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Abstract. This review summarizes recent advances in our understanding of
anomalous transport in spin chains, viewed through the lens of integrability.
Numerical advances, based on tensor-network methods, have shown that trans-
port in many canonical integrable spin chains—most famously the Heisenberg
model—is anomalous. Concurrently, the framework of generalized hydrodynam-
ics has been extended to explain some of the mechanisms underlying anomalous
transport. We present what is currently understood about these mechanisms,
and discuss how they resemble (and differ from) the mechanisms for anomalous
transport in other contexts. We also briefly review potential transport anomalies
in systems where integrability is an emergent or approximate property. We survey
instances of anomalous transport and dynamics that remain to be understood.
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1. Introduction

Many of the canonical models of condensed matter physics in one dimension are exactly
or approximately integrable, in the sense that their eigenfunctions can be written down
exactly using the Bethe ansatz [1, 2]. Integrable systems have infinitely many local
conserved densities [3-6], and therefore strongly violate our expectations from con-
ventional thermodynamics and hydrodynamics. In particular, they have well-defined,
ballistically propagating quasiparticles, even in lattice models where total momentum
is not a good quantum number [3]. The existence of stable ballistically propagating
quasiparticles might suggest that all quantities in such systems are transported ballis-
tically (as opposed to nonintegrable systems, which exhibit diffusive transport), since
one would expect the quasiparticles to carry charge. Surprisingly, however, this is not
always the case: in one of the most studied integrable models, the anisotropic Heisenberg
(or XXZ) model, spin transport in the absence of an external field can be ballistic,
diffusive, or superdiffusive, depending on the parameters of the model [7-10].
Understanding the origin of this rich transport phenomenology in models where the
underlying degrees of freedom apparently behave so simply (ballistic motion plus for-
ward scattering) has been an important challenge since the phenomenology was first
numerically discovered. Although enormous progress has been made numerically, and
more recently even experimentally [11-13], exact calculations have proved challenging:
even so simple a quantity as the linear-response a.c. conductivity relies on the matrix
elements of local operators between the eigenstates of integrable systems, and the asymp-
totics of these matrix elements (‘form factors’) is only understood in some simple cases
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[1, 14-17]. Nevertheless, the past few years have seen enormous theoretical progress
as well, spurred by the advent of generalized hydrodynamics (GHD) [18-24]. GHD is
believed to be an asymptotically exact theory of the long-wavelength dynamics of inte-
grable systems: it treats each quasiparticle as a semiclassical object propagating (with
nontrivial interactions) through a dense medium of other quasiparticles. This physical
picture and the associated concrete computational approach have motivated many of
the developments we will discuss below.

This review article summarizes the past few years of theoretical progress on anoma-
lous transport in clean spin chains. (Strongly disordered quantum spin chains also host
regimes of anomalous transport, but the mechanisms involved there are different; for
recent reviews, see, e.g. [25, 26].) The numerical evidence for anomalous transport in
the Heisenberg spin chain is at least a decade old; however, in the past three years, the
nature of this phenomenon has begun to come into focus. Although important parts
of the picture remain indistinct, it is now understood, e.g. which degrees of freedom
are responsible for anomalous transport. We aim to lay out, as simply as possible, this
emerging picture of the dynamics of integrable spin chains. Integrability —whether exact
or approximate—is central to our analysis, because it guarantees the stability of quasi-
particles in states of finite energy density. However, the specifics of Bethe ansatz and
GHD calculations are not needed to understand the key results, which follow instead
from much more general considerations.

Correspondingly, the scope of our review is somewhat restricted. The topics we do
not cover here are, however, amply addressed in other review articles. The framework of
GHD is laid out in [24]. A much broader overview of transport in one-dimensional phys-
ical systems, including a thorough account of transport theory, integrable spin chains
and experimental and numerical advances and results is presented in [27]. Finally, a
companion review [28] summarizes the current understanding of diffusion in integrable
systems. We introduce the elements of all of these concepts and results that we will need
to fix notation and present our results in a self-contained way.

This review is organized as follows. We close this introductory section with a histori-
cal overview of numerical and analytical results concerning finite-temperature transport
in integrable spin chains. In section 2, we briefly review the background concepts—on
integrable transport, conventional and GHD, and quasiparticle diffusion in integrable
systems—that we will assume in subsequent sections. This summary is meant to be
self-contained, but the topics discussed there are addressed in more depth elsewhere in
the literature, including in companion reviews [29]. In section 3, we will encounter the
simplest examples of ‘anomalous’ (or at least non-ballistic) spin transport, in the con-
text of the anisotropic XXZ model. The anisotropic XXZ model illustrates, in a simpler
setting, many of the subtleties that are present in the canonical example of anomalous
diffusion, viz the isotropic Heisenberg model, which we cover in section 4. Our discussion
of the Heisenberg model suggests that the key ingredient leading to anomalous diffusion
in integrable spin chains is the presence of a global nonabelian Lie-group symmetry.
This observation is solidified in section 5, where we assemble numerical and analytical
evidence that both this anomalous diffusion phenomenon and its associated z = 3/2
dynamical exponent are ‘superuniversal’, in the sense that they occur in all integrable
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spin chains with short-range interactions that possess global nonabelian Lie-group sym-
metries. In section 6, we extend our considerations from linear response about thermal
equilibrium to the dynamics of more general nonequilibrium initial states.

Finally, we turn our attention from integrable spin chains to chaotic spin chains.
(Here, ‘chaotic’ means that the model in question exhibits the properties expected of a
generic, thermalizing system, namely Wigner—Dyson level statistics and normal trans-
port at non-zero temperature and asymptotically long times [30].) In section 7, we
present some generic classes of chaotic spin chains in which robust signatures of anoma-
lous transport arise at low temperature, due to the emergence of an integrable effective
field theory at zero temperature. In section 8, we show how the interplay of Goldstone
physics and diffusion in chaotic nonlinear sigma models (NLSMs) can lead to complex
effective diffusion constants, even at infinite temperature. We then conclude with a
summary of the key open questions that remain to be settled in section 9.

1.1. Historical overview

Since the bulk of this review will concern the spin-1/2 XXZ spin chain, it is useful to
introduce its Hamiltonian at the outset:

H=J) (S8%,+ S!St + AS;S,). (1)

In the rest of this work, we will usually set J = 1 for convenience. However, most of
our discussion concerns physics at finite temperature, where there is no sharp distinction
between the antiferromagnet and the ferromagnet (i.e. effectively 8 = (kgT))~! can take
either sign). For some purposes below it will be more helpful to imagine a ferromagnet
at low temperatures; we will be explicit when we are assuming this. Many of the results
discussed here concern the high-temperature limit of transport, or transport at infinite
temperature and finite chemical potential. These limits should be understood as follows:
at infinite temperature, all transport coefficients vanish; however, in the limit of small
B, transport coefficients like the conductivity are proportional to 5. We are interested
in this proportionality constant, i.e. in limg, 0/8, where ¢ is a transport coefficient
such as the conductivity. Also, when we work at infinite temperature with a finite net
magnetization density. This involves computing transport coefficients in the density
matrix p o< exp(—pH — hS?), in the § — 0 limit. (Note that h = Su where p is the
conventionally defined chemical potential.) Without loss of generality we specialize to
A > 0, as this parameter regime contains all the physics of interest.

At zero temperature this model has two phases: an easy-plane phase A < 1 where
the spectrum above the ground state is gapless, and an easy-axis phase A > 1 with
a gapped spectrum. The ground state in the easy-axis phase breaks the Ising sym-
metry; unlike the transverse-field Ising model, however, its dynamics is constrained
by the U(1) conservation law. Therefore, e.g. domain walls in the ferromagnet cannot
move freely. The isotropic point A = 1 is a quantum critical point separating these two
phases. Depending on whether the couplings are ferromagnetic or antiferromagnetic,
this critical point has dynamical critical exponent z; = 1 (antiferromagnet) or zy = 2
(ferromagnet) [31]. (To avoid confusion, throughout this review, we will use z, to denote
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the zero-temperature dynamical critical exponent and z to denote the dynamical expo-
nent that governs finite-temperature transport. We remind the reader that a dynamical
critical exponent z corresponds to space-time scaling of the form ¢ ~ z*.)

1.1.1. Early history. A vast literature exists on zero-temperature transport in inte-
grable systems; this is not directly relevant to our considerations, and we will not discuss
it further. The general picture at zero temperature is the same for integrable and noninte-
grable systems: transport is due to elementary excitations that (in clean lattice systems)
propagate ballistically. That spin transport at nonzero temperatures might exhibit richer
behavior was first pointed out in the late 1990s and early 2000s [7, 8, 32—39]. Two of
these early works are particularly relevant to our considerations. Sachdev and Damle [7,
35| explained the presence of normal diffusion in the easy-axis XXZ antiferromagnet at
finite temperature despite integrability using a semiclassical quasiparticle picture that
is reminiscent of the GHD framework (see also [40]). Meanwhile, various authors [8, 33,
36] found ballistic transport in the easy-plane regime, using numerical techniques as well
as methods based on the thermodynamic Bethe ansatz, such as the Kohn formula (for
a recent overview see [41]).

Taken together, these findings strongly suggested the existence of a finite-
temperature ‘phase transition’ in spin transport. The isotropic Heisenberg point was
the natural critical point for this putative phase transition. It took further numerical
advances, particularly the development of matrix-product methods for boundary-driven
quantum spin chains, to clearly establish both the distinct transport behaviors on the
easy-axis and easy-plane sides, and to find anomalous diffusion with the space-time
scaling z ~ t?/3 (i.e. z = 3/2) at the isotropic point [9].

1.1.2. Recent developments: superdiffusion at the isotropic point. Superdiffusion of
spin in the Heisenberg chain was discovered in [9], which obtained the steady state of an
open XXZ chain coupled to a small magnetization gradient via magnetization or thermal
[42] Lindblad baths at its endpoints. The resulting steady state carries a linear-response
spin current jg that depends on system size L as jgq ~ L~Y2_In the continuity equation,
this implies the space-time scaling law ¢ ~ 2*2, or a dynamical exponent z = 3/2. Sub-
sequent tDMRG studies showed that this z = 3/2 dynamical exponent could be probed
by considering time evolution from ‘weak domain wall’ initial conditions, of the form
pox (1+hS)E2 @ (1 —hS.)H? with h < 1 [10, 43] (see also [44]). Such states can be
viewed as magnetic domain walls at very high temperature, and in the thermodynamic
limit they simulate the dynamics of infinite-temperature spin autocorrelation functions
through the identity [43]

<S§(0)Slz(t)>/3:0 x }111_1})1<S]Z_1<t)>hh_ <Szz<t)>h (2)

This result was used to fit numerically obtained scaling functions for (S;(0)S7(t)) s—o
against universal Kardar—Parisi-Zhang (KPZ) scaling functions [45], leading to the
conjecture that infinite-temperature spin dynamics in the spin-1/2 Heisenberg chain
lies in the KPZ universality class [43]. An important breakthrough in these numerical
studies was the discovery of integrable Trotterizations of the XXZ model [46], which
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allow one to simulate its dynamics for longer periods without worrying about errors in
the Trotter decomposition.

These detailed numerical studies of the spin-1/2 Heisenberg chain have been com-
plemented by numerical investigations of a plethora of other classical and quantum spin
chains, both integrable and non-integrable and with various internal Lie group sym-
metries [9, 47-55]. From this body of work, an intriguing picture of ‘superuniversal’
z = 3/2 transport in isotropic spin chains has emerged, whose main empirical features
are as follows:

(a) Both classical and quantum spin chains can exhibit anomalous, z = 3/2 spin
transport at half-filling.

(b) Integrability is a necessary condition for z = 3/2 dynamical scaling of the spin
density to persist to long times.

(¢) Nonabelian Lie group symmetry is a necessary condition for z = 3/2 spin transport
to arise at all. This phenomenon is ‘superuniversal’ in the sense that it seems to
arise from global symmetry with respect to any compact nonabelian Lie group G
and irreducible representation thereof.

(d) Spin chains with robust z = 3/2 spin transport seem to exhibit scaling collapse
of their spin autocorrelation functions to KPZ scaling functions at long times.
The numerical evidence is most convincing for classical spin chains with pure
SU(2) symmetry and less convincing for quantum spin chains, for which access
to asymptotically long times is limited.

We now summarize the main developments in the theoretical understanding of
z = 3/2 transport in spin chains. Strikingly, the first attempts at a theoretical expla-
nation did not appear until some seven years after the numerical result was reported,
in part owing to the lack of a theory of GHD in integrable systems. The initial break-
through was a demonstration that GHD predicts a divergent spin diffusion constant for
the half-filled Heisenberg and Hubbard chains [56] (building on a rigorous lower bound
on diffusion constants [57]). An analysis of the finite-size scaling of this divergence in
terms of the microscopic kinematics of quasiparticles subsequently revealed that the
unique self-consistent dynamical exponent for spin transport in the half-filled Heisen-
berg chain is z = 3/2 [58]. While these studies allowed for a fairly detailed understanding
of the microscopic kinetics giving rise to superdiffusion in the Heisenberg chain (see also
[59, 60]), they did not explain the apparent universality of z = 3/2 dynamics in spin
chains, as observed in numerical simulations [49]. An alternative approach based on
studying dynamical fluctuations of the Bethe pseudovacuum was proposed in [61]. This
provided a macroscopic argument for the emergence of KPZ universality (and thence a
z = 3/2 exponent) in the Heisenberg chain, which was subsequently adapted to a variety
of other classical and quantum spin chains [62], including the Hubbard model [54]. More
recently, the ‘microscopic’ and ‘macroscopic’ descriptions of z = 3/2 transport in spin
chains have been unified through the fundamental observation that mean-field vacuum
dynamics, which underpins the theoretical discussion of [61], emerges from the scatter-
ing phase-shifts of infinitely large quasiparticles in the quantum Heisenberg chain [63],
and more generally of large solitons in the Goldstone sector of spin chains with global
continuous nonabelian symmetries [55].
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Finally, we mention that the theoretical prediction of z = 3/2 transport in the
Heisenberg chain was recently experimentally verified for the first time [13] by scat-
tering neutrons off a single crystal of the near-ideal Heisenberg spin chain material
KCuF;. Further evidence for superdiffusion, as well as KPZ universality in the growth
of transport fluctuations, was recently found in ultracold atomic systems using quantum
gas microscopy [64].

1.1.3. Drude weight and corrections in the easy-plane phase. The study of finite-
temperature transport in the spin-1/2 Heisenberg chain has a rather long history. The
study of transport properties and Drude weights in integrable models was initiated in
[32-34, 65], which sparked further interest in this area. A striking early observation [34]
was that energy transport in many interacting integrable models, including the Heisen-
berg chain, is purely ballistic, implying that Fourier’s law of heat conduction does not
hold in such models. The problem of characterizing spin transport proved to be more
subtle. The finite-temperature, easy-plane spin Drude weight was first evaluated ana-
lytically from Bethe-ansatz techniques in [8], based on earlier related papers [66, 67].
This result was afterwards successfully reobtained in [68] (the same study however also
reported a failed attempt of reproducing the result within an alternative spinon-basis
computation). One enduring puzzle, that remained unresolved for some time, was how
the spin Drude weight could possibly assume a non-zero value in the apparent absence
of local conservation laws with odd parity under spin reversal (other than the magne-
tization density itself), that are in principle necessary to protect the spin current from
dissipating away [34, 69, 70].

This was partially resolved in [3], which identified a suitable, hitherto unknown,
quasilocal conservation law of the easy-plane Heisenberg chain (see [6] for a more detailed
discussion). The associated quasilocal charges were used to construct a lower bound
on the Drude weight (known as a Mazur bound, see section 2.4 below); this bound
nonetheless appeared to be loose, in the sense that it omitted spectral weight compared
to the TBA result [8]. Moreover, the origin of this novel conservation law remained
elusive. A striking prediction of these works was that the conjectured lower bound had a
discontinuous fractal dependence on the anisotropy (which we will return to in section 3).
Soon after the advent of GHD, an explicit calculation in the GHD framework suggested
that this lower bound was ezact, so the true Drude weight is indeed discontinuous
[71]—this conclusion was since also reached by other means [41].

Since various theoretical approaches have now converged on the conclusion of a
discontinuous Drude weight, a natural question to ask is how the spectral weight gets
redistributed between the Drude peak and the low-frequency regular part of the conduc-
tivity as one continuously varies A. The first major progress in addressing this question
was the demonstration [56] that the d.c. limit of the conductivity is infinite for irra-
tional values of the anisotropy. The nature of this divergence was recently addressed in
[72] using GHD (see also [73, 74]): it was found that o(w) ~ 1/4/w at irrational values
of the anisotropy, and the crossover scales between rational and irrational values were
identified. This nontrivial 1/y/w scaling is consistent with numerical results [75] on the
approach of the finite-time current—current correlator to its long-time limit (which sets
the Drude weight).
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1.1.4. Spin helices and out-of-equilibrium dynamics. The revival of interest in inte-
grable dynamics was driven by developments in ultracold atomic gases, where it is
natural to study the real-time dynamics of isolated quantum systems far from equilib-
rium [30, 76]. However, the most natural experiments in ultracold settings are somewhat
different from equilibrium linear-response transport (note, though, that equilibrium
spin transport has been measured [77], as has charge transport for interacting fermions
[78]). Thermal equilibrium states are hard to prepare reliably in cold-atom experiments
(because equilibration is slow and thermometry is hard), whereas far-from-equilibrium
product states are relatively simple. Thus, one series of influential experiments has stud-
ied the relaxation of an initial ‘spin helix’ [79-81]. In [81] a helix is created as follows:
one realizes the spin model by trapping two distinct spin states of ultracold atoms. One
initializes all the atoms in the same spin state, then applies a radio-frequency pulse to
rotate them into the equator of the Bloch sphere. A magnetic field gradient then causes
each atom to process at a position-dependent rate, so after some wait time the spins
form a helically modulated state. The contrast of the helix is measured as a function of
time, e.g. by in situ imaging.

Since these initial states are not thermal, the theoretical framework developed in
the bulk of this work does not directly apply. The linear-response diffusion constant
should describe the relaxation of a weak spin modulation of wave-vector ¢ created on
top of a thermal state; we expect that the contrast of such a modulation at later times
should decay as p,(t) o< exp(—D(q)q*t). By contrast, the cold-atom experiments create a
large-amplitude modulation on top of a vacuum state. One might naively have expected
the late-time decay to be the same in both types of experiments, since (intuitively)
when the initial helix has mostly relaxed the system can be regarded as a weakly modu-
lated thermal state. Experimental and numerical evidence suggests that this intuition is
incorrect: while ballistic transport persists in the easy-plane case, it seems that isotropic
systems exhibit diffusion while easy-axis systems exhibit subdiffusive spin transport. At
present there is no detailed understanding of these results within the GHD framework
or any other framework, although various approximate treatments exist, using either
nonequilibrium field-theoretic methods [82] or short-time series expansions [81]. How-
ever, a simpler version of this setup—oconsisting of a domain wall between two regions
of opposite spin polarization—has been studied theoretically, and we return to this in
section 6.

2. Background

2.1. Hydrodynamics: a reminder

Constructing a microscopic theory of transport in strongly interacting systems at finite
temperature is, in general, an intractable task. However, the main qualitative aspects of
transport in this regime are captured by conventional hydrodynamics. The framework
of hydrodynamics posits a separation of timescales between fast degrees of freedom (i.e.
any variable that can relax locally) and slow degrees of freedom, which correspond to
long-wavelength fluctuations of conserved quantities, Goldstone modes associated with
broken continuous symmetries, and other similar fluctuations that are constrained to
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be long-lived. Assuming such a separation of scales, one can carve a system up into
mesoscale hydrodynamic ‘cells’, which are large compared with the microscopic scales
that govern ‘fast’ dynamics but small compared with the density fluctuations, Goldstone
modes, etc of interest. One can decompose the Hamiltonian H = ) H(x), where each
term acts on the state space of a cell centered at x; boundary terms can be neglected
because of the separation of scales between the range of the Hamiltonian and the size of
a cell. A similar decomposition holds for other conserved charges. Note, however, that
the Hamiltonian and the conserved charges are translation invariant.

Each cell is described by a thermal equilibrium state with a local temperature, local
chemical potentials, and (in the case of broken continuous symmetries) a local orienta-
tion for the order parameter. A system that can be partitioned into local equilibrium
states in this way is said to be in local equilibrium. As a specific example, a generic
quantum system with only energy and particle-number conservation has local reduced
density matrices of the form p(x) o< exp[—f(x)(H (x) — pu(x)N(x))]. Here, as elsewhere
in this review, the label x is implicitly coarse-grained over a mesoscale hydrodynamic
cell, and we are also implicitly assuming that the chemical potentials vary smoothly in
space.

Under the assumption of local equilibrium, the dynamics of a system can be reduced
to the dynamics of a small number of conserved densities (and Goldstone modes, though
we will mostly not be concerned with these below). Assuming, further, that the dynamics
is spatially local, one can write continuity equations for the conserved quantities: these
relate the time derivative of each conserved density to its current. (We will not consider
problems where the microscopic dynamics is spatially nonlocal; for a recent discussion
of these, see, e.g. [83], as well as a recent experimental verification [84].) To close this
system of equations, we have to relate the currents back to the densities. We can achieve
this by the logic of hydrodynamic projections [85, 86]: since the only long-lived variables
are conserved quantities, their products and derivatives, the part of the current that is
long-lived enough to have interesting consequences must itself be made up of these
ingredients. Thus, the slow part of the current is in general some arbitrary function of
the conserved charges and their low-order spatial derivatives. If we assume further that
the fluctuations of conserved charges are not too large, we can expand the current of
the uth charge

ju = Auz/‘]u + Duuax%/ + GuuAQuqz\ + fu SR (3)

where g, is the uth conserved charge and the matrices are left general for now. Finally,
the ‘rest’ of the current (i.e. the part of the current operator that consists of typical
rapidly fluctuating degrees of freedom) is incorporated as the noise term f,, which is
usually taken to be white noise. Equation (3) is called a constitutive relation. Here, and
below, we specialize to one-dimensional systems.

This generic procedure (called hydrodynamics, or sometimes fluctuating hydro-
dynamics) leads in general to a set of nonlinear partial differential equations. To
make further progress, one typically linearizes the theory, leading to a solvable ‘fixed
point’, and then includes nonlinearities using some combination of self-consistent and
renormalization-group approaches (see, e.g. [87-90]). When the nonlinearities are RG-
irrelevant, they can still give rise to non-analytic long-time tails [85, 91-94]; when they

https://doi.org/10.1088/1742-5468 /ac12c7 10


https://doi.org/10.1088/1742-5468/ac12c7

Superdiffusion in spin chains

are relevant, they can destabilize the fixed-point theory and give rise to anomalous trans-
port, as discussed in section 2.6.3. Also, if one considers systems with quenched spatial
randomness, the coefficients that enter the constitutive relation can vary strongly in
space. If these variations are strong enough, transport is anomalous even at the linear
level, as we will discuss in section 2.6.1.

The phenomenology implied by the hydrodynamic framework above strongly
depends on whether the matrix A,, is nonzero: i.e. whether any currents themselves
are truly conserved. Generically, currents are conserved only in systems with Galilean
invariance, where momentum is conserved. In such Galilean systems, a density fluctua-
tion will propagate ballistically. This ballistic propagation is accompanied by spreading,
which the linear theory would predict to be diffusive, but which is in fact superdiffusive
with the KPZ exponent z = 3/2 (see section 2.6.3). However, the lattice systems we
are concerned with in this review do not have momentum as a legitimate slow mode,
since it can relax locally via umklapp scattering. (In particular, the anomalous transport
phenomena discussed in this review are unrelated to proximate momentum conserva-
tion [95, 96].) In generic one-dimensional lattice systems, therefore, the current is not
conserved, and to leading order it is given by j, = D,,0.p,, i.e. Fick’s law. A standard
analysis shows that there are no RG-relevant corrections to diffusion. Therefore, one
expects that in one-dimensional lattice models all conserved charges diffuse.

2.2. Integrable systems

Integrable systems in one dimension are a special class of interacting system in which the
scattering among particles is ‘non-diffractive’; in the sense that any scattering process
can be factored into a sequence of two-body scattering processes [2]. Since two-body
scattering in one dimension can only permute momenta among particles, the dynamics
of integrable systems preserves (in some intuitive sense) all the information about the
momentum distribution of a generic initial state. This feature of integrable dynamics
can be understood in two ‘dual’ ways: (i) integrable systems have stable, ballistically
propagating quasiparticles; and (ii) integrable systems have infinitely many conservation
laws. (The relation between these perspectives is sometimes called ‘string-charge duality’
and will be addressed further in section 2.4.) From either perspective, the conventional
hydrodynamic framework is inappropriate to describe integrable systems. We will turn
next to a recently developed alternative, the framework of GHD.

Before introducing GHD, though, it is worth clearing up an important strategic
point. Since integrable models are famously ‘exactly solvable’ via the Bethe ansatz, why
does one need any coarse-grained framework at all? The answer is that although some
properties of integrable models, such as their thermodynamics, are straightforward to
access, the computation of dynamical correlation functions in the thermodynamic limit
is notoriously difficult [97]. Thus, even the simplest nonequilibrium quantities like linear
response transport coefficients are daunting; if one insists on working with exact form
factors, far-from-equilibrium dynamics is restricted to modest system sizes [98].

2.3. Generalized hydrodynamics

Before turning to GHD, we very briefly review some properties of quasiparticles in inte-
grable systems. This overview is mostly to fix notation; for a pedagogical introduction
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to this topic, see, e.g. [24]. In a finite system, the Bethe ansatz yields a discrete set of
eigenstates, each labeled by the quantum numbers of the occupied quasiparticles. In the
thermodynamic limit, the allowed quantum numbers form a continuum, and one specifies
a state by specifying the density of quasiparticles with each set of quantum numbers. We
denote this quantity (often called the ‘root density’) p, ,, where X is a continuous index
and a is a discrete index or set of indices. In the simplest integrable models, such as the
repulsive Lieb—Liniger model, there is only one quasiparticle species and the index a can
be suppressed, but in the lattice models we are concerned with the elementary quasi-
particles generically form bound states (which are treated as separate species within
GHD). Two other basic quantities are the density of states p;” (which is related to the
root density via the Bethe equations, ,offi + > S AN Kor oy = Orpanr/(27), where Pax
is the bare momentum of the state parameterized by (a,\), and K is a matrix that
captures the scattering phase shifts in a particular integrable model) and the filling fac-
tor ng ) = panr/p%. An equilibrium state may be specified in terms of either the set of
root densities {p,,} or the set of filling factors {n,}; the two descriptions are related
by a nonlinear transformation. An advantage of working with filling factors is that in
an equilibrium state, their fluctuations on, \ are uncorrelated, (0m,,06n,) X d40),; the
fluctuations of root densities are not diagonal in this sense, since each quasiparticle
affects the available state space for all other quasiparticles via scattering [99].

