
large and positive, which may indicate that both AR and trend are
needed to characterize the time series optimally. As shown in Fig-
ure 3 (bottom), the partial autocorrelations with order 1 (AR(1))
are clearly larger than 0, and those with a larger lag are nearly 0.
This result indicates that only the AR(1) needs to be considered to
model autocorrelation effects. Noticeably, there was little variabil-
ity in partial autocorrelations across trials (SD = .004 for the two
sessions). To summarize the descriptive investigation of the
change process, a nonlinear trend and an AR(1) effect are sug-
gested from this first and exploratory step.

Spatial Correlations

In a similar way, we begin with an exploratory step for the spa-
tial aspects of the data. Figure 4 (top) plots the semivariogram as a
function of the (Euclidean) distance between fixation points on a
computer screen. There are clear spatial correlations for distances
between 0 and 2,000 pixels (with low semivariogram values indi-
cating spatial dependence), which then level off for distances >

4Because the number of time points varies within trials, one cannot
calculate the total number of observations by (132 time points X 64 trials X
2 sessions X 60 persons).
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Figure 3
Patterns of Trends (Top), Autocorrelations (Middle), and Partial Autocorrelations (Bottom) Across
Trials by Sessions

Note. Box plots are created to show variability across trials based on the empirical logit.
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Figure 4

A Semivariogram of Residuals Across All Time Points (Top) and By Time Blocks

(Bottom)
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A low semivariogam value indicates spatial dependence, while a large semivariogram

value indicates spatial independence. See the online article for the color version of this figure.

1,000 (with high semivariogram values indicating spatial inde-
pendence). The strength and patterns of spatial correlation were
similar for the selected directions of north (0°), northeast (45°),
east (90°), and southeast (135°) as four distinct directions, which
indicates that isotropy can be assumed. Figure 5 presents a bubble
plot of the residuals of the null model (Equation 1) at every screen
position. The bubbles in Figure 5 represent the direction (gray
bubbles for positive and black bubbles for negative) and magni-
tude (with larger bubbles indicating larger residuals) of the null
model’s residuals. High positive (large gray) bubbles were found

in the positions of the four target images, which means that spatial
correlations to be modeled exist for target fixations.

Spatial by Temporal Interactions

Figure 6 shows distributions of d,;; (Euclidean distance between
the fixation point and the centroid of the target location) and c,;
(Euclidean distance between the fixation point and the centroid of
the competitor location) across all observations (927,286). The
values of dy;; (shown in Figure 6, top) are clustered near zero
reflecting coding of fixations on and near the target. Distances for
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Figure 5
Pearson Residuals on Screen Locations

Note.

The four rectangles in the plot indicate the locations of the four images. Positive

residuals were plotted as gray bubbles and negative residuals were plotted as black bubbles;
the size of the bubbles increase as the magnitude of the residuals increase. See the online ar-

ticle for the color version of this figure.

“nonfixation” exhibit two (or possibly three) clusters, correspond-
ing to distances from the target centroid to the three other possible
on-screen picture locations. The values of c,;; (presented in Figure
6, bottom) exhibit two clusters corresponding to the distance
between the target and the possible competitor locations (note that
given the spacing of objects on the screen the Euclidean distances
between target and competitor are the same for two possible com-
petitor locations). Distances for “nonfixation” exhibit two clusters,
corresponding to distances from the target centroid to the three
other possible on-screen picture locations. For nonfixations, the
cluster near zero reflects fixations on the competitor picture.

To explore whether spatial correlations differ over time, the
semivariogram was calculated using the Pearson residuals of the
null model (Equation 1) for six time blocks of 210 ms.” Figure 4
(bottom) presents semivariograms for the six time blocks. As
shown in Figure 4 (bottom), spatial correlations differ by time
blocks. The patterns in the semivariograms are similar across dis-
tances (in pixels) in the first three time blocks. Relatively high spa-
tial dependence was observed in the fourth time block (between
840 ms and 1,050 ms), and decreased in the fifth and six time
blocks (after 1,050 ms). Across the six blocks of time illustrated in
the semivariograms, the dependencies are strongest in the middle
time blocks. The relatively higher spatial dependencies in Blocks
4 and 5 may be due to the tendency to identify and look at the tar-
get in this time-period, followed by a tendency to look away from
the target once the participant identified it, resulting in a drop in
spatial dependency in the 6th time block.

To summarize descriptive and graphical analyses of the empiri-
cal data, there are spatial-temporal effects which must be
accounted for in the generalized additive logistic model. The best-
fitting model with spatial-temporal effects only will be selected

prior to the addition of experimental condition covariates to the
generalized additive logistic regression model.

Analysis

A stepwise forward analysis strategy will be used to add tempo-
ral and spatial effects to the null model of Equation 1, as summar-
ized in Table 3. Specifically, first, the smooth effect for time and
the time-varying serial AR effect (fi(time;) and y(,_,; fa(time,),
in Equation 17) will be added to the baseline model as Model A.
Second, the smooth effect for trials and its interaction with the
smooth effect for time (f>(trial;) and f3(time,, trial;), in Equation
17) will be added to Model A yielding model B. When the trial
effect by session (session'f(trial;)) was added to model session
differences in learning over trials by way of a preliminary analysis,
the model fit did not improve. Thus, the main trial effect
(f2(trial;)) was considered instead. Third, the two time-varying
spatial distance effects (dztil)lﬁ fs(time,) and Czt—l)lji Jo(time,), in
Equation 17) will be added to Model B yielding Model C. Finally,
the spatial correlation effect (f;(xpositiony;, ypositiony;;) in Equa-
tion 17) will be added to Model C yielding Model D. To conclude,
the null model, and Models A, B, C, and D will be considered for
model selection regarding the spatial and temporal effects.

