
PHYSICAL REVIEW B 103, 134423 (2021)

Lifetimes of local excitations in disordered dipolar quantum systems
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When a strongly disordered system of interacting quantum dipoles is locally excited, the excitation relaxes
on some (potentially very long) timescale. We analyze this relaxation process, both for electron glasses with
strong Coulomb interactions—in which particle-hole dipoles are emergent excitations—and for systems (e.g.,
quantum magnets or ultracold dipolar molecules) made up of microscopic dipoles. We consider both energy
relaxation rates (T1 times) and dephasing rates (T2 times), and their dependence on frequency, temperature, and
polarization. Systems in both two and three dimensions are considered, along with the dimensional crossover in
quasi-two-dimensional geometries. A rich set of scaling laws is found.
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I. INTRODUCTION

The dynamical behavior of well isolated and strongly dis-
ordered quantum many-body systems has been arousing great
interest, from both the condensed matter and quantum in-
formation communities. Under certain circumstances, such
systems can display the phenomenon of “many-body local-
ization” (MBL) [1–4] (for reviews, see [5–7]), whereby they
preserve a memory of their initial conditions forever in local
observables, hence serving as good quantum memories. The
existing theory of MBL describes systems with interactions
that are short range in real space, whereas physical systems
frequently contain long range interactions—e.g., Coulomb or
dipolar interactions. For interactions that fall off as a power
law with distance, it has been argued that MBL is always
ultimately destabilized by nonperturbative processes due to
rare regions [8,9]. However, such putative nonperturbative
effects only manifest on timescales that diverge faster than a
power law of the disorder strength [10], and which as such are
not relevant for most experiments in the strongly disordered
regime (but see Ref. [11]). We will not consider such nonper-
turbative effects in this paper. However, for sufficiently slowly
decaying power laws, there is also a perturbative instability of
the MBL phase [12–17] (although see [18] for exceptions),
which is expected to manifest on experimentally relevant
timescales. Even when the MBL phase is perturbatively un-
stable on the longest timescales, however, the framework
of “nearly MBL” systems offers a useful perspective on
the dynamics of well-isolated but strongly disordered long-
range interacting systems—which remains an important open
problem.

Dipolar systems present a particularly interesting sub-
class of long-range interacting systems. Strongly disordered
systems of interacting dipoles arise microscopically in mul-
tiple experimentally relevant contexts, including: (i) dipolar
molecules in optical lattices [19]; (ii) dense ensembles of
nitrogen-vacancy centers in diamond [20–22]; (iii) dipolar

quantum magnets, such as lithium holmium fluoride [23];
and (iv) systems of nuclear spins [24]. In addition, emergent
dipolar excitations dominate the low-energy physics of the
electron glass [25]. Dipoles at nonzero temperature in two
and three dimensions are known to exhibit a perturbative
instability to MBL [13,14]. At the same time, the presence of a
long-range (and highly anisotropic) interaction makes dipolar
systems challenging for exact theoretical analysis, particularly
in an out-of-equilibrium setting. However, in the limit of
strong disorder, the dipoles that contribute to slow dynamics
and relaxation interact via sparse, long-range resonances; in
this limit, therefore, one can construct controlled theories of
response and dynamics.

The excitations of a system of interacting dipoles are
in general complicated delocalized modes. However, in the
strongly disordered regime, the dynamics of each dipolar
excitation can be separated into “fast” local precession and
“slow” relaxation through coupling to other dipoles. In this
sense, each dipole can be regarded as a long-lived excitation of
the system, and interactions between dipoles matter because
they cause individual dipoles to dephase and relax. The relax-
ational dynamics of dipolar systems can be usefully described
in terms of the population relaxation time (bit flip time) T1

and the dephasing time T2, which in turn can be directly
measured experimentally by interferometric methods [26–28]
or via “pulsed” experiments such as 2D coherent spectroscopy
[29,30]. This latter experimental technique was recently ap-
plied to study the relaxational dynamics of the emergent
dipolar excitations in phosphorous doped silicon [31], where
the frequency, temperature, and doping dependence of the T1

and T2 times was experimentally measured and explained in
terms of a dipolar hopping model. Reference [31] operated
entirely with a three dimensional system, at effectively zero
temperature (i.e., temperatures lower than experimental probe
frequency).

In this paper, we analyze the relaxational dynamics of
dipolar systems across a wide range of settings. In particular,
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TABLE I. Summary of main results for scaling of relaxation rates
in three and two dimensions with frequency at zero temperature, and
with temperature. For the density of states exponent γ , see Table II.

Scale d T = 0 T > 0

T −1
1,2 3

ω (γ = 1)
e−c/|ω|γ−1

(γ > 1)
T γ

T −1
1 2 0

T 4γ (typical)
T 3γ (resonant)

T −1
2 2 0 T 3γ

(T ∗
2 )−1 2 0 T 3γ /2

we determine the frequency, temperature, and polarization
dependence of the T1 and T2 times for systems in two and
three dimensions, as well as the dimensional crossover in
quasi-two-dimensional systems (slab geometries). We find
that relaxation in dipolar systems, especially in two dimen-
sions, is due to subtle collective effects, which nevertheless
give rise to simple scaling laws (Table I).