One way to understand GHD is that it starts from a local equilibrium state, in
which each hydrodynamic cell is specified by some set of variables as above, and then
uses standard hydrodynamic logic to write down equations of motion for these vectors
{par} or {ns,}. In an integrable system the number of quasiparticles of each type is
conserved (since there is only forward scattering); this yields the family of continuity
equations d;p, \ + 0.j,, = 0. The second fundamental equation is a constitutive relation,
which says that j, = vngpa’,\, i.e. each quasiparticle propagates ballistically with an
effective group velocity set by its ‘dressed’ dispersion relation (in which the energies
and momenta of each state are computed using the thermodynamic Bethe ansatz [2]).
(Note that this constitutive relation is only valid at the Euler scale; the neglected terms
are higher order in derivatives but have important physical consequences, giving rise
to quasiparticle diffusion.) Combining these two equations and re-expressing the GHD
equations in terms of the filling factors {n,,}, one arrives at a particularly convenient
form of these equations:

Ongx + vgfi [{n}]0:n., = 0. (4)

This equation describes the advection of the filling factors n,), which are also
called ‘normal modes’ of GHD. In a spatially homogeneous system, at Euler scale, the
propagator (n,(z,t)n,x(0,0)) = 6(x — veht) [24].

Thus, given an initial state specified in terms of root densities or filling factors in
each cell, GHD gives a prescription to propagate this data forward in time. To compute
the dynamics of some conserved charge density ¢, one must work out how much ¢-charge
each normal mode transports. This ‘dressed charge’ is denoted qi&. It is operationally
defined as follows: in the presence of a potential V' coupling to ¢, we expect that the
filling factor n,, o< (1 4+ exp(V¢Sy)) " The dressed charge is defined in terms of ny (V)
by inverting this relation.
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Instead of regarding equation (4) as a hydrodynamic equation, an alternative and
in some ways more natural perspective is that GHD is instead a kind of kinetic theory
[23], analogous to that of transport in Fermi liquids. Like a quasiparticle in an inte-
grable system, a quasiparticle near the Fermi energy in a two-dimensional Fermi liquid
is kinematically blocked from scattering in any direction but forward [100, 101]. Such
a quasiparticle is characterized by its direction along the Fermi surface. Collisions with
other quasiparticles will dress its properties but cannot change its direction. Quasipar-
ticles at each point on the Fermi surface therefore propagate ballistically along their
(conserved) direction, at the Fermi velocity (which interactions can renormalize). An
appealing visual representation of the kinetic theory is the ‘flea-gas’ picture [22]. In this
picture, one regards the quasiparticles of an integrable system as rigidly propagating
bodies, which recoil from one another whenever they undergo a collision. We will revisit
the flea-gas picture below when we address diffusion in integrable systems.

From either the flea-gas perspective or the perspective of hydrodynamics with many
conservation laws, one can see that ballistic transport is natural (though not inevitable)
in interacting integrable systems. From the flea-gas picture, indeed, it is not obvious why
the leading transport behavior would ever fail to be ballistic, since the quasiparticles are
always ballistic. We will return to this in section 3. At an even more elementary level,
the existence of infinitely many conservation laws makes it natural for any particular
operator (like the current) to have a large overlap with one or more conserved quantities,
giving rise to a ballistic transport. In fact, the earliest results firmly establishing ballistic
transport in integrable systems used precisely this approach, explicitly constructing the
overlap of the current operator with known conserved operators [34].

2.4. The Drude weight

At the linear-response level, ballistic transport in integrable lattice systems is charac-
terized by the Drude weights D,,. The most common and widespread definition of the
Drude weight is the long-time limit of the connected current—current autocorrelation
function,

Dp,z/ = lim dx <.ju(x7 t)jl/(()? 0)>C7 (5)
t—00

where the superscript ¢ denotes the connected part of the correlator, and j, denote
densities of current operators J,, = [ dxj,(x). For a system with a nonzero Drude weight,
the frequency-dependent conductivity o, = 7D, d(w) + - - -, where the ellipsis denotes
regular contributions, to which we will return below. It is straightforward to see that a
persistent current (5) implies ballistic transport.

Mazur—Suzuki bound. We now formalize the intuition that the Drude weight (5)
should be nonzero in integrable systems using the method of hydrodynamic projections.
Suppose we have a set of n conserved charges @), spanning a vector space of operators
orthogonal (but not normalized) under an appropriate inner product. For generalized
Gibbs ensembles [102, 103], the suitable choice is (a,b) = [ dz(a(x)b(0)), under which
any two densities a and b of conserved charges are time-invariant (see e.g. [104] for
formal treatment). In the late-time limit, the non-conserved of currents .J,, average out,

https://doi.org/10.1088/1742-5468 /ac12c7 13


https://doi.org/10.1088/1742-5468/ac12c7

Superdiffusion in spin chains

and what remains is the projection onto the conserved subspace,
(J !Qk
D, > Z (6)

known as the Mazur—Suzuki inequality [105, 106]. For a finite set of charges, the above
formula provides a lower bound on the Drude weights [34]. Upon including all the
relevant charges @), the inequality turns into a strict equality. However, identifying a
complete basis of conserved charges is a difficult task in general, even for the relatively
tractable case of integrable lattice models. (The subtleties of constructing such a basis
in finite-dimensional classical systems are discussed in [107], while [6] provides a review
in the context of quantum integrable lattice models.)

String-charge duality. The Mazur—Suzuki inequality is convenient for lower-bounding
Drude weights; however, if one wants compact and exact expressions for the Drude
weight, it is more practical to adopt the quasiparticle perspective. One is allowed to
use either perspective because of a principle known as ‘string-charge duality’ [108].
This reconciles earlier predictions from the thermodynamic Bethe ansatz with the more
recent discovery of quasilocal charges, demonstrating that the thermodynamic Bethe
ansatz formalism implicitly encodes these charges, despite preceding their discovery by
some forty years. This means that one can specify an equilibrium state in one of two
equivalent ways: as a generalized Gibbs ensemble with a separate chemical potential for
each charge, or equivalently via the thermodynamic Bethe ansatz, by specifying all the
root densities.

Let us briefly motivate the notion of quasilocal conservation laws. In practice, the
notion of locality in lattice systems can be rather subtle. In particular, the traditional
infinite set of local conservation laws introduced by integrability textbooks, which are
obtained by series expanding the logarithm of the fundamental transfer matrix to yield
conservation laws with densities supported on a compact region of space, turns out to be
insufficient [109, 110]. Due to the presence of bound states in lattice models, one can only
fully specify a macrostate upon including quasilocal conservation laws that derive from
fused transfer matrices with auxiliary higher-dimensional irreducible representations
[4, 111].

We will return to the issue of quasilocal charges when we discuss the XX7 model
below. However, we emphasize that these are not peculiar to the XXZ model, but are
a generic feature of quantum integrable lattice models (see, for instance, an explicit
construction in the SU(3)-invariant chain [112]). The core idea behind their existence,
which motivates the string-charge duality, can be justified as follows. As we have argued
above while introducing GHD, the root densities {p,,} are separately conserved for
every species. Preservation of the whole distribution requires the existence of extensive
conserved charges with quantum numbers that are additive in the Bethe roots. Suppose
for simplicity that quasiparticle excitations are only labelled by their rapidities, as e.g.
in the repulsive Lieb—Liniger Bose gas (or sinh-Gordon model). Then the traditional,
local conserved quantities will suffice to ensure that the rapidity distribution remains
invariant in time. Integrable models however generically accommodate bound states; this
includes typical integrable spin chains and integrable QFT's that possess internal degrees
of freedom that are exchanged upon elastic collisions (known as non-diagonal scattering).
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In this case, additional conservation laws with additive spectrum are required to ensure
conservation of all the rapidity densities for the entire quasiparticle spectrum (as a
matter of fact, one per species).

Drude weights from GHD. We now express the Drude weight using TBA data, which
is justified by the string-charge duality sketched above. Quasiparticles (or more precisely
normal modes) with quantum numbers (a, \) propagate with a dressed velocity va S
which depends on the background state but is dynamically conserved. Each quasiparticle
also carries a dressed charge qdr, so it carries a current j, ) = qdr(a Aol "\» which (at the
Euler scale) does not change Wlth time. The probability that the quasiparticle state
(a, A) will be occupied in thermal equilibrium is n, . The variance in the occupation is
therefore n, (1 — n,.). Putting these expressions together we arrive at the formula

D,, = Z/d)xpzoinw — 1) (V52400 10000 (7)

i.e. the variance in the current carried by a macroscopic state comes entirely from the
variance in the occupation of its normal modes, since each occupied normal mode carries
(at this level of analysis) some fixed current.

The full matrix of Drude weights is positive semi-definite. Moreover, since the total
state density and Fermi occupation functions are strictly positive (at non-zero temper-
ature), a diagonal Drude weight D,, becomes zero if and only if the corresponding
dressed charge vanishes for the entire quasiparticle spectrum. For generic (quasi)local
conservation laws of the model this does not happen (irrespective of chemical potentials
associated with the equilibrium state). An important exception are quasilocal conserva-
tion laws from the easy-plane regime of the XXZ chain which possess odd parity under
spin reversal [6]. Conserved charges associated with global Lie symmetries play a dis-
tinguished role; their equilibrium dressed values, which are set by the U(1) chemical
potentials, can be deduced from the dressed dispersion relations.

Other approaches. We now mention, for completeness, some alternative but phys-
ically helpful ways of defining the Drude weight. It was noted in [113, 114] that a
hydrodynamic Riemann problem (also known as the ‘bipartitioning protocol’ or ‘two-
reservoir quench’ in related literature) consisting of two adjacent, semi-infinite thermal
regions with infinitesimally different chemical potentials +6h/2 coupling to the charge
Q of interest, could be viewed as a trick for computing the (diagonal) Drude weight, via
the relation [115]

1 (U
D= Jim fim fim 757 | 4z (@), (8)
with j the current density associated with the charge ). This trick was subsequently
applied to the specific problem of computing spin Drude weights in the easy-axis XXZ
chain from GHD [21, 116].
A second useful relation is that Drude weights correspond to the second moment of
dynamical correlation functions at late times

D= [ dwa(a,(e,00,00.0) = Dot )
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Figure 1. Kinematics of forward scattering leading to velocity dressing and diffu-
sion in integrable systems. On average, a tagged quasiparticle traveling to the right
encounters more left-movers than right-movers, giving some net velocity renor-
malization. The fluctuations in the number of collisions in a time window cause
diffusion (see text). Reprinted figure with permission from [122]. Copyright (2018)
by the American Physical Society.

This is essentially a version of the Einstein relation between conductivities and dif-
fusion constants. It can be derived from the Kubo formula (5) using the continuity
equation.

Finally, we note that the Drude weight of a system on a ring can equivalently be
defined, following Kohn [117], in terms of the response of energy levels to twisting the
boundary conditions. This approach was applied to the Heisenberg model at T' =0
in [118], and later extended to finite temperatures [8, 66, 67]. Kohn’s approach works
naturally only for conservation laws associated with U (1) global symmetries (such as e.g.
spin/charge in quantum spin chain). We will not take this perspective in what follows;
for reviews see [119].

2.5. Diffusion in integrable systems

We briefly review the next-order dynamical process in integrable systems, which is
quasiparticle diffusion [104, 120—-123]. This topic is discussed extensively in a companion
review [124]; here, we briefly summarize a ‘kinetic’ derivation [122] of the main result
that will be helpful to us in the rest of this review. To leading order, quasiparticles
in integrable systems move with a fixed velocity. However, the soliton-gas picture of
GHD makes it clear that this is not an exact statement. Rather, the displacement
of a quasiparticle over a time interval At has two components: free propagation and
collisional shifts. In a general soliton gas, each collisional process between a pair of
quasiparticles is associated with its own collisional shifts. The key observation is that
the collisional shifts a quasiparticle experiences depends on the number of collisions it
has in a given time interval; this in turn depends on the density of other quasiparticles
of each type in the interval, which is a quantity that experiences Gaussian thermal
fluctuations. Thus the effective velocity of a quasiparticle also has thermal fluctuations,
which as we will see give rise to diffusion.

To be more quantitative, we consider a specific normal mode of quantum numbers
(a, ) initialized at the origin of spacetime, and consider its motion over a time ¢. At the
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Euler scale, this normal mode will deterministically propagate to vggt and its position
will have no variance. Once collisional fluctuation effects are included, the variance can
be expressed as

522, = [(5v —ﬁz / (

where the square brackets denote an average over the trajectory of the quasiparticle in
the time interval ¢, and we have used the fact that fluctuations of different occupation
factors are uncorrelated [99]. In a high-temperature thermal state, fluctuations are spa-
tially uncorrelated, so we can write [0n;,] = Cy, /£ over any region £. The main subtlety
here is computing the number of fluctuations correctly. One might naively want to aver-
age over a fixed spatial window, but this is inaccurate: normal modes that are moving
almost parallel to the one of interest will rarely collide with it, whereas those moving in
the opposite direction will have many more collisions. In general, a quasiparticle moving
at velocity v, will collide with one moving at velocity vy, if the second quasiparticle
started out in a window of size | — vi\|¢ (figure 1). Since the density fluctuations in
a high-temperature state are Gaussian and uncorrelated across hydrodynamic cells, we

see that
soiN?
ox’, =t d 2. Ui
. ;/ ”(fm,n) e — o

[ /)tof\ QZ/dn |v(1 P Ub7]|p;)01§nb-,7](1 - nb,n)[lcgg\;an : (11)

) [ong,], (10)

The first equality shows that each quasiparticle trajectory undergoes diffusive broad-
ening with a diffusion constant determined (implicitly) by GHD and TBA data; the
second equality presents an explicit expression, which we will not derive here; see [122].
The expression in square brackets is the ‘quasiparticle diffusion coefficient’, i.e. the rate
at which the propagator for each normal mode broadens.

To summarize, the propagator for each normal mode in an integrable system
broadens as in equation (11). While, at Euler scale, its propagator would read
(g (2, 1)nq(0,0)) oc 6(x — vefhit), at the diffusive scale this delta function is broadened

to a Gaussian of width /D, \t, where the diffusion constant is given in equation (11).
This broadening was explicitly checked for the integrable rule 54 cellular automaton
[122, 125, 126]. One can transform this result for quasiparticle diffusion back into the
basis of conserved charges, giving an ‘Onsager matrix’ of diffusion constants [120, 121];
we will not cover this here in detail.

For completeness we note two alternative approaches to deriving diffusion in inte-
grable systems, which we briefly mention here. The first is to explicitly evaluate the
Kubo formula using thermodynamic form factors [120, 121]. The second is to write the
current operator j, = A,,q, + Gurq,q, + - - -. Evaluating the contribution of the term
quadratic in ¢ yields a regular term in the d.c. conductivity [104, 123].

One important point remains to be addressed. As we remarked above, in general
a ballistically propagating mode in one dimension broadens anomalously, according

https://doi.org/10.1088/1742-5468 /ac12c7 17


https://doi.org/10.1088/1742-5468/ac12c7

Superdiffusion in spin chains

to the KPZ equation, rather than simply broadening diffusively. Why this does not
happen in the present context was first explained in [61]: KPZ broadening would take
place if the dressed velocity vg?; depended linearly on the filling factor of the same
type of quasiparticle, i.e. on n, ). Since the velocity dressing is due to scattering off
other quasiparticle species, this direct linear dependence is not present, so one has
diffusion rather than KPZ broadening for each individual quasiparticle. Intuitively, the
hydrodynamic evolution equation (4) cannot form shocks [21], which means there is no
dynamical mechanism for roughening [89] within GHD for an integrable system with a
finite number of quasiparticle species.

2.6. Generic mechanisms for anomalous transport

In this section, we summarize some well-known and generic mechanisms for anomalous
transport in classical systems. One of the unexpected findings from studies of quantum
many-body systems over the past decade is that all these distinct forms of anomalous
transport seem to be realized in one-dimensional spin chains, as we will see in subsequent
sections.

2.6.1. Levy flights and fractional diffusion. Lévy flights are ubiquitous in nature, and
can most simply be understood as the limiting stochastic process of ‘fat tailed’ random
walks, whose step lengths are so unpredictable that their variance is infinite. To motivate
the notion of Lévy flights, it is helpful to recall the probabilistic understanding of normal
transport. Classically speaking, ‘normal transport’ is a prediction of the central limit
theorem, in the following sense [127]. Consider a random walker in one dimension, who
at a series of discrete and regularly spaced time steps t, = nAt, undergoes jumps of
length [ = [,,. Here, the lengths [,, are assumed to be independent, identically distributed
random variables, drawn from a continuous distribution with some density function p(l).
The total distance travelled at time t = ¢, is given by X; = Z?Zl l;. At long times, the
‘typical’ behaviour of X is ballistic with diffusive corrections,

(X)=vt,  (XP)—(X)?=2Dt, (12)

with drift velocity and diffusion constant v = (I)/At and D = ((I*) — (1)?)/(2At)
respectively. By the central limit theorem applied to the scaling variable W =
(X, —vt)/(2Dt)'/2, the asymptotic probability density function u(w,t) for W = (z —
vt)/(2Dt)Y? is Gaussian and satisfies the Fokker—Planck equation

o = —vo,u + DO*u. (13)

This behaviour is generic insofar as the random jumps [, satisfy the hypotheses
of the central limit theorem. Suppose, however, that the asymptotic behaviour of the
jump distribution p(l) ~ 171" as [ — oo, with 1 < z < 2. Then (I) is finite but (1)
exhibits an infrared divergence, leading to an infinite variance of p(l) and invalidating
the above analysis. Nevertheless, once the correct scaling variable W = (X, — vt) /t'/*
is identified, a limiting probability density function for W is found that is no longer
Gaussian, but instead a so-called Lévy z-stable distribution function L. s(w), where z
denotes the dynamical exponent and [ quantifies the asymmetry in w about w = 0.
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Explicit formulas for these distribution functions are complicated in general; here we
merely quote the result [127] for the symmetric (p(l) = p(—1),v = f = 0) case, which
yields (up to rescaling) the probability density function

ak
L. o(w) = / O gt el (14)

Now wu(z,t) = L.o(x/t"#)/t'/* is a source function for the so-called fractional
diffusion equation

ou = —(—=V?)*?u, (15)

which therefore stands in the same relation to Lévy flights as the ordinary diffusion
equation stands in relation to Brownian motion. The ‘fractional Laplacian’ (—V?)*
appearing in this equation is mostly simply defined by its action in Fourier space, for
example
4’k PRI
_vQ Sf(r) = k 2s k elkx’ 16
(=) f@) = [ oy K FE) (16)

where f(k) = [ d%x e f(x) is the Fourier transform of f(z). The space-time scaling of
solutions to equation (15) can be read off to be ¢ ~ x*, and normal diffusion is recovered
at the point z = 2.

The scaling invariance of equation (15) is reflected in the microscopic distribution
of jump sizes. To see this, it is helpful to consider the behaviour of the ‘largest jump’,
I*(t), at time t = t,,. We define [*(¢) such that a jump with length greater than or equal
to [*(t,) occurs exactly once in n time steps, so that n flf?tﬂ)dl p(l) = 1. This yields the
scaling law '

I*(t) ~ tY7, (17)

at large times. Notice that ["(¢) defines a natural infrared cut-off for regulating the
divergence in (I%). One can then estimate the variance of the total path length as

I*(t)
(X2) — (X)) ~ ¢ / AL 12p(1) ~ 2% ~ 1 (D) (18)

The key point is that the mean square length of the path X, at time ¢ is dominated
by the largest jump up to time ¢t. This provides an intuitive sense in which the Lévy
flight is self-similar, and can be interpreted more precisely as a continuously varying
fractal dimension z for the resulting trajectories [128].

Finally, we note that fat-tailed distributions in microscopic transport typically
arise from Lévy walks, which are random walks with a finite average velocity and
power-law distributed times-of-flight (see [129] for a recent review in the context of
heat transport). In contrast, for the anomalous quasiparticle transport of interest here
(cf section 3.2), scattering off large quasiparticles is a highly non-local process and allows
for an unbounded effective quasiparticle velocity in the limit of infinite system size. The
resulting dynamics is most naturally interpreted as a Lévy flight, rather than a Lévy
walk.
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Figure 2. Fundamental solutions to the nonlinear diffusion equation with the same
initial area M = 1 and varying nonlinear exponents m = 3, m = 1 and m = 1/8, at
time £ = 1. These profiles exhibit subdiffusion, normal diffusion and superdiffusion
respectively, with associated space-time scaling exponents o = 1/4, o =1/2 and
a=28/9.

2.6.2. Nonlinear diffusion. The nonlinear diffusion equation is given by

Ou = V3™, (19)
i.e. the effective diffusion constant is nonlinear,

Deglu] = mu™". (20)

In physical applications it tends to be the case that u > 0, which will henceforth
be assumed. For m = 1, equation (19) recovers normal diffusion. For m > 1, equation
(19) is known as the ‘porous medium equation’ while for m < 1, it is instead called the
‘fast diffusion equation’. Nonlinear diffusion equations are useful for modelling diverse
physical systems, ranging from groundwater flow to high-temperature heat transfer in
plasmas.

In contrast to the other two models for anomalous transport considered in this
section, the dynamics of equation (19) in the linear response regime, u(x,t) = ug+
du(x,t), |du] < uy is normal diffusion, with effective diffusion constant D.g[ug] as in
equation (20). However, the linear response approximation breaks down as uy — 0, with
Deg[ug] — 0 for the porous medium equation, indicating subdiffusive dynamics, while
D g[ug] — oo for the fast diffusion equation, indicating superdiffusive dynamics.

These peculiarities are explained by observing that although the linear response of
equation (19) is diffusive for bulk densities uy > 0, its fundamental solutions for m # 1,
which have the physical interpretation of free expansion into the uy =0 ‘vacuum’,
are non-Gaussian. Instead, the nonlinearity and scaling invariance of equation (19)
gives rise to fundamental solutions with anomalous space-time scaling, known as
‘Barenblatt—Pattle profiles’. In one spatial dimension, the case relevant to this review
article, the Barenblatt—Pattle profiles have the form [130]

upp.(z,t) =t max | (C — k(z/t*)?) 77,0|, a=1/(m+1), (21)

https://doi.org/10.1088/1742-5468 /ac12c7 20


https://doi.org/10.1088/1742-5468/ac12c7

Superdiffusion in spin chains

with k = k(m) constant and C(m, M) fixed by the initial area M. Representative exam-
ples of these profiles are depicted in figure 2. The Barenblatt—Pattle profiles for nonlinear
subdiffusion have a discontinuous edge (in this sense, they define ‘weak’ solutions to
the underlying PDE), while those for nonlinear superdiffusion are characterized by a
power-law decay in space as |z| — co.

Barenblatt—Pattle solutions exist for the porous medium equation for all m > 1 and
(in one dimension) for the fast diffusion equation in the range 0 < m < 1. They can be
obtained by substituting the scaling ansatz upp (x,t) = t~“F(x/t*) into equation (19)
and solving for F'. These solutions are ‘fundamental’ in the sense that they originate
from delta functions, with

limugyp (x,t) = Mo(x) (22)
t—=0+
as a distribution. For m < 0 the fast diffusion equation becomes increasingly ill-posed,
exhibiting phenomena such as ‘extinction’ in finite time, whereby diffusion occurs so fast
that fundamental solutions instantly start to lose mass at infinity. A detailed discussion
of such pathologies can be found in [131].
For the purposes of this review, we will be concerned with the superdiffusive regime
0 < m < 1; an interesting open question is how far other regimes of equation (19) can
be realized in the collective dynamics of many-body quantum systems.

2.6.3. Nonlinear fluctuating hydrodynamics. The two models for anomalous transport
considered above can be formulated as deterministic PDEs, that emerge as a suitable
scaling limit of random, microscopic processes. The models that we consider in this
section have a fundamentally different character, and take the form of stochastic PDEs,
with microscopic fluctuations included at the macroscopic scale in the form of coupling to
white noise a la Langevin. Such equations arise naturally in fluid dynamics and we briefly
summarize their derivation (see [132] for a fuller exposition). Suppose we are given a
one-dimensional Hamiltonian system with N local conserved charges, ), = fOLd:U qu(),
satisfying microscopic conservation laws 0,q, + 9,7, = 0. We take as our starting point
the closed system of FEuler-scale hydrodynamic equations

at(Qa>+ar<ja> :0; a:1727'-'7N7 (23)

in the space of local Gibbs ensembles p = Z ~le=Xuh [ dr 8()a@) that were discussed in
the introduction. Linearizing the hydrodynamic equations about an equilibrium state

p=py+0p with py=Z e X%Q and defining Au = 9(ju)o/Oq)o vields a linear
equation

N
atua+z Aabaxub:07 a = 1723"'3Na (24)
b=1

for small perturbations u, = (¢,) — (¢.)o about p,. The generalized ‘speeds of sound’
for this system in the state p, are then given by the eigenvalues ¢, of A,. Under mild
assumptions [132], the ¢, are real and there is a basis ¢, = Zévzl R, yuy of eigenmodes of
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A, which satisfy
01y + 0,0, =0, a=1,2,...,N. (25)

It follows by characteristics that a small initial perturbation ¢,;(z,0) will spread
ballistically as ¢,(x,t) = ¢,(x — c,t,0), unless an eigenvalue ¢, = 0, in which case the
leading behaviour of the mode ¢, is sub-ballistic.