Before presenting the candidate models to account for the con-
dition effects, we explain how the corresponding covariates are
coded. Effect coding was used for ralker (female = —.5; male = .5)
and session (1 = -.5; 2 = .5) covariates. Effect coding was

3 Block 1 = [180 ms, 390 ms], Block 2 = [400 ms, 610 ms], Block 3 =
[620 ms, 830 ms], Block 4 = [840 ms, 1,050 ms], Block 5 = [1,060 ms,
1,270 ms], and Block 6 =[1,280 ms, 1,490 ms].
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Figure 6
Distributions of Spatial Lag Covariates
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considered instead of dummy coding to detect interaction effects
of covariates (e.g., talker by session) instead of simple effects
(e.g., talker’s effect within a session). Helmert coding was used
for the three levels of the sleep covariate because we are inter-
ested in testing the two contrasts which compare each level to
the subsequent levels: sleepl covariate (a.m. to p.m. = —.5;
p-m. to am. = .25; p.m. to p.m. = .25) and sleep2 covariate
(a.m. to p.m. = 0; p.m. to a.m. = -.5; p.m. to p.m. = .5). In addi-
tion, in order to stabilize model fitting, unit distances were

calculated prior to creating distance lag covariates (d,;;/261.81
where 261.81 is the standard deviation across all observations
for dy;;; and c,;;/221.68 where 221.68 is the standard deviation
across all observations for ¢;;). Table 1 illustrates these dis-
tance covariates.

Based on a selected model regarding spatial-temporal effects
(presented in Table 3), a model will be estimated with the follow-
ing additional effects: all possible three-way interactions, two-way
interactions, and main effects of talker, session, sleepl, and sleep2
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Table 3
Model Selection for an Empirical Study

Added covariates to the preceding model Log lik. edf Corrected AIC BIC
Null (Equation 1) —572468.73 66.95 1145071 1145857
Model A: f (time;) and y£r71>ljiﬂ(tir1ze,) —45,378.19 79.34 90,915 91,847
Model B: f5(trial;) and f3(time,, trial;) —45,366.99 86.56 90,907 91,923
Model C: d,_, . fs (time;) and ¢, _,.fe time,) —45,203.52 98.24 90,604 91,757
Model D: f; (xpositiony;;, ypositiony; ) — — _ _
Note. Log lik. indicates a log-likelihood value; Covariates were sequentially added to each model. For example, f; (time;) and y'(H)” f3(time,) were

added to the null model (Equation 1) as Model A; There was a convergence problem with Model D. Thus, results were not presented in Taf)le 3.

(talker:session:sleepl, talker:session:sleep?2, talker:sleepl, talker:
sleep2, session:sleepl, session:sleep2, talker:session, talker, ses-
sion, sleepl, and sleep2) will be added to the selected model. In
addition, the model without the spatial-temporal effects will also
be fit to the same data set to show the consequences of ignoring
spatial-temporal effects in detecting the experimental condition
covariates.

Results

Table 3 presents the model fit information for the five candidate
models with temporal and spatial effects. Results from the CRS are
reported in Table 3. The TPRS results were similar. There was a con-
vergence problem with Model D when the spatial correlation was
considered. To explore why spatial smoothing over gaze position (x,
y coordinates on the screen) did not work in Model D, we fit the gen-
eralized additive logistic regression model only with the spatial
smooth function (logit[P(yy: = 1)] = f7 (xpositiony;;, ypositiony;)).°
Figure 7 shows the result of this model, that is, the effect of x, y coor-
dinates on the probability of target fixations.” The effect of the x, y
coordinates on the probability of target fixations is 0 (.5 probability
of a target fixation) when the x, y coordinates are in the four picture
locations. As expected, the effect of the x, y coordinates on the proba-
bility of target fixations becomes negative when the gaze locations
moves to the right-top side of the screen (as presented by the negative
values of the contour lines and cold colors). In Figure 7, there is a
contour line of O that encircles the four images. These results imply
that while there is a spatial correlation (illustrated by the contour
lines), its effect cannot differentiate between the four picture loca-
tions (i.e., fixations points within the four picture locations share the
same effect of 0 [on the logit scale] on the target fixations). Among
the converged models, Model C which includes all possible spatial-
temporal effects except for the spatial correlation effect (listed in Ta-
ble 3) had the smallest corrected AIC and BIC and the percentage
explained deviance is 92.50%. The time-varying temporal AR effect
substantially contributed to variance explained in the model
(explained deviance = 87.22%), and all remaining effects contributed
to a small amount of variance explained in the model (explained
deviance =5.28%).

Next, the main effects and the interaction effects for the experi-
mental condition covariates are added to Model C, which is Model
E as shown in Table 4. For Model E, about 12 mins (user time in
R) were required to obtain results on a 2.81GHz computer with 16.0
GB of RAM. For all smooths in Model E, the k-index was close to
1 and the edf was lower than K, indicating the number of smooth
functions (K = 10) is enough to obtain a good fit. In addition,

94.83% of observations (927,286) had a smaller than |1.96| Pear-
son residual (M = .000, SD = 1.008). Finally, Somers’ rank correla-
tion between binary data and predicted probability (based on the
results of Model E) was .994. These results indicate that Model E
provides an adequate description of the data. We first interpret the
results of controlling parameters (i.e., spatial-temporal effects and
random variability) and then interpret the results of focal parameters
(i.e., experimental condition effects).

Spatial-Temporal Effects and Random Variability

The significant and large fixed temporal AR(1) effect (EST =
8.867, SE = .046, p-value < 2e-16)® suggests that there is a strong
carry-over effect, due to the tendency for the eyes to be at a similar
fixation position from one 10-ms time bin to the next. Regarding
smooth terms, all smooths were statistically different from O (indi-
cated by p-value < .05 at o = .05). The patterns for each smooth
term (i.e., partial effect, centered at 0) are presented in Figure 8
and Figure 9.