We emphasize at the outset that frequency-dependent re-
laxation rates are not the same as ac conductivity. The ac
conductivity describes the response of some reference equi-
librium state to a weak time-dependent perturbation; at finite
frequencies, it is nonzero both for metals and Anderson (or
many-body) localized insulators. Even though there is no
relaxational dynamics in insulators, the linear-response ac
conductivity remains nonzero because it is dominated by
sharp absorption resonances. Instead, relaxational dynam-
ics has to do with the lifetimes of certain excited states
that are locally out of equilibrium: i.e., it is the timescale
on which such states, once created, return to equilibrium.
Formally, relaxation rates are a property of multiple-time cor-
relation functions of spatially local operators, such as the local
charge density operator or the local fermion creation operator.
The most basic observable that measures “relaxation” is the
linewidth of a local spectral function; however, this is often
dominated by inhomogeneous broadening [31], so one needs
more delicate spatially local observables [27,28] or pulsed
techniques [31] to identify relaxation. The contrast between
these concepts is particularly clean if one considers a nonin-
teracting Anderson insulator. The ac conductivity is given by
the Mott formula [32] σ (ω) ∼ ω2. However, if one prepares
an initial state where some low-energy localized orbitals are
unoccupied and some higher-energy localized orbitals are oc-
cupied, then this initial state is nevertheless an eigenstate of
the dynamics, and as such the relaxation rates are zero, i.e.,
the state lives forever. Relaxation rates are, however, related
to the zero-frequency limit of the conductivity, as well as the
field-dependence of nonlinear response [33,34]. Our goal in
this paper is to determine relaxation rates in dipolar systems.

This paper is structured as follows. In Sec. II we char-
acterize the various regimes of the electron glass and of
microscopic dipolar ensembles via a density-of-states expo-
nent γ . (This section contains no new results.) In the rest of
the paper we present a unified theory of dipolar relaxation;
the origin of the dipoles enters our analysis purely through
the exponent γ . We address, in turn, three-dimensional sys-
tems (Sec. III), two-dimensional systems (Sec. IV), and

TABLE II. Density of states of low-energy dipolar excitations in
the systems considered here. Here V = e2/κ .

System Regime γ

Electron glass Mott
(

V
ξ | ln ω| < ω

)
2

Shklovskii-Efros
(

V
ξ | ln ω| > ω

)
1

Dipolar spins No continuous SSB 5

slab geometries (Sec. V); in each case we discuss both
zero-temperature and finite-temperature behavior. Finally, we
generalize our results to the case where polarization rather
than temperature sets the entropy of the ensemble (Sec. VI).
Throughout, we assume we are dealing with an isolated sys-
tem, decoupled from phonons or any external environment.
(For a discussion of imperfectly isolated near localized sys-
tems, see, e.g., [35].)

II. DENSITY OF STATES OF DIPOLES

As we discussed in the introduction, dipolar systems arise
in many physical settings. Excitation lifetimes in all of these
systems are set by very similar mechanisms, but the resulting
rates are sensitive to the density of states of low-frequency
dipolar excitations. In all the cases of interest, ρ(ω) ∼ ωγ−1

(up to logarithmic corrections). Therefore, at low tempera-
tures, the fraction of dipoles that are thermally active scales as
T γ . In this section we discuss the values of γ in various cases;
in subsequent sections we will present unified expressions for
rates (that apply to all the dipolar systems of interest) in terms
of this exponent γ . Our results in this section are not new, but
are presented for completeness.

A. Electron glass

The low-energy excitations of the electron glass involve
an electron moving from a low-energy localized orbital
to a nearby higher-energy localized orbital. This localized
particle-hole excitation can be thought of as an emergent
electric dipole.

The reduction to dipoles is standard (see, e.g., the supple-
ment to [31]) but for completeness we outline the main steps
here. To fix units, consider a general microscopic Hamiltonian
describing spinful electrons subject to Coulomb interactions
and a random potential:

H =
∑
iσ

εini +
∑
〈i j〉,σ

ti jc
†
iσ c jσ +

∑
i �= j,σ

e2

κ|ri − r j |niσn jσ . (1)

The on-site energies Ei are drawn from some distribution of
width W , and the hopping terms from some distribution with
characteristic scale t . The third energy scale in the problem is
set by the Coulomb potential; e is the electronic charge and
κ the dielectric constant. In what follows we will essentially
ignore the spin degree of freedom, which was argued to be
unimportant for THz experiments in [31]. Our focus is on
relaxation of the electric dipoles. For a discussion of the spin
sector, see, e.g., [36].

In the electron glass, the randomness comes microscopi-
cally from the positions ri. Thus, ti j = t0e−|ri−r j |/r0 , i.e., the
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wave function overlap between two orbitals. Since this is
exponentially decaying we truncate it at the nearest-neighbor
scale. Similarly, the on-site potential at each site comes from
treating Coulomb interactions at the Hartree level. Since the
hopping is exponentially sensitive to the intersite spacing,
while the Coulomb interaction falls off as a power law, one can
increase the ratio of hopping to interactions by increasing the
density of carriers. At some critical density, the single-particle
states delocalize and the system undergoes a metal-insulator
transition. Our analysis is confined to the insulating side of
this transition. We have introduced the problem schematically,
as the details do not affect the scaling behavior that is of
primary interest here.

