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We develop a formalism for computing the nonlinear response
of interacting integrable systems. Our results are asymptotically
exact in the hydrodynamic limit where perturbing fields vary suf-
ficiently slowly in space and time. We show that spatially resolved
nonlinear response distinguishes interacting integrable systems
from noninteracting ones, exemplifying this for the Lieb–Liniger
gas. We give a prescription for computing finite-temperature
Drude weights of arbitrary order, which is in excellent agreement
with numerical evaluation of the third-order response of the XXZ
spin chain. We identify intrinsically nonperturbative regimes of
the nonlinear response of integrable systems.

nonlinear response | integrable systems | generalized hydrodynamics

Most conventional experimental probes of many-body sys-
tems, from spectroscopy to transport, operate in the

linear-response regime. Linear-response coefficients such as the
finite-frequency conductivity and dynamical susceptibility have
a natural theoretical interpretation in terms of the fluctuation–
dissipation theorem (1): The response to an external probe
captures the intrinsic fluctuations of the system’s degrees of
freedom. Despite its many successes, linear response has its lim-
itations as a probe of correlated quantum matter. For example,
many different mechanisms—of varying levels of interest—give
rise to incoherent spectral continua and cannot be differen-
tiated on the basis of linear-response data. Likewise, quanti-
ties like the conductivity probe some specific combination of
the density and lifetimes of excitations; thus, e.g., the finite-
frequency conductivity is qualitatively the same for a metal and
an insulator. Recently, various experimental probes of nonlinear
response have been developed to circumvent these difficulties,
ranging from quench experiments in ultracold atomic gases (2)
to pump–probe spectroscopy (3) and multidimensional coher-
ent spectroscopy (4–22) in condensed-matter settings. While the
first of these methods is apt for probing far-from-equilibrium
dynamics and the second one radically reconstructs the state
of the system, the third one is milder and probes higher-order
and multiple-time correlations of the equilibrium system. Such
nonlinear probes are able to distinguish phases that have simi-
lar linear-response signatures; e.g., they can distinguish between
excitation broadening due to disorder and that from decay
(12). Despite a flurry of recent work (13–25), the theoretical
toolbox for addressing nonlinear response in generic interact-
ing quantum many-body systems is primitive, with few exact
results beyond free theories and those that reduce to ensem-
bles of two-level systems. (Notable exceptions are refs. 26–28,
which compute specific time-ordered n-point correlation func-
tions in integrable systems with the goal of characterizing ballistic
transport.)

Here, we develop and apply an asymptotically exact frame-
work for computing the nonlinear response of interacting inte-
grable systems, i.e., those solvable by the thermodynamic Bethe
ansatz (TBA) (29). This framework is based on viewing inte-
grability through the lens of generalized hydrodynamics (GHD)
(30–32) (see also refs. 33 and 34 for a precursor of this approach
and refs. 35–57 for recent developments); our results are exact

at the hydrodynamic Euler scale, i.e., for perturbations that vary
slowly in space and time. (The response to sharply localized
potentials could contain oscillations in space and time that the
GHD approach automatically averages out and hence cannot
properly capture.) We remark that with these caveats GHD, and
thus our method, is believed to be exact at any finite temperature
and it can be applied to the computation of correlation func-
tions of the density of any conserved charge in any integrable
system.

In the present work, we show that the nonlinear response
of integrable systems contains information that is absent from
(or subleading in) linear response: While the spectral func-
tions of free and interacting integrable systems are qualita-
tively similar [with only subtle differences in the broadening
around their ballistic light cones (45, 46)], we find that spatially
resolved nonlinear response reveals clear, qualitative distinctions
between interacting and noninteracting integrable systems (as
well as between chaotic and integrable systems). We discuss
the prospects for measuring these features in experiments on
interacting many-particle systems using nonlinear spectroscopic
probes.

We also consider the generation of persistent currents after
the application of an electric field, which is one of the hall-
marks of integrability. At linear order in the field, the current
is encoded in the linear Drude weight (36, 37). This can be read-
ily generalized beyond the linear order, by defining higher-order
Drude weights D(n) (58, 59). We show that our formalism yields
a compact recursive formula for D(n) at finite temperatures. We
demonstrate the validity of our hydrodynamic approach by com-
paring its results with those of exact diagonalization studies of
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integrable spin chains; we find excellent agreement (Fig. 1). We
conclude by discussing the special case of the isotropic Heisen-
berg chain, which is known to host anomalous superdiffusive
transport (60–66) characterized by propagation that is slower
than ballistic motion but faster than diffusion. We show that the
emergence of superdiffusion is accompanied by a breakdown of
perturbation theory in the external field and hence an inherently
nonperturbative nonlinear response.

