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Superdiffusive finite-temperature transport has been recently observed in a variety of integrable systems
with non-Abelian global symmetries. Superdiffusion is caused by giant Goldstone-like quasiparticles
stabilized by integrability. Here, we argue that these giant quasiparticles remain long-lived and give
divergent contributions to the low-frequency conductivity σðωÞ, even in systems that are not perfectly
integrable. We find, perturbatively, that σðωÞ ∼ ω−1=3 for translation-invariant static perturbations that
conserve energy and σðωÞ ∼ j logωj for noisy perturbations. The (presumable) crossover to regular
diffusion appears to lie beyond low-order perturbation theory. By contrast, integrability-breaking
perturbations that break the non-Abelian symmetry yield conventional diffusion. Numerical evidence
supports the distinction between these two classes of perturbations.
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Introduction.—Many paradigmatic quantum models in
one dimension are integrable, including the Heisenberg and
Hubbard models; thus, approximate integrability is ubiqui-
tous in one-dimensional quantum materials and strongly
influences their response properties [1]. Although inte-
grable models are in some sense “exactly solvable,” their
finite-temperature and nonequilibrium dynamical proper-
ties have proved difficult to compute exactly. However,
recent years have seen enormous progress in our under-
standing of the dynamics of integrable systems [2,3], due to
the development of improved numerical techniques [4–15],
as well as recent experiments [16–23] and new theoretical
methods such as generalized hydrodynamics [24–50].
Perhaps the most surprising outcome of these developments
has been the discovery that superdiffusive spin transport
[4,11], with the dynamical scaling exponent z ¼ 3

2
and

scaling functions [12] that appear to lie in the Kardar-
Parisi-Zhang (KPZ) universality class [51], is generic in
integrable spin chains that are invariant under a continuous
non-Abelian symmetry [13,52,53]. Superdiffusive spin
transport was also observed in recent inelastic neutron
scattering experiments [23]. Although superdiffusion is not
yet fully understood, it has become clear (from multiple
lines of argument) that the degrees of freedom responsible
for it are “giant quasiparticles” of the integrable model
[41,54–58], corresponding to large solitonic wave packets
made up of Goldstone modes [53,59]. These giant quasi-
particles consist of local rotations of the non-Abelian
vacuum and therefore cost little energy. Because these
systems are integrable, giant quasiparticles are stable even
at finite temperature and therefore nontrivially influence
spin and charge transport.

The fate of superdiffusion when integrability is weakly
broken is a question of great experimental relevance [23].
Away from integrability, neither exact solutions nor infi-
nitely stable quasiparticles exist; the theoretical tools we
have to deal with this regime are still primitive [58,60–66].
A natural framework to address weakly decaying quasi-
particles is the Boltzmann equation [67,68], which relies on
the matrix elements of generic local operators between
eigenstates of the integrable system. These matrix elements
are in general unknown, despite some recent progress
[40,69]; their asymptotic form is known in a few special
limits, such as slowly fluctuating noise [70] or atom losses
[71,72]. In the present Letter, we show that symmetry
considerations constrain the effects of integrability break-
ing and determine the fate of superdiffusion in the limit of
weak integrability breaking. In particular, local perturba-
tions that are invariant under the global non-Abelian
symmetry cannot scatter giant quasiparticles, because these
quasiparticles look locally like the vacuum. For a giant
quasiparticle of size l, the fastest possible decay allowed
by symmetry is l−2; phase-space constraints can suppress
this further. As a consequence, within perturbation theory, it
appears that some form of anomalous diffusion survives:
for symmetry-preserving noise, one has a logarithmically
divergent diffusion constant, whereas for symmetry-pre-
serving Hamiltonian perturbations, the KPZ scaling is
unaffected by the perturbation to leading order. By contrast,
perturbations that break the non-Abelian symmetry can
immediately dismember giant quasiparticles and restore
diffusion. The distinction between these two types of
behavior is clearly visible in our numerical studies of spin
transport.
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Heisenberg spin chain.—Although our analysis will
extend to other isotropic integrable models, we will focus
for concreteness on the perturbed Heisenberg spin chain