Realistic physical systems at non-zero temperature exhibit dissipation, but treating
this within hydrodynamics inevitably requires introducing some form of approximation,
since purely deterministic time evolution can never give rise to irreversible behaviour.
More precisely, the strength of dissipation (and its associated fluctuations) in a given
hydrodynamic description is sensitive to the choice of coarse-graining length scale ¢. To
the best of the authors’ knowledge, there is no systematic way to treat such ‘mesoscopic’
effects. This state of affairs can be summarized by the observation that dissipative
hydrodynamics is an ‘effective stochastic field theory’, a point of view that animates both
earlier studies of fluctuating hydrodynamics [85] and the more explicitly field-theoretical
formulation of dissipative hydrodynamics that was achieved recently [133].

The idea behind fluctuating hydrodynamics is to couple the Euler-scale hydrody-
namic equations to noise and dissipation by hand, to yield

N
atua, + amz (Aabub - Dabamub + Ba,be) = 0; a = 17 2; ) N; (26)

b=1

where the (, are unit normalized, wuncorrelated white noise variables
({(C (2, )G, (2, 1)) = 6ap0(x — 2/)6(t — t') and ({...)) denotes the average over noise real-
izations. Demanding stationarity of initial thermal correlations ({(u,(z,0)uy(z’,0))) =
C0(x — 2') imposes the fluctuation-dissipation relation DC' + CD" = BB".

So far, equation (26) merely describes the expectation that hydrodynamic fluctu-
ations of a finite temperature system should be diffusive. In fact, this is only true in
d > 3. In lower dimensions, non-linear corrections to equation (26) become important.
In d = 2 such corrections are marginal; they lead to a logarithmic divergence in trans-
port coefficients that may be rephrased as a weak finite-size effect. In d = 1, the leading
non-linear correction to equation (26) is relevant, and alters the universality class of
hydrodynamic fluctuations [132]. Working in the normal mode basis and restoring lead-
ing non-linearities in the expansion of the currents (j,) yields an equation of the form

N N
Orpa + 0, <ca¢a + Z (=D., 0.0, + BiyG) + Z chzﬁbgbc) =0, a=1,2,...,N.

b=1 b, c=1
(27)
When the sound velocities ¢, are distinct [134], the dynamical scaling exponents

z, of fluctuations of the normal modes ¢, are determined by the sets I, = {b: Gy, #
0}. Specifically, a one-loop calculation in stochastic field theory yields the dynamical
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exponents [135]
2 I,=10

= 3/2 ae[a. (28)

. 1
min (1 + —) else
bel, Zb

Although it treats dissipation phenomenologically, this strategy of ‘nonlinear fluc-
tuating hydrodynamics’ has proved to be invaluable for explaining the emergence of
anomalous transport in one-dimensional classical fluids [132]. In d > 1, this approach
is less informative because it merely demonstrates consistency of the assumption of
diffusive fluctuations, that was put in by hand.

Before we close this section, we briefly mention one simple physical way of under-
standing the exponent z =3/2 in the classical KPZ context. This approach was
hinted at in [89]. The argument runs as follows. Consider the noisy Burgers equation
Oip + pd.p = DO?p + &, where £ is some noise term. This is essentially equation (27) with
indices suppressed. Let us anticipate that the stationary measure under this equation
has equilibrium thermal fluctuations. Now consider the propagation of a particle over
a region of length L. The typical fluctuation of p over this length-scale will scale as
L~'2; thus, so will the typical velocity. The time it takes to cross this region is therefore
t(L) ~ L/v ~ L*?, giving the KPZ exponent.

3. Anisotropic Heisenberg chain

We begin our exploration of anomalous transport in integrable models with two examples
that are in some ways simple, since the anomalous transport is inherently linear: namely
the easy-axis and easy-plane regimes of the Heisenberg XX7Z model,

Hxxz = Z”Uf‘fﬁq + ool + Aojor,y). (29)

The easy-axis case |A| > 1 and the easy-plane case |A| <1 will be dealt with
separately, since they exhibit very different physics.

From a general statistical mechanics perspective it might seem unexpected that the
finite-temperature dynamics of a one-dimensional spin chain should change discontinu-
ously as a parameter is tuned. Thermodynamically, indeed, all the states we will consider
are paramagnets. Further, the dynamics at finite times must also evolve continuously
with A. However, the late-time limit of the dynamics can change discontinuously because
the structure of the exact conserved quantities is extremely sensitive to the precise value
of A.

Some intuition as to why this is so can be gleaned from considering the ground
states in the two cases. In the easy-plane regime, the ground state consists of spins
pointing along the equator of the Bloch sphere, and breaks a continuous U (1) symmetry.
The low-energy excitations are Goldstone modes. In the easy-axis regime, the ground
state consists of spins pointing along the z axis and breaking an Ising symmetry. The
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t X

Figure 3. (Left) Passage of a magnon through a domain wall in the easy-axis XXZ
model. Note that the magnon is ‘stripped’ of its magnetization as it goes through.
(Right) Dynamical spin correlation function of the XXZ model at generic filling,
showing three regimes: (I) outside the light-cone, the correlator vanishes, (II) there
is a large ‘Eulerian’ window in which the correlator has anomalous exponents that
are computable within Eulerian GHD, and (III) diffusive regime, in which diffusive
corrections are important. In the limit of zero magnetization, regime (II) loses all
of its spectral weight to regime (III). (Right) Adapted with permission from [60].

excitations above this state are magnetic domains of various sizes. Because the XXZ
model is integrable, these elementary excitations remain infinitely long-lived, and thus
the difference in ground states gets promoted to a difference in the entire spectrum.
(A similar phenomenon happens with ‘strong zero modes’ in the transverse-field Ising
model [136].)

3.1. The easy-axis XXZ model

We begin with the easy-axis case. To develop an intuition for the dynamics of this model
it is helpful to consider systems for which A > 1, so that one can treat the hopping
terms in the Hamiltonian as a perturbation. In the purely ‘classical’ limit H = ). 0707, 4,
the eigenstates are simply product states (which we will call ‘configurations’) in which
each spin is either up or down. The energy of an eigenstate is set by the number of
domain walls, i.e. the number of anti-aligned neighboring spins. (Depending on the sign
of the interaction, anti-alignment is either favored or penalized; either way, it changes
the energy and is not an on-shell process.) Starting from this trivially solvable point,
we now introduce the flip-flop terms as a weak perturbation, and ask what pairs of
configurations are hybridized by this perturbation. To hybridize, two configurations
must have the same energy (i.e. the same number of domain walls); however, because of
U(1) symmetry, the two configurations must also have the same number of 1 spins. Thus
(unlike, e.g. the transverse-field Ising model) domain walls are not freely propagating
quasiparticles. Rather, the propagating quasiparticles are entire domains.

Let us start with the ferromagnetic vacuum state; evidently this has infinitely many
different species of quasiparticles, corresponding to sequences of s flipped spins. These
species are referred to as s-strings; an s-string has a dispersion with a bandwidth o
A% Because the model is integrable, these s-string labels continue to label stable
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quasiparticles even at finite excitation density; however, s-strings are strongly dressed
by collisions with one another, and cannot be simply identified with domains.

3.1.1. Absence of ballistic transport at half filling. The easy-axis XXZ model is the
simplest example of an integrable model in which some conserved densities (in this case
the magnetization) do not undergo ballistic transport. The reason ballistic transport
is absent is easy to understand in the A > 1 limit. To simplify matters we consider
ferromagnetic interactions and work at low but nonzero temperature. A typical equi-
librium configuration has randomly distributed domain walls at some low density set
by T; the domain sizes are distributed as P(£) = & 'exp(—£/€), where & ~ /T is the
typical domain size, i.e. the equilibrium correlation length. In this large-A limit, the
only domains that are mobile are the rare domains (‘magnons’) consisting of a single 1
spin in a sea of | spins (or vice versa). Transport is dominated by these magnons. Let us
consider an 7 magnon moving through a large | domain. Eventually it will reach the end
of the domain. At this point, there are two kinematically allowed processes: either it can
reflect back, or it can propagate through the next (1) domain as a minority | spin (see
figure 3). Integrability implies that only the latter process has a matrix element. Total
magnetization is conserved because the new domain ‘swells’ by two sites to accommo-
date the magnon. The upshot is that when a magnon crosses domain walls it is stripped
of its magnetization [137]; thus, over large distances the magnon is a magnetically neu-
tral quasiparticle, transporting energy but not magnetization. Away from half filling the
magnon transports some spin, which is proportional to the average magnetization of the
state.

This basic intuition survives away from the large-A limit. At infinite temperature, a
closed-form solution exists for the dressed quasiparticle magnetization, i.e. the amount
by which the energy of the magnon state changes in response to an infinitesimal field. It
will turn out (for reasons that we discuss below) that it is useful to work at finite chemical
potential h (or equivalently at finite net magnetization) and take the h — 0 limit at the
end. We quote the asymptotic behavior of the dressed magnetization, occupation factor,
and dressed velocity of an s-string [56]:

1 1
“h 12 sh<1 —  shx1l

e = J gt F T sh<l )y 8 vl = e, (30)
S sh>1 e sh sh>1

where in the last expression A = cosh 7). Note that the anisotropy A shows up only in the
expression for the dressed velocity: otherwise, the high-temperature thermodynamics of
the easy-axis XXZ model is the same for all A > 1.

Two instructive quantities to evaluate are the static spin susceptibility and the Drude
weight. The former is given by the expression

T ot 1
(= (1= n) i [angs = ). (31)

This result can, of course, be computed by elementary methods at infinite temper-
ature. However, it is instructive to consider the structure of the sum over strings (31).
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Since ny is exponentially suppressed for sh > 1, we can cut off the sum at sh ~ 1. Cru-
cially, this sum cannot depend on h although each of the summands scales as h?. This
is only workable if the summands diverge as s, so that y = h? > s<in s = O(1). Thus
the expression in terms of strings reveals an important feature: in the limit h — 0, the
static susceptibility sum rule must be dominated by strings with sh ~ 1; much smaller
strings effectively become neutral, as our intuitive argument suggested.

We now turn to the Drude weight. This is given by a very similar expression, but
with added factors of the dressed velocity:

D= Zns(l — ns)(mgr)g/d)\pg’ﬂvi& ? o b2, (32)

Because of the exponentially decaying velocities, the sum over s in the Drude weight
converges, so the Drude weight vanishes as h — 0 within GHD. The physics of this is
that spin is almost entirely transported by large-s strings, which are immobile at the
Fuler scale.

As the susceptibility calculation showed, the h — 0 limit is delicate: a naive applica-
tion of GHD exactly at half-filling would yield the (obviously erroneous) conclusion that
x = 0. This reflects a certain formal difficulty with applying GHD for the XXZ model
at zero magnetization, which will arise again in the context of nonabelian spin chains.
The issue is as follows: GHD formally splits the system up into cells of a certain size
/, and takes the system to be described by a typical thermal Bethe eigenstate inside
this cell. For many models, the state is fully specified given a quasiparticle distribution.
However, in the XXZ model the quasiparticle distribution does not uniquely fix the
state: rather, there are two Bethe vacua (all up or all down) from which one could have
started, so to fully specify the state in a cell one needs to specify both the vacuum and
the quasiparticle distribution. However, GHD as usually formulated gives equations of
motion only for the quasiparticle distribution, not for the local vacuum. Thus, if one
fixes a cell size ¢ at the outset, GHD must be supplemented by additional data.

A more mundane way of explaining this obstruction is that since strings come in
all sizes, if we chop our system into /-sized blocks we will disrupt the structure of
strings with s > ¢. The apparent ‘vacuum’ of an /-sized region has dynamics because of
the motion of such ‘giant strings’ through it. Formally, we will largely avoid this issue
within GHD by working at fixed nonzero magnetization o h, and assuming ¢ > 1/h, so
that the density of giant strings is exponentially suppressed and they do not matter for
dynamics.

3.1.2. Diffusion constant. Since the Drude weight vanishes, the leading transport
behavior at half filling is diffusive. This diffusive behavior is, again, easiest to under-
stand in the limit of low 7" and very large A. Suppose the correlation length (typical
domain size) is £. Then a magnon carries a current of order unity for a time ~ ¢, while
it is propagating through this domain. At later times, the magnon is moving through
a domain whose magnetization is uncorrelated with the magnetization at (0,0), so the
magnon does not carry any net magnetization. The d.c. conductivity therefore goes as
[ dt(J(£)7(0,0))¢ o . By the Einstein relation this gives a finite diffusion constant.
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This argument can be made much more general as follows [57, 138]. Consider the
finite-time Drude weight, defined as D(t) = =5 f dt'(J ,0))¢. Clearly D(t) — D in
the infinite-time hm1t Ev1dently, D(t) closely resembles the ﬁmte—tlme d.c. conductivity

a(t) = (8/2) f dt'(J(t)7(0,0)) = 2t D(t). We will now use this relation to bound the
d.c. conduct1v1ty

Since the operator .JJ commutes with total magnetization we can write D(t) =
S, P(h = 2)D(t,x), where P(h = z) is the probability that the system is in a sector
of total magnetization m(h)—re-expressed in terms of the conjugate chemical poten-
tial h—and D(t, h) is the finite-time Drude weight in that sector. Note that D(t, ) is
positive-semidefinite, so the full sum is lower-bounded by any of its partial sums. The
crucial next step in this argument is to note that, for all dynamical purposes, one can
truncate the system to a region of size vrrt, where vir is the Lieb—Robinson veloc-
ity. Thus, we have D(t) = >, (virt)"? exp(—h?vprt)D(z,t). Assuming (plausibly) that
D(t,h) > D(h) (i.e. that the time-averaged current-current correlator monotonically
decays with averaging time), and writing D(h) = h*97D(h), we end up with the bound

(B, h=0) > BD(h)|no- (33)

Note that this bound is loose, because the Drude weight is a sum over quasiparticle
species, and the Lieb—Robinson speed grossly overestimates how far most quasiparti-
cles have traveled. One can parametrically improve this bound as follows [58]. Let us
decompose

= Z/d)\D(h,s,)\). (34)

We now follow the previous argument up to the step where we averaged physical
quantities over a region of size L = vrt. Here, we tighten the estimate by introducing
a quasiparticle-specific distance scale L,y = v, t. Plugging this in, we find

=) / AN (Vs at)'7? exp(—h?v,\t)D(h, s, A). (35)
Combining this with our expression for the Drude weight, we get the final result
D> [ st = o) (mds P (36)

As we have derived it, this result is a lower bound, since it allows for the possibility
of other mechanisms for diffusion that we did not include.

Remarkably, this bound is saturated in the XXZ model, as one can verify by an
explicit calculation [59]. We will very briefly outline the logic of this calculation. There
are two crucial observations: (1) at small h, magnetization is transported entirely by
very heavy strings sh ~ 1, since they saturate the magnetic susceptibility sum rule,
and (2) in the easy-axis regime, these strings have exponentially suppressed velocities.
Thus they move essentially via Brownian motion from collisions with lighter strings.
It follows that to obtain the full conductivity one must simply compute the Brownian
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motion of each quasiparticle, which is given by equation (11) above. The conductivity
can be written as

o= BXZ /d)‘/ ‘v ’)\"ps 7”8’,)\’<1 - nS’,)\’)sliIO% [’Cdr w/Ptm] (37)

Comparing equations (36) and (37) we see that they would be identical if the
following equality held:

Iim[KE, NN = (1/x) lim(m{" (h) /h) (38)

Perhaps surprisingly, this identity (termed the ‘magic formula’ in [59]) is exact. Thus
the only mechanism for spin diffusion in the easy-axis XXZ model is the quasiparticle
screening mechanism outlined above.

3.1.3. Dynamic correlation function at finite net magnetization. We now turn to the
behavior away from half filling, focusing on the dynamical density correlation function
[60], C(z,t) = (S*(x,t)S5%(0,0))°, which one can write as

0 r (aj B ,US,/\t)2
C(x,t) Z/d/\ PN (1 ns_A)(mf,A)z\/Ds_At exp |:_2])5)\t . (39)

To simplify our discussion we specialize to magnetization h &~ 1 and to T" = oo, so we
can replace all TBA quantities with their large-s asymptotics. This reduces the above
expression to

_ 2
C(z,t) Zs e /d)\ PN/ Dyt exp { %] : (40)
A

Spin transport away from half filling is dominated by the ballistic spreading of
light strings. However, this is not necessarily true for the local autocorrelator, C(0,t)
(or more generally for C(xz,t) at fixed  in the limit ¢ — c0).

To understand the asymptotics of this quantity, we note that light (small-s) strings
spread ballistically, so their probability of remaining at the origin scales as ~1/(v,t) ~

e’ /t. Thus, the summand in equation (40) contains a factor e " leading to two
sharply dlstlnct regimes of behavior. If n < h, heavy strings are too rare to affect the
leading decay of the local autocorrelator, which instead goes as 1/t from the light
strings. However, if n > h, the autocorrelator is dominated by very heavy strings. As
discussed in the previous section, these very heavy strings move diffusively, with a diffu-
sion constant D that is s, »-independent. However, if one waits long enough any string’s
motion is primarily ballistic. The crossover from primarily ballistic to primarily diffusive
motion happens when e "t = v/Dt, i.e. s* = %77. In this n > h regime, at late times the
autocorrelator near the origin is dominated by diffusive strings, and scales as

C(0,t) ~ \/_Z et e (41)

Thus, the autocorrelation function has multiple nontrivial spatio-temporal regimes
(figure 3), with ballistic motion near the light-cone coexisting with anomalous decay
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of local autocorrelation functions. This type of ‘mixed” behavior, with a ballistic front
coexisting with a large slow tail, has been seen in multiple other contexts recently,
including random integrable spin chains [139, 140] and the transverse-field Ising model
with random hyperuniform couplings [141].

3.2. The easy-plane XXZ model

The structure of conductivity in the easy-plane axis is superficially more natural, as
there is ballistic transport even in the half-filled sector. However, as discussed in the
introduction, the Drude weight is a highly nontrivial, nowhere-smooth, function of the
anisotropy A. In what follows we will discuss the reasons for such a seemingly patho-
logical behavior of the Drude weight, and its implications for finite-time dynamics. We
will find that the finite-time response is anomalous, and appears to be described by a
quasiparticle Lévy flight [72].

3.2.1. Fractal spin Drude weight. A key advance in our understanding of the easy-
plane XXZ model was the discovery of a one-parameter analytic family of quasilocal
conservation laws (called nowadays the ‘Z-charges’), including the charge of [3], which
were constructed in [142] (afterwards adapted to periodic boundary conditions [5, 143]).
Optimizing a Mazur—Suzuki bound (section 2.4) using these charges yields the following
striking prediction. Parameterizing A = cos(vy) with v/mr =m/l € [0,7), for m and ¢
being co-prime integers, one obtains the following Mazur—Suzuki bound [142]

Doy > iw {1 ~ % n (2;” | (42)

This bound is in fact in precise agreement with an earlier analytical TBA calcula-
tion [8] specialized to a set of isolated primitive roots of unity (m = 1). It nonetheless
remained unclear at the time whether the computed ‘fractal dependence’ [144] was
actually tight and if so, whether such a result is even physical. As we explain next,
this uncertainty has since been settled by reobtaining and reconciling the result with an
underlying microscopic description [116].

Spin Drude weight from GHD. As described in section 2, the GHD framework allows
one to compute Drude weights directly. For the easy-plane XXZ7 model, this calculation
was first undertaken in [23, 116] and refined in a number of subsequent works [20, 41,
71]. Since the GHD approach relies essentially on long-established results of the thermo-
dynamic Bethe ansatz, it is a priori surprising that it seems to capture the spin Drude
weight to within numerical accuracy [23, 71, 114]. That GHD (equivalently, TBA) can
capture the necessary quasilocal charges was demonstrated in [116], by invoking the
notion of ‘string-charge duality’ (section 2.4). The approach of [23, 116] provides an
independent numerical check on equation (42), thus demonstrating that discontinuities
persist at any finite temperature. These formulae have been afterwards further improved
and eventually superseded by compact closed-form expressions [20, 71]. A closed-form
solution to the associated Riemann problem in the high-temperature limit was after-
wards derived in [73], thus recovering the anticipated exact result (42). The same result
has later been also rederived within the quantum transfer matrix formalism [41], which
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offers an alternative, but equivalent [145], framework for performing thermodynamic
computations in Bethe ansatz solvable models.

Quasiparticle spectrum. To understand where the subtleties of the easy-plane (gap-
less) regime come from, we now take a closer look at the quasiparticle spectrum. The
latter has a much richer structure compared to the easy-axis phase, which can be traced
back to the representation theory of the quantum algebra U, (su(2)) with a unimodular
quantum deformation parameter ¢ = e’. The complete description of the thermody-
namic quasiparticle spectrum goes all the way back to [146], which singled out a
stability condition for formation of bound magnon excitations (using the fusion rela-
tions for the scattering amplitudes), finding that both the total number and internal
structure of allowed bound states depend on the interaction parameter ~ in a rather
intricate fashion. By expanding the interaction parameter 7y as the continued frac-
tion v/m =1/(v1 +1/(va+ 1/(v3+--+))), the number of distinct quasiparticle species
is obtained as v =), v;. Therefore, at roots of unity, only finitely many species are
protected against decay.

The stability criterion indeed changes in a discontinuous manner, causing an abrupt
reorganization of the quasiparticle spectrum upon varying the interaction parameter
v [147]. To give a glimpse, let us here focus specifically on the vicinity of commen-
surate points at primitive roots of unity v/m = 1/v;, where discontinuities are most
pronounced. The simplest way to approach these isolated points is to follow a sequence
v = 1/v1 + 1 /vy by increasing v,. For large values of vy, the thermodynamic excitations
will mostly comprise ‘very heavy’ bound states. For example, for v; = 3 (correspond-
ing to A =1/2) the heaviest bound states at, say, v, € {10,20,40,100} are made out
of {28,58, 118,298} magnetization quanta, in respective order. On the other hand, in
a chain of finite length L, magnetization carried by quasiparticles cannot exceed L/2,
indicating that such heavy strings do not even fit into systems of size L ~ 30 (roughly
within reach of present-day exact diagonalization). Whether this has any significance for
thermodynamic quantities or physical observables is difficult to estimate a priori. This
is essentially controlled by the discarded integrated spectral weight attributed to such
heavy strings. We briefly remind the reader that in the case of the Drude weights, individ-
ual quasiparticle contributions are weighted by their static susceptibilities p, \(1 — ny).
It may happen that the net weight carried by such heavy strings is small. It is instruc-
tive to add here that all quasiparticle contributions to the free energy density can be
explicitly resummed, yielding a final expression that exhibits a continuous dependence
on A. A more detailed exposition of the mathematics behind these results (including
Baxter Q-operators, Wronskian relations and Fabricius—McCoy complete strings), which
further corroborates the above findings, can be found in [148].

Dressed magnetization and velocity. We now fix some generic rational value of v, with
a large but finite denominator ¢, and summarize the properties of the quasiparticles that
are present for that specific v. For a generic rational number with denominator ¢, there
are ~ log ¢ different quasiparticle species. At half filling, one finds (see, e.g. [72]) that
all but two of these quasiparticles have zero dressed magnetization, while the dressed
magnetization of the two largest strings is unrenormalized, and scales as £. The velocity
of these large strings, meanwhile, saturates to a constant, ¢-independent value. Since
current is carried by large but ballistic quasiparticles, the Drude weight is nonzero.
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(This is in contrast to the isotropic and easy-axis regimes, in which the velocities of
large quasiparticles vanish; we comment further on this point in section 4.2.)

Numerical evidence. The outlined exceptional structure of the quasiparticle spectrum
in the easy-plane (gapless) phase renders numerical computation of the spin Drude
weight a particularly delicate issue. The task proves very challenging even for current
state-of-the-art methods, due to intrinsic limitations tied to finite-time (or finite-size)
effects [10, 72, 73, 149-153]. Several discernible features of discontinuous behavior have
nevertheless been successfully demonstrated in recent DMRG simulations [10, 152]. We
would like to specifically highlight [75], which demonstrates that upon increasing the
time-averaging window in an integrable Trotterization of the XXZ7 Heisenberg model, a
smeared-out spin Drude weight gradually collapses towards the discontinuous analytical
prediction.

3.2.2. Anomalous diffusive corrections and a.c. conductivity. The Drude weight in
the easy-plane regime changes by an O(1) amount for an infinitesimal change in the
anisotropy A. This feature might seem unphysical at first sight, but it is not: for example,
the Drude weight similarly drops by an O(1) amount, all the way to zero, if one takes
an integrable spin chain and adds an infinitesimal integrability-breaking perturbation.
However, at finite times the system cannot ‘resolve’ A to arbitrary accuracy, so two
points in the easy-plane phase with very similar A must have similar values of the
correlator (J(t)J(0))¢ up to some crossover time t. By systematically analyzing this
crossover time t, Agrawal et al [72] were able to obtain the asymptotic behavior of the
low-frequency conductivity. We now briefly summarize this logic.

The argument of [72] is built on the assumption that the correlator (J(¢).J(0))¢ is
monotonically decreasing with time. This assumption is consistent with the numeri-
cal evidence. We consider a generic irrational number p—for concreteness chosen to
be the golden ratio—and approximate it by a series of rational approximants ¢, with
increasingly large denominators ¢. (For the golden ratio these approximants are ratios
of Fibonacci numbers.) The expression (42) shows that the Drude weight decreases
for larger denominators, as 1/£2. Now consider the approximant ¢, with denomi-
nator £. Until a crossover time t*(¢), the current—current correlator (J(t)j(0,0))S =~
(J(t)7(0,0))5, = D(¢r). Thus the correlators for rational approximants to some irrational
number ¢ must follow the irrational behavior until some time ¢*(¢), which increases with
¢, and then saturate to their Drude-weight value.

We can use these very general observations to derive a series of scaling relations. Let
us anticipate that (J(t)j(0,0))S — D, ~ 1/t'~*, where a is an exponent that remains
to be determined. By continuity, the correlators at a rational approximant ¢, must
follow this curve until ¢*(¢), and then saturate to the Drude value. Since the curves are
continuous and (by assumption) monotonic, we find that (¢*(£))* ! ~ 1/¢%, so t*({) ~
72/ Also, since the correlator for ¢, followed the power law until time t*(¢), we can
find the d.c. limit of the conductivity as fot gy /t~1. This then yields that

gl s ro/(1-0), (43)
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Figure 4. Behavior of the current—current correlator (left) and the a.c. conduc-
tivity (right) as one tunes to the irrational point through a sequence of rational
approximants with increasing denominators. At rational points, there are finitely
many quasiparticles and the conductivity divergence is cut off at small w leading
to an enhancement of the Drude weight (by the sum rule). Reprinted figure with
permission from [72]. Copyright (2020) by the American Physical Society.