As shown in Figure 8 (top), smaller AR effects were observed
in the middle range of time points, and larger AR effects were
found at the beginning and end time points. This time varying AR
likely results from the fact that between the beginning and end of
the time-window of analysis the participants go from a state of not
knowing what the target is to identifying and fixating on the target.
At the beginning, we expect few target fixations (many consecu-
tive 0’s), and at the end we expect many target fixations (many
consecutive 1’s) whereas the middle is a period of change, result-
ing in a lower AR. Significant time-varying spatial lag effects for
the target and the competitor were found. A time-varying spatial
lag effect for the target (shown in Figure 8, middle) reflects the
fact that the probability of a target fixation increased at time ¢
when the fixation at time t — 1 was close to the target (controlling
for the other effects). This time-varying spatial lag effect was atte-
nuated over time, likely due to the fact that many fixations were

5 The mgcv code is as follows: bam(y ~ s(xposition;
yposition; bs = “tp”, k = 100), data = data, family =
binomial, method = “ML”). To check whether an alternative
spatial smoother provides the same results, we also considered a Matérn
based Gaussian process smoother. Similar patterns were found between
the TPRS and Matérn based Gaussian process smoother.

7 Figure 7 is a contour plot in which the effect of the x, y coordinates on
target fixations is presented on the logit scale. Lines in the contour plot are
drawn by connecting the x, y coordinates on which a logit value occurs.

8 As shown in Appendix B, the time-varying AR(1) effect was modeled
with an ordered factor. The ordered factor included the fixed AR(1) effect
and the reference smooth.
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Figure 7

The Effect of x and y Coordinates on the Probability of Target Fixation (y)

Note.
article for the color version of this figure.

already on the target at later time points. This type of ceiling effect
is common in eye-tracking data, as after a few hundred millisec-
onds most participants have interpreted the critical word (e.g.,
“back”), and have begun to fixate on the corresponding target pic-
ture in the visual display, in order to click on that image. As a
result, at later time-points in the analysis window, there will be
very high rates of target fixations, and thus a ceiling effect. In
addition, the time-varying spatial lag effect for the competitor
(shown in Figure 8, bottom) up to around time point 600 indicates
that the probability of a target fixation at time ¢ increased the far-
ther away the eyes were from the competitor at time ¢t — 1. After
time point 600, this effect attenuated, possibly because the com-
petitor was only a weak pull on fixations once the target became
more strongly activated. This effect likely results from the compe-
tition dynamics that guide lexical access, where upon hearing a
word (e.g., “back”), multiple candidates initially compete for rec-
ognition (e.g., “back” vs. “bag”). Then, as the word unfolds in
time, the competitor (“bag”) becomes less active, as the target
(“back™) is consistent with the unfolding spoken word but the
competitor is not (Allopenna et al., 1998).

Furthermore, Figure 9 (top) presents a result of fg(time, trial;).
Figure 9 (top) is a contour plot in which the effect of the interac-
tion between time and trial on a target fixation is presented on the
logit scale. Black lines in the contour plot are drawn connecting
the (time, trial) coordinates where the same given value occurs. In
the figure, the same effect of O in the middle (18th—48th trials)
indicates that the trajectory (time effect) was not different across

Four rectangles in the figure indicate the locations of the four images. See the online

the middle range of trials; and the effect of .05 at the beginning
and end of trials shows that the trajectory (time effect) was differ-
ent across trials (although the effect was very small). This interac-
tion between trend and trial may reflect a learning effect in the
early trials, and a fatigue process in the later trials, resulting in tra-
jectories that were similar across the middle range of trials, and
dissimilar for early and late trials. In addition, as shown in Figure
9 (middle), there was a S-curve trend effect over time, reflecting
an initial increase in target fixations over the time-window of the
time series that later drops off, likely due to participants locating
and clicking on the target and then looking away (see Yoon &
Brown-Schmidt, 2018 for a similar pattern). Furthermore, as pre-
sented in Figure 9 (bottom), there was little change in target fixa-
tions over the sequence of trials. Nonignorable variability was
observed across persons and items, respectively (SD of random
person effect = .508; SD of random item effect = .177, obtained
from the gam. vcomp function).

Experimental Condition Effects

Regarding experimental condition effects, an interaction
between session and sleep2 (which tests for time-of-day effects)
was significant (EST = —.211, SE = .053, p-value < .0001), con-
trolling for the other effects. The significant interaction effect sug-
gests that the group tested in the morning (p.m. to a.m.) at the
second time showed an increase in target fixations from Session 1 to
Session 2 (.455 — .500), as opposed to the group always tested in the
evening (p.m. to p.m.; .526 — .518), which showed a decrease,
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Table 4
Results for an Empirical Study
Model E Model F
Parameters EST SE z-value p-value EST SE z-value p-value
Parametric coefficients
Sl Intercept] -3.972 0.104 —38.361 <2e-16 —0.658 0.099 —6.638 .000
8;[OFylagl] 8.867 0.046 193.578 <2e-16 —
O, [talker] 0.136 0.022 6.268 .000 0.126 0.004 28.166 <2e-16
d3[session] 0.074 0.022 3412 .001 0.003 0.004 0.559 .576
d4lsleepl] —0.091 0.188 —0.481 .630 —0.090 0.226 —-0.397 .691
ds[sleep2] 0.179 0.163 1.096 273 0.198 0.196 1.012 312
dg[talker:session] —0.087 0.043 —1.993 .046 —0.088 0.009 -9.830 <2e-16
d;[talker:sleepl] —0.038 0.061 —-0.615 .538 —-0.117 0.013 —-9.275 <2e-16
dg[session:sleepl] 0.033 0.062 0.536 592 0.038 0.013 3.021 .003
do[talker:sleep2] —0.045 0.053 —0.844 .398 —0.043 0.011 —3.882 .000
dpo[session:sleep2] -0.211 0.053 —3.963 .000 —0.234 0.011 —21.227 <2e-16
8 [talker:session:sleepl] —0.099 0.123 —0.810 418 0.001 0.025 0.021 983
35 [talker:session:sleep2] 0.038 0.106 0.355 722 0.178 0.022 8.073 .000
Model E Model F
Parameters edf Ref.df Chi.sq p-value edf Ref.df Chi.sq p-value
Random effects
0;[s(person)]* 55.434 57 1,645.49 <2e-16 56.95 57 66,715 <2e-16
Ci[s(itemid)]* 6.794 7 272.62 <2e-16 6.99 7 10,198 <2e-16
Smooth terms
fi(time,)[s(time)] 6.791 7.668 453.30 <2-16 —
So(trial;)[s(trialseq)] 2.273 2.831 14.96 .00,192 —
S5 (time,, trial;)[ti(trialseq,time)] 3.347 4.350 12.56 02,167 —
y;H),j,.f4(time,)[s(time):OFylag1] 6.285 7.377 283.22 <2e-16 —
d(,fl),j,.fs(timer)[s(time):tdlagl] 2.042 2.080 219.58 <2e-16 —
02,71)Uifk, (time, )[s(time):cdlagl] 6.278 7.221 86.49 1.27e-15 —
Model E Model F
Log Lik. edf Corrected AIC BIC Log Lik. edf Corrected AIC BIC
—45,166.45 107.2,141 90,547.32 91,806.01 —571707.3 75.94,759 1,143,566 1144,458