H ¼ H0 þ gV; H0 ¼ J
X

n

 Sn ·  Snþ1: ð1Þ

Here,  Sj are spin-12 operators on site j, V is a possibly time-
dependent integrability-breaking perturbation with g small,
and we will set J ¼ 1 in the following. Spin transport in the
integrable limit g ¼ 0 is known to be superdiffusive, while
energy transport is purely ballistic. For simplicity, we will
focus on the high-temperature regime, although our con-
clusions carry over to arbitrary finite temperatures. We will
characterize spin transport by the ac spin conductivity,
which at high temperature is given by the Kubo formula

σðωÞ ¼ β

Z
∞

0

dteiωthJðtÞj0ð0Þiβ; ð2Þ

with the spin current jn ¼ −iðSþn S−nþ1 − H:c:Þ, J ¼ P
n jn,

and with h…iβ referring to equilibrium ensemble average at
temperature β−1.
We first summarize the key ingredients responsible for

spin superdiffusion in the model (1) in the integrable g ¼ 0

limit. Here, the ac conductivity scales as σðωÞ ∼ ω−1=3,
corresponding to a dynamical exponent z ¼ 3=2. This
exponent can be understood by analyzing the quasiparticles
of the Hamiltonian H0. Those excitations are built starting
from a reference ferromagnetic state (“vacuum”) and add-
ing (nontrivially dressed) magnons and bound states
thereof called “strings.” Strings are labeled by a quantum
number s ¼ 1; 2;… (with s ¼ 1 corresponding to single
magnons) and a continuous momentum ks that will play
little role in our analysis. The thermodynamic properties of
these quasiparticles are known exactly from the thermo-
dynamic Bethe ansatz solution of H0: for example, their
density in an equilibrium finite-temperature Gibbs state
scales as ρs ∼ 1=s3. At large s, they have been identified
with macroscopically large solitons made out of interacting
Goldstone modes (slow modulations of the vacuum ori-
entation) above the ferromagnetic vacuum [57,59]. While it
might seem counterintuitive that long-wavelength modes
matter to high-temperature physics, their stability is pro-
tected by integrability. Their properties follow from ferro-
magnetic Goldstone mode physics: a string s has width
(size) s and is made out of Goldstone modes with
momentum ∼s−1; thus they have a small energy density
∼s−2 using the dynamical exponent z ¼ 2 of ferromagnetic
Goldstone modes. The corresponding velocity is vs ∼ 1=s,
so large-s strings move slowly. The energy carried by each
string is suppressed as εs ∼ s−1 (consistent with the
intuition that they are “soft” excitations), so we immedi-
ately see that energy transport in this model is ballistic

(since the quasiparticles have a finite velocity), and is
dominated by small strings.
Superdiffusion in the integrable limit.—We now turn to

spin transport, which is dominated by large strings instead.
We give an argument for spin superdiffusion that is
reformulated from Refs. [41,56] in a way that is physically
more transparent. When propagating in vacuum, s strings
carry a spin ms ¼ s (their number of magnons). In thermal
states, strings are “screened” via nonperturbative dressing
due to interaction effects and effectively become neutral
[73,74]; their dressed, or effective, magnetization vanishes
mdr

s ¼ 0 in any thermal state with no net magnetization.
Specifically, an s string is screened when it encounters an
s0 > s string (just as a magnon is screened when it passes
through a domain wall [41]); such collisions set the
“lifetime” for an s string to transport magnetization. The
density of strings bigger than s is ρs0>s ¼

P
s0>s ρs ∼ 1=s2;

thus, an s string moving at speed vs ∼ 1=s first encounters a
larger string on a timescale τ0s ∼ ð1=ρs0>sÞ=vs ∼ s3. This
characteristic timescale was identified using different
approaches in previous works [41,56,75] and underlies
the physics of superdiffusion. At a given time t, such that
t ≫ τ0s , small strings are screened, namely,mdr

s ¼ 0, and do
not contribute to transport. As a result, as time increases,
spin transport is dominated by strings with larger and larger
s, namely, such that τ0s ∼ s3 ∼ t.
We now apply this logic to the Kubo formula (2). At a

time t inside the integral in (2), strings with s ≤ t1=3 have
been completely screened and carry no net current, whereas
those with s ≥ t1=3 still carry their original current
js ∼ vsms ¼ Oð1Þ, where we used vsms ∼ s−1 × s. As
the screening gives rise to exponential decay of their
contributions to spin current [76], one can write
hJðtÞj0ð0Þi ∼