The practical significance of this last expression is that, purely by computing
the d.c. limit of the regular conductivity as a function of the approximant ¢, (a
straightforward calculation within GHD, using the results of [121]), one can fix the
exponent « that sets the a.c. conductivity at the irrational point. This allows us
(surprisingly) to compute a.c. transport properties purely in terms of GHD data.
Finally, a straightforward GHD calculation fixes o =1/2 in the relations above;
thus, o(w) ~w /2. The spectral ‘bookkeeping’ between the Drude peak and the
finite-frequency conductivity is illustrated in figure 4.

The mechanism underlying this anomalous correction turns out to be a quasiparticle
Lévy process, which one can understand as follows. As we noted above, only the largest
two strings in this model carry a dressed magnetization at half filling. Diffusion is due
to the broadening of these ‘charged’ quasiparticles (11) due to their collisions with the
smaller, neutral quasiparticles. For larger denominators, there are increasingly many
species of neutral quasiparticles to scatter off. The larger species of neutral quasiparti-
cle are rarer, but their scattering shifts are also larger, and the latter effect dominates:
if we think of the charged quasiparticle as undergoing (in addition to its ballistic prop-
agation) Brownian motion due to its scattering off the lighter quasiparticles, the step
size has a fat-tailed distribution, so the charged quasiparticle undergoes a Lévy process
as discussed in section 2.6.1. This Lévy-process interpretation has been used to inde-
pendently compute the crossover time vs denominator £ as t*(¢) ~ ¢* (confirming the
general scaling relations above) [72].

Three further comments on this result are in order. First, & = 1/2 is not the result
one would get if one made the simplest assumption about crossover timescales: namely,
that for a perturbation §, the crossover time should be ¢ ~ 1/§ by the uncertainty
theorem. Since one can achieve an error ~ 1/ with a rational approximant that has
denominator £ ~ 1/ /6 (by Dirichlet’s approximation theorem), this simple theory would
predict a =0, which is not the GHD result. Rather, it seems that perturbing the
anisotropy by an amount & gives a crossover timescale ¢t ~ 1/6%. This quadratic behavior
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is suggestive of Fermi’s golden rule, but no concrete connection has yet been shown and
finding a general a priori argument for this exponent remains an open question.

Second, it is interesting to consider how this argument is modified if, instead of
approximating a generic irrational point in the easy-plane regime, we attempt to approx-
imate the Heisenberg point via a series of roots of unity. At finite ¢, the Drude weight
D, ~ 1/¢* (42). However, calculating the d.c. conductivity yields o(f) oc £, yielding
(through the scaling relations) a = 1/3, which is the correct superdiffusive exponent
at the isotropic point.

We remark, finally, that the exponent a = 1/2 has also been confirmed numerically,
in particular in [75], which computed the finite-time current—current correlator vs A and
t. It was shown that the finite-time Drude weight (integrated up to a time ¢) has peaks
at small-denominator rationals, with width ~¢~'/2. This width follows immediately from
our argument above that the crossover timescale changes with a perturbation of § as ¢t ~
1/ 6% consequently if one fixes ¢, the width in § scales as 1 /\/t, as observed. Establishing
whether the front indeed broadens as a Lévy process is outside the scope of current
numerical techniques, but is an interesting question for future numerical work.

3.3. Beyond spin transport

In contrast to spin transport, the transport behavior for other (Zs-invariant) conserved
charges in the XXZ model is conventional, i.e. characterized by a Drude weight that in
general varies smoothly with anisotropy, with no special features at A = 1. In general,
the transport of these charges is dominated by magnons and small strings, which do not
change their character with A. Although the general formulae are known, the diffusion
constants for these charges have not been explicitly computed to our knowledge, but
there seems no reason to expect that these exhibit any anomalous features. For the same
reasons, the growth of entanglement after a quench should remain linear in time across
the transition [154]. One point that merits clarification is the broadening of operator
fronts (as captured, e.g. by the out-of-time-order correlator) discussed in [122]. The shape
of operator fronts is governed by the diffusive broadening of the fastest quasiparticles,
i.e. maximum-velocity magnons. One might wonder if these magnons are anomalously
broadened by collisions with large strings. This is not, however, the case [121]: the
scattering phase shift for a collision between a magnon and an s-string does not diverge
with s. Therefore, one expects conventional diffusive broadening of fronts [58, 122], in
both phases and also at the isotropic point.

It is still possible to detect the effects of giant magnons using Z,-even observables, at
least in the easy-axis phase, by computing the behavior of the corresponding dynamic
correlation functions along spacetime rays where z = at, o — 0 [60]. These will be dom-
inated by contributions from large, slow-moving strings, as discussed in section 3.1.3.
An information-theoretic quantity that will similarly be dominated by large slow strings
is the mutual information between two disjoint regions, in the same scaling limit [155].
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4. Isotropic Heisenberg chain

We now finally turn to the isotropic point A = 1 of the Heisenberg spin chain. From the
results of the previous section it is clear that something nontrivial must happen here:
for A < 1 spin transport is ballistic at half filling, for A > 1 it is diffusive. Thus the
isotropic Heisenberg point is a sort of dynamical critical point between two ‘phases’ of
spin transport. At the same time, from the point of view of the Bethe ansatz quasi-
particle structure, it is natural to think of this point as merely a special case of the
easy-axis regime in the limit 7 — 0. Although away from half filling one indeed finds
regular behavior (i.e. finite diffusion constants accompanied by finite Drude weights),
one encounters superdiffusion precisely at half filling. We already discussed how superdif-
fusion was discovered (see introduction). In this section we provide a unified theoretical
account of the origin of superdiffusion. We present, in turn, two different approaches
to the problem—a microscopic approach based on taking the n — 0,h — 0 limit in a
self-consistent way [56, 58—60]—and a macroscopic approach that avoids explicit Bethe
ansatz methods in favor of symmetry considerations [61]. These approaches have comple-
mentary advantages, since the macroscopic approach gives more insight into the scaling
functions and the relevance of the nonabelian symmetry, while the microscopic approach
allows one to perform quantitatively accurate calculations. We finally discuss how these
approaches can be unified, by taking an appropriate scaling limit of the thermodynamic
Bethe ansatz equations [63].

4.1. Quasiparticle content

As we already saw in the easy-axis regime of this model, the quasiparticle content
of a state does not completely specify local properties of thermodynamic eigenstates.
One additional piece of information is needed, namely the vacuum on top of which the
quasiparticles were created. (A different way to say this is that the many-body spectrum
splits up into irreducible representations of SU(2); within each SU(2) multiplet, the
Bethe ansatz describes only one particular state, which is the highest-weight state.) In
both the easy-axis regime and at the isotropic point, the magnetization (and therefore
the nature of spin transport) depends on the choice of vacuum, i.e. identical quasiparticle
distributions above different vacua correspond to physically distinct states with different
magnetization. When the Hamiltonian and/or the thermal equilibrium state breaks
the symmetry, i.e. at nonzero magnetization and/or external field, this ambiguity is
resolved. We address this general situation first, and then turn to the SU(2) symmetric
limit.

4.1.1. Quasiparticles at finite magnetization. We first consider the spectrum above the
ferromagnetic ground state in the presence of a field. If we set the quantization axis to
line up with the field, the ground state has the exact product form | || ...), and there
is a residual U (1) symmetry for rotations around the quantization axis. (It is important
to begin with the ferromagnetic state here, regardless of the sign of the couplings in the
microscopic Hamiltonian, since the Bethe ansatz vacuum-—which we will also call the
‘pseudovacuum’—is always a simple product state.) The elementary excitations above
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Figure 5. Schematic illustration of two magnons (blue) and a large string in the
Heisenberg model. The string looks locally like a ferromagnetic vacuum; the magnon
is always oriented opposite to the local vacuum, and thus changes its magnetization
as it collides with large strings.

this state are magnons, which can be understood as a single flipped spin, propagat-
ing with a quadratic dispersion; one can regard a magnon as a Goldstone mode with
dynamical exponent [31] zy = 2. In addition to magnons there exists an infinite series
of bound states or s-strings, each carrying magnetization s (the magnetization here is
the conserved charge under the U(1) symmetry).

Below, we will be concerned with the behavior of s-strings at large s. As we will see,
these giant strings have a semiclassical interpretation as solitons made up of Goldstone
modes. Their bare properties (which one can also explicitly compute using the Bethe
ansatz [2]) follow from this identification: an s-string is a slow vacuum rotation that takes
place over a length-scale ~ s and rotates the vacuum by an angle of order unity (figure
5). Thus an s-string carries bare magnetization s relative to the vacuum. Its energy
scales as 1/s, because its size scales as s while each bond along the soliton carries phase
twist 1/s and therefore (because z; = 2) the soliton has energy density 1/s?. Finally, its
characteristic group velocity scales as 1/s, since it is made up of Goldstone modes with
momenta < 1/s.

Because of integrability, these magnons and s-strings persist as stable quasiparticles
even when the system is at finite temperature, but their properties are heavily renor-
malized or ‘dressed’. The thermodynamics of the isotropic point at finite field are very
similar to those of the easy-axis regime: in particular, small strings get depolarized by
the process of passing through large strings (cf section 3.1.1). The only major change is
that the velocities now no longer fall off exponentially but as 1/s.

At infinite temperature and fixed nonzero magnetization, one can express the Drude
weight and the d.c. limit of the conductivity as follows:

vfff\ g (44)

D=3 (m)n,(1 —n,) / dr p®}

S

o= ﬁz (8hmfr\hﬁo)2ns(1 —ny) /d)\ Pt . (45)

Here, the thermodynamic quantities n,, m® behave identically to the easy-axis phase

(section 3.1.1), but the velocities decrease algebraically with s. Thus, the quantities
Jaxp s> ~ 1/s% and [ dApi|veh| ~ 1/s%. At h # 0 we can cut off the sum over
s at s = 1/h, and use the sh < 1 scaling in equation (30) for all quantities. Then we
see that D ~ h*[logh| and o ~ 1/h. These nonanalyticities at A = 0 signal the onset of
anomalous transport. In the next section we will use these scaling forms to estimate the
transport exponent self-consistently.
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Figure 6. (Left) Schematic illustration of the contributions to the current—current
correlator of three large strings, of size s, 2s, 3s respectively, at small finite h. Bigger
strings are present at lower density, but carry current for longer. The late-time
saturation value sets the Drude weight, while the area under the curve (shaded
region) for each string is its contribution to the regular d.c. conductivity. Although
each string has a finite relaxation time, summing over the strings gives a curve (solid
black line) with nontrivial relaxation behavior. Units on both axes are arbitrary.
(Right) Comparison of D(t) (48) extracted from TEBD simulations (at various
choices of bond dimension) with the exact theory prediction (shown in figure).
Reprinted figure with permission from [156]. Copyright (2021) by the American
Physical Society.

One can understand these expressions in a unified way by thinking about the Kubo
formula, o(w) = B [dt’ e« (J(t)5(0,0))°. The current—current correlator can be written
as a sum over strings. At short times, we expect each string to contribute as if it were not
dressed (since it has not undergone any collisions yet). At long times, its contribution is
constant and corresponds to the Drude weight. The d.c. conductivity is the area under
the curve (figure 6), which depends on the short-time value, the saturated value, and
the saturation timescale, which we will estimate in the next section. The conductivity
diverges at low fields because of the increased prevalence of large strings, which carry
currents for increasingly long times.

4.1.2. Quasiparticles at zero magnetization. We briefly comment now on the case of
zero magnetization. Here, any finite-s string is neutral (i.e. paramagnetic), and does
not contribute to transport. Formally, transport is due entirely to the motion of the
s = oo string. This raises a delicate conceptual issue: in the construction of GHD, one
assumes that the state of the system can be described in terms of local generalized
Gibbs ensembles on a mesoscopic length-scale ¢. Clearly this restriction is incompatible
with the s — oo limit since £ acts as a cutoff. Thus, to describe the dynamics of systems
directly at zero magnetization, one must augment GHD with additional ‘gauge’ degrees
of freedom that describe fluctuations of the GHD vacuum. We turn to these gauge
fluctuations in section 4.3. For linear response we are able to avoid directly confronting
this issue, by working at finite h and taking the h — 0 limit at the very end. Note,
however, that if one is to describe, e.g. the dynamics of nonequilibrium spin profiles
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with a magnetization profile that goes through zero, there does not seem to be any way
to avoid explicitly invoking gauge degrees of freedom.

4.2. Two simple arguments for superdiffusion

We first present two simple arguments, constructed out of the GHD analysis above,
that immediately recover the z = 3/2 exponent for superdiffusion (although not the
KPZ scaling form). These arguments avoid subtleties related to the gauge degrees of
freedom by working entirely at finite h. The former argument (made in [72, 156]) is less
quantitative at present, but perhaps more physically transparent; the latter argument
[58, 63] has the advantage of making accurate quantitative predictions for the value of
the KPZ coupling constant.

4.2.1. Argument from the Kubo formula. One can argue directly for z = 3/2 by analyz-
ing the Kubo formula, as follows. The physics of quasiparticle scattering in the (isotropic
and easy-axis) XXZ models is such that when any string encounters a larger string, it
loses its magnetization. (On the other hand, collisions with shorter strings do not have
this effect.) On short timescales, no such collision has happened and the string car-
ries a current v, yms where these are the bare values. This current is carried until a
timescale 7,y on which such a collision has taken place. We will simplify by ignoring the
A-dependence and focusing on the scaling with s. Thus the current carried by each string
on a short timescale scales as j, ~ vymg; ~ 1/s x s = O(1). Meanwhile, the time taken
by an s-string to encounter a bigger string scales as the spacing between such strings,
(Zs/>s[’s’)_1 ~ 5%, divided by the velocity difference between the two strings (which we
can approximate as the velocity of the faster string, ~1/s). Thus the timescale on which
the current carried by an s-string decays scales as 7, ~ s°.

Equipped with this information we can write the Kubo formula as

(TOTO) ~ S pye /™ m 725, (46)

Thus the dynamical exponent z falls out of these elementary considerations. Since
the velocity and magnetization follow from the way large s-strings are defined, the only
model-specific consideration in this argument was the density scaling p, ~ 1/s%. As we
will argue below, this scaling itself is not free but is fixed by the static susceptibility
sum rule.

4.2.2. Argument from self-consistent field fluctuations. We now present a slightly more
complicated, but also more quantitative, argument for superdiffusion. As noted above
this self-consistent theory involves working at finite field or chemical potential h, and
taking the h — 0 limit self-consistently. When h is small enough, the majority of trans-
port is diffusive, so one can assume the spreading of the strings that dominate transport
to be diffusive with a diffusion constant D(h) = Dy/h (equation (45)). To complete
the argument we estimate h self-consistently as a function of D, as follows. Suppose
quasiparticles have traveled over a distance ¢. The apparent field over this scale due
to thermal fluctuations is h? = 1/(4x¢). However, this scale ¢ is related to time by
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0* =2D(h()) t(£) = 4Dy /Xl t(¢). Rearranging this expression yields:
0? = (4Dg/xt)"2. (47)

The time-dependent apparent diffusion constant can be defined, in terms of the
variance of the dynamical correlation function, as [156]

d > 4
D(t) = %& [/ dx 2*(S*(x,1)5%(0,0)) | = §(4D0\/;t)1/3. (48)

Plugging in the exact analytic expression [63] for D, at infinite temperature, we
finally arrive at the prediction

2 /107 V?

where . .. denotes subleading terms. This last prediction is in very good agreement with
numerical simulations of the Heisenberg model [63, 156] (see figure 6).

4.2.8. Inevitability of z = 3/2. Superficially, both arguments above seem to use multi-
ple pieces of Bethe ansatz data to establish the properties of quasiparticles. It is natural
to ask how universal these properties are, and if they can be deduced in some more
general way. As we discussed, some properties of the quasiparticles (such as their bare
velocity and magnetization) follow from identifying them as solitonic packets of zy = 2
Goldstone modes. The fact that the dressed magnetization goes to zero at half filling
also follows from elementary considerations about the dressing of solitons. Finally, the
dressed magnetization and the filling factor n, at finite field are related by definition: in
a finite chemical potential A, the filling factor n, ~ e=hms", However, the specific scaling
of equations (44) and (45) does not seem to be fixed, nor does the scaling with s of
the dressed density of states. In fact these quantities are also highly constrained by
analyticity properties and the static susceptibility sum rule, as we now discuss.

First, let us fix the scaling of the dressed magnetization. At small h, analyticity
forces it to be linear in h. Further, excitations with hs > 1 are exponentially suppressed
at the bare level and therefore do not get screened (since screening is due to collisions
with yet larger quasiparticles). Continuity between these limits then forces m® ~ hs?
for hs < 1.

The remaining data are fixed by the static susceptibility sum rule, which we present
in a simplified scaling form

X~ Y pi(hs?)’ = 0(1), (50)

s<1/h

and this scaling immediately fixes p, ~ 1/s%. As the argument from the Kubo formula
showed, z = 3/2 immediately follows from this scaling of the quasiparticle density p,.
Since essentially all scalings in equations (44) and (45) are fixed by thermodynamics,
the only place where the dynamics of the system appears is the scaling of v, with s.
Recall that s-strings are made up of Goldstone modes with a dispersion w ~ ¢*, where
so far we have taken z; = 2 for the Goldstone theory of a ferromagnet. More generally,
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zp is an integer by analyticity. When 2z, = 1, vy does not scale with s and we simply
have ballistic transport. (This is what happens in the easy-plane phase discussed above,
where the Goldstone bosons have z; = 1.) When 2, = 3, v, ~ 1/s% in which case the
arguments above give a logarithmic divergence of the conductivity at small h, and
therefore logarithmic corrections to diffusion. Finally for z; > 3 the relevant integrals
converge at large s and one recovers diffusion [55, 62].

4.3. KPZ from the pseudovacuum

We now discuss an approach to superdiffusion in the Heisenberg chain that sidesteps
the complexities of Bethe strings. The basic idea is to treat the quasiparticle vacuum
(‘Bethe pseudovacuum’) as a dynamical degree of freedom. The fluctuating hydrodynam-
ics of the resulting long-wavelength vacuum excitations—‘soft gauge modes’—provides
an intuitive physical explanation for why KPZ universality, with its associated z = 3/2
dynamical exponent, can arise in spin chains with isotropic symmetry.

It is worth stressing that such fluctuations of the Bethe pseudovacuum have very
little to do with the low-temperature physics of the Heisenberg chain: they instead
provide one route to capturing the dynamics of symmetry-breaking excitations at all
temperatures. The reason we have to invoke the pseudovacuum at all is that there
exists (at present) no other language for explicitly describing SU(2)-symmetry-breaking
dynamics in the Heisenberg chain. This is a peculiarity of the manner in which Bethe’s
ansatz is formulated, as discussed at length below and in [61].

For example, ‘pseudovacuum fluctuations’ in the Heisenberg antiferromagnet at high
temperature correspond to soft fluctuations of the local magnetization vector, which are
unrelated to the model’s ground state physics. In particular, the fact that the Bethe
pseudovacuum is ferromagnetic is incidental; what decides the possibility of superdif-
fusive transport is whether the space of physically distinguishable reference states is
discrete or continuous. For the Heisenberg model, the space of physically distinct Bethe
pseudovacua is continuous only at the isotropic point; more generally, it is continuous
in integrable models with global non-Abelian Lie group symmetries.

4.3.1. Domain walls and a gauge principle. To see why KPZ physics in spin chains
must arise from vacuum fluctuations, and what these have to do with gauge invari-
ance, it suffices to consider the weak domain wall initial condition, p, o (1 4+ hS.)*? @
(1 — hS.)"? with 0 < h < 1, that was discussed in the introductory survey.

The ‘two-reservoir’ initial condition p = p* @ p%, with p*® both thermal states, is
a touchstone for theories of non-equilibrium dynamics. Indeed, the very first studies
of GHD [18, 19] sought to solve this initial value problem and the technique is well-
established by now. One first specifies a global quasiparticle vacuum, say |Q2) =|... 1
...) for the XXZ chain, upon which quasiparticle states can be constructed via Bethe’s
ansatz. The thermal states p'/% are then uniquely characterized by their quasiparticle

. LR
root densities ,os/A

L

ps,)\ € < 0

e :{ S (51)
ps,)\ x>0

, and a hydrodynamical initial condition that models p is given by

https://doi.org/10.1088/1742-5468 /ac12c7 39


https://doi.org/10.1088/1742-5468/ac12c7

Superdiffusion in spin chains

Thus, in principle, modelling time evolution from a weak domain wall p;, in the XXZ
chain is simple: one merely solves the initial value problem equation (51) in GHD. For
anisotropies |A| < 1, this procedure is unproblematic: stationary states with opposite
signs of their magnetization (S°) and —(S*) are described by distinct sets of root den-
sities, and ballistic transport that matches the prediction of equation (51) is observed.
For anisotropies |A| > 1, we apparently find that stationary states with opposite signs
of their magnetization are described by the same sets of root densities, so that equation
(51) predicts no bulk transport at all. This is in manifest contradiction with numerical
results. In the easy-axis phase, |A| > 1, the problem was addressed to some extent [157]
by introducing an additional Z,-valued variable corresponding to the sign of the local
magnetization, but even in this case, no generalized hydrodynamic initial value problem
has been written down that correctly models the diffusive relaxation of gj,.

The origin of this confusion is a hidden gauge principle in GHD, that was pointed
out in [61]. Let us first recall the essence of the gauge principle: suppose a physical
system has a global symmetry that is not a local symmetry. Then the global symmetry
can be promoted to a local (‘gauge’) symmetry at the price that the symmetry becomes
dynamical. To see the relevance to GHD, observe that an arbitrariness in the choice
of direction for the Bethe pseudovacuum [Q2) =|...171...) implies a global G = O(3)
(resp. G = Zy) symmetry for |[A| =1 (resp. |A| > 1). Suppose that one now allows G
to act locally in space, i.e. one ‘gauges’ the pseudovacuum symmetry GG of GHD. Then
homogeneity of the initial condition equation (51) for pj, is precisely the statement that
the weak domain wall initial condition is gauge equivalent to a stationary state.

The problem with how internal symmetries are treated in GHD is now apparent: the
erroneous prediction of ‘no dynamics’ for weak domain walls A > 1 occurs because we
gauged the pseudovacuum symmetry GG without making it dynamical, in contradiction
with the gauge principle. At this point it should be obvious that gauge dynamics is
responsible for the KPZ phenomenon in spin chains with nonabelian internal symmetry:
we now fill in the details of this argument for the Heisenberg chain.

4.3.2. Dynamics in the gauge sector. For simplicity, we focus on hydrodynamic initial
states in the Heisenberg chain that exhibit dynamics purely in the gauge sector. Such
states are gauge equivalent to thermal states, in the sense of the above discussion,
and can be constructed as follows. Consider taking an infinite Heisenberg chain and
coarse-graining it into fluid cells I' of length /¢ sites. Thermal states in each cell T'; are
specified by the expectation values of O(¢)G-invariant local charges, together with the
direction of the local magnetization vector €2; = (S;)/[|(S;)||. Let us therefore fix the
expectation values of all G-invariant local charges {S, E, Q3,Q4, ..., Q,}n~¢ to be the
same in each fluid cell, i.e. set the local quasiparticle occupation numbers {p!,}7%; to
be constant throughout the system (here S = ||(S;)|| denotes the scalar part of the local
magnetization and E the local energy density). At the same time, we allow the direction
of the magnetization vector at each site, (S;) = g(j)e., to fluctuate, with g: R — SO(3)
a smooth function that varies on some length scale /g > /.

In the hydrodynamic limit ¢, {, — oo, ¢/l — 0, this state is gauge equivalent to the
thermal state p, , via the local gauge transformation g:R — SO(3). In this scaling limit,
the gauge and quasiparticle degrees of freedom cannot interact at any finite time and are
dynamically decoupled. Thus the field g behaves as if the quasiparticle background were
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absent. By definition of g, its dynamics in the absence of quasiparticles is given by the
Hamiltonian dynamics of the Heisenberg chain projected onto the space of gauge vacua,
1Q(g)) = ®,|g(x)e.). This is nothing but the mean-field dynamics of the Heisenberg
chain and implies Landau—Lifshitz dynamics

0,02 = \Q x 0°Q, (52)

for the local pseudovacuum vector €2(x) = g(x)e, (we have restored the coupling
strength A = J/2, kept time implicit and set the lattice spacing a = 1 to facilitate direct
comparison with the Heisenberg chain).

In order to make contact with spin transport, we must first obtain the Euler-scale
hydrodynamics of equation (52). This is deceptively simple, and one soon finds that
standard parameterizations of € (e.g. spherical polar coordinates, or the usual canonical
coordinates on S?) are ineffective. The reason is that such coordinates are not invariant
under global G transformations; by Gauss’s Theorema FEgregium, any local coordinate
system on the sphere must exhibit some G-dependent singular point. To obtain G-
invariant hydrodynamic equations, one should instead work in the tangent space of G.
An ingenious and geometrically rather natural approach [158] is to treat the instanta-
neous local gauge transformation g:R — SO(3) as defining the Frenet—Serret frame of
a space curve parameterized by its arc-length x. The curvature and torsion associated
with the section g are then invariant under global G transformations by definition, and
furnish suitable coordinates for obtaining the Euler-scale hydrodynamics of equation
(52).