We first consider the single-particle problem, with in-
teraction effects included (e.g.,) at the Hartree-Fock level.
Single-particle eigenstates are localized with a localization
length ξ . In three dimensions this in turn requires t < W .
The Fermi-surface density of states per unit volume is taken
to be g. We will only consider temperatures and frequencies
ω,T � δξ , where δξ is the typical level spacing within a
localization volume, which serves as a high-energy cutoff for
our theory. At strong disorder, δξ ∼ g−1. At weak disorder,
δξ ∼ g−1ξ−3.

At these low frequencies, there are no excitations in a typ-
ical window of the sample, i.e., it looks locally “gapped.” The
excitations that do exist in this frequency window are those
involving charge transfer over a scale that is large compared
with ξ . Such large-scale rearrangements can be arbitrarily
low energy; however, a local operator has vanishing matrix
elements between spatially separated states. The physically
relevant low-energy excitations—i.e., those that can be ex-
cited by local probes—instead involve atypical orbitals that
are centered around pairs of sites i and j that are much farther
than ξ apart, but energetically “resonant,” in the sense that
εi ≈ ε j . The single-particle eigenstates on a resonant pair are
(approximately) symmetric and antisymmetric linear combi-
nations of orbitals centered at i and j. When one of these
eigenstates is occupied and the other is empty, the resonant
pair is a two-level system with a dipole moment set by its
radius r = |ri − r j |. A well-known result due to Mott is that
resonant pairs, or dipoles, with a transition frequency ω have
a typical size rω ∼ ξ ln(t/ω). The effective Hamiltonian for
these emergent “active” dipoles takes the form

Hpair =
∑

α

Eατ z
α +

∑
α �=β

c′e2pα pβ

κr3
αβ

(τ+
α τ−

β + H.c.), (2)

where c′ is an prefactor of order unity that is not important
for the argument, the τ operators are Pauli operators act-
ing on the emergent dipoles, α labels emergent dipoles, and
pα ∼ ξ ln(t/Eα ) is the size of emergent dipole α.

It remains to establish the density of states of these active
dipoles. There are three low-frequency regimes:

Mott regime: When the transition frequency ω is relatively
large, i.e., ω � e2/(κrω ), interactions do not affect the occu-
pation numbers of the relevant single-particle eigenstates. For
a resonant pair to be active, the lower eigenstate of the pair
must be within ω of the Fermi energy. The density of states of
resonant pairs at frequency ω then scales as ωg2ξrd−1

ω , using
the same notations as [37].

Shklovskii-Efros regime: When ω � e2/(κrω ), interac-
tions qualitatively rearrange the ground state through a
mechanism similar to Coulomb blockade. As long as either
site forming a resonant pair has a single-particle energy within
e2/(κrω ) of the Fermi energy, the doubly occupied state is en-
ergetically unfavorable, so the pair of sites is singly occupied
in the ground state. Therefore, the phase space for the TLS
goes as (e2/κ )g2ξ |rω|d−2, which is essentially constant at low
frequencies [37].

Coulomb-gap regime: This is similar to the Shklovski-
Efros regime in that we only require that either site has single
particle energy within e2/(κrω ) of the Fermi surface. The
difference is that the density of states starts to get recon-
structed by the Coulomb gap. We only need results from
this regime in d = 3, and our discussion of this regime will
thus be restricted to systems in three space dimensions. As
discussed in [37], this regime onsets at exponentially low
frequencies ω < ωcg = t exp(− e2

κξ

), where 
 ∼ e3g1/2/κ3/2

is the Coulomb gap. In this regime there are logarithmic cor-
rections to the dipolar density of states, which now becomes
(e2/κ )gr4

cgξ |rω|d−6, where rcg = ξ ln(t/ωcg) = e2/(κ
).
In addition to these “low-frequency” regimes where

localized dipolar excitations are well-defined, there is a high-
frequency regime where the eigenstates of (2) are delocalized
and local dipolar excitations relax rapidly. We will not con-
sider this high-frequency regime.

To summarize, in the electron glass we generically have
γ = 1 at the lowest frequencies (with logarithmic correc-
tions), but there is potentially also an intermediate-frequency
“Mott” regime for which γ = 2.

B. Microscopic dipoles

We now turn to systems consisting of microscopic dipoles,
such as quantum magnets with strong dipolar interactions
[38], lattices of ultracold dipolar molecules, and dense en-
sembles of nitrogen-vacancy centers in diamond. The T = 0
behavior of excitations in such random spin systems can be
classified according to whether they break a continuous sym-
metry or not [39]; in either case, the excitations are generically
bosonic in character, and can be thought of as spin waves in a
random medium.