P
s ρsðmsvsÞ2e−t=τ0s . Plugging into the

Kubo formula,

σðωÞ ∼
Z

∞

0

dteiωt
X

s≥1
s−3e−t=s

3 ∼ ω−1=3: ð3Þ

As expected, the conductivity diverges at low frequency
with an exponent corresponding to z ¼ 3=2. The precise
form of the exponential cutoff (3) is not important and can
be replaced with any integrable function of t=s3. However,
Eq. (3) has an appealing physical interpretation where each
string gives a Lorentzian (diffusive) contribution to the
conductivity of width 1=τ0s ∼ s3.
Quasiparticle lifetimes.—We now consider the effects

of (small) integrability-breaking perturbations g ≠ 0, which
preserve the total z component of the magnetization Sz ¼P

n S
z
n and may preserve the energy, but break all other con-

servation laws. We incorporate integrability-breaking terms
bywriting a Boltzmann equation for the quasiparticles, with a
collision integral—incorporating quasiparticle scattering and
decay—computed perturbatively using Fermi’s golden rule
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[67,68]. This approach is valid in the “Boltzmann regime” at
long times and small g, with tg2 fixed; we will discuss the
roles of higher-order terms in perturbation theory below. At
the level of our analysis, themain effect of the perturbationV
is to give a new, finite lifetime τs, with decay rates Γs ¼ τ−1s
of order Oðg2Þ. Starting from a representative thermal state
jρi, containing all strings with thermal densities ρs, those
decay rates are obtained by summing over all possible
accessible states jni compatible with the residual conserva-
tion laws (energy and/or quasimomentum conservation),
with a rate given by the square of the matrix element
jhnjVjρij2 with the appropriate density of state factors.
The ac spin conductivity is then given by

σðωÞ ∼
Z

∞

0

dteiωt
X

s≥1
s−3e−t=τ

0
s e−tΓs : ð4Þ

As we will see below, different classes of perturbations lead
to very different scalings of the rates Γs with s, with some
perturbations allowing for long-lived giant strings.
Symmetry-breaking noisy perturbations.—We first con-

sider a generic perturbation that breaks the spin-rotation
symmetry. In this case, we expect the matrix element of the
perturbation to be eitherOð1Þ or possibly to increase with s
(since, for example, the charge of an s string is ms ¼ s). If
we further assume that the integrability breaking is due to
temporally fluctuating noise, then the density of available
states is clearly nonvanishing, since an s string can scatter
by changing its momentum. (This might not be the
dominant process, of course.) In this case, Γs ∼ sα

with α > 0 in Eq. (4) leading to a finite dc value
σdc ¼ limω→0 σðωÞ. This is the expected behavior of
integrability breaking, which generically should lead to
diffusive transport for residual conserved charges. Note that
Eq. (4) predicts that the finite-time diffusion constant

DðtÞ ¼ ðβ=χÞ R t
0

P
nhjnðtÞj0ð0Þiβ, with χ the spin suscep-

tibility, approaches its asymptotic value very quickly, with
exponential convergence in time. While anomalous trans-
port is washed out by the integrability-breaking perturba-
tion in this case, remnants of the anomalous exponent
z ¼ 3=2 can be observed in the dependence of the diffusion
constant on the integrability-breaking parameter g. If we
convolve the anomalous integrable scaling ω−1=3 by a
Lorentzian of width Γ ∼ g2, we immediately find

