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ABSTRACT

Moving data through the memory hierarchy is a fundamental bottle-

neck that can limit the performance of core algorithms of machine

learning, such as convolutional neural networks (CNNs). Loop-

level optimization, including loop tiling and loop permutation, are

fundamental transformations to reduce data movement. However,

the search space for finding the best loop-level optimization con-

figuration is explosively large. This paper develops an analytical

modeling approach for finding the best loop-level optimization

configuration for CNNs on multi-core CPUs. Experimental eval-

uation shows that this approach achieves comparable or better

performance than state-of-the-art libraries and auto-tuning based

optimizers for CNNs.
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1 INTRODUCTION

Convolutional Neural Networks (CNNs) have had transformative

impact on several domains including image/video classification,
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language processing, genetic analysis, etc. CNNs are computation-

ally very demanding. Therefore there has been tremendous interest

in optimized implementation of the CNN stages needed in Deep

Neural Network (DNN) pipelines. CNN stages of varied shapes and

sizes are needed even within a single DNN pipeline.
Since the cost of data movement dominates the cost of floating-

point arithmetic computations on all current hardware platforms,
loop tiling is a crucial transformation for the development of op-
timized code for CNN. However, a fundamental challenge is the
explosive size of the space of possible tiled loop variants for the
CNN computation:

Out [𝑛,𝑘,ℎ, 𝑤 ] =
∑

𝑐,𝑟 ,𝑠

In[𝑛, 𝑐,ℎ + 𝑟, 𝑤 + 𝑠 ] ∗ Ker [𝑘, 𝑐, 𝑟, 𝑠 ] (1)

The computation can be expressed as a 7-dimensional loop nest,

with one loop per index. Allowing for any order of accumulation of

additive contributions for each result tensor element, all 7 loops are

fully permutable and hence fully tileable with hyper-rectangular

tiles. Considering a three-level memory hierarchy, up to three lev-

els of tiling may be appropriate, leading to an explosively large

search space with three groups of 7 tiling loops, with 7! possible

permutations of the tiling loops within each group, i.e., 1.28 × 1011

configurations. Further, for each configuration of tiling loops, a very

large number of possible choices exist for the tile sizes, resulting in

an explosive number of alternatives from which to select.

To the best of our knowledge, all previously developed ap-

proaches for CNN optimization have used heuristics and/or em-

pirical auto-tuning to search a limited subset of the explosive space

of permutations and tile size choices [6, 20, 23, 34]. This is a fun-

damental limitation to achieving consistently high performance

across the wide range of CNN instances used in DNN pipelines.

We aim to solve this problem in a principled and comprehensive

way. To achieve this, we develop the first approach that models

analytically the data movement for any CNN stage in a multi-level

memory hierarchy. Using this model, we show how to explore the

entire search space, looking for the configuration that minimizes the

bandwidth-scaled data movement in the limiting level of the mem-

ory hierarchy. The insight of our approach, which differentiates it

from previous CNN optimization efforts, is that analytical modeling

and reasoning enable dramatic pruning of the space of permuta-

tions and tile sizes, reducing it to a small number of non-linear

optimization problems that can be solved by off-the shelf solvers.

This paper targets multicore CPUs, but the analytical machinery
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Figure 1: MOpt Overview

is applicable to targets such as GPUs, TPUs, FPGAs, and spatial

arrays of accelerators.

Our modeling approach addresses a key limitation of existing

efforts for CNN optimization. To demonstrate its utility, in this

paper we combine this modeling with our custom code generator

to achieve CNN performance that matches or exceeds the perfor-

mance possible with state-of-the-art approaches. In the long run,

our techniques provide a critical building block for these existing

approaches, allowing them to overcome one of their fundamental

limitations. This existing work falls in the following three cate-

gories.

Libraries of optimized functions: Tuned vendor libraries are

currently the primary means of achieving high performance for

most applications using CNNs. Applications are typically developed

by composing operators in a high-productivity framework such as

PyTorch or TensorFlow, with the frameworks mapping the execu-

tion of the operators to invocation of tuned library function calls.

Although vendor libraries can achieve very good performance, we

demonstrate through our experimental evaluation of Intel’s state-

of-the-art oneDNN library that there is scope for improvement if

wider exploration of the search space is be undertaken using the ap-

proach proposed in this paper (the discussion in Sec. 12 elaborates

on this).

Auto-tuning and ML-based tuning: One of the most successful

recent efforts in optimizing tensor computations has been TVM [6].

TVM uses a combination of auto-tuning (actual execution of can-

didate code variants on the target platform) and a dynamically

trained Machine Learning model to guide the design-space explo-

ration. However the enormous search space poses a problem and

manual expertise is required to set up optimization scripts that con-

trol the search space. We present experiments demonstrating the

greater effectiveness of our new approach over TVM’s auto-tuning

over a constrained search space. By combining the model-driven

comprehensive design space exploration from our work with the

auto-tuning framework in TVM, further improvement in perfor-

mance is feasible (the discussion in Sec. 12 elaborates on this).

Polyhedral compilers: Such compilers incorporate powerful

transformations for affine programs [4, 5, 8, 36]. The CNN com-

putation in Eq. 1 is affine and can be automatically tiled and op-

timized by this approach. However, the performance achieved by

state-of-the-art polyhedral compilers is very far from that pro-

vided by vendor libraries or by auto-tuning-based code generators

such as TVM [6]. These compilers face a fundamental challenge:

they must separate the key consideration of tile size optimizationÐ

inherently non-linearÐfrom the choice of loop transformations.

The only recourse is to use an outer auto-tuning loop that explores

a limited space of tile sizes, and an inner loop that generates code

for them [2, 5, 11, 18, 27, 35, 36]. Our approach can be generalized

for analytical modeling of data movement in a class of tiled tensor

computations and incorporated into polyhedral compilers, thereby

overcoming this fundamental limitation. (Sec. 12 elaborates on this).

Contributions: The paper makes the following contributions:

• It develops, to the best of our knowledge, the first comprehensive

analytical modeling for data movement volume for multi-level tiled

CNN execution on a system with a multi-level memory hierarchy,

covering the full space of permutations and tile sizes. While the

modeling approach is used in the context of multicore CPUs, it

can also be used for CNN optimization on other platforms, such as

GPUs, FPGAs, distributed-memory systems, and accelerator arrays.

• It presents the first analysis that exploits algebraic properties of

the analytical expressions for data-movement volume to dramati-

cally prune the number of distinct cases from thousands to only eight

in order to find the global optimum in the entire space of tile-loop

permutations for a single-level tiled CNN. The factor of reduction

in the search space that is enabled by this algebraic analysis is

exponentially higher for multi-level tile-size optimization.

• It demonstrates the use of the new analytical modeling and op-

timization approach through the generation of high-performance

multicore CPU code for three CNN benchmarks, including all CNN

stages of MobileNet [14], ResNet-18 [13], and Yolo9000 [29]. The

achieved performance is comparable to or better than both the

state-of-the-art CNN library (Intel’s oneDNN [25]) and the state-

of-the-art framework for auto-tuned code generation (TVM [6]).

2 OVERVIEW

2.1 System Overview

Fig. 1 shows the components of the MOpt system (Modeling-based

Optimizer) for generating optimized CNN code for multicore pro-

cessors, based on a novel comprehensive design-space exploration

approach for tile-loop optimization. The leftmost component repre-

sents a conceptual methodology for pruning the space of possible

permutations of tile-loops for single-level tiling. This methodology

uses analytical modeling of data movement volume to identify a

very small subsetÐcontaining only 8 elementsÐof the full space of

tile-loop permutations, guaranteed to contain an optimal configu-

ration that minimizes data volume for tiled execution. The rest of

this section highlights the key ideas behind this modeling, while

Sec. 3 and 4 provide a more detailed description.

The right portion of the figure shows the tool components for

code generation for a specific CNN. From the insights provided

by the modeling methodology, together with the specific sizes of

the kernel and input/output of the CNN, a set of constrained non-

linear optimization problems are automatically generated. These

problems capture the search for optimal tile sizes for multi-level

tiling (Sec. 5). The optimization problems are then solved using an
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/ / Ni / Nj / Nk a r e p e r f e c t m u l t i p l e s o f T i / T j / Tk

for ( i t = 0 ; i t < Ni ; i t +=Ti )

for ( j t = 0 ; j t < Nj ; j t +=Tj )

for ( k t = 0 ; k t < Nk ; k t +=Tk )

for ( i = 0 ; i < Ti ; i ++)

for ( j = 0 ; j < Tj ; j ++)

for ( k = 0 ; k < Tk ; k++)

C[ i + i t ] [ j + j t ]+=

A[ i + i t ] [ k+k t ] ∗ B [ k+k t ] [ j + j t ] ;

Listing 1: Single-level tiled matrix multiplication

Ti

Tj

Tk

tk

B

C

A

Ti

Tj

Figure 2: Data reuse in tiled matrix multiplication

off-the-shelf non-linear solver (we use AMPL [9] with Ipopt [37]) to

produce optimal tile sizes 𝑇𝑖, 𝑗 and data movement costs 𝐶𝑖 (here 𝑗

ranges over the levels of the memory hierarchy). The best solution

gives the tile sizes and tile-loop permutation to be used to generate

customized C code for the CNN stage, with tile loops surrounding

a CNN microkernel that implements register-tiling using vector

intrinsics.

2.2 Key Ideas for Analytical Modeling

We use the simpler example of matrix multiplication to explain the

main ideas behind the new approach to comprehensive design space

exploration for tiled CNN optimization. For the CNN computation,

the analytical cost functions are more general than for matrix mul-

tiplication, but have a similar structure. Furthermore, the reasoning

to derive these functions and to optimize tile sizes based on them

is also similar. Listing 1 shows one possible version of single-level

tiled code for matrix-multiplication (there are 6 × 6 = 36 possible

permuted variants, with 6 possible permutations for the intra-tile

loops and 6 possible permutations of the tiling loops).
Consider the data footprint of a single tile from Listing 1. This

footprint is the sum of the volumes of the data slices accessed
by the three arrays 𝐴, 𝐵, and 𝐶 , respectively 𝑇𝑖𝑇𝑘 , 𝑇𝑗𝑇𝑘 , and 𝑇𝑖𝑇𝑗 .
This is illustrated in Fig. 2. Among all possible combinations of
tile sizes chosen such that the total data-footprint does not exceed
cache capacity, we want to find the one(s) achieving minimal data
movement between main memory and cache:

𝑇𝑖𝑇𝑘 +𝑇𝑗𝑇𝑘 +𝑇𝑖𝑇𝑗 ≤ 𝐶 (2)

As is the case with much of the prior work on analytical modeling

of cache misses for loop computations [12][3][16], we only model

cold misses (first access of data) and capacity misses but not conflict

misses arising from finite set-associativity of caches. We demon-

strate through experimental evaluation that this idealized model of

cache behavior is very effective in tile optimization for CNNs.