If the ground state spontaneously breaks a continuous sym-
metry, the low-energy excitations are Goldstone modes. At
nonzero frequency the Goldstone modes would be localiz-
able, in the noninteracting limit. However, it is known that
even short-range interactions cause delocalization, since the
nearly delocalized Goldstone modes can act as a bath [40].
Thus, there are no well-defined localized excitations at low
frequency in this case, even before we incorporate the long-
range dipolar interactions, and so we will not consider the
Goldstone-mode case any further in this this paper. In the case
where the ground state does not spontaneously break a contin-
uous symmetry, there are no Goldstone modes, and all single
particle localization lengths are bounded at strong disorder.
Short-range interactions then do not perturbatively destabilize
localization [4], and one can reasonably expect relaxation to
be dominated by the long-range tail of the interaction, which is
the focus of this paper. In this case it universally follows [39]
from stability of the ground state that the low-energy density
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of states for non-Goldstone bosonic excitations in random
media must scale as ρ(ω) ∼ ω4. Thus for generic systems
of microscopic dipoles that do not spontaneously break a
continuous symmetry, we have γ = 5.

III. RELAXATION IN THREE DIMENSIONS

In the rest of this paper we will take the dipolar density-of-
states exponent γ as an input, and construct a general theory
of dipolar relaxation. In three dimensions, the long-range tail
of the dipolar interaction guarantees that all excitations will
eventually delocalize [41], but the timescales diverge at low
frequencies and temperatures.

A. Zero-temperature relaxation

We first consider zero-temperature relaxation. (More gen-
erally this section concerns relaxation of excitations above
zero-entropy states, which could also, e.g., be fully polar-
ized states that are far from the ground state.) This occurs
through the long-range hopping of a single dipolar excitation
of frequency ω. Within perturbation theory in the dipolar
interaction, an excitation can only hop to another of similar
frequency—for example, an excitation of frequency ω can
only hop to other states in the frequency window (0, 2ω),
which occur with density ∼ωγ . The distance between neigh-
boring dipolar excitations therefore scales as ω−γ /3, and the
interaction between them scales as ωγ . If γ = 1, the typical
interaction between excitations at frequency ω scales the same
way as the typical detuning (this case is therefore “marginal”
[31]). If γ > 1, on the other hand, neighboring low-frequency
excitations are detuned by much more than the interaction
between them. The dynamics in these two cases is therefore
very different, and we consider them in turn.

If γ > 1, one can estimate the characteristic lifetime as fol-
lows. Starting from a typical spin, the number of resonances
within a radius R scales as lnR [41]. The criterion for finding
a resonance is that the number of partners times the matrix el-
ement should equal the typical detuning, i.e., for a low-energy
density of states ν0ω

γ−1 we require that ν0ω
γ lnR ∼ ω, which

gives

lnR ∼ ω1−γ ⇒ �ω = J exp
(− cν−1

0 |ω|1−γ
)
, (3)

where c is a numerical prefactor, and J sets the scale for
the dipole-dipole interaction, see Eq. (6). Thus the excitation
lifetimes diverge with an essential singularity at low frequen-
cies. Note that these are typical relaxation rates—a spatial
average over all relaxations will likely be dominated by rare
configurations where resonant partners are located nearby, and
will be larger.

If γ = 1, on the other hand, the detuning and matrix ele-
ment scale the same way with distance. Thus a dipole at low
frequency ω finds a resonant partner at a distance of order
ω−1/3, i.e., it only depends on ω through the overall density
of the resonant network. Thus an excitation decays at a rate
� ∼ ω, a scaling that was described as the “marginal Fermi
glass” [31]. In this marginal case, logarithmic corrections can
play an important part at low frequencies, as we will now
discuss.

In the specific case of the electron glass at low temperature,
there are logarithmic corrections to the density of states for
dipoles as well as the dipole moments (and thus the interaction
between dipoles), as discussed in the previous section. For
a dipole density of states ν, the typical hop will be over a
lengthscale (νω)−1/3. The relaxation proceeds via coherent
hopping, and is equal to the interaction matrix element on this
lengthscale. For the Shklovski-Efros regime we find

�(ω) = e4

κ2
g2ξ 4ω ln3(t/ω). (4)

At exponentially low frequencies ω < t exp(− e2

κξ

) the

Coulomb gap 
 comes into play, and the relaxation rate
changes to

�(ω) = ω

ln(t/ω)
. (5)

Note that Eq. (5) implies that at very low frequencies,
individual particle-hole excitations are sharply well-defined
such that the “marginal Fermi glass” phenomenology should
persist down to zero frequency.

B. Finite-temperature relaxation

Thus far we have been discussing relaxation by direct
dipole hopping (Levitov mechanism). At finite temperature,
interactions between dipoles are a crucial additional chan-
nel for relaxation. The effective Hamiltonian for interacting
dipoles takes the form [14]

Hpair =
∑

α

Eατ z
α +

∑
α �=β

J

r3
αβ

(
τ+
α τ−

β + H.c. + λτ z
ατ z

β

)
, (6)

which is the same up to relabellings as Eq. (2) except for a ZZ
interaction (which can be ignored at zero temperature, when
there is only a single excited dipole).

At finite temperature, 3D dipolar systems host a bath of
delocalized thermal excitations, as identified by Burin [13].
We present this argument for general dimensions d , then
specialize to d = 3. This discussion of the Burin mechanism
follows [14].