Setup
We consider general one-dimensional systems whose dynamics
are governed by some integrable Hamiltonian H0. The dynamics
under H0 are treated within Euler-scale GHD (32): We partition
the system into hydrodynamic cells each of mesoscopic size and
linked to some spacetime point (x , t) and assume that each cell
is always instantaneously in some local generalized Gibbs ensem-
ble (GGE) (67, 68), characterized by the vector of occupation
factors of available quasiparticle states, n(x , t) = {nθ(x , t)}; the
“rapidity” θ is a convenient way of parameterizing the momen-
tum. (We present results for systems with a single quasiparticle
species but the generalization to multiple species is immediate.)
The density of quasiparticles of rapidity θ can be expressed in
terms of n as ρθ ≡ ρtθnθ , where ρtθ is the available density of states
for quasiparticles with those quantum numbers. (Note that, in an
interacting system, ρtθ is itself a nontrivial function of the local
GGE.) Because of integrability, ρθ is separately conserved for
each θ; moreover, nθ obeys a quasilinear advection equation,

∂tnθ + veff
θ [n]∂xnθ = 0, [1]

where veff
θ is an effective group velocity. In noninteracting sys-

tems, the effective velocity v eff of a quasiparticle is just its group
velocity. In an interacting integrable system, however, collisions
are associated with a time delay in the quasiparticle trajectory
and thus renormalize the effective quasiparticle velocity. v eff is
therefore a nonlinear functional of n.
H0 has an infinite set of conserved charges, [H0, Q̂ j ] = 0,

whose expectation values in a GGE state are given by 〈Q̂ j 〉=∫
dx 〈q̂j 〉=

∫
dxdθ q j

θρθ , where q j
θ is the contribution to the j th

charge density from quasiparticle θ. The corresponding cur-
rent density is jj =

∫
dθρθq

j
θv

eff
θ . GHD is highly nonlinear, even

at the Euler scale, since the properties of each quasiparticle
are strongly renormalized by its interactions with all the oth-

Fig. 1. Third-order spin Drude weight D(3) in the easy-axis regime of the
XXZ spin chain with βh = 1. Main plot shows comparison between GHD
and ED results for fixed ∆. The lower (upper) boundaries of the shaded
region correspond to extrapolations of finite-size ED results with a degree 1
(degree 2) polynomial in 1/L. Inset showsD(3) as a function of η= cosh−1 ∆.

ers; however, this nonlinearity can be addressed using TBA
techniques.

We now discuss how external forces can be incorporated into
GHD (35, 44). For concreteness we specialize to the case where
the coupling is to a global U (1) charge q̂ = q̂0, which remains
conserved even in the presence of inhomogeneous fields. Thus,
the perturbed Hamiltonian is H (t) = Ĥ0 +

∫
dx V (x , t)q̂0(x ).

Assuming V varies slowly in space and time, the Euler-scale time
evolution of the system is described by (35, 43, 44, 47–50)

∂tnθ + v eff
θ ∂xnθ +Eaeff

θ ∂θnθ = 0, [2]

where aeff
θ [n] is the effective acceleration of the quasiparticles,

and the sole dependence on the potential is via the electric
field E(x , t)≡−∂xV (x , t). As is the case for v eff, aeff is also
renormalized by scattering processes and is hence a nonlinear
functional of n.

Finally, we note that Eq. 2 is strictly valid only at the Euler
scale, i.e., for response at asymptotically large x and t , but with
a fixed ratio x/t . Euler-scale response is a hallmark of inte-
grable dynamics: Chaotic systems without Galilean invariance
have exponentially suppressed response at the Euler scale, since
densities spread diffusively rather than ballistically. Interacting
integrable systems also have diffusive corrections to ballistic
quasiparticle spreading (45, 46, 69), but these corrections are also
suppressed at the Euler scale.

Nonlinear Response
Response is concerned with computing the value of some local
observable Ô—taken here to be a charge density q̂j or current
density ĵj —following the application of electric fields E(x , t).
Since Eq. 2 is asymptotically exact at the Euler scale to all orders
in Vj , it is sufficient to work perturbatively in Vj to compute
the response (we comment on exceptions below). Formally, the
connected order-N response is

χ
(N )

Ô
({xn , tn})=

N−1∏
n=0

δ

δE(xn , tn)
〈Ô(xN , tN )〉

∣∣∣∣∣
E→0

[3]

with t0 < t1 < . . .< tN . The expectation value is taken with
respect to the nonuniform state at time tN generated by perturb-
ing the initial uniform GGE state with external fields at times
t1, . . . tN−1. Our strategy is to express the expectation value in
Eq. 3 in terms of quasiparticle occupations, perform all the func-
tional derivatives, and then set E = 0, yielding an expression that
we evaluate in the uniform GGE.