Consider the iterations of the innermost tiling loop kt. As kt is

changed, and different tiles are executed, we can observe (Fig. 2)

that the accessed data slices are completely distinct (i.e., without

any reuse of data between tiles) for 𝐴 and 𝐵, whereas exactly the

same data slice of 𝐶 is used for all the tiles. The total volume of

data movement between main memory and cache for the complete

execution of the innermost tiling loop kt is DV𝐴
kt

= 𝑇𝑖𝑁𝑘 and

DV𝐵
kt

= 𝑇𝑗𝑁𝑘 for arrays 𝐴 and 𝐵, respectively. For 𝐶 , since the

same data slice 𝐶 [it:it+𝑇𝑖 -1] [jt:jt+𝑇𝑗 -1] is repeatedly accessed for

each value of the tile-loop iterator kt, with a fully associative cache

each data element will only be brought in once from memory.
The combined data volume for all three arrays,DV kt , is as follows

(the factor of 2 associated with the data volume for 𝐶 is due to the
need to move each element in both directions, first from memory
to cache and finally back from cache to memory):

DV kt = DV𝐴
kt + DV𝐵

kt + DV𝐶
kt = 𝑇𝑖𝑁𝑘 +𝑇𝑗𝑁𝑘 + 2𝑇𝑖𝑇𝑗

Themodeling of total datamovement volume betweenmemory and

cache for the execution of the innermost kt tile-loop was facilitated

by the fact that two of the arrays did not have any inter-tile data

reuse, while the third one had complete inter-tile data reuse of

a slice of data that was small enough to fit in the cache. As we

attempt to analyze the volume of data movement through the outer

two tiling loops, the data footprints of the arrays increase and the

analysis of hits and misses becomes very complicated, with many

combinations of possibilities depending on the chosen tile sizes.
A key to developing our analytical parametric modeling ap-

proach is the recognition that for the purpose of tile-size optimiza-
tion, we do not need to accurately model data-movement volume
for all possible tile sizes, but it is sufficient to carry out such model-
ing for those tile sizes that effectively utilize the available capacity
of the cache/scratchpad. We therefore assume that the collective
data footprint of two adjacent tiles will exceed the cache capacity ś
if not, the chosen tile sizes are too small and wasteful and should
be increased to make better use of the available capacity. Under
such an assumption, we can continue the parametric analysis of
data volume for the entire execution of the tiled matrix multiplica-
tion algorithm. For any tiling loop, we have two possibilities with
respect to any array: the loop iterator is either used in the indexing
of the array (it is a present index), or it is not used and thus is an
absent index (e.g., tile-loop iterator it does not affect the accessed
elements of array 𝐵 [𝑘] [ 𝑗] because 𝑖 is an absent index for 𝐵). If the
tile-loop iterator is a present index, the data slice accessed for each
value of the iterator is distinct, and the total accessed data volume
over the execution of the tile loop is the product of the number of
tile-loop iterations and the data volume corresponding to the inner
nested loops. Even if the tile-loop iterator is an absent index, if the
data footprint of the slice accessed by inner loops has exceeded
cache capacity, the total data movement is again the product of
the number of tile-loop iterations and the data volume accessed
in execution of the inner loops. Based on these observations, the
following cost expression applies to the two innermost tile-loops:

DV jt,kt =
𝑁 𝑗

𝑇𝑗
DV kt =

𝑁 𝑗

𝑇𝑗
𝑇𝑖𝑁𝑘 + 𝑁 𝑗𝑁𝑘 + 2𝑇𝑖𝑁 𝑗

Similarly,

DV it,jt,kt =
𝑁𝑖
𝑇𝑖

DV jt,kt =
𝑁𝑖
𝑇𝑖

(

𝑁 𝑗

𝑇𝑗
𝑇𝑖𝑁𝑘 + 𝑁 𝑗𝑁𝑘 + 2𝑇𝑖𝑁 𝑗

)

= 𝑁𝑖𝑁 𝑗𝑁𝑘

(

1
𝑇𝑖

+ 1
𝑇𝑗

+ 2
𝑁𝑘

) (3)

Given specific values for 𝑁𝑖 , 𝑁 𝑗 , 𝑁𝑘 , the parametric expression in

Eq. 3 can be minimized subject to the capacity constraints in Eq. 2.

However, this is only one of 6 permutations of the tiling loops, and

we desire the combination of tile-loop permutation and tile sizes

that minimize total data movement between memory and cache.
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for ( n = 0 ; n < Nn ; n++)

for ( k = 0 ; k < Nk ; k++)

for ( c = 0 ; c < Nc ; c ++)

for ( r = 0 ; r < Nr ; r ++)

for ( s = 0 ; s < Ns ; s ++)

for ( h = 0 ; h < Nh ; h++)

for (w = 0 ; w < Nw; w++)

Out [ n ] [ k ] [ h ] [w] +=

In [ n ] [ c ] [ h+ r ] [w+s ] ∗ Ker [ k ] [ c ] [ r ] [ s ]

Listing 2: CNN loops

When this modeling is generalized to the CNN computation

(as described in the next section), a brute-force enumeration and

solution of a constrained optimization problem for each possible

tile-loop permutation leads to a huge number of cases. For exam-

ple, for multi-level tiling of the 7-dimensional loop nest for CNN,

with 4 levels of tiling loops (register-tiling, L1, L2, and L3 cache),

the number of cases is (7!)4, i.e., over 645 trillion cases. However,

as we elaborate in Sec. 4, algebraic reasoning can be used to re-

duce the total number of parametric symbolic expressions to be

considered for modeling all tile-loop permutations at one level of

tiling for CNN from 7! (i.e., 5040) to only 8. This massive pruning

is possible because of algebraic reasoning about equivalence or

dominance (guaranteed to find a better or equally good solution)

of all remaining 5032 cases by these 8 constrained optimization

problems.

3 ANALYTICAL MODELING FOR
SINGLE-LEVEL TILING

Given a specific permutation of the tile-loops for a single level of

tiling of the CNN computation, we aim to develop a parametric

expression for the total volume of data movement (as a function of

tile sizes) between main memory and an idealized fully-associative

LRU cache with a capacity of 𝐶 words and unit line-size. In the

next section, we present a pruning strategy to dramatically reduce

the number of tile-loop permutations to be considered in solving

the tile-optimization problem. Given the original CNN code in List-

ing 2, Listing 3 shows one particular single-level tiled version.1

We will use ®𝑝 = ⟨𝑖7, . . . , 𝑖1⟩ to denote a particular permutation

of the tile-loop iterators 𝑛𝑡 , 𝑘𝑡 , . . . in the tiled code, where 𝑖1 is

the innermost tile-loop iterator in the tile-loop nest. The corre-

sponding tile sizes for a particular tiled version will be denoted by
®𝑇 = ⟨𝑇7, . . . ,𝑇1⟩ ∈ N

7. Here each tile size𝑇𝑗 is such that 1 ≤ 𝑇𝑗 ≤ 𝑁 𝑗

where 𝑁 𝑗 is the corresponding problem size. We assume that each

problem size 𝑁 𝑗 is a multiple of the corresponding tile size 𝑇𝑗 . This

assumption is used only for the presentation of cost modeling; the

actual code generation handles the general case of partial tiles. A

tiling configuration is a pair ⟨®𝑝, ®𝑇 ⟩.

In the execution, the iterators from ®𝑝 will be instantiated with

concrete values. Each such instance is an iteration vector and will

be denoted by ®𝑖 ∈ N7. In any such ®𝑖 , the value of iterator 𝑖 𝑗 is

always a multiple of the corresponding tile size 𝑇𝑗 . To simplify the

discussion, in our costmodelingwewill normalize 𝑖 𝑗 in ®𝑖 by𝑇𝑗 . Thus,

the 𝑗-th element of ®𝑖 now takes values in the set {0, 1, . . . , 𝑁 𝑗/𝑇𝑗 }.

Execution of the code defined by a configuration ⟨®𝑝, ®𝑇 ⟩ corresponds

1To simplify the presentation, we do not show stride/dilation, but the methodology is
applicable to the general case.

for ( n t = 0 ; nt < Nb ; nt +=Tn )

for ( k t = 0 ; k t < Nk ; k t +=Tk )

for ( c t = 0 ; c t < Nc ; c t +=Tc )

for ( r t = 0 ; r t < Nr ; r t +=Tr )

for ( s t = 0 ; s t < Ns ; s t +=Ts )

for ( h t = 0 ; h t < Nh ; ht +=Th )

for ( wt = 0 ; wt < Nw; wt+=Tw)

CNNTile ( nt , kt , c t , r t , s t , ht , wt ) ;

Listing 3: CNN with single-level tiling

to a sequence of tiles defined by a lexicographic order of all vectors
®𝑖 . A key component of our modeling is an analytical description of

the amount of data movement in executing two consecutive tiles.

3.1 Overview of Modeling of Inter-Tile Data
Reuse and Total Data Movement

Given ®𝑝 = ⟨𝑖7, . . . , 𝑖1⟩, we construct an analytical expression to

model the amount of data movement when the corresponding tiled

execution occurs. Note that the expression is parametric in the tile

sizes ®𝑇 and will later be used to define a constrained optimization

problem in which the objective function is this cost expression and

the unknowns are the tile sizes in ®𝑇 . Thus, for any code version (as

defined by a loop permutation ®𝑝), the solution of this optimization

problem provides concrete tile sizes to minimize the cost expression.

The modeling analysis is done separately for each of the three

arrays In, Out, and Ker . For any array 𝐴, let 𝑅𝐴 for be inner-

most (i.e., rightmost) position in ®𝑝 of an iterator that occurs in

the array reference for 𝐴. For example, suppose ®𝑝 = ⟨. . . , ct, nt⟩.