Note.

Model E is the selected model for result interpretations; Model F includes all effects of Model E, except for spatial and temporal effects; — indi-

cates that an effect is not modeled; Values in bold indicates significance at the 5% level for parametric coefficients; *SD of random person effect = .508;

SD of random item effect = .177, obtained from gam. vcomp function.

possibly due to fatigue. Also, there was a significant main effect of
talker (EST = .136, SE = .022, p-value < 2e¢ — 16) and of session
(EST = .074, SE = .022, p-value = .001), controlling for the other
effects. The effect of ralker is consistent with prior work (Trude &
Brown-Schmidt, 2012) such that there are more target fixations with
the accented talker (.146 greater; exp[.136] = 1.146 odds ratio), as
the talker’s accent rules out the competitor as a candidate referent.
The main effect of session reflects a general learning effect, with
faster identification of the target overall in the second session (.077
greater; or exp[.074] = 1.077 odds ratio). All the other effects except
these three effects (interaction between session and sleep2, main
talker, and main session effects) were not significant.

As explained, a model without spatial-temporal effects (called
Model F) was also estimated. Although Model F was fit in the
mgcv package, it is equivalent to a GLMM with crossed random
effects (random person effect and random item effect). As shown in
Table 4, Model E fits much better than Model F based on corrected
AIC and BIC. As expected, the SEs of most experimental condition
effects (all except the sleepl and sleep2 covariates) in Model F
were underestimated, compared with the SEs of the experimental
condition effects in Model E. The underestimated SEs resulted in

statistical significance for all two-way interaction effects and for the
three-way interaction of ralker:session:sleep2 in Model F. In other
words, the expected three-way interaction is significant based on
Model F. This finding shows that whether or not the temporal and
spatial correlations are accounted for in the model critically impacts
the theoretical conclusions regarding the fixed effects.

Simulation Study

Simulation Design and Analysis

A simulation study was designed to answer the following ques-
tions when the same conditions of the empirical study (i.e., the same
number of time points, trials, persons, items, and sessions) and cova-
riates are considered: (a) can the fixed experimental condition effects
and their standard errors be recovered?; (b) what are the consequen-
ces of ignoring spatial and temporal effects in testing the experimen-
tal condition effects? The same true model (Model E in Table 4)
was considered for the two questions. Model E was fit to the
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Figure 8

Smooth Functions of the Time Varying AR (Top), the Time
Varying Spatial Lag for Target (Middle), and the Time Varying
Spatial Lag for Competitor (Bottom)

Note. The estimated effects are presented as solid lines and curves, with
95% credible intervals shown as dashed lines.

simulated data sets under Model E for question (a), and Model F
was fit to the same simulated data sets for question (b).

The set of parameters for the data generation include the coeffi-
cients of the fixed effects (d), values of random effects (b = [0, C}'),

and the basis coefficients (y) (i.e., [3,0,¢,y]"). The estimates of f of
Model E (presented in Table 4) for the empirical data were selected
as true parameters. For the data generation, smooth functions in the
true model (f,, h=1, ..., 6 in Equation 12) were constructed using

Figure 9

Smooth Functions of the Interaction Between Time and Trials
Effect (Top), the Main Trend Effect (Middle), and the Main Trial
Effect (Bottom)

Note. The estimated effects are presented as solid lines and curves, with
95% credible intervals shown as dashed lines. See the online article for
the color version of this figure.
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a prediction function in the mgcv package after fitting Model E to
the empirical data: predict (modell, type="iterms").
Two-hundred replications were considered. As evaluation measures,
bias was calculated to quantify the accuracy of parameter estimates,
and root mean square error (RMSE) were calculated to quantify ac-
curacy and parameter estimate variability. In addition, the mean
standard error estimates (M(SE)) across 200 replications were com-
pared with the standard deviations (SD) of the estimates to evaluate
the accuracy of standard errors (SEs) for experimental condition
effects (a subset of 4). The same estimation methods and the smooth
functions in the mgcv package were used in the simulation study as
in the empirical study.

Results

There were no convergence problems for the estimation of ei-
ther Model E or Model F. Table 5 presents the results of parameter
recovery (under Model E) and those of misspecification regarding
spatial and temporal effects (under Model F). For the random
effects (0; and (), the averaged results are shown across 60 per-
sons for 0; and across eight items for {;. For the basis coefficients
(y) of smooth terms, averaged results are presented across the
number of basis functions for each smooth term. For the parameter
recovery under Model E (question (a)), bias for all estimates
B = [3, 0.¢, #]") was close to 0 (ranging from —050 to .007). In
addition, an acceptable level of RMSE for all estimates (ranging
from .017 to .172) was obtained, compared with RMSE values in
other simulation studies for GAMM (e.g., Bringmann et al., 2017).
The M(SE) for parametric coefficients is close to the SD (the ratio

Table 5
Results for a Simulation Study

range of SD to M(SE) = [.960, 1.111]), indicating that the esti-
mated standard errors are approximately correct. Results from the
estimation of Model F based on the simulated data were inter-
preted regarding the consequence of ignoring spatial and temporal
effects in testing the experimental condition effects (question (b)).
A larger bias and RMSE was found in Model F than in Model E.
As expected, standard errors of all experimental condition effects
except the two Helmert-coded sleep covariates (ratio range of SD
to M(SE) = [4.115, 5.711]) were largely underestimated. To sum-
marize, experimental condition effects and their standard errors
were biased when spatial and temporal effects were not taken into
account.