σdc ¼ χD ∼ g−2=3: ð5Þ

To leading order, the small g dependence of the suscep-
tibility can be ignored, and we see that the diffusion
constant scales in a nonanalytic way with g. Similar
nonanalytic dependences of diffusion constants were
reported in Refs. [67,77].
To check these predictions, we consider a noisy pertur-

bation VðtÞ ¼ P
n ηnðtÞSzn, with ηn some classical corre-

lated noise hηnðtÞηn0 ðt0Þi ¼ γδðt − t0Þfðn − n0Þ, and γ ∼ g2

the strength of the noise. Such correlated noise can be
expected to model generic external perturbations at large
scales. We implemented time evolution using a Lindblad
approach and matrix product operators (MPO) [78]. We
considered both uncorrelated [fðnÞ ¼ δn;0] and correlated
[fðnÞ ∼ e−jnj=ξ] noisy perturbations. Our results are con-
sistent with diffusive transport and a diffusion constant
scaling as D ∼ ðγ=ξÞ−1=3, as expected from (5) (Fig. 1) and
with a relaxation time ∼1=γ [78].
Symmetric noisy perturbations.—We now turn to a much

more interesting class of perturbations that preserve the
spin-rotation SU(2) symmetry of H0. Intuitively, the action
of such perturbations on large strings should be suppressed
since those are smooth vacuum rotations. In fact, Goldstone
physics implies that the matrix elements of any SU(2)

FIG. 1. Noisy perturbations. (a) Apparent diffusion constant DðtÞ vs time t, for noise coupling to Szi with spatially uncorrelated
fluctuations. The diffusion constant rapidly saturates to a value plotted in the inset vs noise strength γ ∼ g2. (b) Same as (a), but for noise
with a spatial correlation length ξ. Inset: scaling of the diffusion constant compared to the prediction D ∼ ðγ=ξÞ−1=3. (c) Apparent
logarithmic divergence ofDðtÞ vs t for noise that preserves SU(2) symmetry: both for noise coupling to the energy density (main panel)
and for noise coupling to the energy current density (inset).
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invariant must be suppressed with s at least as energy is, as
εs ∼ 1=s. The matrix element for large strings to decay is
thus suppressed, so we can expect large strings to be long-
lived, leading potentially to anomalous transport.
In order to compute the scaling of the decay rates Γs, we

need to consider the processes involved and the accessible
density of states more carefully. For concreteness, we
first consider the case of noise coupling to energy: VðtÞ ¼P

n ηnðtÞ  Sn ·  Snþ1 with ηn some uncorrelated white noise as
before. As this perturbation breaks both energy and
momentum conservation, the leading processes will be
single particle-hole excitations where a given string s with
momentum ks will scatter into another mode with new
momentum k0s [67,70] (causing rapidity or momentum
diffusion [70]). Strings s can also decay into multiple
smaller strings while preserving Sz. Now the size of the
Brillouin zone for an s string goes as ∼2π=s, as ks ∼ s−1,
but the noise perturbation allows for processes scattering
across different Brillouin zones, therefore the accessible
density of states for a single particle-hole process does not
scale with s [78]. As a result, the decay rates for an s string
is set solely by the matrix element of the perturbation and
scales as its square, namely, Γs ∼ jhksjVjk0sij2 ∼ 1=s2. The
late scaling can be deduced by the known low-energy limit
of the matrix element limk0s→kshksjVjk0si ¼ εdrs ∼ s−1

[40,79], where εdrs is the dressed energy of the string.
Giant strings are long-lived, but decay before they get
screened. As this order in perturbation theory, this leads to a
log divergence of σðωÞ

σðωÞ ∼
X

s

1

s3
s−2

ω2 þ s−4
∼ j logωj; ð6Þ

which can be seen by noticing that the sum is approx-
imately given by

PΛ
s≥1ð1=sÞ for Λ ∼ 1=ω1=2. Remarkably,

giant strings are long-lived enough to lead to superdiffusive
transport, albeit in the weaker form of logarithmic correc-
tions to diffusion. Similar log-diffusion scalings have
recently been observed up to long times in various isotropic
spin chains and was interpreted in the framework of the
KPZ equation in Ref. [58], though the relation to integra-
bility has remained controversial [66].
We have checked this prediction using MPO simulations