For array reference Out [n, k, h,w] from the original code we

have 𝑅Out = 1, since in the tiled code this reference becomes

Out [n + nt, k + kt, h + ht,w + wt] which contains nt, and nt is in

position 1 in ®𝑝 . For array reference In[n, c, h + r,w + s], both nt and

ct occur in the tiled code, but nt occurs at position 1 in ®𝑝 (i.e., in

the innermost/rightmost position) and thus 𝑅In = 1. Finally, for

Ker [k, c, r, s] we have 𝑅Ker = 2 since ct occurs at position 2 in ®𝑝 .
Consider a tile with tile sizes 𝑇𝑛 , 𝑇𝑘 , 𝑇𝑐 , 𝑇𝑟 , 𝑇𝑠 , 𝑇ℎ , 𝑇𝑤 . The

execution of the tile will access a 4-D slice of 𝑇𝑛𝑇𝑘𝑇ℎ𝑇𝑤 ele-
ments of Out [n, k, h,w] and𝑇𝑘𝑇𝑐𝑇𝑟𝑇𝑠 elements of Ker [k, c, r, s]. For
In[n, c, h + r,w + s], the data slice accessed in the tile will have
𝑇𝑛𝑇𝑐 (𝑇ℎ +𝑇𝑟 − 1) (𝑇𝑤 +𝑇𝑠 − 1) elements. This is because the index
expression𝑤 + 𝑠 takes 𝑇𝑤 +𝑇𝑠 − 1 distinct values in a contiguous
range as𝑤 varies over some contiguous range of 𝑇𝑤 values and 𝑠
ranges over a range of𝑇𝑠 values. The capacity constraint specifying
that the total data footprint must not exceed cache capacity is:

𝑇𝑛𝑇𝑐 (𝑇ℎ +𝑇𝑟 − 1) (𝑇𝑤 +𝑇𝑠 − 1) +𝑇𝑘𝑇𝑐𝑇𝑟𝑇𝑠 +𝑇𝑛𝑇𝑘𝑇ℎ𝑇𝑤 ≤ 𝐶 (4)

As illustrated in Sec. 2 with the matrix-multiplication example,

the analytical modeling of data volume for execution of the CNN

loop nest for a specific tile-loop permutation is done by an inner to

outer traversal of the tile-loops. Starting with the inner-most tile

loop, that loop’s index is either absent or present in the tensor’s

index expressions. For example, consider the particular tile-loop

order shown in Listing 3. The innermost tile-loop corresponds to

loop index wt, which is an absent iterator for Ker and a present

iterator for In and Out. This means that for Ker the data slices

accessed for successive tiles as we step through the wt tile-loop

will be exactly the same, i.e., full inter-tile data reuse is achieved.
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In contrast, completely distinct data slices of Out are accessed by

the different tiles that are executed as wt is varied, i.e., there is

absolutely no data reuse across the tiles. For In, the original indexing

expression involving 𝑤 is of the form 𝑤 + 𝑠 . Hence there is some

partial overlap of the data slices accessed by successive tiles as wt

iterates (as detailed below).

For any permutation ®𝑝 , for the innermost tile-loop there is com-

plete data reuse between successive tiles if that iterator is absent in

a tensor’s index expressions, and no reuse or partial reuse for any

tensor where the index is present. Further, after the execution of all

tiles in the innermost tile-loop, eviction of data from previous tiles

should occur for any tensor with that index present. This is a con-

sequence of our choice in only modeling data-movement volume

for tile sizes that are sufficiently large so that cache capacity is not

wasted (i.e, the combined tile footprint of two adjacent tiles always

exceeds cache capacity). Thus, for any tensors with the innermost

tile loop index being present, no data reuse is possible at any outer

tiling loops even if that outer index is absent.

3.2 Cost Expressions for Data Movement

Based on these properties, there are two cases for the cost com-

putation. The first case is for arrays Out and Ker , as well as for In

when the iterator at position 𝑅In is nt or ct. Here the cost computa-

tion simply considers the number of pairs of consecutive iteration

vectors ®𝑖 and ®𝑖 ′ in the lexicographic order such that the value at

position 𝑅𝐴 changes from the first to the second vector. In all such

cases, the second tile accesses a completely different slice of the

corresponding array 𝐴. Thus, the amount of data movement is the

number
∏

𝑅𝐴≤ 𝑗≤7
𝑁 𝑗

𝑇𝑗
of such pairs multiplied by the tile footprint

for that array.

As discussed earlier, for Out the tile footprint is 𝑇𝑛𝑇𝑘𝑇ℎ𝑇𝑤 and

for Ker this footprint is 𝑇𝑘𝑇𝑐𝑇𝑟𝑇𝑠 . For array In, the footprint is

𝑇𝑛𝑇𝑐 (𝑇ℎ + 𝑇𝑟 − 1) (𝑇𝑤 + 𝑇𝑠 − 1). Multiplying this footprint with

the number of pairs of consecutive tiles for which data movement

occurs (as defined above) gives the complete data volume for a

particular loop permutation ®𝑝 .

The second case is for In[n, c, h + r,w + s] when the iterator at

position 𝑅In is wt, ht, st, or rt. Consider one execution of the loop

for this iterator. Each time the iterator changes, there is partial

reuse across consecutive tiles. As a result, the inter-tile movement

cost along the corresponding data dimension is the tile size for

the iterator. For example, if the iterator at position 𝑅In is wt, the

tile footprint in that data dimension is 𝑇𝑠 + 𝑇𝑤 − 1, but due to

partial overlap between tiles the actual amount of new data in that

data dimension is 𝑇𝑤 . For one execution of the wt loop, there are

𝑁𝑤/𝑇𝑤−1 such iterator changes. Thus, the cost is𝑇𝑤 (𝑁𝑤/𝑇𝑤−1) =

𝑁𝑤 −𝑇𝑤 . The number of times this cost is incurred is determined

by the loops surrounding wt, and is the product of 𝑁 𝑗/𝑇𝑗 for the

positions 𝑗 around 𝑅In.

More generally, we have a cost term which is the product of
∏

𝑅In< 𝑗≤7
𝑁 𝑗

𝑇𝑗
and one of the following:

• 𝑇𝑛𝑇𝑐 (𝑇ℎ +𝑇𝑟 − 1) (𝑁𝑤 −𝑇𝑤) when wt is at 𝑅In
• 𝑇𝑛𝑇𝑐 (𝑇ℎ +𝑇𝑟 − 1) (𝑁𝑠 −𝑇𝑠 ) when st is at 𝑅In
• 𝑇𝑛𝑇𝑐 (𝑁ℎ −𝑇ℎ) (𝑇𝑤 +𝑇𝑠 − 1) when ht is at 𝑅In
• 𝑇𝑛𝑇𝑐 (𝑁𝑟 −𝑇𝑟 ) (𝑇𝑤 +𝑇𝑠 − 1) when rt is at 𝑅In

We also have a second term which captures data movement cost

when the very first iteration of that loop occurs. For this iteration

there is no reuse from the previous tile, and the cost of the entire

tile footprint is incurred. This cost is the product of
∏

𝑅In< 𝑗≤7
𝑁 𝑗

𝑇𝑗

and 𝑇𝑛𝑇𝑐 (𝑇ℎ +𝑇𝑟 − 1) (𝑇𝑤 +𝑇𝑠 − 1).

4 PRUNING CONFIGURATIONS:
SINGLE-LEVEL TILING

Sec. 3 presented symbolic expressions for total data volume as

a function of parametric tile sizes, for any given permutation of

the tile-loops. There are 7! possible permutations for the seven

tile loops for a single level of cache, and (7!)𝐿 permutations for 𝐿

levels of cache. In this section, we show that massive pruning of

the search space is possible via algebraic analysis that reduces the

number of permutations to be considered to just 8 of the 7! = 5040

total permutations of the seven tile-loops. This is done by proving

that the solution to one of these eight optimization problems is

guaranteed to be as good as or better than any solutions for the

remaining 5032 cases.

The identification of the pruned subset of tile-loop permutations

is done via an inner-to-outer analysis of tiling loops and reasoning

about the implications on total data movement cost, for different

choices for tile-loop indices made at each level. The array indexing

structure for the CNN computation is such that each of the seven

loop indices is present in exactly two of the three tensors and absent

in one tensor:𝑤 , ℎ, and 𝑛 are all present for In and Out, but absent

for Ker ; 𝑠 , 𝑟 , and 𝑐 are present for In and Ker , but absent for Out; 𝑘

is present for Ker and Out but absent for In. As per the analysis in

the previous section, the total data movement cost for two of the

three arrays will be fully determined just from the choice of the

innermost tile-loop. The rest of this section describes these cases

and summarizes the final result of this reasoning.

Innermost wt: If we choose the innermost tile-loop to be wt,

the data movement volume for the the seven tiling loops will

be 𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑠

𝑇𝑠

𝑁ℎ

𝑇ℎ
𝑇𝑛𝑇𝑐 (𝑇ℎ + 𝑇𝑟 − 1) (𝑁𝑤 + 𝑇𝑠 − 1) for In and

2𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑠

𝑇𝑠

𝑁ℎ

𝑇ℎ

𝑁𝑤

𝑇𝑤
𝑇𝑛𝑇𝑘𝑇ℎ𝑇𝑤 for Out (the factor of 2 is due to

the need to read and write each element of Out).