In general, the density of resonant dipolar excitations of
size R in a d-dimensional sample with dipolar interactions
is ρ J

W Rd−3, where ρ is the density of spins. At temper-
ature T , the density of thermally excited dipoles scales
as ν0T γ ρJ

W Rd−3. Since all of these excitations have similar
detunings, they hybridize if they overlap. If we pick one
resonance, the number of thermally excited overlapping exci-
tations scales as ν0

ρJ
W T γR2d−3. There is an associated thermal

length R(T ) ∼ (W/(ν0ρJT γ ))
1/(2d−3)

at which thermally ex-
cited resonances form a percolating hopping network with
characteristic timescale τBurin such that

1

τBurin
∼ Jλ

R(T )3
= Jλ

(
ν0ρJT γ

W

)3/(2d−3)

. (7)

Specializing to three dimensions, we find that the characteris-
tic timescale of the Burin resonances is simply W

ν0ρJ2λ
T−γ .

In three dimensions, the density of the percolating network
(as computed above) coincides with that of thermally acti-
vated spins. Thus, for scaling purposes, one can regard all
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thermally active spins as being on the resonant network. (We
will see below that the situation in two dimensions is drasti-
cally different.) We now consider the relaxation of an inserted
excitation at frequency ω. To relax, this excitation must find
a partner that is within T γ of it in energy. The nearest such
excitation is at R ∼ T−γ /3. A golden- rule calculation yields
the result that � ∼ T γ from this mechanism.

To understand the low-temperature limit, one should also
address how the thermal bath interferes with coherent zero-
temperature hopping. Experimentally [31], going to finite
temperature seems to suppress coherent hopping, as one might
expect [42]. Thus excitation lifetimes are nonmonotonic. Al-
though this suppression can be quantitatively significant, it is
not expected to be parametric and we will not address it here.
At our level of analysis, the excitation hops to the nearest zero-
temperature or bath-induced resonance, whichever is closer.
So we conclude that

� ∼
{

min
[
Aω,

ν0ρJ2λ

W T
]

γ = 1,

min
[
J exp

( − cν−1
0 /|ω|γ−1

)
,

ν0ρJ2λ

W T γ
]

γ > 1,

(8)
where A can include logarithmic corrections, as discussed
in the previous subsection. Thus in the low-temperature
Shklovskii-Efros regime of the electron glass, the effects of
finite temperature are relatively obvious (viz., we just replace
frequency by temperature), but away from this regime low
temperatures can dramatically enhance the energy relaxation
rate.

We now comment briefly on dephasing times. In the
three-dimensional case, the interaction of a typical degree of
freedom with the nearest thermal excitation scales as T γ . The
fluctuations of thermal excitations cause dephasing, so in the
present case dephasing scales parametrically the same way as
energy relaxation, so that T2 � T1. (At zero temperature there
is no separate dephasing channel, so T2 saturates the bound
T2 � 2T1.)

IV. RELAXATION IN TWO DIMENSIONS

The dipolar interaction in two dimensions falls off suffi-
ciently fast that single-particle excitations can be localized. In
the orthogonal symmetry class (relevant for most systems of
dipoles), localization occurs even for weak disorder. For the
strongly disordered systems we are considering here, single
dipolar excitations can be taken to be tightly localized, so
that interactions between thermally excited dipoles are crucial
in determining excitation lifetimes. Since zero-temperature
relaxation is absent, we turn directly to the case of finite
temperatures.

In two dimensions, the Burin mechanism outlined above
(7) leads to the conclusion that the spacing of the percolating
cluster R(T ) ∼ 1/T γ , so that the characteristic timescale (7)
of the “bath” formed by the percolating network is

τ 2D
Burin ∼ T−3γ . (9)

Note a crucial difference from the three-dimensional case:
While the density of thermal spins scales as T γ , the spins on
the percolating network are parametrically sparser, with their
density scaling as T 2γ . It is therefore important to distinguish
between three types of excitations: (i) the inserted excitation

at frequency ω whose lifetime we are considering; (ii) generic
thermal excitations, which are not part of the percolating net-
work; and (iii) excitations on the percolating network. While
excitations on the percolating network have a lifetime ∼T−3γ ,
“off-network” excitations relax much more slowly, as we will
now discuss.

One can make a naive estimate of the lifetimes of off-
resonant spins along the following lines. The interaction
between a typical spin and the nearest network spin scales as
T 3γ , and so does the maximum energy exchange allowed by
the bandwidth of the network. To find an allowed transition,
the typical spin must find a partner detuned from it by ∼T 3γ .
The nearest such partner is at distance R ∼ T−3γ /2, giving
the dipolar matrix element T 9γ /2 and the Fermi’s golden rule
rate � ∼ T 6γ . While this is certainly a lower bound on the
relaxation rate, we argue that relaxation in fact occurs much
faster, because the estimate above neglects spectral diffusion.