by considering uncorrelated noise coupling to either
energy density  Sn ·  Snþ1 or energy current density  Sn ·
ð  Snþ1 ×  Snþ2Þ (Fig. 1). In both cases, our results are
consistent with logarithmic diffusion DðtÞ ∼ log t for weak
enough perturbations. For stronger perturbations, we do
observe a trend toward saturation in DðtÞ, indicating that
higher-order processes in perturbation theory or nonper-
turbative processes can eventually restore ordinary
diffusion.
Static perturbations.—Finally, we consider static,

translation-invariant SU(2)-preserving perturbations. The

argument about suppressed matrix elements for large
strings still applies, but the main difference with the noisy
perturbation considered above is that energy and (quasi)
momentum conservation greatly constrains the allowed
processes contributing to Γs. In particular, single particle-
hole processes are not allowed. Because of the dispersion
mismatch between different strings, two-particle umklapp
scattering processes do not seem capable of relaxing
momentum either. Thus, relaxation occurs by scattering
processes with three or more of them. While we have little
analytic control over such processes, we find numerically
that the superdiffusive behavior with time-dependent dif-
fusion constant DðtÞ ∼ t1=3 (z ¼ 3=2) persists up to all the
timescales we access numerically, even for sizable pertur-
bations (Fig. 2). This suggests that the decay rate falls off as
Γs ∼ 1=s3 (or faster), so that decay is no longer parametri-
cally faster than screening. The bound Γs ≤ 1=s2 from
Goldstone physics continues to hold, but appears not to be
saturated in this case. As a result, we find that the
anomalous scale z ¼ 3=2 is remarkably robust to isotropic
integrability-breaking perturbations. We do expect that at
long enough times, higher-order processes in perturbation
theory will eventually take over and lead to regular

FIG. 2. Static perturbations. Time-dependent diffusion constant
DðtÞ vs t1=3 for next-nearest neighbor couplings
(gV ¼ J0

P
n
 Sn ·  Snþ2, solid lines) and staggered fields

[gV ¼ δJ
P

nð−1Þn  Sn ·  Snþ1, dashed lines] of various strengths.
The KPZ behavior z ¼ 3=2 seems to persist in all cases.

TABLE I. Perturbative predictions for the ac spin conductivity
of perturbed Heisenberg spin chains at intermediate frequencies,
depending on whether the SU(2) symmetry is preserved (✓) or
broken (✗).

Symmetry SU(2) ✓ SU(2) ✗

Energy ✓ Crystal momentum ✓ σðωÞ ∼ ω−1=3 σðωÞ ∼ σdc

Energy ✗ Crystal momentum ✓ σðωÞ ∼ j logωj σðωÞ ∼ σdc

Crystal momentum ✗ (Disorder) σðωÞ ∼ σdc σðωÞ ∼ σdc
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diffusion, though we were not able to access this crossover
regime numerically. We refer the reader to the
Supplemental Material for additional numerical results
for other perturbations breaking either translation invari-
ance (disorder) or SU(2) [78]. Our final results are
summarized in Table I.
Discussion.—We have discussed the fate of anomalous

spin diffusion in spin chains with non-Abelian symmetries
in the presence of weak integrability-breaking perturba-
tions. Since anomalous transport is due to thermally
dressed “Goldstone solitons,” its fate depends on the
symmetries of the integrability-breaking perturbation.
When the perturbation breaks the non-Abelian symmetry,
the Goldstone solitons are immediately unstable and
diffusion immediately sets in. When the perturbation
preserves the symmetry, however, it cannot effectively
scatter Goldstone solitons, so some form of anomalous
diffusion persists. We have argued that this should give rise
to a diffusion constant that diverges at least logarithmically
at low frequencies and perhaps faster, depending on phase-
space constraints. These symmetry considerations directly
extend to other Lie-group symmetry. While we expect—
and our numerics suggest—that regular diffusion is even-
tually restored on some long timescale, the dependence of
this timescale on the integrability-breaking parameter g lies
outside the scope of low-order perturbation theory.
Identifying the relevant decay channels and understanding
the crossover to regular diffusion is an interesting task for
future work. Another interesting question is whether the
mechanisms explored here can manifest themselves, e.g., as
anomalously large long-time tails in classical hydro-
dynamics, as suggested in Ref. [66].