The order of the six surrounding tile-loops will not affect the

total data movement cost of In and Out, but will affect the data

movement cost for Ker . As per the analysis in Sec. 3, the expression

for data movement for Ker is a product of the tile footprint’s volume

(𝑇𝑘𝑇𝑐𝑇𝑟𝑇𝑠 ) and the product of 𝑁 𝑗/𝑇𝑗 for all tile-loops from the first

present iterator and all surrounding iterators. The volume will be

minimized if all absent indices are lower in the nesting order than

all present indices. This is achieved by placing the tile-loops for

absent indices ht and nt (in either order) in a band just above wt,

with the tile-loops for present indices kt, ct, rt, and st in a band

(in any order) above the tile-loops for ht and nt. We will use the

notation ⟨{kt, ct, rt, st}, {nt, ht},wt⟩ to denote the set of tile-loop

configurations described above: innermost tile-loop for wt, sur-

rounded by a band of two tile-loops for nt and ht (in either order),

and an outermost band of tile-loops for indices kt, ct, rt, st, in any

relative order among those four tile-loops. Note that this notation

represents a set of 4! × 2! = 48 iterator permutations; however, all

elements of this set are equivalent with respect to the cost model,
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as their cost expressions are exactly the same. When exploring the

search space, one arbitrary representative of this set will be chosen

and will be subjected to non-linear optimization. The same applies

for the other seven cases described below: each case defines a set

of cost-equivalent permutations, and one arbitrary representative

of the set is selected for tile size optimization.
The parametric expression for the total data movement

cost for any configuration in set ⟨{kt, ct, rt, st}, {nt, ht},wt⟩, e.g.,
⟨kt, ct, rt, st, nt, ht,wt⟩ is:

DV kt,ct,rt,st,nt,ht,wt =
𝑁𝑘
𝑇𝑘

𝑁𝑐
𝑇𝑐

𝑁𝑟
𝑇𝑟

𝑁𝑠
𝑇𝑠

[𝑇𝑘𝑇𝑐𝑇𝑟𝑇𝑠+
𝑁𝑛
𝑇𝑛

𝑁ℎ
𝑇ℎ

(2𝑁𝑤
𝑇𝑤

𝑇𝑛𝑇𝑘𝑇ℎ𝑇𝑤 +𝑇𝑛𝑇𝑐 (𝑇ℎ +𝑇𝑟 − 1) (𝑁𝑤 +𝑇𝑠 − 1)) ]
(5)

The solution of a constrained optimization problem to minimize

the expression in Eq. 5, subject to the capacity constraint in Eq. 4

will find the lowest possible data volume among all possible per-

mutations with𝑤𝑡 as the innermost tiling loop.

Innermost ht: The analysis for tile-loop configurations with

ht at the innermost position can be done similarly to the case

with wt being innermost. The minimal possible data move-

ment will be achieved with any arbitrary member of the set

⟨{kt, ct, rt, st}, {nt,wt}, ht⟩, e.g., ⟨kt, ct, rt, st, nt,wt, ht⟩:

DV kt,ct,rt,st,nt,wt,ht =
𝑁𝑘

𝑇𝑘

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑠

𝑇𝑠
[𝑇𝑘𝑇𝑐𝑇𝑟𝑇𝑠+

𝑁𝑛

𝑇𝑛

𝑁𝑤

𝑇𝑤
(2𝑁ℎ

𝑇ℎ
𝑇𝑛𝑇𝑘𝑇ℎ𝑇𝑤 +𝑇𝑛𝑇𝑐 (𝑇𝑤 +𝑇𝑠 − 1) (𝑁ℎ +𝑇𝑟 − 1))]

Innermost st: Since st is present for In and Ker , the data movement

costs for these two tensors will be independent of the permutations

of the remaining outer tile-loop indices:

DVKer
...,st =

𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑠

𝑇𝑠

𝑁𝑤

𝑇𝑤

𝑁ℎ

𝑇ℎ
𝑇𝑘𝑇𝑐𝑇𝑟𝑇𝑠

DV In
...,st =

𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑤

𝑇𝑤

𝑁ℎ

𝑇ℎ
×

𝑇𝑛𝑇𝑐 (𝑇ℎ +𝑇𝑟 − 1) (𝑇𝑤 + 𝑁𝑠 − 1)

The data-movement cost for Out will depend on the permuta-

tion of the outer tile-loops. The lowest cost is obtained when the

absent indices for Out are placed immediately above st. The ab-

sent indices for Out are ct and rt. Any permutation in the set

⟨{nt, kt, ht,wt}, {ct, rt}, st⟩ will achieve the lowest possible data

movement cost for Out:

DVOut
...,st = 2

𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁ℎ

𝑇ℎ

𝑁𝑤

𝑇𝑤
𝑇𝑛𝑇𝑘𝑇ℎ𝑇𝑤

The optimization problem for any permutation in the set

⟨{nt, kt, ht,wt}, {ct, rt}, st⟩ is to minimize the sum of these three

DV cost expressions subject to the constraint in Eq. 4.

Innermost rt: The reasoning for this case is similar to the

case for innermost st. The best permutations are in set

⟨{nt, kt, ht,wt}, {ct, st}, rt⟩. For them, the data movement cost is

as follows:

DVOut
...,rt = 2𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁ℎ

𝑇ℎ

𝑁𝑤

𝑇𝑤
𝑇𝑛𝑇𝑘𝑇ℎ𝑇𝑤

DVKer
...,rt =

𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑠

𝑇𝑠

𝑁𝑤

𝑇𝑤

𝑁ℎ

𝑇ℎ
𝑇𝑘𝑇𝑐𝑇𝑟𝑇𝑠

DV In
...,rt =

𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁𝑐

𝑇𝑐

𝑁𝑠

𝑇𝑠

𝑁𝑤

𝑇𝑤

𝑁ℎ

𝑇ℎ
×

𝑇𝑛𝑇𝑐 (𝑇ℎ + 𝑁𝑟 − 1) (𝑇𝑤 +𝑇𝑠 − 1)

DV ...,rt = DVOut
...,rt + DVKer

...,rt + DV In
...,rt

Innermost kt: In this case the data movement volume

will be 2𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑠

𝑇𝑠

𝑁ℎ

𝑇ℎ

𝑁𝑤

𝑇𝑤
𝑇𝑛𝑇𝑘𝑇ℎ𝑇𝑤 for Out and

𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑠

𝑇𝑠

𝑁𝑤

𝑇𝑤

𝑁ℎ

𝑇ℎ
𝑇𝑘𝑇𝑐𝑇𝑟𝑇𝑠 for Ker . Since kt is absent in

In, the next surrounding loop will contain an iterator that is

present in In. This next iterator uniquely determines the cost

function. The six cases for this choice can be separated in two

groups: {wt, ht, st, rt} and {nt, ct}. As discussed shortly, the second

group of choices can be ignored. Any choice from the first group

gives rise to a different cost expression; thus, each of those 4 cases

has to be solved separately. Together with the 4 cases described

earlier (i.e., innermost loop is wt, ht, st, or rt), this gives us the 8

overall cases mentioned previously.

The cost functions for the first group are similar to those dis-

cussed earlier. For example, the cost for ⟨. . . ,wt, kt⟩ is similar to

the one for ⟨. . . ,wt⟩, but now a factor 𝑁𝑘

𝑇𝑘
is missing because kt is

the innermost loop and does not affect In.

Now consider the second group {nt, ct} of choicesÐfor exam-

ple, ⟨. . . , nt, kt⟩. Compare this cost with the corresponding one

for configuration ⟨. . . ,wt, kt⟩. It is easy to show that the only dif-

ference is a factor of 𝑁𝑤

𝑇𝑤
(𝑇𝑤 +𝑇𝑠 − 1) in the cost for ⟨. . . , nt, kt⟩,

which is changed to 𝑁𝑤 +𝑇𝑠 − 1 in the cost for ⟨. . . ,wt, kt⟩. Since
𝑁𝑤

𝑇𝑤
≥ 1, the cost for ⟨. . . , nt, kt⟩ will never be lower than the one

for ⟨. . . ,wt, kt⟩. Thus, nt (and, similarly, ct) should not be chosen

for the loop immediately surrounding the innermost loop kt.

For completeness, below are the details of the cost expressions for

the four relevant cases. Based on different choices for the second

innermost iterator, the data movement volume expression is as

follows:

For permutation ⟨{nt, ct, ht, rt, st},wt, kt⟩

DVOut
...,wt,kt

= 2𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑠

𝑇𝑠

𝑁ℎ

𝑇ℎ

𝑁𝑤

𝑇𝑤
𝑇𝑛𝑇𝑘𝑇ℎ𝑇𝑤

DVKer
...,wt,kt

=
𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑠

𝑇𝑠

𝑁𝑤

𝑇𝑤

𝑁ℎ

𝑇ℎ
𝑇𝑘𝑇𝑐𝑇𝑟𝑇𝑠

DV In
...,wt,kt

=
𝑁𝑛

𝑇𝑛

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑠

𝑇𝑠

𝑁ℎ

𝑇ℎ
×

𝑇𝑛𝑇𝑐 (𝑇ℎ +𝑇𝑟 − 1) (𝑁𝑤 +𝑇𝑠 − 1)

DV ...,wt,kt = DVOut
...,wt,kt

+ DVKer
...,wt,kt

+ DV In
...,wt,kt

For permutation ⟨{nt, ct,wt, rt, st}, ht, kt⟩

DVOut
...,ht,kt

= 2𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑠

𝑇𝑠

𝑁ℎ

𝑇ℎ

𝑁𝑤

𝑇𝑤
𝑇𝑛𝑇𝑘𝑇ℎ𝑇𝑤

DVKer
...,ht,kt

=
𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑠

𝑇𝑠

𝑁𝑤

𝑇𝑤

𝑁ℎ

𝑇ℎ
𝑇𝑘𝑇𝑐𝑇𝑟𝑇𝑠

DV In
...,ht,kt

=
𝑁𝑛

𝑇𝑛

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑠

𝑇𝑠

𝑁𝑤

𝑇𝑤
×

𝑇𝑛𝑇𝑐 (𝑁ℎ +𝑇𝑟 − 1) (𝑇𝑤 +𝑇𝑠 − 1)

DV ...,ht,kt = DVOut
...,ht,kt

+ DVKer
...,ht,kt

+ DV In
...,ht,kt

For permutation ⟨{nt, ct, ht,wt, rt}, st, kt⟩

DVOut
...,st,kt

= 2𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑠

𝑇𝑠

𝑁ℎ

𝑇ℎ

𝑁𝑤

𝑇𝑤
𝑇𝑛𝑇𝑘𝑇ℎ𝑇𝑤

DVKer
...,st,kt

=
𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑠

𝑇𝑠

𝑁𝑤

𝑇𝑤

𝑁ℎ

𝑇ℎ
𝑇𝑘𝑇𝑐𝑇𝑟𝑇𝑠

DV In
...,st,kt

=
𝑁𝑛

𝑇𝑛

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁ℎ

𝑇ℎ

𝑁𝑤

𝑇𝑤
×

𝑇𝑛𝑇𝑐 (𝑇ℎ +𝑇𝑟 − 1) (𝑇𝑤 + 𝑁𝑠 − 1)