Summary and Discussion

Eye tracking is a widely used method to examine real-time cogni-
tive processes in a variety of disciplines. However, the spatial-tempo-
ral correlations in binary coded eye-tracking data are rarely accounted
for when testing effects of interest (e.g., experimental condition
effects). This article was motivated by the need for statistical analysis
methods for intensive binary spatial-temporal eye-tracking data. The
benefits of the GAMM were illustrated by showing how to character-
ize the spatial-temporal correlations using descriptive statistics and
graphics in R, how to estimate the generalized additive logistic regres-
sion model using the mgcv package, and how to interpret the results.

In the illustrative example, the results of the generalized logistic
additive regression model showed that listeners were more likely to
fixate on the target with the talker who spoke with a regional accent
of American English in which the target and competitor words (e.g.,

Under Model E

Under Model F

Parameters Bias RMSE SD M (SE) Bias RMSE SD M (SE)
Parametric coefficients
Sl Intercept] —0.003 0.035 0.035 0.034 3.499 3.499 0.012 0.003
4,[OFylagl] —0.001 0.019 0.019 0.018 — —
O, [talker] 0.002 0.017 0.017 0.018 0.027 0.038 0.026 0.004
d3[session] 0.001 0.027 0.027 0.026 —0.027 0.035 0.022 0.004
d4lsleepl] 0.004 0.023 0.023 0.023 —0.048 0.061 0.038 0.269
ds[sleep2] —0.007 0.028 0.027 0.025 0.090 0.096 0.033 0.233
dg[talker:session] 0.000 0.034 0.034 0.036 —0.053 0.072 0.049 0.009
&;[talker:sleepl] —0.001 0.050 0.050 0.050 —0.043 0.081 0.069 0.013
dg[session:sleepl] —0.002 0.051 0.051 0.050 0.014 0.070 0.069 0.013
d[talker:sleep2] —0.002 0.047 0.048 0.044 —0.007 0.063 0.063 0.011
d1o[session:sleep2] —0.003 0.043 0.043 0.044 —0.051 0.078 0.059 0.011
4 1[talker:session:sleepl] —0.005 0.101 0.101 0.100 0.033 0.132 0.128 0.025
3, [talker:session:sleep2] 0.007 0.089 0.089 0.087 0.066 0.138 0.121 0.022
Random effects
0;[s(person)] 0.001 0.033 0.000 0.211
Cils(itemid)] —0.003 0.028 0.000 0.041
v for smooth terms
fi(time,)[s(time)] —0.050 0.172 — —
Sfo(trial;)[s(trialseq)] 0.011 0.034 — —
S(time,, trial;)[ti(trialseq,time)] 0.001 0.022 — —
yzlfl)liiﬁ;(time,)[s(time):OFylagl] 0.000 0.032 — —
d(z—l)ljifS (time, ) [s(time):tdlag1] 0.000 0.068 — —
c; 1) Jo(time,)[s(time):cdlagl] 0.000 0.024 — —

Note. Results under Model E are from the true model and those under Model F are from a misspecified model regarding spatial and temporal correla-

tions; vy is a basis coefficient; — indicates that an effect is not modeled.
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“back” and “bag”) were pronounced with distinct vowels (as found
in Dahan et al., 2008; Trude & Brown-Schmidt, 2012). Here, we also
asked if this ability to learn and use information about the regional
accent would change with sleep. The fact that the talker effect did
not significantly differ between the groups that did versus did not
sleep between sessions does not support this hypothesis. Relaxing
the assumption of linearity in the GAMM enabled us to gain a better
understanding of the data by capturing important structure that was
overlooked in the model for which linearity was assumed. The fol-
lowing points from our illustration are worth noting for the control-
ling effects of the spatial and temporal correlations, in detecting
experimental condition effects:

* Data-driven analyses uncovered an S-shaped trend in the
probability of a target fixation over time within a trial.
This S-shaped curve for target fixations is commonly
observed and reflects a period of initial increasing consid-
eration of the target, followed by looking away from the
target (i.e., decreasing consideration of the target) after the
participant has located the target.

* A strong temporal AR was observed to vary across time, with
stronger AR at the beginning and end of the time-window of
analysis. The AR was weaker in the middle of the time-win-
dow, reflecting stimulus-driven changes in fixation position.

* The time-varying spatial lag effects for target and compet-
itor show how proximity to the target and distance from
the competitor both increase the probability of a target fix-
ation, particularly during initial processing of the target
word (early in the time window). The fact that these
effects were strongest in earlier time points likely reflects
the initial period of ambiguity during which time the tar-
get and competitor are in competition.

With the simulation study, we showed that the accuracy of pa-
rameter estimates and their standard errors was satisfactory for the
small sample numbers of persons and items similar to our illustra-
tive data (132 time points, 64 trials, 60 persons, and eight items).
Furthermore, ignoring the spatial and temporal effects led to bi-
ased inferences for the experimental condition effects of primary
interest. In many applications where eye-gaze is used to under-
stand cognitive processes, for example, in the study of speech per-
ception, it is common to have more than 100 time points, 60 trials,
and eight items (e.g., McMurray et al.,, 2002, 2009; Trude &
Brown-Schmidt, 2012). For other types of research questions, it is
common to have fewer than 60 persons in experimental studies,
particularly when testing children or special populations (e.g.,
Creel, 2014; Trude et al., 2014). Additional research is needed to
determine the number of persons under which the GAMM for bi-
nary data will perform optimally. While important, this question
was not a focus in the present study.