We are grateful to L. Delacretaz, P. Glorioso, E. Ilievski,
V. Khemani, T. Rakovszky, and C. Von Keyserlingk for
helpful discussions. S. G. acknowledges support from NSF
DMR-1653271. This material is based upon work sup-
ported by the Air Force Office of Scientific Research under
Award No. FA9550-21-1-0123 (R. V. and B.W.). R. V.
acknowledges support from the Alfred P. Sloan Foundation
through a Sloan Research Fellowship.

[1] B. Bertini, F. Heidrich-Meisner, C. Karrasch, T. Prosen,
R. Steinigeweg, and M. Znidaric, Rev. Mod. Phys. 93,
025003 (2021).

[2] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys.
Rev. Lett. 98, 050405 (2007).

[3] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London)
452, 854 (2008).

[4] M. Žnidarič, Phys. Rev. Lett. 106, 220601 (2011).
[5] C. Karrasch, J. H. Bardarson, and J. E. Moore, Phys. Rev.

Lett. 108, 227206 (2012).
[6] E. Leviatan, F. Pollmann, J. H. Bardarson, D. A. Huse, and

E. Altman, arXiv:1702.08894.
[7] C. D. White, M. Zaletel, R. S. K. Mong, and G. Refael,

Phys. Rev. B 97, 035127 (2018).

[8] R. J. Sánchez, V. K. Varma, and V. Oganesyan, Phys. Rev. B
98, 054415 (2018).

[9] C. Karrasch, J. E. Moore, and F. Heidrich-Meisner, Phys.
Rev. B 89, 075139 (2014).

[10] C. Karrasch, J. H. Bardarson, and J. E. Moore, New J. Phys.
15, 083031 (2013).

[11] M. Ljubotina, M. Žnidarič, and T. Prosen, Nat. Commun. 8,
16117 (2017).

[12] M. Ljubotina, M. Žnidarič, and T. Prosen, Phys. Rev. Lett.
122, 210602 (2019).

[13] M. Dupont and J. E. Moore, Phys. Rev. B 101, 121106(R)
(2020).

[14] T. Rakovszky, C. W. von Keyserlingk, and F. Pollmann,
arXiv:2004.05177.

[15] T. LeBlond, D. Sels, A. Polkovnikov, and M. Rigol,
arXiv:2012.07849.

[16] T. Kinoshita, T. Wenger, and D. Weiss, Nature (London)
440, 900 (2006).

[17] T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M.
Kuhnert, W. Rohringer, I. E. Mazets, T. Gasenzer, and J.
Schmiedmayer, Science 348, 207 (2015).

[18] Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya, M. Rigol, S.
Gopalakrishnan, and B. L. Lev, Phys. Rev. X 8, 021030
(2018).

[19] M. Schemmer, I. Bouchoule, B. Doyon, and J. Dubail, Phys.
Rev. Lett. 122, 090601 (2019).

[20] P. N. Jepsen, J. Amato-Grill, I. Dimitrova, W.W. Ho, E.
Demler, and W. Ketterle, Nature (London) 588, 403 (2020).

[21] F. Møller, C. Li, I. Mazets, H.-P. Stimming, T. Zhou, Z. Zhu,
X. Chen, and J. Schmiedmayer, Phys. Rev. Lett. 126,
090602 (2021).

[22] N. Malvania, Y. Zhang, Y. Le, J. Dubail, M. Rigol, and D. S.
Weiss, arXiv:2009.06651.

[23] A. Scheie, N. E. Sherman, M. Dupont, S. E. Nagler, M. B.
Stone, G. E. Granroth, J. E. Moore, and D. A. Tennant, Nat.
Phys. 17, 726 (2021).

[24] O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Phys.
Rev. X 6, 041065 (2016).

[25] B. Bertini, M. Collura, J. De Nardis, and M. Fagotti, Phys.
Rev. Lett. 117, 207201 (2016).