DV ...,st,kt = DVOut
...,st,kt

+ DVKer
...,st,kt

+ DV In
...,st,kt

For permutation ⟨{nt, ct, ht,wt, st}, rt, kt⟩

DVOut
...,rt,kt

= 2𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑠

𝑇𝑠

𝑁ℎ

𝑇ℎ

𝑁𝑤

𝑇𝑤
𝑇𝑛𝑇𝑘𝑇ℎ𝑇𝑤

DVKer
...,rt,kt

=
𝑁𝑛

𝑇𝑛

𝑁𝑘

𝑇𝑘

𝑁𝑐

𝑇𝑐

𝑁𝑟

𝑇𝑟

𝑁𝑠

𝑇𝑠

𝑁𝑤

𝑇𝑤

𝑁ℎ

𝑇ℎ
𝑇𝑘𝑇𝑐𝑇𝑟𝑇𝑠

DV In
...,rt,kt

=
𝑁𝑛

𝑇𝑛

𝑁𝑐

𝑇𝑐

𝑁𝑠

𝑇𝑠

𝑁ℎ

𝑇ℎ

𝑁𝑤

𝑇𝑤
×

𝑇𝑛𝑇𝑐 (𝑇ℎ + 𝑁𝑟 − 1) (𝑇𝑤 +𝑇𝑠 − 1)

DV ...,rt,kt = DVOut
...,rt,kt

+ DVKer
...,rt,kt

+ DV In
...,rt,kt
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Innermost nt and ct: As discussed above, choosing nt or ct as the

second loop in ⟨. . . , kt⟩ is inferior to choosing one of {wt, ht, st, rt}.

A similar argument can be used to establish that choosing nt or ct

as the innermost loop is inferior to choosing one of {wt, ht, st, rt}.

The only difference between the two arguments is that now all cost

functions have an extra factor 𝑁𝑘

𝑇𝑘
(since kt is not the innermost

loop anymore), but the rest of the reasoning still applies. Thus, no

additional cases arise to be solved.
Summary: By analyzing the algebraic structure of the cost ex-
pressions, as described above, we have identified that only eight
equivalence classes of tiling permutations need to be considered:

⟨{kt, ct, rt, st }, {nt, ht },wt ⟩ ⟨{kt, ct, rt, st }, {nt,wt }, ht ⟩

⟨{nt, kt, ht,wt }, {ct, rt }, st ⟩ ⟨{nt, kt, ht,wt }, {ct, st }, rt ⟩

⟨{nt, ct, ht, rt, st },wt, kt ⟩ ⟨{nt, ct,wt, rt, st }, ht, kt ⟩

⟨{nt, ct, ht,wt, rt }, st, kt ⟩ ⟨{nt, ct, ht,wt, st }, rt, kt ⟩

Only one arbitrary representative permutation from each set is se-

lected for further analysis, since all elements in the set have exactly

the same cost expression for data movement. Thus, the search space

is drastically reduced from 5040 distinct tile-loop permutations to

only 8 cases for single-level tiling, and 8𝐿 cases for 𝐿-level tiling

instead of 5040𝐿 cases.

5 MULTI-LEVEL TILE-SIZE OPTIMIZATION

In this section, we present our approach to optimizing multi-level

tiled CNN. Due to the multiple levels of cache on multiprocessors,

multi-level tiling is beneficial to optimize data movement at the

different levels in the memory hierarchy. In general, while cache

capacities at later levels increase, the bandwidth for data movement

between adjacent levels in the hierarchy decreases. Thus the over-

head (in time) to move data between different levels in the memory

hierarchy will be different. Assuming that concurrent data transfers

(of different data) can occur between different levels of the memory

hierarchy, we seek to minimize the maximum bandwidth-scaled

data-volume across all levels.

For 𝐿-level tiling, the number of tile parameters will be 7𝐿, seven

tile sizes per level. Since the tiled execution corresponds to a 7𝐿

loop nest, the range of execution for any iterator 𝑗 at tile-level 𝑙

will be𝑇 𝑙+1
𝑗

, i.e., the tile-size for that loop variable at the next outer

tiling level, and 𝑁 𝑗 for the outer-most tile. In the previous section,

the data volume expressions for single-level tiling featured ratios

of the problem size over the tile size along the different iteration

space dimensions, 𝑁 𝑗/𝑇𝑗 . For multi-level tiling, the expressions will

have terms of the form 𝑇 𝑙+1
𝑗

/𝑇 𝑙
𝑗
, i.e., the expressions for each level

involve parametric tile sizes for that tile level and the next outer

tile level.

Let BW 𝑙 represent the bandwidth available for data transfers

and DV 𝑙 the volume of data moved between levels 𝑙 and 𝑙 + 1 in

the memory hierarchy. We seek a tile configuration that minimizes

max𝑙
DV 𝑙

BW 𝑙 . However, although several publicly available nonlinear

solvers can be used to solve the optimization problem developed in

the previous section for single-level tiling, none can directly solve

a constrained min(max ()) nonlinear optimization problem. Hence

we use the following approach to solve the 𝐿-level tile optimization

problem: solve 𝐿 constrained optimization problems, where the

parametric data volume expression for each level 𝑙 is minimized

in one of those. For the instance of the minimization problem for

Figure 3: Example to illustrate approach to multi-level tile

size optimization

level 𝑙 , additional constraints are added to the effect that DV 𝑙

BW 𝑙 must

be greater than or equal to DV𝑘

BW𝑘 for 𝑘 ≠ 𝑙 .

Our approach to multi-level tile optimization is illustrated by a

simpler example of one-dimensional functions. Fig. 3 shows three

functions: 𝑓1 (𝑥) (colored black), 𝑓2 (𝑥) (colored red), and 𝑓3 (𝑥) (col-

ored blue). Consider the problem of finding min(max (𝑓1, 𝑓2, 𝑓3)),

where analytical expressions as a function of variable 𝑥 are available

for 𝑓1, 𝑓2, and 𝑓3. We need to find the minimum of the function 𝑓comp ,

shown by the dotted line in Fig. 3, but no analytical expression is

available for 𝑓comp that can be input to a constrained non-linear

optimization solver. We solve the min-max problem by solving

three separatemin(𝑓 ) problems, over the three regions 𝐴, 𝐵, and𝐶 ,

respectively.𝐴 is the region over 𝑥 where function 𝑓1 is greater than

or equal to 𝑓2 and 𝑓3. Similarly, 𝐵 and 𝐶 represent regions over 𝑥

where 𝑓2 and 𝑓3, respectively, are greater than or equal to the other

two functions. The minimum value of 𝑓comp over the full range of

𝑥 can be expressed as𝑚𝑖𝑛(𝑚1,𝑚2,𝑚3), where𝑚1 = min𝐴 (𝑓1 (𝑥)),

𝑚2 = min𝐵 (𝑓2 (𝑥)),𝑚3 = min𝐶 (𝑓3 (𝑥)).

In order to solve for

𝑚123 = min(max (𝑓1 (𝑥), 𝑓2 (𝑥), 𝑓3 (𝑥))), 𝑋lo < 𝑥 < 𝑋hi

we can solve threeminimization problems, one each for regions over

which the corresponding function has the highest value (regions

respectively marked 𝐴, 𝐵, and 𝐶 in Fig. 3):

𝑚1 = min(𝑓1 (𝑥)), 𝑓1 (𝑥) ≥ 𝑓2 (𝑥), 𝑓1 (𝑥) ≥ 𝑓3 (𝑥), 𝑋lo < 𝑥 < 𝑋hi

𝑚2 = min(𝑓2 (𝑥)), 𝑓2 (𝑥) ≥ 𝑓1 (𝑥), 𝑓2 (𝑥) ≥ 𝑓3 (𝑥), 𝑋lo < 𝑥 < 𝑋hi

𝑚3 = min(𝑓3 (𝑥)), 𝑓3 (𝑥) ≥ 𝑓1 (𝑥), 𝑓3 (𝑥) ≥ 𝑓2 (𝑥), 𝑋lo < 𝑥 < 𝑋hi

and then selecting𝑚123 = min(𝑚1,𝑚2,𝑚3).

6 MICROKERNEL DESIGN FOR CNN

Vec O_0,0 Vec O_0,1

Vec O_1,0 Vec O_1,1

Vec O_5,0 Vec O_5,1

Vec I_0

Vec I_1

Vec I_5

Vec K_0 Vec K_1

… … …

Input

Kernel

Output

Figure 4: Conceptual view of outer product scheme

Along with data movement optimizations, optimizing the

throughput of compute-units is critical for achieving close to peak

performance. The principal computations in convolutions can be

realized using the Fused-Multiply-Add (FMA) operator, which can
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for ( c i n 0 to Tc )

for ( r i n 0 to Tr )

for ( s i n 0 to Ts )

/ / o u t e r p r o d u c t

for (hw in 0 to 6 )

for ( k in 0 to 1 6 )

/ / FMA

Listing 4: Loop structure of the micro kernel

/ / B e f o r e p a r a l l e l i z a t i o n

for ( i 4 = 0 ; i 4 < Ni ; i 4 += Ti3 )

for ( j 4 = 0 ; j 4 < Nj ; j 4 += Tj3 )

for ( i 3 = i 4 ; i 3 < i 4 + Ti3 ; i 3 += Ti2 )

for ( j 3 = j 4 ; j 3 < j 4 + Tj3 ; j 3 += Tj2 )

/ / A f t e r p a r a l l e l i z a t i o n

for ( i 4 = 0 ; i 4 < Ni ; i 4 += Ti3 )

for ( j 4 = 0 ; j 4 < Nj ; j 4 += Tj3 )

for ( i p = i 4 + t i d / ( T j3 / PTj3 ) ∗ Tip ; ip < i 4 +Ti3 ;

i p +=( T i3 / PTi3 ) ∗ Tip ) / / p a r a l l e l

for ( j p = j 4 + t i d %( Tj3 / PTj3 ) ∗ Tjp ; jp < j 4 +Tj3 ;

j p +=( T j3 / PTj3 ) ∗ Tjp ) / / p a r a l l e l

for ( i 3 = i p ; i 3 < i p + Tip ; i 3 += Ti2 )

for ( j 3 = j p ; j 3 < j p + Tjp ; j 3 += Tj2 )

Listing 5: Loop structure before and after parallelization

be efficiently executed by the SIMD (vector) units in modern pro-

cessors. Each core in our benchmarking machines contains two

AVX2 (256 bits == 8 floats) SIMD units, which can achieve a com-

bined throughput of 2 × 8 FMA operations (16 FMA ops), and has a

latency of 4 to 6 clock cycles. The amount of parallelism required to

fully utilize the SIMD pipeline can be computed using Little’s Law

as latency × throughput = 6 × 16 = 96. Note that these operations

should not carry any dependencies.