Spectral diffusion [16,43,44] is a phenomenon by which
the frequency of a spectral transition shifts over time because
the relevant degree of freedom is interacting with other, slowly
fluctuating, degrees of freedom. In the system we are consid-
ering, thermally active spins are present at density T γ , and
interact with each other via static shifts of typical size T 3γ /2.
Thus, a spectral line averaged over a very long time would
have an apparent linewidth of T 3γ /2. This apparent broaden-
ing, conventionally denoted 1/T ∗

2 , can in principle be undone
using spin echo. It is therefore not a true decay timescale:
the true decay timescales are 1/T2 (the timescale on which
the spectral line shifts its frequency) and 1/T1 (the timescale
on which the excitation actually decays). When T2 � T ∗

2 , the
apparent width of the spectral line interpolates from 1/T2 (for
short averaging times) to 1/T ∗

2 (for long averaging times).
We estimate T1 in this case using two distinct approaches,

which agree on the final answer. First, we note that the level
spacing at the Burin scale R ∼ 1/T γ goes as 1/R2 ∼ T 2γ ;
meanwhile, the broadening of each level due to spectral dif-
fusion scales as T 3γ /2, which is parametrically larger than the
level spacing. Therefore, spectral diffusion randomly brings
each individual dipole into and out of resonance. Assuming
spectral diffusion is effective, each level is part of the “net-
work” about T γ of the time. It relaxes at the rate T 3γ while it
is on resonance, thus giving a total relaxation rate T 4γ .

We can also arrive at this result using a more direct self-
consistent approach, as follows. We are concerned with the
problem of a two-level system (consisting of the “source”
and “destination” sites of the dipolar hopping pair of interest)
coupled to a bath of thermal fluctuators (i.e., thermally active
spins). The reduced Hamiltonian for this two-level system
is of the form H = h(t )σ z + 
σ x, where h(t ) is the time-
dependent field due to thermal fluctuators. These fluctuators
come in two flavors: (i) “network” spins that fluctuate on a
timescale T 3γ and shift the energy of the level by a corre-
sponding amount T 3γ and (ii) “off-network spins” that shift
the energy by a much larger amount T 3γ /2 but also fluctu-
ate much more slowly at some as-yet-unspecified rate 1/T2

(which could potentially be as slow as T 6γ , from the naive
estimate above).

We will treat h(t ) as a fluctuating classical field, akin
to telegraph noise, with two characteristic frequency scales:
1/T ∗

2 ∼ T 3γ /2, the amplitude of fluctuations, and 1/T2, the
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rate at which fluctuations happen. We will anticipate that
type-(ii) fluctuators are dominant, so 1/T2 is not known a
priori but will have to be determined self-consistently be-
low. [If type-(i) fluctuators were dominant we would simply
have T2 ≈ T1 ≈ T−6γ ; the question we are addressing now
is whether the rate could be parametrically faster.] A general
form for the noise autocorrelation function is thus

〈h(t )h(0)〉 ∼ 1

(T ∗
2 )2

f (|t |/T2), (10)

for some function f (x) that is smooth at x = 0 and decays
when x � 1.

For a given autocorrelation function of h(t ) the two-level
system has a relaxation rate 1/T1. However, the power spec-
trum itself is implicitly a function of 1/T1 [which is the rate
at which the type-(ii) thermal fluctuators flip], while the off-
diagonal matrix element 
 is implicitly a function of the
power spectrum (since the bandwidth of the noise governs
how far in space the nearest accessible partner is).

Since the decay rate and spectral lineshape depend nontriv-
ially on each other, we solve for both of them self-consistently,
as we explain below. In principle, one can do this explicitly for
the two-level system specified above, following Refs. [45,46].
To simplify our analysis, we assume that the noise spectral
function can be characterized by a time-dependent apparent
bandwidth �(t ) that interpolates between 1/T2 and 1/T ∗

2 by
“filling in” a new spectral strip of width 1/T2 at a rate 1/T2.
Thus

�(t ) =
⎧⎨
⎩

1/T2 t � T2

t/T 2
2 T2 � t � T 2

2 /T ∗
2

1/T ∗
2 t � T 2

2 /T ∗
2 .

(11)

To set up the rest of the self-consistency loop we first
estimate T1 as a function of �(t ), which (for consistency) must
itself be evaluated over the timescale T1 on which a decay
process happens. We estimate T1 using the golden rule: to
find a spin at detuning � one must go a distance such that
R2 ∼ 1/�, so the matrix element is �3/2 and therefore, using
the golden rule,

1/T1 ∼ �(T1)2. (12)

Finally we need to evaluate T2. We make this estimate self-
consistently following Ref. [26]. At some distance R from
the central spin, there are T γR2 other thermally excited spins,
each flipping at the rate 1/T1, and T 2γR2 spins on the Burin
network flipping at the rate T 3γ . The dipolar coupling at
distance R is V/R3. We fix R self-consistently so that V/R3 =
(1/T1)T γR2 + T 3γT 2γR2: once we have included the effects
of thermal fluctuations to this distance, the line has broadened
by enough that it is no longer able to resolve more distant
fluctuations. This yields the ultimate expression

1/T2 ∼ (T γ /T1 + T 5γ )3/5. (13)

The set of equations (11)–(13) completes the specification of
the problem. These equations must be solved self consistently.
One can check that they have the self-consistent scaling
solution:

1/T1 ∼ T 4γ , 1/T2 ∼ T 3γ . (14)

This seems to be the only self-consistent solution: if we
suppose �(T1) ∼ 1/T2 then the resulting decay rate is too
slow for Eq. (11) to be consistent, whereas if we assume
�(T1) ∼ 1/T ∗

2 the decay rate is too fast.
An interesting aspect of these results is that the effect

of the Burin network spins on the decay of typical spins
is marginal, scaling the same way in Eq. (13) as the self-
generated contribution to T2. Thus the 2D system is on the
cusp of being a self-sustaining metallic state through spectral
diffusion. (However, absent the Burin network there would
also be a self-consistent solution with all decay rates equal
to zero, which the present problem cannot have.)