[26] B. Doyon and T. Yoshimura, SciPost Phys. 2, 014 (2017).
[27] E. Ilievski and J. De Nardis, Phys. Rev. Lett. 119, 020602

(2017).
[28] V. B. Bulchandani, R. Vasseur, C. Karrasch, and J. E.

Moore, Phys. Rev. Lett. 119, 220604 (2017).
[29] V. B. Bulchandani, R. Vasseur, C. Karrasch, and J. E.

Moore, Phys. Rev. B 97, 045407 (2018).
[30] B. Doyon and H. Spohn, SciPost Phys. 3, 039 (2017).
[31] B. Doyon and H. Spohn, J. Stat. Mech. (2017) 073210.
[32] B. Doyon, T. Yoshimura, and J.-S. Caux, Phys. Rev. Lett.

120, 045301 (2018).
[33] B. Doyon, J. Dubail, R. Konik, and T. Yoshimura, Phys.

Rev. Lett. 119, 195301 (2017).
[34] X. Zotos, J. Stat. Mech. (2017) 103101.
[35] E. Ilievski and J. De Nardis, Phys. Rev. B 96, 081118(R)

(2017).
[36] M. Collura, A. De Luca, and J. Viti, Phys. Rev. B 97,

081111(R) (2018).
[37] X. Cao, V. B. Bulchandani, and J. E. Moore, Phys. Rev. Lett.

120, 164101 (2018).

PHYSICAL REVIEW LETTERS 127, 057201 (2021)

057201-5

https://doi.org/10.1103/RevModPhys.93.025003
https://doi.org/10.1103/RevModPhys.93.025003
https://doi.org/10.1103/PhysRevLett.98.050405
https://doi.org/10.1103/PhysRevLett.98.050405
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1103/PhysRevLett.106.220601
https://doi.org/10.1103/PhysRevLett.108.227206
https://doi.org/10.1103/PhysRevLett.108.227206
https://arXiv.org/abs/1702.08894
https://doi.org/10.1103/PhysRevB.97.035127
https://doi.org/10.1103/PhysRevB.98.054415
https://doi.org/10.1103/PhysRevB.98.054415
https://doi.org/10.1103/PhysRevB.89.075139
https://doi.org/10.1103/PhysRevB.89.075139
https://doi.org/10.1088/1367-2630/15/8/083031
https://doi.org/10.1088/1367-2630/15/8/083031
https://doi.org/10.1038/ncomms16117
https://doi.org/10.1038/ncomms16117
https://doi.org/10.1103/PhysRevLett.122.210602
https://doi.org/10.1103/PhysRevLett.122.210602
https://doi.org/10.1103/PhysRevB.101.121106
https://doi.org/10.1103/PhysRevB.101.121106
https://arXiv.org/abs/2004.05177
https://arXiv.org/abs/2012.07849
https://doi.org/10.1038/nature04693
https://doi.org/10.1038/nature04693
https://doi.org/10.1126/science.1257026
https://doi.org/10.1103/PhysRevX.8.021030
https://doi.org/10.1103/PhysRevX.8.021030
https://doi.org/10.1103/PhysRevLett.122.090601
https://doi.org/10.1103/PhysRevLett.122.090601
https://doi.org/10.1038/s41586-020-3033-y
https://doi.org/10.1103/PhysRevLett.126.090602
https://doi.org/10.1103/PhysRevLett.126.090602
https://arXiv.org/abs/2009.06651
https://doi.org/10.1038/s41567-021-01191-6
https://doi.org/10.1038/s41567-021-01191-6
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.21468/SciPostPhys.2.2.014
https://doi.org/10.1103/PhysRevLett.119.020602
https://doi.org/10.1103/PhysRevLett.119.020602
https://doi.org/10.1103/PhysRevLett.119.220604
https://doi.org/10.1103/PhysRevB.97.045407
https://doi.org/10.21468/SciPostPhys.3.6.039
https://doi.org/10.1088/1742-5468/aa7abf
https://doi.org/10.1103/PhysRevLett.120.045301
https://doi.org/10.1103/PhysRevLett.120.045301
https://doi.org/10.1103/PhysRevLett.119.195301
https://doi.org/10.1103/PhysRevLett.119.195301
https://doi.org/10.1088/1742-5468/aa8c13
https://doi.org/10.1103/PhysRevB.96.081118
https://doi.org/10.1103/PhysRevB.96.081118
https://doi.org/10.1103/PhysRevB.97.081111
https://doi.org/10.1103/PhysRevB.97.081111
https://doi.org/10.1103/PhysRevLett.120.164101
https://doi.org/10.1103/PhysRevLett.120.164101


[38] J. De Nardis, D. Bernard, and B. Doyon, Phys. Rev. Lett.
121, 160603 (2018).