The essence of this idea has been rediscovered at least three times in the past century;
we refer the reader to [159] for a survey of its fascinating history. We shall follow the
treatment of [158] and let Q(z) be the tangent vector of a fictitious space curve in the
arc-length parameterization. The Frenet—Serret equations for the tangent (£2), normal
(n) and binormal (b) vectors of this curve then read

0,2 = kn,
o,n = —k§ + 7b,
0,b = —7n,

where the curvature and torsion satisfy
R = (879 : 8319)1/27 (53)
T=r Q- 0,0 x 02Q. (54)

Upon expressing the Landau-Lifshitz dynamics in terms of the fields £ = k?/2 (the
local energy density) and 7 and discarding a dispersive term in passage to the Euler
scaling limit [160], we obtain the Euler-scale hydrodynamics of the Landau—Lifshitz
evolution in the form

D€ + 0, N2ET)] = 0, (55)
ot + 0. [N1* = &) = 0. (56)

https://doi.org/10.1088/1742-5468 /ac12c7 41


https://doi.org/10.1088/1742-5468/ac12c7

Superdiffusion in spin chains

So far our treatment of the dynamics equation (52) has been exact. It may therefore
seem surprising that although the Landau—Lifshitz equation is integrable in the sense
of possessing an infinite number of local conserved densities, of which £ and 7 merely
constitute one pair, the system of equations equations (55) and (56) is closed. This
suggests that the Euler-scale dynamics of the vector 0,€2 is decoupled from the higher
conserved charges, which is not too unexpected in a local, classical field theory.

4.3.3. Coarse-graining and KPZ. Let us now move away from the idealized scal-
ing limit of the previous section and consider the effect of gauge dynamics at finite
length scales ¢ < lq < co. Since there are no useful analytical results in the latter
regime, we will proceed in the spirit of nonlinear fluctuating hydrodynamics and coarse-
grain the hydrodynamics of the pseudovacuum mode, equations (55) and (56), in a
phenomenological manner, following the method outlined in section 2.6.3.

The first (exact) step is to linearize the FEuler equations about a background sta-
tionary state. By the above results, states with constant average energy density and
torsion, £(z) = &), 7(x) = 7, are stationary with respect to the Euler-scale hydrody-
namic evolution. Note that the torsion in a thermal equilibrium state would vanish by
inversion symmetry; it will be instructive to work instead in a background that breaks
inversion symmetry (e.g. carries an energy current), so that nonzero values of 7, are
allowed. Linearizing the Euler equations about such a state, we obtain the dynamics

o0& 27’0 2(9() o0& o
o () +a (7 20 () <0 o)

One immediately runs into the problem that the linearized hydrodynamics is
unstable; the eigenvalues of the velocity matrix are given by

ey = 219 +1v/2&,, (58)

and for & > 0 predict a normal mode that grows exponentially in time. This pathology
is telling us that the hydrodynamic description equation (57) is inconsistent for general
values of &. Let us therefore set £ = 0 and see what the theory predicts. In this case, the
velocity matrix is similar to a 2-by-2 Jordan block and therefore has a single eigenvector,
that corresponds to the torsional mode d7. Notice that this peculiarity cannot arise
in standard nonlinear fluctuating hydrodynamics, which assumes implicitly that the
velocity matrix is diagonalizable [132].

We deduce that & = 0 is the only value of the bulk energy density for which a
consistent FKuler-scale theory exists and that at this value, € is not a hydrodynamic
mode. (Various physical explanations for how the energy decouples in practice have been
put forward in the literature [54, 61, 62].) Restoring nonlinearities, this leaves a single
FEuler-scale hydrodynamic equation for d7:

0,07 + 0,[2AT06T + A(67)%] = 0. (59)

To capture the effects of dissipation on this evolution, we now introduce a phe-
nomenological coupling to noise and diffusion terms, along the lines of the discussion
in section 2.6.3. For a thermal background with 7 = 0, this yields a stochastic Burgers
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equation for fluctuations of the torsion field,
06T + O [N(67)* — DO,S6T + (] = 0, (60)

with ¢ a unit-normalized white noise as in equation (26). Upon the standard mapping
[89] to a ‘height field’ 67 = 0,7, it follows that n satisfies the KPZ equation, so that
autocorrelation functions of J7 satisfy [132]

(67 (2,1)67(0,0)) = xfrez (x/(T1)*?) /(T1)*?), (61)

where the superdiffusive spreading rate I' = 21/2) and the susceptibility y = 0?/2D by
the fluctuation—dissipation relation. The significance of this result for spin transport
is that the torsion field measures the local magnetization imbalance [61]. We deduce
superdiffusive spreading of spin autocorrelation functions in the KPZ universality class,
with dynamical exponent z = 3/2.

At this point it is worth highlighting some general caveats on the use of nonlinear
fluctuating hydrodynamics as a tool for understanding anomalous transport. Fluctuat-
ing hydrodynamics is by design an effective field theory; as such, equation (60) is not
expected to predict the exact value of the KPZ coupling constant A, which is renor-
malized from its bare value by the approximations leading to equation (60). Similarly,
the prediction of a KPZ scaling function from equation (60) holds insofar as the tor-
sional mode is decoupled from all other hydrodynamic modes in the system at long times
[161]. While this is plausible in certain classes of physical states in SU(2)-symmetric spin
chains, it would be premature to conclude that a single, decoupled, hydrodynamic mode
is responsible for z = 3/2 superdiffusion in every spin chain with nonabelian internal
symmetry.

4.4. From giant solitons to pseudovacuum fluctuations

A formal unification of the ‘microscopic’ and ‘macroscopic’ perspectives on superdif-
fusion, described respectively in the two sections above, can be achieved by taking
a particular formal limit of the GHD equations at finite h [63]. From the discussion
above we have already identified the dominant strings at field h to be those for which
sh = O(1). In the small-h limit, these strings get very large compared with the lattice
scale, so one might expect to be able to treat them as classical solitons in the continuum.
Such a correspondence between the long-wavelength spectra of an integrable quantum
lattice model and the classical continuum Landau—Lifshitz theory indeed exist, as shown
in [63]. Importantly, this correspondence holds at finite temperature, at the level of the
thermodynamic Bethe ansatz equations, rather than above the vacuum.

The key observation underlying this construction is that at small h, a very large
number of strings ~1/h contribute to transport; thus, if we define a variable & = sh,
spin transport is dominated by £ ~ 1 no matter what the value of h is. However, for
small h the sums over s can be replaced, using the Euler—Maclaurin formula, by integrals
over the continuous variable £ (which denotes the rescaled size of the soliton). Thus for
example one can write the expression for the diffusion constant as

D = /d§ duD (&, u). (62)
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Here we have also rescaled the rapidity as © = hA. One can also write rescaled ver-
sions of the thermodynamic Bethe ansatz and GHD equations for the XXX model more
generally. As an important example, we discuss the scattering kernel:

L v+ e+

Tee(w) = 1oz 1y L (g (63)

This equation can be identified with the scattering phase shift of two classical solitons
in the Landau—Lifshitz field theory [162, 163]. Indeed, a more careful analysis shows that
all the thermodynamic properties of the XXX spin chain and the classical soliton gas
are in one-to-one correspondence [63].

What does this correspondence teach us? Consider fixing a hydrodynamic cell size
¢ and taking hf¢ < 1. Spin transport in this limit is dominated by giant solitons of size
s= 1/h > (. These giant solitons are equivalently described by the continuum limit of
the classical theory [158] (i.e. by the Landau-Lifshitz model). This confirms the phe-
nomenological identification of the Landau—Lifshitz model as the correct coarse-grained
theory of pseudovacuum fluctuations, and also allows us to read off the renormalized
coupling constant of this Landau—Lifshitz theory from exact Bethe ansatz data. In
this sense, the scaling limit described above unifies the microscopic and macrosopic
approaches to superdiffusion.

4.5. Open questions

Having introduced various fundamental notions that explain the emergence of an anoma-
lous dynamical exponent z = 3/2 in spin chains, we close this section by outlining the
most pressing questions that remain unresolved.

The most ambitious goal is simply stated: a first-principles derivation of KPZ univer-
sal behaviour, including the z = 3/2 exponent and the conjectured KPZ scaling function,
from Bethe’s ansatz. While the arguments outlined above provide a detailed physical
intuition for how KPZ physics comes about in the Heisenberg chain, strictly speaking
none of them are at a level of rigour comparable to the understanding of ballistic trans-
port in integrable systems [164]. Since this seems to be primarily a technical exercise,
and moreover one that is well beyond reach of present techniques, we will not dwell on
it further and instead focus on more concrete challenges for future work.

Let us begin with refinements of the discussion in section 4.3. There we outlined one
possible route to the fluctuating hydrodynamics of the Landau-Lifshitz equation. In
fact, there does not seem to be a well-developed theory of fluctuating hydrodynamics for
nonlinear target spaces, and some non-trivial geometrical questions arise in the coupling
to noise and dissipation. Second, as already stressed in section 4.3, a proper treatment of
the pseudovacuum dynamics seems to require a manifestly ‘gauge covariant’ formulation
of GHD, that does not yet exist. (Concretely, a hydrodynamical initial value problem
that correctly models relaxation of the weak domain wall pj, has not been written down.)
Finally, we observe that first-principles derivations of coupling to a local bath, as is
required for classical KPZ physics (cf equation (60)) are possible in closed, Hamiltonian
quantum systems, but they generally require introducing a UV length-scale ¢ and using
the Keldysh formalism to integrate over degrees of freedom at wavelengths < £. To
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our knowledge, this has not been attempted in integrable systems; the natural setting
for such an approach is not the Heisenberg chain but rather the continuous integrable
quantum field theories that have been conjectured to support anomalous spin transport,
such as the O(3) NLSM on a line [55].

From the kinetic-theory perspective, two important issues remain somewhat unset-
tled. First, the arguments we have provided so far seem incapable of establishing the
form of the full dynamical structure factor, or even of the optical conductivity in gen-
eral. In some ways the most physically complete of these theories is that in which we
work directly with the Kubo formula and the screening-time ansatz; however, at present
this approach has not been made fully quantitative, and has not been extended beyond
the zero-momentum limit. Second, and more importantly, it is not clear what happens
beyond linear response. If we consider domain walls between half-lines with chemical
potentials +h, the KPZ scaling observed as h — 0 eventually gives way to log-diffusion
as h — oo (see section 6). Understanding the physics of this crossover is an important
task for future work.

5. Models with higher-rank nonabelian symmetries

As discussed in section 4, general theoretical arguments suggest that the phenomenon
of infinite-temperature superdiffusion (with dynamical exponent z = 3/2) is common to
all integrable models with short-range interactions that exhibit global invariance under
a nonabelian Lie group. That there might be an entire universality class of integrable
systems that exhibit anomalous transport was first conjectured from Bethe ansatz cal-
culations in [56]. A persuasive case for a universal phenomenon, enabled by nonabelian
symmetry and protected by integrability, was made in [49] on the grounds of numerical
tDMRG simulations, which provided evidence for z = 3/2 spin transport in integrable
chains with SU(3) and SO(5) symmetry. Subsequently, superdiffusion was demonstrated
both numerically and analytically [54] in the canonical example of an integrable system
with higher-rank nonabelian symmetry, namely the one-dimensional Fermi-Hubbard
model with global symmetry group SO(4) = [SU(2) x SU(2)]/Zs. Recent work has uni-
fied the theory of superdiffusion in integrable systems with nonabelian symmetry [55],
by demonstrating that a z = 3/2 dynamical exponent can be deduced from structural
features of the thermodynamic Bethe ansatz in a wide range of models, including infi-
nite families of integrable spin chains invariant under the classical Lie groups SU(N ),

SO(N) and Sp(N).

5.1. Higher-rank ferromagnetic spin chains

Let us summarize here the main properties of integrable quantum spin chains with
global invariance under a simple Lie group G [165]. We assume, in addition, that local
degrees of freedom transform in an arbitrary unitary irreducible representation of the
Lie algebra g and that interactions have finite range. This ensures that the quasiparticle
spectrum always involves r = rank(G) different types of elementary excitations; one can
simply picture them as magnons of distinct flavors a = 1,...,r. Due to mutual attrac-
tion, magnons of the same flavor can form bound states with s constituent magnons
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binding into a Bethe s-string of arbitrary size (s € N). When g is a simple Lie alge-
bra, magnons of different flavors cannot bind together; this is different in models with
fermionic local degrees of freedom, such as the Fermi—Hubbard model discussed below.
In G-invariant spin chains, the complete spectrum of thermodynamic excitations can
therefore be arranged on nodes of an a x s lattice (corresponding bijectively to unitary
irreducible representations of g, graphically represented by rectangular Young diagrams).

Magnon excitations of different flavors arrange themselves in a nested hierarchy,
defined with respect to a specific choice of the continuously degenerate ferromag-
netic pseudovacuum. The elementary excitations above it are normally called primary
magnons (assigned a = 1); they represent spin-waves formed out of flipped spins in a
uniform background. When r > 1 however, spin projections onto the quantization axis
can be lowered multiple times. Subsequent ‘flips’ lead to the notion of auxiliary magnons,
which may be conveniently visualized as magnon waves of flavor a that propagate in
a sublattice of magnons of flavor a — 1. In this sense, only neighboring flavors inter-
act with one another. In any finite volume, quasimomenta for each flavor of magnons
become quantized according to the nested Bethe ansatz equations [166]. While the total
energy and momentum of an eigenstate are only functions of primary magnons, they
are nonetheless affected by auxiliary magnons indirectly via the Bethe equations. Giant
magnons refer to s-strings of flavor a at large s.

Unitary quantum chains. We further elaborate on the structure of quasiparticle spec-
tra for the class of SU(N )-symmetric quantum spin chains. For a more complete account
(covering other classes of models, including higher-rank integrable QFTs), we refer the
reader to [55]. Let us here assume, mainly for simplicity, that local degrees of freedom
transform in the fundamental representation of su(/N). This leaves us with a family of
integrable Hamiltonians (for arbitrary N > 2) of the simple form H ~ ) 1I,,.,. Here
Mo ® B) = |f ®«a) denotes the permutation (swap gate) that exchanges the state on
site ¢ with that on the adjacent site ¢ + 1 in the product Hilbert space of the chain. In
the simplest case of SU(2), this yields (modulo an overall scale and constant shift) the
familiar isotropic Heisenberg spin-1/2 chain.

The task at hand is then to characterize finite-temperature linear response in such
SU (N )-symmetric integrable quantum chains, focusing again on the Noether charges.
We thus introduce grand-canonical equilibrium states by including the full set of N — 1
Cartan charges in the G-invariant Gibbs state. This breaks the global G-invariance,
reducing it down to the abelian (torus) subgroup U (1)®¥~1. The effect of such an explicit
breaking of symmetry is that the conductivity tensor in the sector of the Noether charges
(of dimension N — 1) becomes non-trivial. Its structure is nevertheless still dictated by
the full SU(N) symmetry group of the Hamiltonian. (This is discussed in greater detail
in section 8.2 for the case of classical Landau—Lifshitz ferromagnets on coset spaces
G/H.)

This complication aside, in the unbroken symmetry sectors the outlined arguments
for the Heisenberg model generalize quite directly to SU (N )-symmetric integrable chains
and also to other models that possess higher-rank symmetries. In this respect it is once
again crucial that all integrable G-invariant ferromagnets feature continuously degen-
erate ground states (i.e. pseudovacua) whose low-lying excitations are type-II (zy = 2)
Goldstone modes. Since these can grow into interacting giant magnons (yielding a finite
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contribution to static susceptibilities), the formal requirements for z = 3/2 superdif-
fusion remain fulfilled. Indeed, in [55] the TBA equations for the SU(N) spin chains
are solved explicitly, confirming that the dynamical scaling properties inferred from the
Heisenberg model are robust to the choice of global nonabelian Lie group symmetry.

There is nevertheless one major difference relative to the SU(2) case worth high-
lighting. We remind the reader that in section 4.2, we computed the diffusion constant
in the presence of a finite chemical potential A, which was subsequently determined in a
self-consistent manner. In the SU(N) case (and more generally), where multiple chemi-
cal potentials enter the description, one can find special surfaces of enhanced symmetry
in the parameter space, where the residual symmetry group still contains a nonabelian
subgroup; the basic example would be an SU(3) model, where there is a choice of chem-
ical potentials that induces symmetry breaking down to SU(2) x U(1). In this scenario,
there is residual superdiffusion even in the presence of finite chemical potentials (albeit
only for charges that do not acquire finite expectation values). It is not currently under-
stood how to deal with these special lines and it thus remains an open problem to
generalize the self-consistent argument for computing the KPZ coefficient to this case.

Goldstone modes and stacks. We have already discussed how anomalously large
contributions of giant magnons in the spectrum result in divergent charge diffusion
constants. At low momenta or, equivalently, large rapidities, such giant magnons admit
a purely classical description and manifest themselves as interacting nonlinear waves of
an integrable classical field theory. Remarkably, one finds that they correspond to soli-
ton modes of higher-rank Landau—Lifshitz ferromagnets [53, 55, 167]|. Below we briefly
outline two complementary viewpoints on this correspondence.

Most directly, and with no recourse to integrability, the effective classical Lan-
dau—Lifshitz action can be obtained by projecting the Hamiltonian dynamics of a
G-invariant quantum spin chain onto the many-body coherent-state manifold [53]. Tak-
ing the continuum limit, one ends up with a purely classical field theory that lives
on a coset space GG/H, whose points are in a bijective correspondence with Perelomov
G-coherent states. The subgroup H C G leaves the pseudovacuum invariant (modulo
a phase). For example, in the case of unitary Lie group symmetry G = SU(N + 1),
one finds a family of integrable Landau—Lifshitz models on complex projective target
spaces CPY = SU(N + 1)/[SU(N) x U(1)], that are described in more detail in section
8.2. Remarkably, the resulting classical, mean-field equations of motion turn out to be
integrable (integrability is unfortunately not manifest in this approach).

An alternative approach is to perform all computations within the framework of
algebraic Bethe ansatz. This approach provides a direct means to derive the (classical)
Lax pair which realizes an auxiliary linear problem, along with the associated mon-
odromy matrix. From this viewpoint, classical spin-wave solutions emerge as solutions
to the Bethe equations in the low-energy sector (above the ferromagnetic pseudovac-
uum), describing eigenstates with long wavelengths and vanishingly small momentum
P ~ O(1/L) at large length L. In this way, one can retrieve the entire spectrum of classi-
cal (finite-gap) solutions [168—171]; individual nonlinear modes can be understood, from
the viewpoint of a quantum chain, as macroscopic coherent condensates of magnons. We
emphasize that giant magnons are rather special in that their constituent magnons (i.e.
the Bethe roots) are equidistant, implying that their associated condensates have a

https://doi.org/10.1088/1742-5468 /ac12c7 47


https://doi.org/10.1088/1742-5468/ac12c7

Superdiffusion in spin chains

constant, unit spectral density [172, 173]. At the classical level, such uniform conden-
sates describe solitons. Solitons are particular localized nonlinear field configurations
that behave (asymptotically) as quasiparticles. Scattering of solitons is purely elastic
and governed by a completely factorizable scattering matrix, just as for other Bethe
ansatz solvable models. In classical systems invariant under the action of a nonabelian
Lie group, solitons can be thought of nonlinear analogues of Goldstone modes stabilized
by integrability.

The above picture suggests there is a simple correspondence between giant Bethe
strings in quantum chains and classical soliton modes of Landau—Lifshitz-type models
on the corresponding coset spaces. However, in attempting to establish this correspon-
dence directly, one encounters the following puzzling fact: the number of distinct flavors
r does not match the number of Goldstone modes. As discussed in detail in [55], this
discrepancy is resolved by the presence of emergent classical degrees of freedom. For an
illustration, let us consider an integrable quantum chain with SO(5) symmetry. Since
the group has rank 2, one would naively expect the low-energy fluctuations above the
ferromagnetic pseudovacuum to comprise two magnon branches. On the other hand,
by the general Goldstone theorem [174-176] there should instead be three Goldstone
modes in the spectrum, corresponding to half the real dimension of the classical target
space SO(5)/[SO(3) x SO(2)]. This mismatch can be elegantly resolved by introducing
additional types of excitations called ‘stacks’, which are emergent excitations of mixed
flavor where auxiliary magnons glue onto the primary one [55] (also found in a super-
symmetric sigma model [169]). Even though in many-body quantum eigenstates, such
stacks are prohibited simply by the Pauli exclusion principle, at the classical level they
become allowed and should be treated as independent modes. Physically speaking, such
stack degrees of freedom represent all possible polarizations in which a classical field
(with internal structure) can oscillate.

Stacks are present also in SU(N') chains, despite the fact that in this simpler set-
ting, » = N — 1 correctly describes the number of Goldstone modes associated with
complex projective manifolds CPY ! = SU(N)/[SU(N — 1) x U(1)]. Even in this case,
the Goldstone modes correspond to stacks and not to auxiliary magnons (we remind the
reader that auxiliary magnons cannot be excited without first having primary magnons
in the state, and thus cannot correspond to proper Goldstone modes, which are phys-
ical excitations). A graphical algorithm for inferring the total number of such physical
stacks (based on paths on a Hasse diagram of the underlying root lattice) is described
in [55].

5.2. Fermi—Hubbard model

We now discuss the most experimentally relevant integrable system with nonabelian
higher-rank symmetry, namely the Fermi—-Hubbard model [166]

L L
1 1
H=-) > (cCiotchicn)+U) (ﬂm - 2) (”m - 2) . (64)
=1

i=1 oe{td}
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The model exhibits an SU(2) spin-rotation symmetry; moreover, when the chemical
potential is tuned precisely to the particle—hole symmetric point, the model has an
SU (2) particle-hole symmetry. These two symmetries combine to yield the global Lie-
group symmetry [SU(2) x SU(2)]/Zy = SO(4) (for even length L) when both charge
and spin degrees of freedom are at half filling. By virtue of integrability, this symmetry
gets elevated to that of an infinite-dimensional Yangian Y [SO(4)] [177].

The Hubbard model can be diagonalized by nested Bethe ansatz [166, 178]. Its
thermodynamic quasiparticle content is however, owing to its intrinsically fermionic
character, markedly different from the magnonic spectrum of G-invariant ferromagnetic
chains described above. A closer look shows that the model is closely related (from an
algebraic viewpoint) to another integrable model of interacting spinful fermions exhibit-
ing global invariance under the Zy-graded Lie algebra (also known as a Lie superalgebra)
SU(2|2), introduced in [179]. The local Hilbert space of the Fermi—Hubbard model is the
four-dimensional fundamental representation of su(2|2). The latter contains two copies of
a bosonic su(2) subalgebra, with Cartan generators S* = 3(ny —ny) and N, = ns + ny,
corresponding to spin and electron charge, respectively.

Elementary momentum-carrying charge excitations above an empty vacuum rep-
resent unbound spin-up electrons. There is however an infinite tower of additional
(auxiliary) spin excitations that correspond to flipping spins of individual electrons.
Much like in other interacting spin chains, quasiparticles of the Fermi—Hubbard model
include bound states. This time however, spin degrees of freedom not only form Bethe
strings of their own (which do not carry electron charge), but also combine with electrons
into spin-neutral compounds that carry finite electron charge [178].

As far as spin and charge transport are concerned, the phenomenology of the SU(2)
Heisenberg chain survives with no substantive differences: away from half-filling one finds
ballistic transport with finite spin and charge Drude weights, which both vanish precisely
at their respective half-fillings as a consequence of particle-hole symmetry [71, 116]. At
the level of quasiparticles, this is manifested through vanishing of dressed magnetization
and charge respectively. Moreover, in approaching half-filling the respective diffusion
constants diverge [56]. It was shown in [54] that the arguments developed in the previous
section for the Heisenberg chain carry through with little modification for the Hubbard
model, and predict KPZ universal behaviour for both spin and charge transport at their
respective half-fillings. The associated z = 3/2 dynamical exponent is clearly visible
in numerical tDMRG simulations [54]. We remark that some earlier numerical papers
had seen evidence for diffusion [180, 181], but the charge (spin) diffusion constant is
analytically known to diverge in the half-filling (zero-magnetization) limit [56].

5.3. Matrix models in discrete space-time

In another recent paper [53] the authors studied charge transport in a family of
nonabelian integrable models by constructing a class of classical ‘circuit models’ with
matrix-valued local degrees of freedom that propagate on a discrete space-time lattice
(generalizing the construction of [52]). The matrices takes values on certain compact
manifolds: complex Grassmannian manifolds Gre(k, N) = SU(N)/S[U(N — k) x U(k)]
(including complex projective spaces CPY! as a special case for k = 1), or Lagrangian
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Grassmannians L(N) = USp(2N)/U(N ). The coset manifolds Gre(k, N) consist of Her-
mitian complex matrices of dimension N which square to one, whereas L(IN) are
manifolds of complex 2N-dimensional anti-symplectic unitary matrices M*JM + J = 0
(with symplectic unit .J) that satisfy M? = MM' = 1. These families of models are
none other than integrable discretizations (or Trotterizations) of classical nonrelativistic
Landau—Lifshitz-type field theories that govern the low-energy sector of integrable fer-
romagnets [55]. In particular, classical field theories with CPY~! target spaces (see also
section 8) describe the long-wavelength solutions to integrable SU (V) quantum chains
with fundamental degrees of freedom.

One particular advantage of working in a purely discrete setting is that it allows
for an explicit integration scheme that consists of decomposing the many-body prop-
agator into a sequence of two-body symplectic maps ®,: M x M — M x M, with 7
playing the role of a discrete time-step. For the class of models considered in [53], the
map ¢, maps a pair of input matrices M; and M, to an output pair M| and M,
via [53]

M! = Adpg (M), M, =Adpg (M), with S, (M, M) =M, + M,+ir, (65)

where the twisting matrix F' is a constant (invertible) GL(N;C) matrix representing
an external field and Adx (M) = X ' MX is the adjoint action of X on M. As shown
in [53], such maps arise from a fully discrete zero-curvature principle as a compatibility
condition for linear transport around an elementary plaquette on a lightcone square
lattice, with a linear Lax connection L(A) = A 4+ iM; from this perspective, integrable
matrix models in discrete space-time have an exceptionally simple integrable structure.

Together with their G-valued Noether charges, integrable matrix models possess
infinitely many conserved quantities in involution. One might therefore expect that
they share universal features of transport in common with other integrable systems
with nonabelian symmetry [49, 55, 56]. Numerical simulations [53] confirm that this is
indeed the case. In fact, the long-time behavior of dynamical correlation functions not
only exhibits the anticipated KPZ dynamical exponent z = 3/2, but also provides some
of the best numerical evidence for KPZ scaling profiles in this entire (quantum and
classical) class of models.