V. DIMENSIONAL CROSSOVERS

We now turn to the crossover between the 2D and 3D
behaviors discussed above, in a slab that has finite thickness
� in the z direction, but infinite in the x-y plane. (This can
be achieved either by making a finite-width sample or by
imposing a strong magnetic or electric-field gradient along
one direction (say the z axis) of a three-dimensional sample,
thus detuning dipoles at different z. In the latter setup the
physics discussed in [47,48] would also come into play.)

A. Slabs at zero temperature

At asymptotically low frequencies, a slab behaves as a
two-dimensional system; in particular, in the orthogonal class,
all dipolar excitations are weakly localized. However, at weak
disorder, the localization length diverges exponentially in the
slab width �. Thus there is a qualitative distinction between
two regimes of dipolar hopping: a regime in which each
dipole finds a resonant partner using the long-range three-
dimensional dipolar interaction before the crossover set by �,
and which acts effectively like a metal; and a regime in which
� is shorter than the resonance scale Rc ∼ exp(c/|ω|γ−1)
[generic case] or Rc ∼ 1/ω1/3 [marginal case], so that exci-
tations remain tightly localized at zero temperature. (In the
electron glass these crossovers all happen when the pair radius
rω � �.)

The resonance scale Rc increases monotonically as ω de-
creases; therefore, a slab of thickness � has a frequency ω∗(�)
below which dipoles become manifestly sharp. For the elec-
tron glass, at large � this crossover always happens in the
Shklovskii-Efros regime, with ω∗ ∼ �−3 whereas at small �

the crossover can happen in the Mott regime, with ω∗ ∼
1/ ln(�). We emphasize that the change in apparent dimen-
sion is a crossover rather than a true localization transition,
since technically the dipoles are always localized; however,
in two dimensions the localization length in the weakly lo-
calized regime is very large and systems in this regime can
be regarded as effectively metallic. We expect the crossover
from weak to strong localization to happen as follows: In the
weakly localized regime, the lineshape of a dipolar excitation
consists of a large number of very finely spaced lines that
cannot be resolved in practice. As the localization length
decreases, the lines become less finely spaced and therefore
resolvable. Finally, in the strongly localized limit, there is
essentially just one central line left with appreciable weight.
In contrast, for dipolar systems in the symplectic class, there
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is the possibility of a true transition, with localized behavior
at small � (effectively, stronger disorder) giving way to delo-
calized behavior at larger � (effectively, weaker disorder).

B. Slabs at finite temperature

At finite temperature, as we have discussed, Burin res-
onances and spectral diffusion play an important role in
relaxation. Recall that the line broadening from spectral
diffusion comes mainly from the nearest thermally ac-
tive fluctuator. Whether we use the two-dimensional or the
three-dimensional formula for spectral diffusion depends on
whether the distance to the nearest fluctuator is more or less
than �. Thus, the dimensional crossover for spectral diffusion
happens when the density of thermal excitations nex ≈ 1/�3.
In contrast the “Burin crossover” happens at nex ≈ W/(Jn�3),
which is a larger value of nex at strong disorder (which we
have assumed). Here W is the disorder scale, J the hopping
scale, and n the density of dipoles on the lattice. Thus, we
enter the “two dimensional” regime for the Burin analysis at
a higher temperature than that at which we enter the “two
dimensional” regime for spectral diffusion.

In this intermediate temperature range, the coupling to the
nearest thermally active neighbor scales as T γ (setting T ∗

2 ),
but the nearest “network” spin is much further, since the per-
colating network density takes its two-dimensional value T 3γ .
The spin-echo lifetime T2 crosses over at a timescale that is
intermediate between these limits. The two-dimensional self-
consistent analysis we developed above can be extended to
this situation, but there are many cases (depending on whether
each scale is three-dimensional or two-dimensional) and we
will not consider these in detail.

VI. CROSSOVERS NEAR MAXIMUM POLARIZATION

In experiments involving cold atoms, nitrogen-vacancy
centers, etc., it is often more natural to tune the polarization
than the temperature [49]. Since the dipolar interaction in
these systems can generically be treated in the secular ap-
proximation, it approximately conserves the total number of
spin-up dipoles. Thus one can regard high-polarization en-
sembles as effectively being at large chemical potential μ. The
analysis above carries over with minor changes to this setup, if
we replace the temperature with the density of minority-state
spins, and set the density-of-states exponent γ = 1.

There is one distinction worth noting: At low temperature,
the thermal excitations are disproportionately in low-energy,
well-localized states, whereas for high polarization they are
in random states. Therefore at large polarization there is
a potential additional relaxation channel due to delocalized
high-energy excitations. This does not, however, matter in the
strongly disordered regime considered here, since all single-
particle states are assumed to be well localized.