Other Modeling Considerations

In this article, a generalized logistic additive regression model was
illustrated using an empirical data set. The data set we selected has a
data structure that is common for binary-coded eye-tracking data,
that is, spatial-temporal correlations and random variability (random
person effect and random item effect) in a multilevel (three-level)
data structure. However, there are other potential effects that may be

of interest, depending on the experiment design and spatial-temporal
task structure. Below, we discuss other candidate approaches for
modeling binary time series eye-tracking data.

Distance Between a Target and a Competitor

In the illustrative data set, we found that proximity to the target
and distance from the competitor both increase the probability of a
target fixation. By contrast, the distance between the target and com-
petitor did not have a significant effect. This is likely because, given
the arrangement of images within the experimental display (a grid of
four images), the target and competitor were either separated by ~
300 pixels (when they were off-diagonal) or by ~ 400 pixels (when
they were on-diagonal). This difference may not have been substan-
tive enough to affect target identification. While this distance effect
was not a primary research interest, in other situations the primary
research question may involve distance between target and competi-
tor (e.g., Brown-Schmidt & Tanenhaus, 2008; Hanna & Brennan,
2007). For example, in a study where competitor fixations were a pri-
mary interest, Brown-Schmidt and Tanenhaus (2006) experimentally
manipulated the distance between target and competitor and found
that competitor fixations occurred earlier when this distance was
smaller. In other cases, it is not only the distance between target and
competitor that is relevant, but also whether there are potentially dis-
tracting images in between (see Ferreira et al., 2013), which could be
modeled by weighting the distance measure.

Smooth Functions

Because the eye-tracking data in our illustration were from an ex-
perimental study, differences in smooths depend on between-sub-
jects factors (e.g., three sleep conditions) and different smooth
functions over trials by a within-subjects factor (e.g., two sessions)
have also been considered in the generalized additive logistic model.
However, these additional effects did not improve the model fit in
terms of deviance or corrected AIC and BIC. However, we encour-
age researchers to consider such effects in the applications of the
generalized additive logistic regression model for other data sets.

In addition to the time-varying spatial (distance) lag effects we
illustrated, spatial smoothing over gaze position (x, y coordinates on
the screen) can be used to model spatial correlations in eye-tracking
data as a covariate in the generalized additive logistic regression
model. As reviewed earlier, this kind of spatial smoothing was
applied to the continuous time-series pupilometric data (van Rij et
al., 2019). In addition, the spatial smoothing was considered in a
logistic regression model to model spatial variances in disease risk
for cross-sectional data (Siangphoe & Wheeler, 2015) and in a linear
regression model to model the locations of voxels in brain activity
level measurement (Wood, 2017, 7.2). In our illustration, there were
convergence problems when the model had the spatial smooths over
gaze positions (Model D in Table 3). A possible reason is that there
is not enough information left in the data to estimate the spatial corre-
lation after all other effects are accounted for. When there are signifi-
cant x, y coordinate effects on the probability of target fixations in the
other applications, it is expected that the spatial smoothing is an
interesting GAMM application to eye-tracking data.

Conclusion

To conclude, this article shows that the GAMM approach is a feasi-
ble technique for modeling nonlinear effects of space-time information
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in binary intensive time series eye-tracking data. In the current study,
we present how a GAMM approach can be used to explore and test
not only experimental condition effects, but also novel investigations
regarding nonlinear spatial-temporal effects that influence visual atten-
tion and the underlying cognitive processes that guide the eyes. Fur-
thermore, we show that accounting for spatial and temporal dynamics
are critical in order to accurately test the effects of interest (e.g., experi-
mental condition effects). The use of eye-tracking data to study cogni-
tive processes is common across a variety of disciplines, yet data
analytic techniques for analyzing these complex data are currently lim-
ited in practice. The GAMM approach is likely to be of increasing in-
terest to researchers as eye-tracking techniques are extended to
increasingly ecologically valid and complex real-world tasks.
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Appendix A

Ilustrations of Spatial Dependence and Semivariogram

Figure A1 Figure A2
Distance Q Between the Two Data Points of Residuals R on x, y Classes for the Pairs of Data Points on x, y Coordinates
Coordinates

Note. Black dots indicate data points on x, y coordinates.
Note. Black dots indicate data points on x, y coordinates.
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Figure A3
Semivariogram Against Distance

CHO, BROWN-SCHMIDT, DE BOECK, AND NAVEIRAS

Figure A4
Llustrations of the Isotrophy Assumption

Note. White dots indicate calculated semivariogram at each class.

Note. Dots indicate data points on x, y coordinates: Red dots indicate
data points in the direction of northeast; Blue dots indicate data points in
the direction of southeast. See the online article for the color version of
this figure.
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Calculating Semivariogram Using R

An illustrative data set includes an observation identification
index (Obs. ID), Pearson residuals, x-coordinate, and y-coordinate.
The data set for 40 observations was generated with a standard nor-
mal distribution for the Pearson residuals and with selected values
on x, y coordinates in pixels from the empirical study

Step 1 Calculate the Euclidean Distance and Create Classes

For 40 data points, there are 780 pairs of two data points. As an
example, the Euclidean distance for a pair of ID = 1 on x, y
coordinates of (1,268; 828) and ID = 2 on x, y coordinates of
(1,304; 802) can be calculated as follows:

\/ (1268 — 1304)% + (828 — 802)° = 44.407 (30)