6. Nonthermal initial states

In previous sections, we have discussed various types of spin transport that take place
in thermal equilibrium, where spreading of fluctuations on a hydrodynamic scale can
be quantified by linear-response transport coefficients. More broadly, hydrodynamics
captures the non-linear response of physical states that are globally far from equilibrium,
provided such states are locally in equilibrium.

One of the most common settings for studying such far-from-equilibrium behaviour
within GHD is the Riemann problem, as discussed above around equation (51). The
initial state of a system is prepared in a factorizable form, with each half initialized
in its own local equilibrium state; the evolution is stationary everywhere except at the
interface of finite width in the middle where there a mismatch in temperature or chemical
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potentials. On the ballistic (Euler) scale, the Hamiltonian evolution generates dynamics
within a light-cone that spreads from the interface. Studies of such initial conditions
in spin chains date back at least twenty years [182, 183]. On the theoretical side, the
Riemann problem for the easy-plane XXZ model is well-understood by now within the
framework of GHD [19, 23, 73, 116, 184]. For the Riemann problem in the easy-axis
XXZ model, a recent study [157] found that the magnetization exhibits abrupt jumps
that lie outside the scope of conventional GHD. These jumps were explained in terms
of the motion of giant quasiparticles. However, the general Riemann problem for the
easy-axis and isotropic XXZ models still remains largely unresolved (cf section 4.3). We
remark in passing that the Riemann problem was recently generalized to the case of two
half-chains with different Hamiltonians [185, 186], for systems with ballistic transport; it
would be interesting to generalize these ideas to systems where one or both half-chains
exhibit anomalous transport, but this remains to be done.

In this section we review recent progress on the nonequilibrium dynamics of two
simple and experimentally accessible examples of non-thermal initial states, namely
magnetic domain walls and spin spirals.

6.1. Domain walls

The melting of a magnetic domain wall provides one of the cleanest problems in out-
of-equilibrium dynamics, at least from a conceptual standpoint. This problem can
be understood as an extreme case of the Riemann problem, where each of the two
infinite partitions is initialized in a distinct ground or anti-ground state. In the fol-
lowing, we review the current status of this problem, focusing on the best studied
example of the anisotropic spin-1/2 Heisenberg chain and its classical counterpart—the
Landau-Lifshitz classical field theory with uniaxial anisotropy.

Depending on the interaction anisotropy along the z-axis, the following three
dynamical regimes can be discerned:

e The easy-plane regime, showing ballistic transport,

e The easy-axis regime, showing absence of transport,

e The isotropic ‘critical point’, showing anomalous diffusion that is conjectured to be
logarithmically enhanced diffusion.

In the rest of this section, we discuss the underlying microscopic mechanisms and
offer some basic physical intuition for each of these dynamical laws.

The central point to address first is how to quantify magnetization transport far
away from equilibrium, where linear response can no longer be assumed. An intuitive
choice is to quantify melting by measuring the growth of net magnetization in one half
of the system [183]

m(t) = lwdx S*(x). (66)

Equivalently, one can compute the time-integrated spin current density at the mid-
point z = 0. A spreading exponent « can then be inferred from the asymptotic long-time
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behaviour m(t) ~ t*. Exponents a = 1 and o = 1/2 correspond to ballistic and diffusive
transport respectively, while o = 0 signifies lack of transport.

6.1.1. Quantum Heisenberg spin-1/2 chain. The first systematic study of the domain
wall dynamics in the Heisenberg spin chain was carried out in [183], which reported three
distinct behaviours: ballistic dynamics in the easy-plane regime (with linear magnetiza-
tion profiles resembling the free-fermion point [182]), an apparent lack of transport in
the easy-axis regime, and anomalous transport with a numerically estimated superdif-
fusive dynamical exponent o &~ 3/5 at the isotropic point. This problem was revisited a
decade later [187, 188], using tDMRG techniques that represent the state-of-the-art at
the time of writing.

Ljubotina et al [187] studied a more general initial-value problem, consisting of a
one-parameter family of initial product states |¥) = (cos(6y/2)|1) + sin(6y/2)[4))*/? ®
(sin(6y/2)[1) + cos(y/2)|4))®*/?, which interpolates between two tilted ferromagnetic
domains (recovering |Upyw) for 6, = 0). By measuring the asymptotic growth of m(t) =
f(fdt’j(O, t') for j(0,t) = (¥(t)|j]¥(t)), it was estimated numerically that m(t) ~ t* with
a =~ 1/2 for values of the tilting angle 6, except close to 6y = 0 where a pronounced
drift towards « ~ 3/5 was observed. Despite this anomaly, the authors conclude in favor
of normal diffusive spreading. In addition, they propose a classical mean-field equation
in the space of product spin-coherent states which, in the continuum limit, yields a
single-particle Schrodinger equation. The approximation becomes exact in the small-
bias (linear response) regime, yielding an explicit formula for the resulting magnetization
profile in terms of Fresnel functions.

A follow-up study [188], focused on the fully-polarized domain wall, investigated the
possibility of modified diffusive spreading by fitting numerical data to various types
of correction terms. Even though [188] could not rule out normal spin diffusion, it
nevertheless provided convincing evidence for a marginal enhancement of diffusion, in
the form of a multiplicative logarithmic correction, while concluding that ‘... time is
ripe for analytical investigations of this vexing problem, either by using integrability or
by studying some effective and simplified models. . .’ .

FEasy-plane regime. In the easy-plane regime, magnetization transport is ballistic
at the linear-response level. As explained in section 3.2, magnetization is transported
through the system by two distinguished quasiparticle species that (in distinction to
other quasiparticles in the spectrum) remain polarized (i.e. carry finite dressed mag-
netization) even when the background state has no net magnetization. The presence
of such special excitations is intimately tied to the existence of quasilocal conservation
laws that break Z, invariance of the Hamiltonian [116]. This picture remains valid even
far from equilibrium.

The domain-wall problem in the easy-plane phase has been formulated in the lan-
guage of GHD [73]. Remarkably, the corresponding dressing equations are algebraic and
allow for a closed-form solution. Indeed, the evolution of the domain wall profile only
involves the special pair of quasiparticles at roots of unity, with rapidity-independent
Fermi occupation functions. Moreover, when the anisotropy parameter corresponds to a
rational multiple of 7 (such values densely fill the easy-plane interval) one again encoun-
ters the discontinuities that were discussed above in the context of the spin Drude weight.
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Nevertheless, by taking the denominator ¢ — oo while keeping the parameter v finite,
the discontinuities gradually diminish and the magnetization profile smears out into a
linear slope.

One distinguished property of the domain-wall state is that in the easy-plane regime,
quasiparticles that constitute the domain wall experience no dressing [73]. This allows for
a curious reinterpretation of the dynamics in terms of noninteracting fermions confined
to a rescaled Brillouin zone. Based on this picture, it was further argued in [73] that
in the neighborhood of the quasiparticle front the characteristic scaling is no longer
of the Tracy-Widom type ¢'/3, in contrast to what happens for free fermions [189]. In
addition, they suggested that magnetization profiles near the isotropic point A — 1~
exhibit diffusive characteristics z/t'/2. The nature of quasiparticle fronts in the domain
wall problem was clarified in subsequent studies [190, 191]. The main point is that two
sharply defined fronts emerge as the domain wall melts: the interacting front, z;/t =

V/1 — A?, which defines the edge of the bulk ballistic profile, and the free front, x;/t = 1,
which defines a kind of (ballistic) Lieb—Robinson bound for magnon dynamics [191].
Away from the free-fermion point, A = 0, whose front-scaling is well-understood [189],
we have x; < x¢, leading to front-scaling distinct from the non-interacting case.

Diffusive scaling at the interacting front x; is supported by stationary phase calcu-
lations, and shows reasonably good agreement with numerics [73, 191]. However, it is
worth stressing [190] that such scaling does not arise from diffusion in the conventional
sense, as there is no microscopic mechanism that can generate a local Markovian bath
(120, 122, 192, 193].

The free front arises due to an inhomogeneity in energy, 6 = —JA /2 at the domain
wall itself, that forms a subextensive, lattice-scale correction to the standard hydrody-
namic initial condition equation (51). The resulting excitation is maximally localized
and therefore possesses maximal uncertainty in velocity, generating excitations that
travel faster than the bulk ballistic front. Such excitations travel in vacuo, and thus
exhibit free-fermionic behaviour in the vicinity of the free front z¢, characterized by
subdiffusive /3 spreading [190]. Although this behaviour can be understood in terms
of Tracy—Widom statistics (magnetization profiles near the free front are proportional
to a spatial derivative of the Airy kernel) [190], it differs from the free fermionic case
insofar as the spatial probability distribution function of the fastest quasiparticle is no
longer Tracy—Widom [73, 191].

Easy-azis regime. For gapped domain walls (A > 1) in the XXZ model, the bulk
magnetization dynamics freezes at long times [183, 194]. This effect is caused by stable
kink configurations, which become additional degenerate ground states [195, 196] in
the thermodynamic limit. In the regime of weak anisotropy A — 17, the asymptotically
frozen magnetization profiles were found to be well-described by static soliton profiles
of the classical anisotropic Landau-Lifshitz equation, with no fitting parameters [197].
By exploiting integrability, this correspondence can actually be made precise [173]. The
classical Landau—Lifshitz dynamics even predicts the relaxation time to such profiles,
which has been numerically verified [197] to scale as 7 ~ (A —1)~'. Modelling both
this relaxation and the frozen steady state is currently beyond GHD, for the reasons
discussed at length in section 4.3.
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As in the easy-plane regime, corrections to this bulk profile arise from the inhomo-
geneity in energy at the domain wall [190], and again yield a non-interacting ballistic
front at z; =t with subdiffusive t'/® broadening. The non-interacting front can be
described analytically as A — oo by writing down an effective Hamiltonian for the
single-magnon hopping problem [198]. The appropriate generalized hydrodynamic ini-
tial condition in this limit consists of a delta function in the single-magnon sector at the
origin, and is given to leading order in 1/A by

!
N

Note that since the quasiparticles travel in a bulk pseudovacuum, there is no dressing.
By the results obtained for a single magnon in [190], the mapping equation (67) predicts
profiles of energy, spin and entanglement entropy near x; that are asymptotically exact
as A — oo.

Isotropic point. There are few analytical results available for the isotropic point
at present and it would be premature to offer any definite conclusions on this topic.
However, there exist two notable exact results that seem to support (albeit indirectly)
the conjectured logarithmically amplified diffusion law [188]. The first is an analyt-
ical solution of the domain wall dynamics in the classical isotropic Landau—Lifshitz
model, covered below in section 6.1.2; in this problem, the logarithmic correction is
due to a logarithmic divergence in the density of states. On the grounds of a conjec-
tured quantum-—classical correspondence [199], it is expected that this anomalous feature
survives quantization. Another hint in favor of a multiplicative logarithmic correction
comes from an exact expression for the return probability amplitude computed in [200],
reading R(t) ~ v/t exp(—cv/t) with ¢ = 77Y/2¢(3/2). (Once again, there is an additional
non-interacting front at x; = t that exhibits subdiffusive #!/% broadening [51, 190].)

p1i(T) 6(x), pni(x) =0, n=23,.... (67)

6.1.2. Domain wall in the Landau—Lifshitz ferromagnet. Obtaining an exact solu-
tion to the quantum domain wall problem (or even a hydrodynamic description on
a sub-ballistic scale) remains out of reach, even for the integrable spin-1/2 XXZ chain.
This motivates addressing the classical analogue of the same problem first. A universal
description of long-wavelength ferromagnetic fluctuations in extended systems is given
by the classical Landau—Lifshitz equation [201], which in one spatial dimension takes
the form (cf section 4.3)

S;,=Sx8S,,+SxJS, (68)

where S is a spin field (S-S = 1) on the unit two-sphere and J = diag(0, 0, 0) diagonal
an anisotropy tensor parameterized by §. The Landau—Lifshitz equation is a canonical
example of a completely integrable PDE [162, 163, 202]. It is solvable by the classical
inverse scattering method, which represents one of the high points of twentieth-century
mathematics [203, 204] and was elevated to an art form by the Leningrad and Kyoto
schools of mathematical physics [163].

Even though the one-dimensional Landau-Lifshitz equation has been studied exten-
sively [163, 201], the domain-wall initial value problem was not attempted until very
recently [199]. What is perhaps most remarkable is that the classical version of the
melting domain wall problem features the same dynamical behavior as the quantum
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Heisenberg chain [199]. The quantum domain wall problem thus provides one example
of a strongly non-equilibrium quantum problem that can be understood at the level of its
(continuum) classical mean-field dynamics. The validity of the classical Landau—Lifshitz
description was subsequently investigated in greater detail in a comprehensive study
[197]. This phenomenology seems to be independent of integrability; for example it
applies equally to spin-1 chains [205]. An intuitive way to understand this physics is
via the observation that the domain wall is a very low-entanglement initial state, whose
dynamics is therefore well-approximated by a time-dependent variational principle [206]
with low bond dimension yx, which recovers mean-field dynamics in the limit y = 1.
Meanwhile, the continuum approximation becomes justified at long times [197]. This
combination of low entanglement and long wavelengths yields time evolution that is
qualitatively (and in some cases quantitatively [173, 197]) similar to the continuum
mean-field description equation (68).

Before turning our attention to magnetization dynamics, we wish to quickly famil-
iarize the reader with a few central ingredients of the inverse scattering transform (IST)
[207] for classical integrable systems. Intuitively, the IST can be thought of as a non-
linear analogue of the Fourier transform: every phase-space configuration allows for
a unique decomposition into decoupled, nonlinear harmonics. More precisely, the IST
allows for a systematic construction of action-angle variables. This can be achieved
via a geometrical formulation proposed by Lax [204], in which the nonlinear evolution
equation to be solved is recast as a linear equation for an auxiliary field, whose space-
time evolution is encoded as parallel transport with a flat connection. In this scheme,
the original nonlinear equation becomes a consistency (zero-curvature) condition for
the auxiliary parallel-transport problem [208, 209]. With the aid of the connection, one
can define a monodromy operator corresponding to parallel transport around a closed,
constant-time loop in space (periodic boundary conditions are usually assumed). This
operator turns out to evolve in time via an isospectral flow; its characteristic equation
therefore defines a time-independent algebraic object, known as the ‘spectral curve’,
which encodes the full set of local conservation laws of the model in question. From the
monodromy operator, it is relatively straightforward to construct action-angle variables;
in this way, the dynamics of classically integrable systems can be reduced explicitly to
quasiperiodic motion on Liouville-Arnol’d tori. A remarkable finding [203] was that
such variables exist for certain nonlinear classical PDEs, such as the Landau—Lifshitz
equation [163], to which we now return.

The Cauchy problem corresponding to an initial domain wall in the classical Lan-
dau—Lifshitz magnet is defined over a non-compact spatial domain and therefore requires
an appropriate boundary condition, in the form of asymptotic fields. One of the simplest
possible choices is the following one-parameter family of smooth domains of width x,
of the form

So(z) = (sech(z/x0), 0, cosh(x/xy)), (69)

connecting two asymptotic ferromagnetic states oriented in opposite directions, that
is S*(x — +o00) = £1. Moreover, with no loss of generality one can set xy =1 by an
appropriate rescaling of space, time and interaction parameter . It is worth stressing
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that despite integrability there are only rare instances [210] when the direct scatter-
ing problem admits a closed-form solution. This is why it is customary to provide
the initial data in the spectral representation. Remarkably, profiles given by equation
(69) are another exception to the rule and do allow for a closed-form solution [199].
The associated classical monodromy matrix is fully determined by the spectral data
{a(X), b(N)}, which consists of two complex-valued functions with simple time evolution,
a(\,t) = a(X,0), and b(\ t) = b(\,0)e“", where the magnon dispersion w()\) = \* — &2,
Here, a(\) encodes the local charges which pertain to moments of the density of states
o(\) = log |a()\)]?; the precise analytic structure of a()\) and b(\) will not concern us
further. The time-evolved spin field can be retrieved by finally performing the inverse
mapping (from the spectral plane to the phase space of physical fields) which takes the
form of a Fredholm-type integral equation. This is unfortunately where one encounters
another practical challenge, as general solutions to the inverse transform appear to be
possible only for purely discrete (reflectionless) potentials corresponding to multisoli-
ton states, when they can be expressed in the form of determinants. The trouble with
the initial conditions (69) is that they involve a continuous spectrum. One is therefore
obliged to solve the inverse scattering equations numerically (with time ¢ entering simply
as a parameter in the kernel).

We now review the conclusions of [199]. Parameterizing the interaction parameter
in terms of € =iV, there are three regimes to be distinguished: (i) the easy-plane
regime with €2 > 0, (ii) the easy-axis regime with €2 < 0 and (iii) the isotropic point
at e = 0.

Easy-plane regime. In the easy-plane regime, the function a()) is free of zeros in
the upper-half complex plane, indicating that the spectrum of modes consists of purely
dispersive radiation. As noted above, this precludes obtaining a solution in explicit form.
However, if one is merely interested in explaining the ballistic character of the expanding
interface, it is sufficient to operate in the ballistic scaling limit. Upon discarding a
dispersive term, one is left with the Euler-scale equations [199]

Si—11= ()l =0, v —[(" -5 =0, (70)

where the magnetization S* and phase v = —i[log S*], (pertaining to canonical coor-
dinates S* = cos(f) — p and ¢ — ¢) are regarded as slow variables. One then seeks
the simplest solution invariant under ballistic space-time scaling (i.e. depending only
on the ray coordinate £ = x/t) that connects two asymptotic vacuum regions at the
fronts £,, set by S*(£,) = £1. The solution yields S*(&) =¢£/(2|¢]) and v = |e| = vy
with £, = +2|e, implying ballistic asymptotic growth m(t) ~ ¢ [;* d§(1 — S*(€)) = [e]t.
Further details can be found in [197, 199].

Easy-axis regime. In the easy-axis regime with § > 0, the spectrum acquires discrete
modes which physically correspond to solitary waves. Their precise number depends on
the value of §. For generic 9, the spectrum assumes in addition a continuous component
consisting of dispersive radiation modes. Curiously, at the ‘resonances’ € =i(2n + 1) for
n € N the continuous spectrum entirely disappears. A distinctive feature of the discrete
spectrum is the presence of (anti)kinks; in contrast with ordinary (asymptotically free)
solitons, kinks represent static topologically non-trivial configurations. Kinks have pre-
cisely the form (69), with characteristic width set by the anisotropy, zo(d) = 41/+/4.

https://doi.org/10.1088/1742-5468 /ac12c7 56


https://doi.org/10.1088/1742-5468/ac12c7

Superdiffusion in spin chains

More importantly, kinks persist in the spectrum at any ¢ > 0. This fact alone implies
that asymptotically m(t) ~ ¢, as the kink is stable against decay. For general § > 0,
one finds dispersive ballistically propagating magnon modes superimposed on a kink
background, and possibly additional (discrete) breather modes that remain localized at
the interface. Kinks have been (semiclassically) quantized and reconciled with the Bethe
ansatz description in [173].

Isotropic point. Finally we discuss the subtle case of isotropic interactions. At ¢ = 0,
the kinks are no longer stable and the spectrum of the domain wall profile is once
again a radiative continuum. Another peculiarity is that as A — 0, the density of states
o(A\) = log |a()\)]* develops a logarithmic singularity [199]. Curiously, this can be seen
as an artefact of the boundary condition under consideration; if one considers instead
a family of ‘twisted’ domain walls, S = (cos ®, 0, sin ®) with & = (y/7) arcsin(tanh(x))
and v € [0,7), the singularity at A = 0 disappears for any v > 0, rendering a(0) finite
[199]. As we explain in turn, for general v € [0, 7) one has D(7y) < oo, whereas ©(y — )
is singular.

It turns out that rotational symmetry of the isotropic Landau—Lifshitz equation
allows for a special class of self-similar solutions that depend on the diffusive scaling
variable ( = z/+/t [158] and satisfy the ODE —2(S; =S x S¢.. In this scaling limit,
the domain wall initial profile (69) gets mapped to a singular initial condition with a
jump discontinuity at the origin. Due to the absence of a scale in the problem, it is
natural to assume that at large times the solution converges to a self-similar form. One
thus expects asymptotic scaling of the form m(t) ~ D (y)t'/?, with the coefficient D (~)
understood as the ‘diffusion constant’. By numerical integration of the inverse scattering
equations, a plot of m(t)/\/t versus time t shows [199] a robust signature of a mildly
divergent diffusion constant as ~log(t). Plotting © as a function of twist angle  reveals
a singularity upon removing the twist v — 7.

The observed breakdown of normal diffusion can be partially reconciled with the
aforementioned logarithmic divergence in the density of states in [199] by studying self-
similar solutions [211]. The Landau-Lifshitz equation is known to appear in a different
incarnation, where it governs the evolution of a vortex filament in the local induction
approximation, f; = f, x f,,, sometimes known as the Da Rios equations [159]. Self-
similar solutions to the latter equation were studied in [212]. In the vortex filament
picture, the parameter v defines the angle of a wedge initial profile, while energy E' = Sz

is a conserved quantity, with filament curvature proportional to vVE. A twist angle ~
maps to energy via the relation exp(—nE/2) = cos(v/2), signalling a divergence of ©(~y)
in the v — 7 limit. Despite this suggestive physical picture, a fully rigorous justifica-
tion for emergent anomalous diffusive scaling at the isotropic point is still lacking at
present. One possible route forward would be an asymptotic analysis of the associated
Riemann-Hilbert problem [213, 214].

6.2. Spin spirals

Spin spirals provide another conceptually simple and experimentally natural class
of far-from-equilibrium initial states in spin chains, and their relaxation dynamics
has been successfully probed in optical lattices. In [79], the authors measured the
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far-from-equilibrium relaxation of magnetization in an isotropic Heisenberg ferromagnet
realized by ultracold ®’Rb atoms. Initializing the system in ‘transverse spin spiral states’
(at finite energy density), of the form |x(k)) = [,(|1): + €®**]))), (where k denotes the
imprinted wavevector and x location on the lattice) and using single-site spectroscopy to
measure the decay of spin correlations, they detected normal spin diffusion in one dimen-
sion (relating the diffusion constant D to the characteristic decay time via 1/7 = D|k/[?),
whereas on a two-dimensional lattice (where the model is not integrable) they reported
having found traces of superdiffusive dynamics. We note that a theoretical program for
studying relaxation of spin spirals in the 2D Heisenberg model has been initiated very
recently [215].

Concurrently, experimental interest in spin spirals has also been resurrected. By
exploiting the capacity of “Li ions to realize effective anisotropic Heisenberg spin cou-
plings within the usual two-component Bose—Hubbard model for the first time, [81] was
able to study far-from-equilibrium relaxation dynamics in the spin-1/2 XXZ chain over
a large range of anisotropies. The experiment focused on probing relaxation dynam-
ics of spin spiral states of wavelength A (in the XZ-plane) by performing imaging in
the perpendicular z-direction, thereby measuring time dependence of the expectation
value of the local magnetization S*. By measuring the decay time 7(k) ~ 1/k“, they
observed a continuous range of dynamical exponents « as a function of quasimomentum
k, spiral wavelength A and interaction anisotropy A. Remarkably, while in the easy-
plane regime |A| < 1 (and throughout the entire antiferromagnetic phase A < —1) they
encountered the expected ballistic behavior (o & 1), they detected an abrupt change at
approximately A = 1 upon crossing into the easy-axis phase with sub-diffusive exponents
a 2 2. Such behavior, which is markedly different from predictions within linear-response
theory, has not been theoretically explained yet.

Although the theoretical situation is somewhat obscure at present, [81] offers one
intriguing clue. The authors consider the evolution of the spin modulation S} =
>, cos(ki)S? in the short-time expansion. By time-reversal invariance of the XXZ
Hamiltonian, one can argue that (S;(t)) ~ (S;(t =0)) + t*([H,[H,S*(k)]]) = (S;(t =
0)) + (t/7)?, where the expectation values are taken in the spin spiral. This double
commutator therefore captures the short-time relaxation rate 7, of the spiral. Remark-
ably, the easy-plane and isotropic regimes differ in the asymptotics of this quantity as
k — 0: in the easy-plane phase, 7, ~ (kv/1I — A)~!, and at the isotropic point 7, ~ 1/k”.
It is unclear whether this change in the short-time behavior also persists to late times
(or at least to long enough times that it captures the experimentally observed behavior).

7. Anomalous transport from emergent or approximate integrability

7.1. Anomalous diffusion of energy in Luttinger liquids

We now discuss an example of anomalous diffusion that can occur in generic, chaotic
many-body systems, in contrast to the integrable examples that have been considered
so far. This is the free expansion of a localized heated region in a one-dimensional metal
into a bulk ground state, which exhibits anomalous, nonlinear diffusion of energy, of the
type discussed in section 2.6.2.
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Recall that the universal theory of interacting fermions in one dimension is the
Luttinger liquid, which is the analogue of the Fermi liquid in d > 1, with several basic
differences arising from its reduced dimensionality [216]. The low-energy limit of the
Luttinger liquid is a free bosonic field theory, which is well-known to exhibit ballistic
transport of its conserved charges, including energy. By contrast, realistic metals include
interactions, which break integrability and lead to thermalization and conventional,
diffusive linear response, even in the absence of disorder. Nevertheless, the proximity of
non-integrable Luttinger liquids to a conformally invariant critical point at 7" = 0 implies
the divergence of linear response transport coefficients as T — 0. It is this singular
dependence of the thermal conductivity on temperature (specifically, the ‘dangerous
irrelevance’ of perturbations to the 7" = 0 critical point [217]) that allows for anomalous
energy diffusion in one-dimensional metals.

We first illustrate the general principles leading to such anomalous behaviour, before
describing an explicit example for which anomalous diffusion has been observed numer-
ically [218]. Therefore consider the effective action for a non-integrable Luttinger liquid
with an irrelevant density-wave-type instability,

L L
H:Z/O dx(H2+(8x¢)2)+h/o dz cos ap+ - - -, (71)

where the momentum and phase degrees of freedom satisfy canonical commutation rela-
tions [II(z), ¢(z')] =id(x — 2’) and the condition a? > 87 ensures irrelevance of the
cosine perturbation. Here the ellipsis denotes additional, less relevant interaction terms
that break integrability (note that at least two cosine terms are required to break inte-
grability of the field theory, since perturbing the one-dimensional free boson by a single
cosine term yields the integrable sine-Gordon model).