An outer product scheme, similar to BLIS[24], is used to achieve

the required parallelism. Figure 4 shows the conceptual view of our

outer product scheme. The output feature is distributed across the

vector lanes. In AVX2, each vector register can hold eight single-

precision floating-point elements. Two such registers are used to

hold the 𝑘𝑒𝑟𝑛𝑒𝑙 elements. Six vector registers, each of which holds a

single input image point, are populated using vector broadcasts. The

outer product of these six vector registers and two kernel registers

are computed using efficient vectorized Fused Multiply Add (FMA)

instructions and stored in twelve vector registers. Listing 4 shows

the loop structure of our micro-kernel. The actual implementation

of the entire microkernel, including loops, is implemented using

x86 assembly code.

Packing: Efficient vectorization requires stride-1 access along the

vectorization dimension. Our scheme vectorizes the output feature

dimension (𝑇 ). However, since the kernel layout is [𝐾,𝐶, 𝑅, 𝑆], 𝐾

is not the fastest varying dimension. Hence a data layout trans-

formation is performed to make 𝐾 the fastest varying dimension

before the convolutions are processed. We split the dimension 𝐾

into vector-length sized chunks, and each chunk is laid out contigu-

ously in memory ([𝐾,𝐶, 𝑅, 𝑆] → [𝐾/VecLen,𝐶, 𝑅, 𝑆,VecLen]). Our

code generator automatically generates the packing code and this

packing cost is included in all experiments.

7 OPTIMIZING FOR PARALLELISM

We describe how the sequential cost model is adapted to handle

tiled parallel execution. We assume that each core owns a set of

private caches (typically L1 and L2) and collectively shares a set

of shared caches (typically L3). Since the L3 cache is shared, paral-

lelizing loops that iterate over L3 tiles will cause cache interference.

Loops that iterate over L2 tiles as well as loops that iterate over

L1 tiles can be parallelized without cache interference. But paral-

lelizing L1 loops will reduce data locality within L2 tiles. Further,

parallelizing L2 tile loops achieve coarser parallelism, with lower

scheduling overheads. Hence we sub-tile L2 tiling loops to create

two-loop bands. Listing 5 shows the tile structure before and after

parallelization of a 2D loopnest. The outermost band (ip and jp)

is used for parallelization and the inner band (𝑖3 and 𝑗3) is exe-

cuted sequentially by each core. Parallelizing certain dimensions

like𝑊 and 𝐻 will result in write conflicts. While these conflicts

can be avoided by using atomic operations or synchronizations,

the overhead is high. Hence, our model only considers parallelism

along the non-reduction dimensions. The cost modeling in the par-

allel case is very similar to the sequential cost model explained in

Sec. 5; hence we only describe the differences in this section. Even

though the memory-to-L3 data movement remains the same, the

effective bandwidth may be higher in the parallel case. Hence, we

use a synthetic benchmark to determine the parallel memory-to-L3

bandwidth and use this bandwidth in the cost model. The parallel

L3-to-L2 data movement cost may also change as the available L3

bandwidth is split acrossmultiple cores. The per-core L3-to-L2 band-

width is also computed using synthetic benchmarks. The parallel

L3-to-L2 cost computation is similar to the cost computation ex-

plained in Sec. 5 and can be obtained by replacing𝑇𝛼3 in with 𝑃𝑇𝛼3

where 𝛼 ∈ 𝑛𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 . 𝑇𝛼3/𝑃𝑇𝛼3 is the amount of

parallelism along dimension 𝛼 . A constraint is added to ensure that

the total amount of parallelism is equal to the total number of cores

(
∏

𝑇𝛼3/𝑃𝑇𝛼3 == num_cores). The rest of the constraints remain

the same. The L2-to-L1 bandwidth and L1-to-register bandwidth

used in the parallel case is the same as the sequential case. The par-

allel cost model is then solved using the same min-max formulation

from Sec. 5.

8 PUTTING IT ALL TOGETHER

In this section, we discuss some aspects of the overall process for

generation of optimized CNN code that have not been previously

described.We first demonstrate theway to handle parallel execution

and then present the work flow of the full optimization system.

System Workflow: The design of the microkernel (Section 6) is

entirely dictated by the latency and throughput of the FMA units

and is not dependent on the cache or memory parameters. Hence,

for a given machine, the same micro-kernel is used for all problem

sizes. However, the tile sizes and loop permutation of the loops

surrounding the microkernel is dependent on the problem speci-

fication. Algorithm 1 shows an overview of our permutation and

tile-size selection process. Function GetPrunedPermutation returns

the set of pruned permutations. The loop at line 3 iterates over each

permutation and finds the best tile-sizes for the given permutation.

For a given permutation (pm), we initialize the FixedTileSizes as

an empty array at line 5, we first find the tile-sizes for the most-

constrained level and fix the tile size corresponding to this level.
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Input :ProblemSize, HardwareSpec

Output :LoopPermutation, TileSize

1 PrunedPermuSet ← GetPrunedPermutations ();

2 GlobalSoln.Cost ← INT_MAX;

3 for pm ∈ PrunedPermuSet do

4 NotVisitedLvls ← [Reg, L1, L2, L3];

5 FixedTileSizes ← [] ;

6 while NotVisitedLvls ≠ ∅ do

7 MinCost ← INT_MAX;

8 for ObjLvl ∈ NotVisitedLvls do

9 [CurCost, CurTileSizes] ←

ArgMinSolve (ProblemSize, HardwareSpec, ObjLvl,

pm, FixedTileSizes, NotVisitedLvls);

10 if MinCost > CurCost then

11 MinTileSizes ← CurTileSizes;

12 MinLevel ← ObjLvl;

13 MinCost ← CurCost;

14 end

15 end

16 NotVisitedLvls.remove (MinLevel) ;

17 FixedTileSize.add ( getTileSizeforLevel (MinTileSizes,

MinLevel) ) ;

18 end

19 if MinCost < GlobalSoln.Cost then

20 GlobalSoln ← {pm, FixedTileSize, MinCost}

21 end

22 end

23 IntegerSoln← FloorToInteger (GlobalSoln);

24 FinalSolution.TileSizes ← LoadBalancer (finalIntegerSol);

25 return [FinalSolution.pm, FinalSolution.TileSizes];

Algorithm 1: Permutation and Tile Selection Algorithm

Next, among the remaining levels, we find the tile-sizes for the

most-constrained level and find the tile-sizes for that level. This

process is repeated until the tile-sizes for all levels are computed.

However, the cost of each level is not known a priori. The max-

imum constraining level is found using the following steps. For

each level: (i) add a constraint to mark the current level as the most

constraining one, (ii) invoke the solver to find the tile-sizes which

minimizes the cost under the former constraint, (iii) select the level

with the minimum cost (min-max formulation). Each iteration of

loop at line 6 represents this computation. The loop at line 8 finds

the minimum cost assuming that the current level (ObjLvl) is the

level with maximum constraints. Line 9 invokes the Ipopt solver[37]

by setting the constraint that the ObjLvl is the most constrained

level. The if condition at line 10 keeps track of the minimum cost

and the associated level. The tile sizes for the most constrained

level are then fixed and removed from the search space (lines 16ś

17). Function getTileSizeforLevel is a helper function to extract the

tile-sizes for a given level. This entire process is repeated for each

permutation to find the best permutation and tile-sizes. Note that

the tile-sizes returned from the solver are real numbers; however,

tile-sizes should be integers. We floor each tile-size to obtain the

integer solution. The tile sizes are then adjusted to minimize the

core idling (load balance).

9 MODEL VALIDATION

We present our experimental evaluation in two parts: first, in this

section we discuss model validation, followed in the next section

by a comparison with state-of-the-art alternatives: Intel oneDNN

[25] and AutoTVM [6, 40].

For our experimental evaluation, we used all CNN benchmarks

used by TVM in the extensive comparative evaluation [6] against

various other CNN optimization frameworks. The benchmarks used

by TVM include all twelve conv2d operators from Resnet-18[13],

and the nine depth-wise conv2d operators from MobileNet[14]. In

addition we used all eleven conv2d operators from Yolo-9000[29].

All benchmark parameters are shown in Table 1. All input and

output tensors were stored in NCHW layout and all kernel tensors

were stored in KCRS layout. Any time expended in internal layout

transformations was included in the measured execution time for

all codes.

The experiments described in this section were performed by

measuring single-core performance and profiling hardware coun-

ters on an 8-core Intel Core i7-9700K CoffeeLake processor, with

32KB L1 cache per core, 256KB L2 cache per core, and a shared

12MB L3 cache. Hardware counter events were profiled by use of

Likwid [33].

For each of the 32 conv2d operators, a sampling of the space

of tile-size combinations was performed to select around 100 con-

figurations uniformly distributed in the full space of tile-size com-

binations. For each code configuration, we generated the model-

predicted score, measured performance by executing it, and gath-

ered hardware counter events for data movement volume at the

register, L1 cache, L2 cache, and L3 cache levels.

We sought to answer the following questions:

(1) Given a set of alternative tile configurations for a benchmark,

how does the rank ordering of those code configurations by

use of the analytical model compare with that based on mea-

sured performance? The rationale for such an assessment is

that the effectiveness of a compiler performance model in dif-

ferentiating between configurations is much more important

than the absolute error between modeled execution time and

measured execution time.

(2) How does the rank ordering of code configurations by the

model compare with the measured data volumes at the differ-

ent levels of the memory hierarchy?

(3) What is the loss-of-performance for a model-selected configu-

ration when compared to the best performing configuration in

the sampled set? We evaluated a top-1, top-2 and top-5 loss-of-

performance score, where top-k means the best performance

among the top k predicted configurations by the model.