Table A1
Hllustrative Data

Obs. ID  Residuals  x-coordinate y-coordinate R(n, m) notation

1 —0.473 1,268 828 —0.473 (1,268,828)
2 —0.828 1,304 802 —0.828 (1,304,802)
3 1.585 1,317 807 1.585(1,317,807)
4 —0.895 1,275 198 —0.895 (1,275,198)
5 0.723 1,261 216 0.723 (1,261,216)
6 —0.768 1,289 177 —0.768 (1,289,177)
7 —0.120 1,286 184 —0.120 (1,286,184)
8 1.496 753 725 1.496 (753,725)
9 0.255 681 280 0.255 (681,280)
10 0.241 682 282 0.241 (682,282)
11 1.076 1,222 790 1.076 (1,222,790)
12 1.349 1,209 788 1.349 (1,209,788)
13 0.237 760 264 0.237 (760,264)
14 —0.669 773 276 —0.669 (773,276)
15 —0.989 648 182 —0.989 (648,182)
16 0.176 647 177 0.176 (647,177)
17 —0.345 1,262 249 —0.345 (1,262,249)
18 —0.920 821 193 —0.920 (821,193)
19 1.821 828 205 1.821 (828,205)
20 —0.268 1,224 700 —0.268 (1,224,700)
21 —1.147 1,231 712 —1.147 (1,231,712)
22 —0.072 785 703 —0.072 (785,703)
23 0.419 790 704 0.419 (790,704)
24 —2.914 940 616 —2.914 (940,616)
25 —0.364 1,270 259 —0.364 (1,270,259)
26 0.062 976 289 0.062 (976,289)
27 —0.737 698 210 —0.737 (698,210)
28 —0.574 701 212 —0.574 (701,212)
29 —0.357 1,321 166 —0.357 (1,321,166)
30 0.324 1,319 180 0.324 (1,319,180)
31 0.028 1,264 891 0.028 (1,264,891)
32 —1.038 1,263 881 —1.038 (1,263,881)
33 0.494 1,254 830 0.494 (1,254,830)
34 0.417 1,252 823 0.417 (1,252,823)
35 0.804 811 698 0.804 (811,698)
36 0.606 760 722 0.606 (760,722)
37 1.196 750 730 1.196 (750,730)
38 0.988 690 226 0.988 (690,226)
39 —0.538 693 210 —0.538 (693,210)
40 —1.273 1,159 176 —1.273 (1,159,176)

In R, the Euclidean distance for all pairs can be calculated
using the dist function in the stats package:

data <-read.table(“C:/Variogram data.txt",
header=T)

#Columns of 3 and 4 are x, y coordinates in the
#importeddata.

dists <-dist(datal,3:4],method="euclidean”)

summary (dists) #summary of distance

The next step is to split distance values into classes to have
enough data points to calculate the variance in Step 2. Based
on the results of summary (dists), 11 classes with min =0
and max = 1,000 were created using the breaks function:

> summary (dists)

Max.
943.655

Mean
482.093

Median
527.665

Min.
2.236

1lst Qu.
317.601

3rd Qu.
658.055

> breaks =seqg(0, 1000; 1 =11)
> breaks
[1] 01002003004005006007008009001000

Step 2 Calculate the Variance Using Equation 2

Based on the 11 classes from Step 1, distances Q¢ (from the
center of the bins; e.g., 50 for the interval [0, 100], 150 for the
interval [101, 200], etc.) and N¢ (the number of pairs within
class ¢) in Equation 2 (of the main paper) can be calculated.
The R function variog in the geoR package can be used to
obtain Q¢ N¢, and the semivariogram for each class:

#variog function: computing omnidirectional
#variogram

library (geoR)

v <- variog(coords = data[,3:4], data = data
[,2],breaks =breaks)

vSu#DistanceQ

vsn#Num. of pairs: N _c

vSv #estimated variance

Table A2
Results of Illustrative Data

Class Num. of Estimated
ID Distance Q.. pairs N, variance
1 50 119 0.6084346
2 150 58 1.0680901
3 250 16 1.9122761
4 350 19 2.7045106
5 450 121 1.1328401
6 550 160 0.8262266
7 650 129 0.7123553
8 750 96 0.7252405
9 850 54 0.7128542
10 950 8 0.7610677
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Table A3
Results of the Selected Pairs
Pair ID Residual for a Pair Variance
15,2 -0.989, —0.828 (- 0.989 + 0.828)> = 0.026
16,2 0.176, —0.828 (0.176 + 0.828)> = 1.008
15,3 —0.989, 1.585 (-0.989 — 1.585)> = 6.625
16,3 0.176, 1.585 (0.176 — 1.585)* = 1.985
31,15 0.028, —0.989 (0.028 + 0.989)> = 1.034
32,15 -1.038, —0.989 (-1.038 + 0.989)* = 0.002
31,16 0.028, 0.176 (0.028 — 0.176)* = 0.022
32,16 -1.038,0.176 (-1.038 - 0.176)*> = 1.474

sum = 1.522

Results of the function variog are summarized as
follows:

To illustrate the calculation of semivariogram estimate =
.761 using Equation 2, we chose Class = 10 (distance interval
[901,1,000]) having N, = 8 using the following code:

dists<-dist(datal,3:4],method="euclidean”)
summary (dists)

dists <-as.matrix(dists,nrow=40,ncol =40)
which (dists > 901, arr.ind=T)

The selected pairs and their residuals are as follows:

Figure AS
Plot of Semivariogram

The variance for Class = 10 can be calculated using Equation 2
as follows:

1
7(Qc = 950) = 5 {(-0989 + 0.828)% + (0.176 + 0.828)>

+(—0.989 — 1.585)* + (0.176 — 1.585) + (0.028 + 0.989)*

+(—1.038 4 0.989) + (0.028 — 0.176)> + (—1.038 — 0.176)*}
=1522
(€2))

The semivariogram is 0.5 X 7(Q, = 950) = 0.5 X 1.522 =
0.761. The same process can be replicated for the other classes.

Step 3

Plot the estimated variance for all classes against distance.
A figure of semivariogram can be created in R:

plot (vSu, v$v, xlab="Distance", ylab="Semi-
Variogram”)

Figure A5 shows that the value of semivariogram peaks at
the distance of 350 and then declines, indicating that, in this
example, data points that are spread further apart become more
similar.