The charge conductivity of H can be obtained via the Kubo formula [70, 219]

o(q,w) (60)" ! (q,w)- (72)

= %10.)
Assuming that h is the dominant irrelevant coupling, a timescale for relaxation of

charge can be extracted from the boson self-energy, via the relation [70, 220—222]

w

1i ~ h2T30" /2 73
T wl—Ii)l Im[Hh(q = O,CJJ)] ’ ( )

where the scaling with staggered field and temperature comes from the leading (in h)
contribution to the self-energy. (Note that the scaling form equation (73) can also be
obtained from a simple scaling argument [223].)

Implicit in the analytical derivation of this result for the charge conductivity is a
non-perturbative summation of terms via the Dyson series, which is possible because the
Kubo formula for the (bosonized) charge conductivity involves only a two-point function.
Let us now consider the thermal conductivity. Modulo the well-known subtleties of
using the Kubo formula to compute thermal conductivities [224, 225], linear response
theory predicts that the a.c. thermal conductivity is related to a four-point function,
schematically k(q,w) ~ (IIpIlp)**(¢,w), and hence inaccessible via the Dyson series.
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Since there are no comparably rigorous non-perturbative methods for evaluating four-
point functions, we shall treat the value of k(q,w) as unknown and attempt to proceed
on general grounds.

First, by emergent conformal invariance of the low energy theory, it is expected
that the DC thermal conductivity behaves as a power-law in temperature, rq. ~ T°.
Since thermal transport in interacting Luttinger liquids becomes ballistic as T'— 0, it
follows that the exponent A < 0. A naive estimate for the exponent A comes from Wiede-
mann—Franz scaling, which assumes that charge and thermal transport are controlled
by the same relaxation time 7, so that by dimensional analysis kq.. ~ Toq. ~ T-a?/2m
(Notice that for a? > 8 irrelevant, this is guaranteed to diverge as T'— 0.) The key
point is that even if the Wiedemann—Franz law A\ =4 — o?/27 does not hold, a low-
temperature, power-law divergence of k4. (T'), that is expected on general grounds, will
give rise to low-temperature superdiffusion of energy.

To see this, notice that the linear response heat current, evaluated at leading order
in temperature and derivatives about T' = 0, is given by j, ~ —T29,T. In flows that are
driven solely by temperature gradients (we assume particle-hole symmetry) the heat
current coincides with the energy current. Combined with the equation of state for the
local energy density in a low-temperature Luttinger liquid, py ~ T2, that follows by
conformal invariance of the T' = 0 fixed point, we deduce a non-linear diffusion equation
for the local energy density,

dipr = DO} (pE), (74)

with exponent m = (1 + A)/2 and D a non-universal prefactor. Since A < 0, this is a fast
diffusion equation in the terminology of section 2.6.2, and its space-time scaling x ~ t*
is determined by the superdiffusive dynamical exponent
1 2
o = =
m+1 34+

€ (2/3,1). (75)

As discussed in section 2.6.2, at any finite bulk temperature 7', the linear response
behaviour of equation (74) is diffusive. However, we expect a crossover from transient
anomalous behaviour on a timescale tp(T) ~ T*! (the effective diffusion time), that
diverges as T'— 0. In particular, free expansion of a localized heated region into a bulk
ground state will be anomalous, and characterized by the spreading exponent in equation
(75). This is true even under the assumption that thermalization is strong enough in
the low temperature regime for linear response theory to be applicable.

These predictions were corroborated [218] by tDMRG numerical simulations of a
non-integrable spin chain that realizes Luttinger liquid physics, namely the spin-1/2
XXZ chain perturbed by an integrability-breaking staggered field,

H=

=~

L L

xr T 1 1 z _z h P
Z (a‘j’a'jH + a‘fajﬂ + AajajH) + 52 (—l)Jaj. (76)

J=1 J=1

For A#0 and h >0, this model can be verified to exhibit a crossover to
Wigner—Dyson level statistics via exact diagonalization [223]. Its low-energy effective
action for infinitesimal h is given by standard bosonization techniques [216, 226], and
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Figure 7. Anomalous scaling for a spreading thermal wavepacket in the interacting
Luttinger liquid phase of the spin chain Hamiltonian equation (76). The initial
condition is given by equation (78) and model parameters are A = —0.85, h =
0.28J =12, ByJ =8, I = 2. (Top) Diffusive scaling of the spreading wavepacket
(left) versus superdiffusive scaling (right) with exponent o = 0.9. Scaling collapse
to a superdiffusive exponent shows a marked improvement compared to normal
diffusion. (Bottom) Rates of change of log absolute moments, as in equation (79),
exhibit a good scaling collapse to a single exponent « ~ 0.9 (dashed line), that
is neither ballistic (a = 1) nor diffusive (o = 0.5) (dotted lines). Figure based on

tDMRG simulations performed by Karrasch. Reproduced with permission from
[218].

has the form

u

o= /0 dz (I + (0,)2) + ch /0 cos(2VTR) + - - (77)
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where u, ¢ are non-universal constants and the ellipsis includes other irrelevant terms
(Umklapp, band curvature, etc). For K > 2, i.e. —1 < A < —/2/2, the band curvature
term is irrelevant and the Hamiltonian equation (76) remains in a gapless Luttinger lig-
uid phase for h > 0. It was found numerically [223] that this phase exhibits charge trans-
port with a charge conductivity o ~ A >T%*} in agreement with analytical bosonization
predictions, and suggesting that the staggered field is the dominant irrelevant perturba-
tion for sufficiently large L. Subsequent work [218] studied heat transport in the model
equation (76), by numerically simulating time evolution from locally thermal initial
conditions

Blx) =B — (B — Bu)e @V’ (78)

with a central ‘hot spot’ By, < 3, and examining the time evolution of the absolute
moments of the resulting thermal wavepacket. For nonlinear diffusion, these should
obey one-parameter scaling

1 log {Jo")

t
W dlog —a, t— o0, (79)

in time. Some sample simulations (A = —0.85, h = 0.28J = 12, BJ = 8) are recorded
in figure 7. There is a clear collapse to an anomalous space-time scaling exponent o =~ 0.9
that is neither ballistic (aw = 1) nor diffusive (o = 0.5). Such single-parameter scaling of
the moments is consistent with the simple anomalous diffusion model equation (74),
although the shape of the scaling profiles is non-monotonic away from x = 0 and thus
differs from the Barenblatt—Pattle solutions depicted in figure 2. One possible explana-
tion for the discrepancy at x = 0 is that the initial spreading of the wavepacket occurs
so fast that the system does not have time to reach local thermodynamic equilibrium,
invalidating the hydrodynamic description equation (74) at short times.

To summarize, the expansion of energy into a bulk ground state of a one-dimensional
metal yields a simple and generic example of anomalous diffusion in a quantum many-
body system. Since materials exhibiting interacting Luttinger liquid physics range from
spin ladders [227] to carbon nanotubes [228], we expect that such behaviour should
be observable experimentally. Indeed, one established physical realization of ‘hot spot’
initial conditions occurs in experiments that use laser irradiation of small, localized
regions to study the dynamics of outward heat flux [229-232].

On the theoretical side, the most pressing open question related to this anomalous
diffusion phenomenon is whether there exists an accurate, non-perturbative theory of
the thermal conductivity in interacting Luttinger liquids, which does not seem to have
been attempted so far. Although there are good reasons to expect continuous power
law scaling, k ~ T*%) as for the charge conductivity, detailed analytical or numerical
justification for this ansatz would be desirable. We also note there are certain physical
regimes in Luttinger liquids for which the linear response heat conductivity exhibits an
essential singularity as T' — 0, for example, the case of thermally activated momentum
relaxation [233] k ~ e*¥/T. In this case, an analysis in terms of fast diffusion ceases to
be consistent as T'— 0, possibly indicating a crossover to ballistic behaviour. Another
interesting open question is how the picture sketched above is modified in Luttinger
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liquids away from half-filling, for which thermopower effects become important and
theory [234] again predicts unusually slow relaxation of energy as T — 0.

7.2. Anomalous low-temperature transport in Haldane antiferromagents and nonlinear
sigma models

The study of S = 1 spin chains at low but nonzero temperatures has been of longstanding
interest, given both the experimental relevance of the topic and Haldane’s remarkable
prediction [235] of a spectral gap A opening only in chains of integer spin S. Haldane’s
argument invokes an effective field theory computation at large S, yielding a classical
NLSM which, upon quantization, includes a topological ©-term that is sensitive to
whether 25 is even or odd.

There have been several experiments with inelastic neutron scattering on quasi-1D
Haldane-gap materials [236—240], which support the Haldane gap conjecture. On the
theoretical side, various competing effective descriptions have been proposed to compute
spin transport and the relaxation rate of nuclear magnetic resonance (NMR) in the low-
temperature regime. Unfortunately, these various methods lead to mutually inconsistent
conclusions. Spin transport at long wavelengths k& ~ 0 has recently been revisited [59]
using GHD.

We begin by briefly reviewing the earlier findings. Various theories of NMR for
Haldane chains have been developed and compared in [241, 242]. The computations
are largely based on computing matrix elements at zero temperature, which are then
extended to the regime of interest wy < T' < A (with wy being the NMR frequency)
by simply inserting the Boltzmann weights and subsequently integrating over the entire
momentum range.

An alternative semiclassical approximation was put forward in [7, 243|, in which
quantum excitations are treated as (interacting) classical trajectories carrying spin pro-
jections m € {—1,0,1}) (with a momentum independent two-particle scattering matrix
SZZZ,; = (=1)6ym,0mym, ), yielding a purely classical statistical model that had been
solved decades earlier by Jepsen. In particular, the semi-classical theory predicts the
spin diffusion constant
2eBA

A(1+ 2 cosh(Bh))’

DY = (80)

and the NMR relaxation time T’y scaling as Ty ~ 1/v/D,h, consistent with experimental
observations [244]. As argued in [7], one might expect such a semi-classical description to
be effectively exact at sufficiently low temperatures, since the density of quasiparticles is
suppressed as ~e 72, and therefore the spacing between quasiparticles greatly exceeds
the thermal de Broglie wavelength of each quasiparticle. The semi-classical picture of [7]
was expected to hold in the regime 7' < A at timescales t > 1/T" (with h/T arbitrary).
These predictions were nonetheless difficult to confirm as the regime of interest is difficult
to access in numerical simulations.

A more refined computational approach makes use of the truncated form-factor
expansion [245] (see [246] for a review), which unlike the semi-classical approximation
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uses the full scattering matrix of the O(3) NLSM. It is widely believed that computa-
tions with bare (as opposed to dressed) form factors should accurately describe spectral
functions at low temperatures. Accordingly, [245] rests on an assumption that one can
truncate the spectral sum for the dynamical correlation functions (m(x,t)m?(0,0))5
can be efficiently truncated at n-particle states (which are weighted by a factor e %),
This approach yields a divergent relaxation time 7T'; ~ log h, with thermally activated
temperature-dependence T ~ ¢’2, in agreement with earlier form-factor computa-
tions [242], but in clear disagreement with the semi-classical analysis, which instead
yields T ~ e**2/2. Moreover, [245] also includes a computation of the d.c. spin con-
ductivity, reporting a finite spin Drude weight even in the limit of half filling, that
is limy, 0 Dgyin(h) # 0, and no diffusive subleading correction (the same statement,
based on a TBA computation, indeed appeared earlier [67]), again conflicting with the
semi-classical result predicting a finite spin diffusion constants and zero Drude weight.

We now turn to a recent study [59] which leverages the capabilities of the GHD
toolbox. From a technical standpoint, the crucial improvement was to account for the
thermal dressing of quasiparticles in an exact non-perturbative fashion, in contrast to
earlier approaches. The low-temperature limit can only be safely taken at the very end
of the computation. The findings of [59], to which we now turn, radically differ from the
previous conclusions reviewed above.

Nonlinear sigma model. The quantum O(3) NLSM is a Lorentz invariant QFT with
Euclidean action

S[a) = ;g / dedt ((9m)’ - (9,m)?), (81)

where n = (n”, 7Y, n?) is a three-component vector field obeying the unit normalization

constraint N2 = 1, and ¢ is the coupling constant. At second order in derivatives, there
is additionally an allowed topological ©-term:

Se[n] = i% /d:c dtn - on x 9,n. (82)

The O(3) NLSM is the effective low-energy theory of one-dimensional SU(2)-
symmetric antiferromagnetic chains [235], H~J > éj . SjH, with spin exchange cou-
pling J > 0. By assuming S is large, and making the continuum approximation, fluc-
tuations of lattice spins can be split into staggered and ferromagnetic fields [235],
S; ~ S(—1)'fr 4+ th, where 1 = g~'n x p is the angular momentum generating rotations
about n, i.e. m-n =0, and p = g '0n + (©/4m)h x 9,0 is the canonical momentum
conjugate to n. In the Hamiltonian description, one finds [235]

@ 2
Hos = g / dz [g (m + 47Tar]a) i g_l(amﬂ)2] : (83)

with spin-dependent coupling constant g = 2/.5 [to match equation (81) one should put
v = 2JS — 1]. In antiferromagnetic SU(2) spin-S chains, the topological angle depends
on whether S is integer or half-integer, © = 27 S. Most remarkably, the spectrum of the
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quantized O(3) sigma model acquires a gap (via dynamical mass generation) for © = 0,
whereas © = 7 precludes opening a gap.

At the classical level, the O(3) NLSM describes three real scalar fields that trans-
form in the fundamental (vector) representation under O(3) rotations. The vacuum
state is continuously degenerate and can point in any direction on the two-sphere
S22~ 0(3)/0(2). In a state with finite vacuum expectation value, (n) # 0, the full
O(3) symmetry is said to be spontaneously broken down to O(2). The low-energy spec-
trum comprises gapless type-1 (i.e. linearly dispersing) Goldstone modes, whose number
equals dim O(3) — dim O(2) = 2, matching the dimension of the S* target space. Quan-
tization however radically affects this picture and, in the absence of the topological
term (© = 0), one ends up having instead three gapped (massive) elementary excita-
tions. This nonperturbative mechanism, by which the ‘would-be massless’ Goldstone
modes rearrange themselves and acquire a mass A, can be understood using standard
renormalization-group calculations [247].

Factorizable scattering matrices. Another remarkable fact about the O(3) NLSM
is that it is integrable for both ©® =0 and © = 7. By rotational invariance, the
model possesses conserved Noether currents. Owing to integrability [248], there is,
in addition, an infinite sequence of local (and non-local) conservation laws in the
system. Local conservation laws can be thought as a consequence of complete two-
body reducibility of the underlying many-body scattering matrix [249, 250]. As just
noted, in the non-topological version of the model, © = 0, the elementary excitations

form a spin triplet of massive bosons with dispersion e(k) = v/ k% 4+ A® (absent an
external field), which are associated with a pair of creation and annihilation opera-
tors Z,(0) (a € {x,y, z}), with rapidity variable 6 parameterizing their bare momen-
tum k(0) = Asinh(f) and energy e(f) = Acosh(#). Multiparticle states are of the
form |0y,...,0,) =TI, Z! (6,)...Z] (62)Z} (61)|0), where the Fock vacuum |0) satisfies
Z,(0)|0) = 0. Quasiparticle excitations belong to noncommuting operators obeying the
Faddeev—Zamolodchikov algebra [251], whose ‘structure constants’ are prescribed by the
S-matrix.

Even though quasiparticle collisions are purely elastic, the many-body scattering
matrix is still non-diagonal in the quasi-particle basis due to non-trivial exchange of
spin degrees of freedom upon collisions. This is overcome by adjoining to the elementary
excitations a set of auxiliary degrees of freedom, interpreted as magnons propagat-
ing in a fictitious system of physical quasiparticles. Having done that, the equilibrium
partition sum can be subsequently computed in the framework of TBA, yielding an
infinite coupled system of Fredholm-type integral equations. To highlight the structural
similarity with the isotropic Heisenberg spin chain, it is instructive to display these
equations explicitly. By assigning each quasiparticle species a spectral density (in rapid-
ity space), the total density of available states satisfies Bethe—Yang integral equations
of the following type [59, 251]

tot _ %
0 21

tot

+ 8 % Pa, P = 0s2(5% po) + 8% (Ps—1 + Pst1), 5 E Ly, (84)

with convolution kernel s(f) = 1/[2cosh(f)]. The subscript 0 refers here to physical
relativistic particles, while s > 1 pertain to the aforementioned auxiliary magnonic
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excitations (the bar indicates the density of holes). By conventionally introducing
thermodynamic Y-functions YVs>o(0) = ps(0)/ps(6) (encoding dressed energies through
log Vi=0(0) = Bey(0)), the TBA equations can be presented in a compact group-theoretic
form (after performing the particle-hole transformation, py <> )

log Vs = —ds08e + s * Ifj’ log(1+Yy), (85)

where IP~ stands for the incidence (adjacency) matrix of the D., Dynkin diagram with
a bifurcation at node s =2 (that is Iy =1 when node s’ is adjacent to s, and oth-
erwise zero) that captures the morphology of interparticle interactions. At the same
time, this reveals that an infinite tower of internal magnonic modes attached to the
momentum-carrying fundamental bosonic excitation indeed correspond to the magnons
of the isotropic Heisenberg chain. We mention in passing that TBA equations with sim-
ilar structure occur in entire infinite families of integrable QFTs with isotropic degrees
of freedom [252-254]; the O(3) NLSM is thus a canonical example of an integrable QFT
displaying anomalous transport properties (see the discussion in [55]).

Spin transport. By Noether’s theorem, the O(3) NLSM model possesses a conserved
Lorentz two-current

a,uju = 0, j,u, — g*lﬂ X 8“1?1. (86)

The conserved Noether charge is therefore the ferromagnetic order parameter m(x, t)
which governs fluctuations at large wavelengths k ~ 0. We stress that GHD can only
access k ~ 0 but not k& ~ m, which instead pertains to antiferromagnetic fluctuations
governed by n(z,t) (which is not a density of a local conserved current).

We now finally turn to the nature of magnetization transport in the quantum O(3)
NLSM within GHD [59]. Although we shall focus exclusively on low temperatures,
mainly to allow for comparison with Haldane spin chains, the arguments presented
here apply to the pure O(3) NLSM field theory at any temperature. We wish to empha-
size that thermodynamic equilibrium states are characterized by a non-zero density of
energy and entropy. This fact alone tells us that computations based on a dilute gas of
excitations above the Fock vacuum (used in the bare form factor technique) are bound
to fail as they are not able to capture the effective renormalization of charges due to
interparticle (elastic) interactions. This is true (at least for asymptotic hydrodynamic
properties) down to arbitrary low temperatures; one has to first wait for long enough
(possibly exponentially long in inverse temperature) for the quasiparticle to get dressed
by the surrounding thermal environment and only then compute the thermodynamic
quantities of interest. To be concrete, consider any local charge density ¢. The domi-
nant matrix elements at large wavelengths are those coming from particle—hole type of
excitations (for all quasiparticle species, including bound states), reading

{ps(0)}a(@){ps(0): 6%, 0,F) s = €274, (87)

where 6P and 0" denote rapidities of the added and removed quasiparticles (labelled by
integers s > 0), respectively, whereas ¢¥() denote the dressed values of ¢ () associated
to a local density ¢. Hydrodynamics on the Euler scale corresponds to the regime of
vanishingly small momentum difference Ak, = k,(6°) — k(6"). The leading higher-order
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contributions, which come from two particle-hole excitations or single particle/hole
excitations, become suppressed at large times as ~ 1/t [17]. For instance, the dressed
magnetization m® that enters in the mode resolution of the d.c. conductivity does
not equal simply the number of magnetization quanta m> = s but depends both on
temperature and also (quite abruptly, in fact) on the chemical potential h coupling to
magnetization. The effect of dressing becomes most pronounced near half filling where
(in close analogy with integrable ferromagnetic chams) md ~ s*h for s < 1/h, crossing
over to m¥ & s at large s > 1/h for ‘giant magnons’.

We now summarize the main statements of [59] concerning the nature of spin trans-
port. The spin Drude weight D; is finite for any 7" > 0 and h > 0 and exactly vanishes
as h — 0. This is merely a manifestation of particle-hole symmetry at h =0 which
indeed ensures that lim,,_ mﬁ}r(h) = 0. We remark that a previous computation carried
out in [67] is entirely correct, except at the last step where some sloppiness occurred
in analyzing the low-temperature behavior (assuming a large ratio h/T for T, h < A,
instead of demanding h < T'). An explanation for the finite spin Drude weight at half
filling which invokes quantum bilocal conserved currents [245] is likewise not valid; the
Yangian symmetry generators [255] do not constitute local thermodynamic degrees of
freedom (spanning the mode space of GHD). Indeed, analogous bilocal charges which
become exact thermodynamic conserved quantities exist in the Heisenberg XXX spin
chain, where similarly they play no essential role.

On the sub-ballistic scale, the Drude weight is generically accompanied by a finite
diffusive correction of the form [59]

K:(slr g/ /
Zpgg — Ny ]vSG\W Wi = lim tit e (88)

§'—00 ps/ 0

which yields a finite value as long as h # 0. In the h — 0 limit, explicit computation
of dressed two-body scattering kernels K, ,, can be circumvented by exploiting the
‘magic formula’ (see equation (38)). This allows one to compactly express D,(T’,h) at
half-filling A = 0 through the curvature of the Drude self-weight [20] with respect to the

filling parameter v = 4T(S5%)7;, = 4Tx(T,0)h + O(h?),

2Dself T
lim D,(T, h) = IDE(T,v)

h—0 ov?

(89)

v=0

Most importantly, in approaching half-filling Dy, (T, h) diverges as ~1/h at any
finite temperature. Upon restoring global O(3) invariance at half filling, spin dynam-
ics becomes superdiffusive, (m?(x,t)m?(0,0))5,_, ~tY* with dynamical exponent
z = 3/2, precisely as in section 4. Regardlng behav1or at low temperatures, there are
two regimes with markedly different behavior to be distinguished. In the experimentally
relevant regime h < T' < A one has [59]

AJT

D=> D,~ BA’h‘—’rO(hO), (90)

s=0
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while the corresponding d.c. conductivity reads o (T, h) = x(T, h)D(T, h) = &(T)/|h| +
O(hY), with (T) ~ T~"2. Notice that the semi-classical result, cf equation (80), coin-
cides precisely with the first term D, in an infinite sum over quasiparticle species
in equation (90). Terms with s > 1 are contributions of spin waves which cannot be
safely neglected; indeed, in approaching h — 0 they become amplified and cause Dgpi,
to diverge! The NMR relaxation time of (longitudinal) spin correlators behaves as
1/Ty ~ 22 /\/h at small h, consistent with experimental findings [244]. While this
result somewhat surprisingly matches the semi-classical prediction, its particular tem-
perature dependence has a different origin that can be traced to internal magnon degrees
of freedom. In contrast, for T'< A but with A/T > 1, contributions due to magnons
(s > 1) become suppressed and (to leading order) the GHD predictions agree with the
semi-classical theory.

Including the topological term. As already mentioned, for © = 7 no dynamical trans-
mutation takes place and the spectrum of excitations of the O(3) NLSM retains two
gapless modes from its classical counterpart; they are the left and right movers which
transform as an SU(2) doublet and are assigned labels a € £, with chiral bare dispersion
relations e.(6) = (A/2)e*’. Integrability of the O(3) model survives the addition of the
topological term [251]. In contrast to CFTs, the left and right movers interact among
themselves and with one another, and the scattering matrix of the internal spin degrees of
freedom can be diagonalized with aid of the nested Bethe ansatz [251]. The Bethe—Yang
and TBA equations can be found in [59, 245, 251], while the low-temperature expansion
is given in [59].

Intuition may perhaps suggest that presence or absence of the spectral gap will have
an impact on transport properties of the model at low temperatures. This is however
not the case (at least not on a qualitative level) and the phenomenology of the non-
topological (© = 0) model persists also in the topological version of the O(3) NLSM.
Specifically, divergence of the spin diffusion constant as ~ 1/h in approaching half filling
h =0 can once again be attributed to the particular anomalous thermal dressing of
interacting bound states.

Irrelevant operators and integrability breaking terms. To conclude this section, some
general remarks are in order on the applicability of effective field theories in condensed
matter physics. For understanding the low-energy physics of generic condensed matter
systems, effective field theory remains an invaluable tool; the problem of spin transport
in Haldane chains is no exception. However, the derivation of the O(3) NLSM as an
effective action for low-energy spin chains relies on a number of non-trivial assumptions;
beyond the usual neglect of irrelevant terms that is strictly valid only at 7' = 0, one must
also assume [235, 256] a semiclassical regime of large S. Thus there is no guarantee that
for small, finite S (and especially for S = 1) the phenomenology of the large-S effective
theory remains qualitatively unaltered. While numerical studies (and experiments) con-
firm the presence of a gap for spin chains with small integer S, the regime of validity
for modelling more complicated observables with the effective field theory is a prior:
unclear.

Transport coefficients can be especially fragile since they concern the long-time
behavior of correlation functions. See, for instance, a recent numerical study [257] where
certain discrepancies (e.g. the form of the NMR relaxation rate) have been observed.
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Incorporating additional realistic effects that are present in spin-chain compounds, such
as interchain couplings and on-site interaction anisotropy, is a separate question but
might also affect thermodynamic properties. More importantly, we have tacitly assumed
that the effective theory continues to provide a reasonable approximation even at non-
zero (albeit low) temperatures. However, the effective theory is completely integrable
and its quasiparticle excitations are infinitely long lived. In view of standard RG argu-
ments, one expects dangerously irrelevant operators to cause finite quasiparticle lifetimes
at T > 0 (see e.g. [258]), and the central question in this regard is to reliably estimate
the timescales on which RG irrelevant terms and other integrability-breaking pertur-
bations have an appreciable effect on relaxation. Recent progress on modelling various
scenarios of integrability breaking [259—-263] may shed light on this question.