Figure 5 presents the loss-of-performance comparing model-

predicted best configurations and the actual best among the 100 or

so configurations evaluated for each benchmark. For each conv2d

operator, we calculated three loss ratios. The top-one loss represents

the loss of performance of the best-predicted case by our model

over the actual best code version. The top-two loss represents the

loss of performance of the better of the top-2 versions predicted

by the model over the actual best code version. For the top-five

loss, we take the best among the top 5 cases based on prediction.

Our experiment shows that for all thirty-two conv2d operators,
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Table 1: Configurations of conv2d operators in Yolo-9000 (left), ResNet-18 (middle) andMobileNet (right); K: # output channels;

H, W: input image height and width; C: #input channels; R/S kernel size; batch size = 1; kernel stride = 1/2 (2 if marked with *

after kernel name, 1 otherwise)

Layer K C H/W R/S
Y0 32 3 544 3
Y2 64 32 272 3
Y4 128 64 136 3
Y5 64 128 136 1
Y8 256 128 68 3
Y9 128 256 68 1
Y12 512 256 34 3
Y13 256 512 34 1
Y18 1024 512 17 3
Y19 512 1024 17 1
Y23 28269 1024 17 1

Layer K C H/W R/S
R1* 64 3 224 7
R2 64 64 56 3
R3 64 64 56 1
R4* 128 64 56 3
R5* 128 64 56 1
R6 128 128 28 3
R7* 256 128 28 3
R8 256 128 28 3
R9 256 256 14 3
R10* 512 256 14 3
R11* 512 256 14 1
R12 512 512 7 3

Layer K C H/W R/S

M1 32 32 112 3
M2* 64 64 112 3
M3 128 128 56 3
M4* 128 128 56 3
M5 256 256 28 3
M6* 256 256 28 3
M7 512 512 14 3
M8* 512 512 14 3
M9 1024 1024 7 3
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Figure 5: Model prediction performance loss over 100 grid sampling for Mobilenet, Yolo-9000, and Resnet-18 on i7-9700K

the model predicted best code versions always achieve less than

4.5% loss , i.e., the model always finds a code version that achieves

95.5% performance comparied to the actual best code version in the

sampled configuration space. For most operators (thirty of thirty-

two), the loss is less than 3%.

Figure 6 shows the correlation of predicted performance with ac-

tual performance and data movement hardware counters (registers,

L1, L2, and L3) for three of the benchmarks:Resnet-9, Mobnet-2, and

Yolo-5. Each of the three columns of graphs in the figure correspond

to one of those three conv2d operators. In these graphs, the Y-axis

represents one of the following metrics: Performance (GFLOPs),

number of register load/stores, and L1/L2/L3 cache misses, one

chart for each metric, in that order from top to bottom. The differ-

ent configurations are ordered from left to right along the X-axis on

the basis of model-predicted performance, with the best-predicted

case at the left end, and the worst-predicted case at the right end.

The first row of charts shows that there is a strong correlation

between actual performance and predicted performance.- code ver-

sions with higher performance generally also have higher model-

predicted scores. The other plots shows a strong correlation be-

tween data movement hardware counter measurement for the pre-

dicted bottleneck resource and the predicted performance. Since

the predicted performance is based on the predicted bottleneck

resource, we would expect correlation with hardware counter mea-

surements for that resource. For both Resnet9 (left column) and

Mobnet2 (middle column), the model predicts that the register level

is the most constraining one. Indeed, the experimental measure-

ments show a strong correlation with hardware measurements of

load/stores. It is interesting to note that for both benchmarks there

is no correlation with hardware counter measurements at some

other levels, specifically L1 and L3. Both registers and L3 are pre-

dicted to be constraining resources for Yolo5 (right column) and

this is also seen in the experimental data.

10 COMPARISON WITH STATE-OF-THE-ART
LIBRARY AND AUTO-TUNING

In this section, we present a comparative experimental evaluation

of the code generated by MOpt with a state-of-the-art library (Intel

oneDNN [25]) and a state-of-the-art auto-tuning system (AutoTVM

[6, 40]. The experiments were carried out on two systems: an 8-core

Intel Core i7-9700K CoffeeLake processor, with 32KB L1 cache per

core, 256KB L2 cache per core, and a shared 12MB L3 cache and

an 18-core Intel i9-10980XE CascadeLake processor, with 32KB L1

cache per core, 1MB L2 cache per core, and a shared 24.75MB L3

cache.

We compare the performance of code generated by MOpt with

two state-of-the-art frameworks: (i) Intel oneDNN (v1.5) library,

and (ii) TVM (v0.6). TVM relies on auto-tuning and machine learn-

ing models to generate efficient code. All MOpt codes and oneDNN

were compiled using the Intel ICC 2019 compiler with flags "-

O3 -march=native -qopenmp". TVM recommends using the LLVM

framework; hence we used LLVM-8. TVM tuning was based on their

recommended template: "generic.schedule_conv2d_nchw"[38]. We

used XGBTuner as the ML tuning model, and we set "LLVM -

mcpu=core-avx2 or -mcpu=skylake-avx512" based on the target

to ensure that the generated code was vectorized for the appropri-

ate ISA (avx2 for i7, avx512 for i9). For each CNN benchmark, we
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Figure 6:Model-predicted rank ordering versus actualmeasurement on i7-9700K. Left: Resnet9, Middle:Mobnet2, Right: Yolo5;

Top: Performance (GFLOPs), followed by Reg. load/stores, L1 misses, L2 misses, L3 misses. Points are ordered along X-axis in

decreasing order of predicted performance.

ran TVM’s auto-tuner with its internal ML model to find the best

configuration over 1000 trials.

We compare TVM and oneDNN agaist two MOpt code versions

(i) MOpt-1: A single code version generated with the configuration

with minimum modeled cost and (ii) MOpt-5: Five code versions
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Figure 7: Performance (relative to TVM) and variance for Mobilenet, Yolo-9000, and Resnet-18 on i7-9700K

Figure 8: Performance (relative to TVM) and variance for Mobilenet, Yolo-9000, and Resnet-18 on i9-10980XE

were synthesized based on the top 5 modeled configurations. The

reason we also include MOpt-5 is to highlight the potential for

performance improvement by inclusion of limited empirical auto-

tuning toMOpt. Since themodeling inMOpt is based on an idealized

fully associative cache, occasionally we find (e.g., Yolo9 and Yolo18)

that conflict misses cause a significant drop in performance. But

when we consider the top five configurations generated by the

MOpt framework, it turns out that these configurations rarely ex-

perience pathological conflict miss scenarios and the best among

the top five performs very well.

We repeated each experiment 50 times on the system, using 8

threads on i7-9700k and 16 threads on i9-10980xe. We excluded the

very first run since it often includes additional time for loading

libraries. In order to avoid cache reuse across successive runs, we

flushed the cache between runs and measured the execution time

of each run individually. We turned off DVFS and turbo-boost, and

locked the clock at base frequency to reduce the variability across

runs. For each benchmark, we report mean GFLOPS achieved over

50 runs. The bar charts and the left vertical axes in Figure 7 show the

performance, normalized to TVM’s performance. As recommended

by a popular approach for statistically-rigorous performance mea-

surements [10], we also report the 95% confidence interval. The

interval is shown on top of each bar, as a characterization of vari-

ance; in some cases, it is so small that it is barely visible. We also

show the actual GFLOPS value of the MOpt-based code above the

corresponding bar.

The geometric means of speed-up of MOpt over oneDNN are:

On i7-9700k, 1.16x on the Yolo, 1.37x on the ResNet, and 1.24x on

MobileNet. On i9-10980xe, 1.26x on the Yolo, 1.08x on the ResNet,

and 1.14x on MobileNet. The geometric means of speed-up of MOpt

over TVM are: On i7-9700k,1.73x on the Yolo, 1.40x on the ResNet,

and 1.52x on MobileNet. On i9-10980XE, 1.53x on the Yolo, 1.84x

on the ResNet, and 1.56x on MobileNet.

11 RELATEDWORK

Tile size optimization: Some previous research has focused on tile

size optimization based on analytical modeling [32, 39]. However,

they relied on heuristic search. Recently, Li et. al [21] developed

an analytical modeling approach and its solution using nonlin-

ear solvers, for optimizing data movement for tensor contractions.

However, their work only addressed sequential computing and was

restricted to tensor contractions and could not be applied to CNNs.

Renganarayana et. al[30] developed a framework based on integer

geometric programming to optimized tile size selection if the opti-

mization problem could be expressed as a posynomial. While our

one-level tile-size optimization formulation is a posynomial, the

constraints arising in the multi-level tile optimization problem are

no longer posynomials.

Some other previous efforts have formalized the tile size selec-

tion problem as a constrained optimization problem. Sarkar et. al

[31] presented a model for optimizing memory cost for doubly

nested loops, and limited the dimension of loop nest to not greater

than three. Krishna [17] et. al utilized a nonlinear solver to find

optimal tile sizes to minimize disk I/O for tensor contraction, but

they only addressed on single level of tiling. Cociorva et. al [7]

proposed a model for optimizing inter-processor communication

under memory constraints, restricted to tensor contraction. Lin et.

al [22] developed a tool that used a convex solver to optimize tile

size for direct buffer access. However, it relied on heuristic search

to find loop permutations and did not comprehensively cover the
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full loop permutation space, and they also only addressed a single

level of tiling.

Polyhedral compilers: Polyhedral compilers such as Polly[11],

Pluto[5], PPCG [36] perform tile sizes optimization and

loop parallelization based on the polyhedral model. Tensor

Comprehension[35] is an automatic compiler for converting

tensor computations to high-performance machine learning

kernels based on the polyhedral model. However, a fundamental

limitation of polyhedral compilers is that the cost models used

for optimization are linear. The tile-size optimization problem

is inherently non-linear. Polyhedral compilers are forced to

separate tile-size optimization from tile-loop permutation and

therefore have not demonstrated code generation for CNN whose

performance matches vendor library code (like Intel oneDNN) or

optimizers that use auto-tuning (like TVM).