(Appendices continue)
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Appendix B

Implementation in the mgcv Package

Below, we describe how random effects and smooth functions
in Equation 17 can be specified in the mgcv package.

As discussed earlier, the random effects are equivalent to a
smooth with penalty matrix /. The random intercept parameters
in Equation 17 (0;, {;) can be specified as follows:

bam(y~s(x, bs="re")).

In the above expression, the function s indicates the use of
a smooth function for the covariate x (i.e., an identification
variable for persons for 0; and an identification variable for
items for {;) and the argument bs="re” indicates the selected
smoothing basis re.

Nonlinear relation between an outcome variable y and a
covariate x is specified as follows:

bam(y~s(x, bs="cxr", k=)) .

In the expression, the argument bs = “cr” indicates the
selected smoothing basis CRS, and the argument k = indicates
the number of basis functions.

A smooth version of random slope in GLMM can be speci-
fied by a random smooth to model by-group variation in non-
linear effects. For a binary time-varying AR(1) effect (that is,
the effect of y; _ 1);;), the ordered factor of y_1);; was consid-
ered and the ordered factor includes the fixed intercept of the
AR(1) effect and reference smooth:

data$OFylagl <- as.factor (dataSylagl)

data$OFylagl <- as.ordered (data$OFylagl)

contrasts (data$OFylagl) <- ’‘contr.treat-
ment’

bam(y ~ OFylagl + s(time, bs="cr", k=) + s
(time, by=0OFylagl, bs="cr", k=)) .

Because the smooth with the ordered factor is centered,
the fixed intercept term OFylagl is needed to avoid artifacts
due to the centering constraint (van Rij et al., 2019). The
fixed intercept effect of OFylagl is the mean difference
between consecutive time points with same values ((0, 0) or
(1, 1)) and those with opposite values ((0, 1) or (1, 0)) (on the
logit scale).

For numeric spatial lag covariates (d,_1y;; and ¢—1y;;) that
vary across time, the spatial lag covariates are group and
time is x in the mgcv package:

bam(y~ s (x, by=group, bs="cr", k=) ) .

Here, the by=group argument is used to multiply the
smooth function for x by covariates group.

For the two-dimensional nonlinear interaction between
trial and time in different units, the tensor product smooth
interaction can be included as ti(trial,time) in the
mgcv package. Note that ti is used instead of te to model a
pure interaction term, as in the ANOVA:

bam(y~ti(trial, time, bs="cr", k=)) .

For the two-dimensional nonlinear interaction between
xposition and yposition in the same units, the TPRS
can be set as:
yposition,

bam(y ~ S(XpOSition, bS:"tp",

k=)) .

When the TPRS is set as an alternative to the CRS, the
argument bs = “cr” can be replaced with the argument bs =
w tp . n”
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Appendix C

R Code for a Generalized Additive Logistic Regression Model

*A[peOoIq PAIRUIWASSIP 29 0] JOU SI PUB 1SN [BNPIAIPUT AU JO asn [euosIad ay) 10J A[2[0S papuIul ST A[ONI. STY],
‘s1oys1iqnd paI[[e SII JO QUO IO UONEBIJOSSY [BIIS0[0YIAS] UBdLIOULY ) Aq PAIYSLIAdOD ST Juawnoop siy,
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*A[peoIq PIJBUTWASSIP 2 0] JOU ST PUE IASN [BNPIAIPUT dY) JO asn [euostad ay) 10J A[9[0S PApUUI ST A[ON)IE SIY],
's1oysIiqnd paIf[e SII JO QUO IO UONRINOSSY [BIIS0[0YIAS] uedLaury ay) Aq paysuAdod st juawnoop siy,
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*A[peoIq PIJBUTWASSIP 2 0] JOU ST PUE IASN [BNPIAIPUT dY) JO asn [euostad ay) 10J A[9[0S PApUUI ST A[ON)IE SIY],
's1oysIiqnd paIf[e SII JO QUO IO UONRINOSSY [BIIS0[0YIAS] uedLaury ay) Aq paysuAdod st juawnoop siy,
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*A[peoIq PIJBUTWASSIP 2 0] JOU ST PUE IASN [BNPIAIPUT dY) JO asn [euostad ay) 10J A[9[0S PApUUI ST A[ON)IE SIY],
's1oysIiqnd paIf[e SII JO QUO IO UONRINOSSY [BIIS0[0YIAS] uedLaury ay) Aq paysuAdod st juawnoop siy,
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Appendix D

Processing and Coding of the Eye-Tracking Data

The Eyelink 1000 (SR Research) eye-tracker used in this
substantive example outputs the data in a format that indicates
at each millisecond whether the eyes were fixating, saccading,
or blinking. Fixations are indexed by the x, y screen coordinates
of the fixation point. Saccades are indicated by the x, y, coordi-
nates of the starting and ending point. Based on prior research
in this substantive area, we recoded the time associated with
each saccade as a fixation to the object that the eye landed on at
the end of the saccade, based on the idea that the cognitive
processing of the to-be-fixated object began as or before the
saccade was initiated (see Irwin, 2004; McMurray et al., 2009;
McMurray et al., 2010). The time associated with blinks are
similarly attributed to the object that the person fixated on after
the blink. We then downsampled the data into units of 10 ms
for computational efficiency, and because for the substantive
research question we are addressing, 10-ms resolution is suffi-
cient. The eye movement data record is synched with the audio
recordings played to the participants using Matlab and the
Psychophysics toolbox (Brainard & Vision, 1997). For each of
the trials included in the analysis, we then extracted the fixation
data from 180 ms—1,499 ms following the onset of the critical
word, for example, “back.” This results in a data matrix that
indicates, at each 10-ms time point between 180 ms—1,499 ms,
the x, y coordinates of the fixation point relative to the x, y

coordinates of the computer screen. From this matrix, we then
generated a binary code for each point in time indicating
whether or not the participant was fixating on the target. We
also generated, for each point in time, the distance from the
current fixation point to the centroid of the target, and sepa-
rately the distance to the centroid of the competitor.
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