[39] S. Gopalakrishnan, D. A. Huse, V. Khemani, and R.
Vasseur, Phys. Rev. B 98, 220303(R) (2018).

[40] J. D. Nardis, D. Bernard, and B. Doyon, SciPost Phys. 6, 49
(2019).

[41] S. Gopalakrishnan and R. Vasseur, Phys. Rev. Lett. 122,
127202 (2019).

[42] M. Borsi, B. Pozsgay, and L. Pristyák, Phys. Rev. X 10,
011054 (2020).

[43] D. X. Horvath, J. High Energy Phys. 10 (2019) 020.
[44] B. Bertini, L. Piroli, and M. Kormos, Phys. Rev. B 100,

035108 (2019).
[45] A. Bastianello, V. Alba, and J.-S. Caux, Phys. Rev. Lett.

123, 130602 (2019).
[46] F. S. Møller and J. Schmiedmayer, SciPost Phys. 8, 41

(2020).
[47] A. Biella, M. Collura, D. Rossini, A. De Luca, and L.

Mazza, Nat. Commun. 10, 4820 (2019).
[48] P. Ruggiero, P. Calabrese, B. Doyon, and J. Dubail, Phys.

Rev. Lett. 124, 140603 (2020).
[49] B. Pozsgay, Phys. Rev. Lett. 125, 070602 (2020).
[50] A. Bastianello, A. De Luca, B. Doyon, and J. De Nardis,

Phys. Rev. Lett. 125, 240604 (2020).
[51] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56,

889 (1986).
[52] M. Fava, B. Ware, S. Gopalakrishnan, R. Vasseur, and S. A.

Parameswaran, Phys. Rev. B 102, 115121 (2020).
[53] E. Ilievski, J. De Nardis, S. Gopalakrishnan, R. Vasseur, and

B. Ware, Phys. Rev. X 11, 031023 (2021).
[54] E. Ilievski, J. De Nardis, M. Medenjak, and T. Prosen, Phys.

Rev. Lett. 121, 230602 (2018).
[55] J. De Nardis, M. Medenjak, C. Karrasch, and E. Ilievski,

Phys. Rev. Lett. 123, 186601 (2019).
[56] S. Gopalakrishnan, R. Vasseur, and B. Ware, Proc. Natl.

Acad. Sci. U.S.A. 116, 16250 (2019).
[57] V. B. Bulchandani, Phys. Rev. B 101, 041411(R) (2020).
[58] J. De Nardis, M. Medenjak, C. Karrasch, and E. Ilievski,

Phys. Rev. Lett. 124, 210605 (2020).
[59] J. De Nardis, S. Gopalakrishnan, E. Ilievski, and R. Vasseur,

Phys. Rev. Lett. 125, 070601 (2020).
[60] J. Sirker, R. G. Pereira, and I. Affleck, Phys. Rev. Lett. 103,

216602 (2009).
[61] J. Sirker, R. G. Pereira, and I. Affleck, Phys. Rev. B 83,

035115 (2011).
[62] B. Bertini, F. H. L. Essler, S. Groha, and N. J. Robinson,

Phys. Rev. Lett. 115, 180601 (2015).
[63] Y. Huang, C. Karrasch, and J. E. Moore, Phys. Rev. B 88,

115126 (2013).
[64] K. Mallayya, M. Rigol, and W. De Roeck, Phys. Rev. X 9,

021027 (2019).

[65] V. B. Bulchandani, C. Karrasch, and J. E. Moore, Proc. Natl.
Acad. Sci. U.S.A. 117, 12713 (2020).
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