Specialized Machine Learning compilers: PlaidML [27] is a

portable tensor compiler that compiles deep learning codes on

mobile devices. It automatically applies tiling transformation to

improve efficiency of training. XLA (Accelerated Linear Algebra)

[19] is a domain-specific compiler that improves performance

for linear Algebra operators inside Tensorflow[1]. XLA fuses

Tensorflow operators in the same graph, so it reduces the

requirements to write intermediate values and number of kernel

calls. TVM [6] is an automatic end-to-end optimizing compiler for

improving the performance of deep learning systems. It works

with deep learning frameworks like Pytorch[26] and Keras[15]

and supports code generation for different hardware platforms.

It extends and uses Halide [28] as its internal representation. Its

optimization is driven by an ML-based cost model that trains

itself by using auto-tuning data collected when running on the

target platform. It has been demonstrated to achieve much higher

performance than other existing CNN optimizing frameworks

like PPCG, PlaidML, XLA, etc. [6, 40]. Thus, TVM represents the

current state-of-the-art in CNN optimization. In this paper, we

therefore compare performance with it.

CNN libraries: Intel’s oneDNN[25] is a state-of-the-art optimized

neural network library for Intel Architectures. We have compared

performance with oneDNN.

12 DISCUSSION

To the best of our knowledge, this paper presents the first demon-

stration that a purely analytical modeling approach for optimized

code generation for CNN can achieve performance comparable to

or better than the current state-of-the-art in both optimized vendor

libraries and auto-tuning based optimizers that perform actual exe-

cution of candidate code versions on the target platform. Further

improvement of performance is possible by via incorporating the

strengths of these systems into MOpt, as discussed below.

Table 2 contrasts the strengths and limitations of oneDNN, TVM,

and MOpt. oneDNN is a highly optimized vendor library that in-

cludes highly optimized microkernels developed and optimized by

Intel engineers over many years. However, it dynamically chooses

among a small number of pre-determined tiled code structures

based on the CNN array sizes provided at invocation, i.e., it per-

forms minimal design-space exploration. TVM performs a search

through a limited design space, as specified by the tuning script.

A significant difference between our model-driven search method-

ology and TVM’s auto-tuning based search is the extent of the

space that can be effectively explored. Our search time is relatively

independent of the problem size, while TVM’s search time for a

specified number of samples is essentially proportional to the num-

ber of operations of the specific CNN modeled. For example, TVM

took 1 minute versus 109 minutes to search for the optimal code

for the small first stage versus the large last stage of the Yolo-9000

pipeline. However, MOpt only took 9 seconds and 23 seconds, re-

spectively, for optimizing these two problem cases. Therefore a

judicious constraining of the full search space is essential for using

TVM (as detailed in Sec. 10, we use the script recommended by the

developers of TVM), i.e., comprehensive design-space exploration

is not practical.

Table 2: Strengths/limitations of oneDNN, TVM and MOpt

Auto

tuning
Micro Kernel

Design Space

Exploration

oneDNN ✕ Highly optimized Minimal

TVM ✓ NA Limited

MOpt ✕ Not highly optimized Comprehensive

MOpt’s strength is comprehensive design-space exploration to

seek tile-loop structures and tile sizes that minimize the data volume

at the bottleneck resource in the multi-level cache hierarchy. It does

not use any empirical auto-tuning in its search and uses a micro-

kernel that is not as highly optimized as oneDNN’s. Nevertheless,

the achieved performance of MOpt’s code on the CNN stages of

three DNN pipelines is almost always better and often much better

than TVM’s code, and comparable and sometimes much better than

oneDNN. While data-movement volume is a significant factor that

affects performance, other factors are also important, which are

very challenging to model, such as conflict misses in real caches

with finite set-associativity. A direction for ongoing/future research

is to combine our model-driven approach with a limited amount

of auto-tuning via actual execution on the target platform. One

direction we explored was to incorporate a data-volume-model

guided search within TVM’s auto-tuning based search. However

we faced a fundamental problem: TVM uses LLVM’s compiler to

generate vectorized code and it performs loop transformations in

its backend that we cannot control. The performance of the final

resulting code was affected very significantly by the LLVM backend

so that a tile loop structure and tile sizes for which MOpt achieves

very high performance can produce very low performance through

the TVM-LLVM chain because of LLVM’s transformations. TVM

plans extensions to allow fixed microkernels at the inner-most

level instead of the sole current path of LLVM code generation.

When that feature is available, we expect to be able to incorporate

MOpt’s model-driven search into TVM’s auto-tuning and gain the

combined benefit of comprehensive design-space exploration and

empirical auto-tuning.

Further planned work will apply the analytical modeling ap-

proach to optimize CNN on other target platforms. GPUs, FPGAs,

distributed-memory systems, and accelerator arrays can be ab-

stracted in a similar manner, as hierarchical systems with memory

capacity at each level, with consideration for achieving adequate
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parallelism, leading to multi-level tile-size optimization problems.

One important extension will be the modeling of spatial locality.

This can be done by adapting the data volume expressions to count

the number of cache lines (or DRAM transactions for GPUs): Use

⌈𝑇𝑘𝐿 ⌉ instead of 𝑇𝑘 , where 𝐿 is the cache line-size in words and 𝑇𝑘
is the tile size along the fastest-varying dimension of an array. This

reflects the fact that the movement of data is actually in units of

larger granularityÐcache lines or fixed-size DRAM transactions

(on GPUs)Ðand not individual elements.

Finally, there is significant potential for application of this model-

driven tile-optimization approach to overcome a fundamental limi-

tation of polyhedral compilers: tile size optimization is currently

infeasible because parametric tile size variables cause the array in-

dexing expressions to become non-affine and thus out of the scope

of the inherent modeling machinery within the polyhedral model.

For a significant and practically important subset of matrix/tensor

computations, a tile-footprint based cost-modeler and optimizer

can be plugged into a polyhedral compiler, enabling iterative search

across tile loop permutations and fusions by executing MOpt-like

parametric tile size optimization to guide loop transformations.

13 CONCLUSION

We present a new approach to overcome the design-space explosion

problem that has thwarted effective compile-time modeling and

optimized code generation for CNNs. Although the space of possible

configurations is extremely large, we devise an effective analytical

modeling approach to search in this space. The structure of data

movement cost expressions is exploited to achieve dramatic space

pruning. Constrained non-linear optimization problems are used

to find multi-level tile sizes that minimize bandwidth-scaled data

volume at the most constraining level in the memory hierarchy.

Experimental results demonstrate that achieved performance is

superior to code generated by TVM and can be comparable to or

better than Intel’s oneDNN. Further improvements are possible

by incorporating better microkernels and by using empirical auto-

tuning. The methodology for full design-space exploration and

tile-size optimization can also be used to enhance the performance

of libraries such as oneDNN, optimizing code generators such as

TVM, and polyhedral compilers.
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A ARTIFACT APPENDIX

A.1 Abstract

This artifact describes the steps to reproduce the results presented

in this work.

A.2 Artifact Check-list (Meta-information)
• Program: Mopt, TVM, OneDNN

• Compilation: Intel C++ compiler, LLVM-10, LLVM-8, Python3.8

(scripts are provided)

• Benchmark: conv2d operators in ResNet, MobileNet, and Yolo (bech-

marking scripts are provided)

• Run-time environment: Linux Ubuntu 18.04 LTS, Miniconda

• Hardware: Intel i7-9700k and Intel i9-10980xe CPU

• Execution: Execution scripts are provided

• Metrics: Execution time/GFLOPS and data movement

• Output: Log file with GFLOPS/data movement

• How much disk space required (approximately)?: 100GB

• How much time is needed to prepare workflow (approxi-

mately)?: One hour (based on the dependencies)

• How much time is needed to complete experiments (approxi-

mately)?: 96 hours

• Publicly available?: Yes

• Code licenses (if publicly available)?: Custom (provided with arti-

fact)

• Archived (provide DOI)?: 10.5281/zenodo.4322031

A.3 Description

A.3.1 How to Access. All the source code, benchmarks,

and scripts associated with this work are available under

https://doi.org/10.5281/zenodo.4322031. A copy of the software is

also maintained at https://github.com/HPCRL/ASPLOS_artifact.

A.3.2 Hardware Dependencies. Experiments requires the following

CPUs: Intel i7-9700k and Intel i9-10980xe

A.3.3 Software Dependencies.

• Python 3.8 (miniconda) wilth amplpy, sympy, joblib modules

• Intel C++ Compiler 2019

• AMPL Ver. 20181102

• IPOPT 3.12

• GCC 7.5

• LLVM version 10.0 (for experiment on avx512 only)

• LLVM version 8.0 (for tvm only)

• Likwid (for hardware counter measurements on i7-9700K)

A.3.4 Benchmarks. we use conv2d operators in ResNet-18, Mo-

bileNet, and Yolo9000 as the benchmarks.

A.4 Installation

We recommend installing Miniconda and using a virtual en-

vironment for the experiment. Use pip to install the follow-

ing modules: amplpy, sympy, joblib. Install AMPL binary and

IPOPT binary (links below). Install CMake, Intel C++ com-

piler and LLVM compiler following the official instructions.

Mopt’s micro-kernel generator can be compiled using cmake (see

README.md for additional instructions). Compile TVM v0.6 com-

mit 008aa838139bcd8e66c680f14a944f7af274a33d using LLVM-8 by

following the official instructions (see README.md for additional

instructions).

Detailed installation instructions can be found in the README.md

file. Important links are listed as follows:

• miniconda: https://docs.conda.io/en/latest/ miniconda.html

• AMPL: https://ampl.com/try-ampl/download-a-free-demo/

• IPOPT: https://ampl.com/products/solvers/all-solvers-for-

ampl

• Cmake: https://cmake.org/documentation/;

• Intel C++ Compiler: https://software.intel.com/content/www/

us/en/develop/tools/oneapi/components/dpc-compiler.html;

• LLVM https://llvm.org/docs/UserGuides.html;
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A.5 Evaluation and Expected Results

We run each conv2d operator 50 times with cache flush for MOpt,

OneDNN, and TVM. All the input and output tensors are stored in

the ‘NCHW’ layout, and the kernel tensor is stored in the ‘KCRS’

layout. Transposing time, if any, is also included in the measured

time. We run each benchmark 50 times and report the average

GFLOPs. After disabling hyper-threads and fixing the frequency

to the processor’s base frequency, we expect to see stable GFLOPs

among the 50 times runs. The average GFLOPs should be similar to

the reported values in the main paper.
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