VII. DISCUSSION

We have determined the frequency and temperature de-
pendence of relaxation rates for systems of quantum dipoles,
whether microscopic or emergent (as in the electron glass).
At zero temperature, dipoles relax via long-range coherent

hopping, which is possible in three dimensions (where
long-range hopping resonances proliferate) but not in two
dimensions. In three dimensions, therefore, relaxation occurs
at zero temperature. For microscopic dipoles (and the electron
glass in its intermediate-temperature Mott regime), quasipar-
ticle lifetimes grow exponentially as their frequency goes to
zero, so local dipoles are asymptotically sharp excitations. For
the electron glass at sufficiently low temperatures (i.e., in its
Shklovskii-Efros regime), or for dipolar spin ensembles that
are at maximum polarization rather than in their ground state,
the excitation lifetimes are marginal, scaling the same way as
the excitation frequency up to ln corrections.

We emphasize again that relaxation of dipolar excitations
(the process we have focused on) is distinct from dc electri-
cal conductivity, because moving charge across the system
requires uphill transitions, which a zero-temperature envi-
ronment cannot facilitate. The dynamics of realistic electron
glasses at very low frequencies involve subtleties that go
beyond the approximations we made here, and would be
interesting to revisit for a more complete model that in-
cludes spin degrees of freedom, large-scale rearrangements,
etc.

In two dimensions, the situation is quite different: Dipolar
excitations are localized and therefore infinitely sharp at all
frequencies in the zero-temperature limit, and delocalize at
finite temperatures only through subtle interaction effects. We
found that the T1 and T2 times both scale as power laws of tem-
perature, but with distinct exponents. “Diagonal” interaction
effects (governed by the timescale T ∗

2 ∼ T−3γ /2) are paramet-
rically stronger than relaxation effects T1,2 � T−3γ , making
dipoles in two dimensions at low temperatures a promising
platform for exploring dynamical signatures associated with
many-body localization. In quasi-two-dimensional systems
(slab geometries) there is a crossover from three dimensional
behavior at high frequency/temperature to two-dimensional
behavior at low frequency/temperature, with crossover scales
that we have identified. Our results in all of these cases are
collected in Table I.

It would be interesting to go beyond the scaling theory
outlined herein to also calculate (potentially logarithmic) pref-
actors. It would also be interesting to determine the relation
between relaxation times (calculated herein) and transport
coefficients. We have also identified certain regimes where
the “dipolar” approach employed herein breaks down—
understanding the behavior in these regimes is an important
open problem. Finally, thermopower coefficients might also
be interesting to explore. We leave these problems to future
work.

ACKNOWLEDGMENTS

We acknowledge useful conversations with Peter Ar-
mitage, Mikhail Lukin, and Markus Müller. We thank Boris
Shklovski for valuable feedback on the manuscript, as well
as for explaining details of the Coulomb gap regime of the
electron glass. This material is based in part (R.N.) upon work
supported by the Air Force Office of Scientific Research under
Award No. FA9550-20-1-0222. S.G. acknowledges support
from NSF DMR-1653271.

134423-7



RAHUL NANDKISHORE AND SARANG GOPALAKRISHNAN PHYSICAL REVIEW B 103, 134423 (2021)

APPENDIX: MOTT REGIME IN THE 3D
ELECTRON GLASS

We now explore, in some more detail, the Mott regime
in the three-dimensional electron glass at zero temperature.
Let us start by considering the dynamics in the Mott regime
(assuming it exists). In the language of the single-particle
dipolar hopping model (2), we are concerned with the dy-
namics of a dipolar excitation that is initially localized on
resonant pair α (which has frequency Eα = ω). We have pos-
tulated weak interaction, i.e., the disorder is strong enough
that nearest-neighbor hops are off shell. Instead, an exci-
tation at frequency ω can only hybridize with a partner at
similar (or lower) frequency. Excitations in the frequency
window (0, 2ω) occur with density ∼ω2g2ξr2

ω. Thus the spac-
ing between two nearby such excitations scales as ω−2/3,
and the dipolar interaction matrix element between them
scales as ∼ e2

κ
g2ω2ξr4

ω. Generically, however, the detuning
between these excitations is ∼ω (by construction). Asymp-
totically, therefore, excitations at low frequencies in the Mott
regime will be off-shell with their near neighbors, and will be

parametrically longer lived. One can estimate the characteris-
tic excitation lifetime as follows. Starting from a typical spin
the total number of resonances nearer than a distance R scales
as lnR. An excitation at frequency ω finds a resonant partner
when lnR ∼ κ/(e2g2ξr2

ωω). The characteristic interaction en-
ergy at this scale, and therefore the excitation lifetime, also
scale as �ω ∼ V exp(−c̃/|ω|), i.e., the excitation lifetime is
nonperturbative in ω.

Could there be a regime with ω < e2

κ
g2ω2ξr4

ω, such that
typical excitations at ω were resonant, and the relaxation
rate simply followed the typical matrix element between such
excitations (∼ω2)? It is straightforward to see this is not
possible. The condition above can be expressed (dropping
logarithmic factors, which are not large by postulate) as ω >

κ
e2gξ 2

1
gξ 3 , but the first term on the right-hand side is larger

than one (by the weak-interaction postulate), and the second
term is no smaller than δξ , so we conclude that the above
condition is only satisfied for frequencies larger than δξ , but
δξ was the upper cutoff for our theory. We thus conclude that
the scaling �ω ∼ exp(−c̃/|ω|) holds throughout the regime
V/rω < ω < δξ .
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