7.3. Persistence of anomalous behavior in nonintegrable isotropic chains

We now turn to the (largely still open) problem of transport in spin chains where
integrability is weakly broken. In the absence of strict integrability, one might expect
conventional hydrodynamics to govern the behavior at asymptotically late times, with
the crossover timescale set by some form of golden rule calculation [259-269]. On
timescales short compared with this crossover, the dynamics will follow the integrable
behavior; on timescales that are much longer, one might naively expect integrability to
be irrelevant to the dynamics. However, the analysis of [259, 268] is also consistent with
the idea that there might be a broad spectrum of relaxation timescales, because different
quasiparticles couple differently to the integrability-breaking perturbation. If some of
these relaxation timescales are slow enough, anomalous transport can persist away from
the integrable limit. A separate possibility is that the conventional hydrodynamics of
systems with nonabelian symmetries might be rich enough to permit anomalous trans-
port; however, recent field-theoretical studies do not seem to support this possibility
[270].

One might suspect that such broad distributions of timescales occur for the isotropic
Heisenberg model subject to isotropic integrability-breaking perturbations, for a few
distinct reasons. First, there is now considerable numerical evidence [59, 62, 156, 271,
272 that spin transport even in isotropic spin chains quite far from integrability is
not diffusive on the accessible timescales (but see also [273-275]). Depending on the
perturbation, one either sees KPZ scaling persist to the numerically accessible times or
sees a large temporal regime with length-time scaling 2> ~ tlogt. By contrast, energy
diffusion can be seen on much shorter timescales, as can spin diffusion in the presence of
perturbations that break the nonabelian symmetry [156]. Taken together, these results
strongly suggest that there is at least a strong quantitative suppression of the relaxation
rate in the presence of the nonabelian symmetry.

Perturbation theory supports this conclusion [156]. The perturbative calculation for
the Heisenberg chain is simplest for the case of spatially correlated noise, with a large
correlation length, coupling to the energy density. In this limit, one can show [121] that
the coupling of the perturbation to an s-string scales as 1/s (i.e. as the dressed energy
of the s-string). One would expect the lifetime of an s-string to scale as s> by the golden
rule. Plugging this scaling for the string lifetime into the Kubo formula (46) gives a
logarithmically diverging diffusion constant.
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This phenomenon can also be understood somewhat more generally, as follows. The
giant quasiparticles of the Heisenberg model are made up of Goldstone modes, and
look locally like vacuum rotations. Thus, isotropic local integrability-breaking pertur-
bations cannot effectively couple to them: the matrix element for scattering an s-string
must generally include factors of 1/s. Thus, within low-order perturbation theory in the
integrability-breaking parameter, one will generically find that the giant solitons persist
in having long lifetimes (precisely how long is sensitive to how the density of final states
scales with s, which is nonuniversal). Finally, even if the decay rates vanish sufficiently
rapidly in perturbation theory, higher-order or nonperturbative processes might restore
diffusion. At present, no complete theoretical analysis of this problem exists, and it
remains one of the fundamental open questions in this area.

8. Undular diffusion in nonabelian systems

Now that we have navigated our way through an array of anomalous transport laws,
the question arises of whether there are any possibilities for anomalous transport in
clean, short-ranged, Hamiltonian quantum chains that we have left unexplored. In this
section we review yet another distinctive type of anomalous dynamics in systems with
nonbelian symmetries, which is due to discernible consequences of symmetry breaking
at non-zero temperature.

Thus far we have focused on exactly (or approximately) integrable models. We
have explained how nonabelian symmetries play a surprising role in enabling anoma-
lous transport, allowing for the possibility of anomalous spin or charge transport in
integrable lattice systems, that can be precisely quantified through divergences in the
associated diffusion constants. Introducing chemical potentials (coupling to the Cartan
charges) will in general restore normal diffusion, with its associated Gaussian fluctu-
ations and dynamical exponent z = 2. As we shall see shortly, such explicit breaking
of a global Lie symmetry has a profound effect on transport properties, regardless of
microscopic integrability and the temperatures studies. In particular, signatures of sym-
metry breaking persist to infinite temperature. As demonstrated in a recent study [276],
two-point dynamical correlation functions amongst different components of G-invariant
Noether charges show two different types of behavior: while longitudinal correlators
lying in the unbroken symmetry sector exhibit normal diffusive behavior (with Gaussian
asymptotic scaling profiles) as expected, the transverse (i.e. symmetry-broken) sector
reveals another type of anomalous transport law characterized by (i) diffusive dynamical
exponent z = 2 and (ii) oscillatory stationary scaling profiles—hence the name undular
diffusion [276].

An intuitive interpretation of undular diffusion is that it arises from an interplay
of normal diffusive transport and the dispersive physics of ‘type-II’ Goldstone modes.
Both types of dynamics have the same dynamical exponent z = 2, and thus at the
level of linear response they must be linearly superposed to yield a complex diffusion
constant. This reasoning has been confirmed by a systematic derivation of fluctuat-
ing hydrodynamics for systems with nonabelian global symmetry, within the language
of effective field theory [270]. This phenomenon is counterintuitive in the sense that
Goldstone physics is not usually believed to hold sway at high temperatures; that
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Goldstone modes can be important for high-temperature transport is nevertheless con-
sistent with the results described in sections 4 and 5. An intriguing question that
immediately arises is whether undular diffusion can be understood in terms of a micro-
scopic random walk, since a complex diffusion constant seems to invalidate the usual
central-limit-theorem arguments for normal transport (see section 2.6.1).

Goldstone modes at finite density. The phenomenon of undular diffusion is a generic
feature of Hamiltonian dynamical systems that exhibit symmetry under the action of
a nonabelian Lie group. For definiteness, we confine ourselves to nonrelativistic sys-
tems and defer comments about Lorentz invariant theories to the end of this section.
Importantly, we do not demand integrability or impose any other constraints on the
microscopic evolution law.

Undular diffusion is, in a nutshell, a manifestation of soft (Goldstone) modes at
the level of equilibrium states, namely states with a non-zero density of background
charge. In what follows, we explain the underlying mechanism and recapitulate the main
conclusions of a recent paper [276], where the phenomenon is introduced and examined
at the level of classical NLSMs.

Nonlinear sigma models are generally understood as field theories whose target spaces
are compact coset manifolds G/H. Recall that coset spaces are equivalence classes with
respect to right multiplication by element of a stabilizer subgroup H (also known as
the little group), namely G/H = {g ~ ghig € G,h € H}. NLSMs thus exhibit global
invariance under the action of the group G (assumed to be simple) and local gauge
invariance under the action of the subgroup H C G. The class of non-relativistic coset
sigma models considered in [276] can be viewed as ferromagnets with a G/H-valued
order parameter.

8.1. Isotropic Landau—Lifshitz model and complex diffusion constant

The physics behind undular diffusion is best explained using, as a basic example,
the isotropic Landau—Lifshitz magnet, a sigma model whose target space is simply
a two-sphere, that is S® = SU(2)/U(1), with nonabelian isometry group G = SU(2)
and local gauge group H = U(1). The two-sphere is most commonly parameterized by
a three-component spin field S subjected to unit normalization S-S = 1. The latter
can be thought of as a source of nonlinearity which ultimately renders time-evolution
non-trivial. By virtue of global invariance under G, the (ferromagnetic) vacuum £2 is con-
tinuously degenerate and can point anywhere on the two-sphere; spontaneous breaking
of symmetry amounts to choosing a particular orientation. Here we make the conven-
tional choice and adopt (with no loss of generality) the vacuum polarization to be
aligned with the positive z-axis. The associated stability subgroup H, which generates
rotations about this polarization axis, leaves € intact, i.e. hQh ™' = Q for h € H. The
nonlinearity constraint can be approximately relaxed only in close proximity to the
vacuum. One then finds linear fluctuations (i.e. excitations of a ferromagnetic back-
ground) that consist of transverse Goldstone modes—in low-temperature ferromagnets,
these are the usual quadratically dispersing (i.e. type-II) magnons. Recall that classi-
cal magnons (in the presence of an external magnetic field of strength b) are governed
by a linear PDE (i, & (0,, — b)) S*(x,t) = 0, with ST (x,t) = S* +15¥. This represents
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a uniform rotation (precession) in the plane perpendicular to a reference polarization
axis. The associated Green’s function in Fourier space is given by G. (k) = e™®? with
w(k) =i(k* + ).

At this juncture, we are interested in the fate of Goldstone modes in thermal
equilibrium at a non-zero density of background charges, i.e. not near the ferromag-
netic vacuum but at higher energies. To enforce non-zero expectation values for the
Cartan charges (associated with Cartan generators spanning the maximal torus t C g
with dim(t) = r), we couple them to the corresponding chemical potentials g and intro-
duce an equilibrium stationary measure 0, representing an integration measure on a
compact coset manifold G/H (defined below). More importantly, introducing g breaks
G-invariance of equilibrium correlation functions and (assuming generic values of chemi-
cal potentials) leaves behind only the residual symmetry of the maximal torus subgroup
T =U(1)" C H. This reduction splits g into a longitudinal sector, generated by t, and
a transverse sector spanned by the complement of t, as we detail below. While in inte-
grable models, the long-time behavior of dynamical two-point functions is characterized
by (generically) finite Drude weights, in non-integrable lattice systems one expects to
find normal diffusive transport on general grounds (cf the discussion in section 2.1).

This is not quite what is observed in the transverse sector. While charge dynamics
in the symmetry-broken sector exhibits diffusion-like spreading with a normal dynam-
ical exponent z = 2, the stationary Gaussian scaling profiles are characterized by a
complez-valued ‘diffusion constant’ [276]. This law is thus to be distinguished from nor-
mal diffusion (i.e. the Fourier/Fick law), which is associated with a single real constant
proportional to the variance of a microscopic Brownian motion (cf section 2.6.1). In
simple terms, Goldstone modes do not disappear at high temperatures; they merely
acquire an extra diffusive component.

Dynamics of transverse modes. To illustrate the implications of explicit symmetry
breaking in equilibrium at non-zero temperature, we return to our basic example of the
isotropic Landau-Lifshitz ferromagnet. In terms of the spin field S = (S*, 8Y, S%) € S?,
the model is governed by a nonlinear equation of motion

S, =Sx8S,.,+S xB, (91)

where we have included a constant longitudinal external field of magnitude b pointing
along the z-axis, B = be,.

The task is to infer the structure of the full three-dimensional tensor of dynamical
correlation functions (S*(z,1)S(0,0))¢, (a,b € {x,y, z}), evaluated at non-zero chemical
potential y coupling to [ dzS* (below we shall consider a more general equilibrium mea-
sure by including the temperature). By setting u = 0, the invariant measure corresponds
to the uniform SU(2)-invariant Liouville measure on the phase space. For finite p on the
other hand, the symmetry is lowered to U(1) rotations about the z-axis, and the den-
sity of the corresponding stationary measure takes the form g, = Z ' exp[u(1 — 257)],
with partition function Z, = 7 sinh(x)/p. A minor comment is in order regarding our
choice of illustrative example, which is non-generic in the sense that equation (91) is a
completely integrable PDE [162, 202]. It is well-understood that one consequence of inte-
grability is that longitudinal structure factors (a = b = z) in polarized states at u # 0
will undergo ballistic spreading (characterized by non-zero Drude weights) with a finite
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Figure 8. (Left) Real (a) and imaginary (b) part of asymptotic stationary profiles
of transverse dynamical correlation functions t'/2(S*(x,)S~(0, 0))5,/2 as functions
of scaling variables £ = x/v/t and chemical potential p of an invariant stationary
measure, shown for a non-integrable lattice discretization of the Landau—Lifshitz
field theory on S?; grey lines indicate the linear dynamics of Goldstone modes (in
arbitrary units) whereas dashed lines shown the best fit with a complex diffusion
constant ©(u). (Right) Real and imaginary parts of ©(u) as functions of p, interpo-
lating between the diffusive and Goldstone modes. Reprinted figure with permission
from [276]. Copyright (2020) by the American Physical Society.

subleading diffusive correction. Upon breaking integrability, either by lattice effects or
by adjoining higher-order terms in derivatives, one nonetheless expects to recover nor-
mal spin diffusion. Our primary concern here is not the longitudinal sector but instead
dynamical correlation functions in the symmetry-broken (transverse) sector, namely in
the zy-plane perpendicular to the symmetry axis. To this end, it is convenient to intro-
duce complex fields ST = S§* £iSY. As a direct consequence of U(1) symmetry, it is
clear that both (S*(z,t)5*(0,0)), and (S*(x,t)S*(0,0)), vanish [276]. This leaves two
non-trivial correlators, namely <Si(:1:,t)S]F(O,O))Z. The corresponding stationary pro-
files, collapsed to the diffusive scaling variable & = 2/v/t, are illustrated in figure 8. The
observed oscillation patterns are governed by a single hydrodynamic z = 2 mode with a
complex-valued ‘diffusion constant’ ®, that interpolates between normal diffusion with
© € R in the absence of a chemical potential ((S*) =0) and a Goldstone mode with
® € iR in the limit of large polarizations pu — oo.

8.2. Coset sigma models of higher-rank symmetry

Goldstone modes are a generic feature in systems with spontaneously broken symme-
tries. We have so far outlined the basics of undular diffusion in the simplest case of
SU(2) symmetry and a single magnon mode. We now focus on a more general scenario
where the symmetry Lie group G has higher rank so that symmetry breaking patterns
G — H give rise to a larger number of Goldstone modes. According to the Goldstone
theorem [174, 176, 277], in the absence of linear (type-I) Goldstone modes, the total num-
ber of type-II Goldstone modes is given by one half the number of symmetry-broken
generators, that is ng = $(dim(G) — dim(H)). We note that Goldstone modes are con-
ventionally studied in low-temperature settings, where they can essentially be modelled
as non-interacting waves and as such cannot exert forces on one another. Here we are

https://doi.org/10.1088/1742-5468 /ac12c7 73


https://doi.org/10.1088/1742-5468/ac12c7

Superdiffusion in spin chains

instead concerned with genuinely nonlinear equations of motion, for which different field
components interact among themselves in a non-trivial fashion. In this setting, the key
question is whether coupling of different transverse modes can result in a more intricate
structure of dynamical correlations than normal diffusion.

This question was also addressed in [276], for a specific class of nonrelativistic sigma
models with complex projective target spaces M,, = CP" = SU(n+ 1)/[SU(n) x U(1)].
The latter represent Kéhler manifolds of complex dimension n, and it is thus natural to

employ a description in terms of n complex (affine) coordinates CP", z = (21, 23, . . ., 2,) .
The Lagrangian density can be split in two parts,
L=Lyz—Lnm,, (92)

with the geometric Wess—Zumino term,
Lywz =i(1+2'2) Y (z'z, — 2,2) (93)
and the kinetic term

(1 + ZTZ)dab — Za%
(1+ ztz)?

EMH = Z nabzg;ng;a Nab = ) (94)

a,b=1

expressed in terms of the standard Fubini—Study metric tensor 1. We have only kept the
leading-order (i.e. quadratic) term in the gradient expansion; one could in principle add
additional higher-order terms in spatial derivatives but this is of no significance for what
follows. One disadvantage of working directly with equation (92) is that like the Lan-
dau—Lifshitz magnet, they too represent completely integrable nonlinear PDEs. Indeed,
they emerge as an effective low-energy description of certain integrable SU (n)-invariant
quantum ferromagnetic chains [53]. To avoid unwanted artifacts due to integrability, it
is safer to work with non-integrable discretizations of these equations [276].

Dynamical correlation functions and structure factors at finite temperature. In order
to describe the complete structure of dynamical structure factors, we need to first iden-
tify the longitudinal and transverse fields. To this end, it proves convenient to switch to
the Hamiltonian formulation,

H= i/dx Tr(M?) +Tr(BM), M € M,, (95)

and further exploit the fact that coset manifolds G/H can be realized as G-orbits of the
stabilizer subgroup H, by restricting the matrices M € M, to the compact submani-
fold of SU(n) singled out by the constraint A/* = 1. The higher-rank Landau-Lifshitz
equations generated by equation (95) take a compact universal form

1
Mt:§[M,Mm]+i[B,M]. (96)
i
To make full use of the underlying algebraic structure, one next decomposes matrices
M € CP" as
~n—1

M =
n—+1

1+ Z GH ) X (97)
j=1

+a
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in terms of Cartan and Weyl fields,

¢'=> (k") Te(MH), ¢ =Tr(MX*), (98)

ij=1

respectively. Here we have used the Cartan—Weyl basis of g = su(n + 1), where H' (i €
Ay € {1,...,n}) constitute the maximal subset of commuting generators spanning the
Cartan subalgebra, [H', H] = 0, whereas X=* label the Weyl generators associated
with one-dimensional complex root spaces spanned by root vectors +a € A.. The root
lattice of g is given by A = A, UA_ of g. For reference, the Cartan—Weyl commutation
relations read

[Hi,Xia] _ o/Xia, [Xa’Xfa] _ Z (Ii(/‘iil)in‘j, [X(Jz,Xw#a] — COWXQ+W7
ij—1

(99)

where we have adopted the non-diagonal Killing metric #;; = Tr(H'H’) and normaliza-
tion Tr(X“X *) = 1 for the Weyl generators.

Next we introduce the grand-canonical Gibbs measure. Since complex projective
spaces CPP" are compact manifolds, they can be equipped with a stationary G-invariant
measure. As already announced above, we shall switch to lattice Hamiltonians H,ice
which describe nonintegrable lattice discretizations of equation (92), see [276] for details.
The motivation for doing so is, apart from breaking integrability, two-fold: on the one
hand, the use of functional integral techniques can be entirely avoided, while on the
other hand the benefit is that final results are more general. For a lattice of length L,
the phase space consists of an L-fold Cartesian product of M,,, and the equilibrium
expectation value of any observable O (at inverse temperature 5 and U(1) chemical
potentials ) is given by

L

]- n — i
/ H ng ) QI,L[ e ﬁHlattlccO, (100)
M><L
=1

Zﬂ,u

<O>/3,u

with normalization Zg, in equation (100) corresponding to the grand-canonical parti-
tion function. In the above expression ng") denotes the CP" volume element of the
local phase-space attached to the lattice site ¢, and the corresponding equivariant
(Duisermaat—Heckmann) measure Qﬂ")dﬂ(") has density

Q&n)<M) — o Tr(Hy M) (101)

prescribed by the ‘torus Hamiltonian” Hj = "y, H' = —3 diag(po, pi1, - - - , fin), Where
the parameters {y,;} with " u; = 0 define n distinct chemical potentials. Specifically,
in the 8 — 0 limit, dependence on H.ie. drops out and the partition sum completely
factorizes

©w

Z(n):/ 4O Tr(HEM) (102)

n
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The following two general statements have been proven in [276]:

e (Neutrality rule). All non-neutral static N-point correlation functions evaluated
in grand-canonical Gibbs states vanish,

N

>, 0, #0 = <H¢>> =0, (103)

where vector indices o; take values in the root lattice A.

e (Imaginary part of intersectoral correlators). Assuming that Hamiltonian
dynamics is invariant under spatial reflection, ¢ — L — ¢ + 1, the imaginary compo-
nents of all two-point static correlation functions corresponding to conjugate pairs
of Weyl fields vanish

1m<¢;§a¢;§a>;# =0. (104)

The above statements are in fact valid for arbitrary G-invariant lattice Hamiltonians
Htice which are invariant under spatial inversion [276]. This can be seen by directly
performing the phase-space integrals, which is most conveniently done in the basis of
2n real canonical (Darboux) coordinates {p’, '}, of CP", in terms of which both
the volume element, dQ™ = 27"[TL, dp’'dy’, and the stationary equivariant density,

o = T[, e, factorize.
The main result regarding dynamical two-point correlation functions of ¢-fields is
that all intersectoral correlators identically vanish

(¢i°7,);, =0, for ~fa, (105)

a property which has been called dynamical decoupling [276]. This statement follows
from the fact (i) at initial time the correlation amongst the Weyl field from different
sectors are zero and (ii) that G-invariant time-evolution (expressed formally as a series
of nested commutators) cannot produce non-trivial correlations as a corollary of the
neutrality rule.

Finally, in the table below we list the complete formal structure of equilib-
rium dynamical two-point correlations functions in mnon-integrable non-relativistic
Landau-—Lifshitz field theories (including lattice discretizations thereof) with CP" target
spaces.

Correlators Transport
(@' (z,1)¢7(0,0)), Normal diffusion
(¢F(z,)T(0,0)), Undular diffusion
(¢! (,£)¢™(0,0)),,

(6% (2, 1)6°(0,0)),

(" (2,)¢71(0,0)),,  Trivial

Open directions. We conclude with some open questions. We have seen that undu-
lar diffusion crucially depends on the presence of type-II Goldstone modes, i.e. soft

https://doi.org/10.1088/1742-5468 /ac12c7 76


https://doi.org/10.1088/1742-5468/ac12c7

Superdiffusion in spin chains

modes with dynamical exponent z = 2. In contrast, classical relativistic nonabelian sys-
tems possess only type-I Goldstone modes, which may suggest that undular diffusion
is incompatible with Lorentz invariance. Although this has not yet been thoroughly
examined, we wish to point out that in relativistic NLSMs (whose target spaces are
either Lie groups G or coset manifolds G/H) densities of the Noether charges are not
the Goldstone modes themselves but rather fields associated with the generators of GG
(cf the example of the O(3) NLSM in section 7.2).

From a practical standpoint, it would be valuable to develop an efficient computa-
tional scheme to extract complex diffusion coefficients. Given the discussion in section
4.3, it seems significant that even in integrable systems, the phenomenon of undular
diffusion is beyond the present capabilities of GHD.

Lastly, it would be interesting to address whether the outlined algebraic structure
of dynamical structure factors is a universal feature of sigma models beyond complex
projective manifolds, and to extend the formalism presented above to other Lie group
symmetries and coset spaces.

9. Summary and outlook

In this review we have summarized recent progress on understanding superdiffusive
transport in spin chains. We now briefly review where the problem stands at present,
and list what seem to us to be the most pressing open questions. GHD offers a relatively
clear understanding of linear-response transport in integrable XXZ spin chains away
from the isotropic limit. In the easy-axis case, the phenomenon of diffusion at half
filling is both qualitatively and quantitatively understood [58, 59|, and so is the dynamic
structure factor at general values of the magnetization [60]. In the easy-plane regime, a
variety of approaches have converged on the conclusion that the spin Drude weight really
is a nowhere-continuous function of the anisotropy. The nature of the low-frequency
response has also been calculated using a combination of GHD and arguments from
spectral sum rules; this offers a very nontrivial consistency check on the fractal Drude
weight, and also agrees with numerical simulations of the finite-time response. The
prediction of a quasiparticle Lévy flight has not yet been confirmed at the level of scaling
functions, and requires higher-resolution numerical studies of the dynamic structure
factor.

For isotropic spin chains, the situation is less clear at present. At the level of scal-
ing, the exponent z = 3/2 can be understood on rather simple and general grounds;
moreover, a quantitative theory exists for the time-dependent diffusion constant [63].
In addition, the role of nonabelian symmetries—and the giant solitonic wavepackets
composed of Goldstone modes—in giving rise to anomalous transport is also relatively
clear [55, 61, 63]. A nontrivial prediction of this theory, which seems to be borne out
numerically, is that the z = 3/2 exponent should be superuniversal for integrable spin
chains with short-range interaction that are invariant under the action of simple Lie
groups [55].

Deriving the underlying scaling function, which is conjectured to be the KPZ scal-
ing function in several models [43, 50-53], is more difficult. We emphasize that the
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emergence of z = 3/2 dynamical exponents and their associated KPZ scaling functions
is generic in chaotic one-dimensional systems, where it is understood in terms of an
effective theory of noisy, coupled hydrodynamic modes [89, 90, 132]. At this level of
detail, the emergence of KPZ scaling functions in integrable spin chains with isotropic
symmetry is understood [54, 61, 62]. What is lacking at present is a microscopic deriva-
tion of these scaling functions that leverages integrability. The gulf in difficulty between
these two problems is roughly the difference between the original KPZ proposal [89] in
1986 and the exact results obtained for the polynuclear growth model by Prahofer and
Spohn in 2004 [278]. Short of reproducing the Préhofer—Spohn calculation for an inte-
grable spin chain, a desirable goal would be to obtain the KPZ scaling function within
GHD. This seems to require a further technical advance, namely a quantitative prescrip-
tion for including pseudovacuum fluctuations within GHD, which has proved elusive
so far.

Much of the experimental evidence for anomalous transport comes from experi-
ments with ultracold atomic gases. In these systems, it is more natural to consider
the relaxation of far-from-equilibrium initial states than to compute linear response
about thermal states. The relaxation of an initial spin helix, in particular, does not
seem accessible at present within the framework presented here—despite the recent
progress, which we reviewed here, on the simpler related problem of the relaxation of a
domain wall. (Very heuristically, one can think of a long-wavelength helix as a widely-
spaced array of domain walls.) In some ways, the difficulties here are analogous to those
mentioned above: in particular, the lack of a satisfactory framework for dealing with
pseudovacuum dynamics within GHD. The difficulties in the present context might also
go deeper, however: it is not clear, e.g. on what timescale such a far-from-equilibrium
state approaches a local generalized equilibrium state that is describable within GHD.
(This issue is, of course, a very general one with the GHD framework applied far from
equilibrium.)

Finally, a question of great importance both conceptually and in practice is the fate
of anomalous transport when integrability is weakly broken while the nonabelian sym-
metry is preserved. It would be fair to say that the situation here is extremely unclear.
Numerically, there is evidence that the crossover to normal transport (if it occurs) is
much slower than a naive dimensional argument would predict. Also there is numerical
evidence for a logarithmic divergence of the diffusion constant (though arguably [270]
a similar effect could arise from long-time tails). Theoretically, there have been many
recent attempts to incorporate integrability-breaking perturbations into GHD [279];
so far, however, we do not fully understand how to apply these theories to systems
with anomalous behavior in the integrable limit. Qualitatively, it seems that the giant
quasiparticles responsible for superdiffusion should approximately decouple from local
integrability-breaking perturbations that preserve the underlying nonabelian symme-
try. However, actually computing these decay rates seems to require one to sum over
a large number of decay channels, and neither the matrix elements nor the kinematics
regulating these decay processes is understood.
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