An expectation value 〈O(x , t)〉 is a nonlinear functional of the
local state n(x , t). It can be affected by perturbations at other
spacetime points only through the advection of those perturba-
tions to (x , t), which is captured by the propagator Dθθ′(z , z ′) =
δnθ(z)
δnθ′ (z

′) , where we have defined z ≡ (x , t). One can express this
dependence in the following compact form, suggestive of a chain
rule (70):

δ 〈Ô(z1)〉
δE(z0)

=

∫
dθdα

δ 〈Ô(z1)〉
δnα(z1)

δnα(z1)

δnθ(z0)

δnθ(z0)

δE(z0)
. [4]

Eq. 4 simply says that expectation values at spacetime point
z0 depend on fields at z1 6= z0 purely via the process by which
the fields perturb the quasiparticle distribution at z0 and this
perturbation is advected over to z1.

We are interested in generalizing Eq. 4 to the case of higher-
order functional derivatives.

To organize these more complicated expressions we have
developed a diagrammatic framework (SI Appendix), which
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relies on the observation that any functional derivative can
be composed of the following types of elementary object.
First, there are propagators, defined above, connecting per-
turbations at different spacetime points; in a uniform GGE,
the propagators take the simple form Dθθ′(x0, t0; x1, t1) =
δθθ′δ

[
(x0− x1)− veff

θ (t0− t1)
]
(70). Second, there are functional

derivatives of observables at a point with respect to the quasipar-
ticle distribution at the same point, which can be evaluated using
TBA techniques (32). We call these “measurement vertices.”
Third, there are derivatives of the quasiparticle distribution at
a spacetime point with respect to fields at the same point. To
find these we invert Eq. 2 using Green’s function techniques
and thereby find δnθ(z)

δE(z)
=−aeff

θ [n]∂θnθ (SI Appendix). We term
these objects “field vertices.” These three types of objects appear
in Eq. 4. Finally, response functions at order N > 1 will also
involve expressions of the form Γ(p) = δpnθ(z0)

δnθ1 (z1)...δnθp (zp)
. These

capture the modification of the spacetime propagator by scat-
tering events and can be computed by repeatedly differentiating
Eq. 1 with respect to n , which yields a recursive formula that
allows us to express Γ(p) in terms of ∂xΓ(1) and functional deriva-
tives of the v eff[n] with respect to quasiparticle occupations (SI
Appendix). We refer to these objects as “scattering vertices.”

All other types of object can be expressed in terms of these;
e.g., functional derivatives of the form δk 〈Ô〉

δnθ1 (z1)...δnθk
(zk )

can be
rewritten in terms of measurement or scattering vertices and
propagators, which advect all occupation factors to the point
where the functional derivative is taken. We may verify that
for N = 1 this procedure yields the standard expressions for
linear response. Higher-order response functions can then be
computed recursively from Eq. 3.

Although the formal expressions rapidly become unwieldy
with increasing N , they have a transparent physical interpre-
tation, as we now exemplify for N = 2. The external field can
affect the system via two distinct physical processes, each cor-
responding to a distinct field vertex (represented by a box with
a wavy line in Fig. 2): It can accelerate a thermal quasiparticle
from rest within a spacetime cell (the first field vertex in Fig.
2A) or else accelerate a quasiparticle previously acted upon by
the field at an earlier time (the second field vertex in Fig. 2A).
In a noninteracting integrable system different quasiparticles are
independent of each other, and thus all connected nonlinear
response functions result solely when a single quasiparticle is
repeatedly accelerated by the field, and then measured, as in
Fig. 2A. However, in interacting integrable systems, quasiparti-
cles influence each other via scattering processes. Consequently,
the ability of the field to excite a quasiparticle in a given space-

time cell z is also sensitive to the presence of quasiparticles
excited by the field in all spacetime cells in the past light cone
of z under the advective dynamics of GHD, leading to additional
connected contributions (as in Fig. 2B). Quasiparticles excited
by the field acting at distinct spacetime cells can also propagate
to a single cell where they jointly modify the measured observ-
able (Fig. 2C). Interactions thus lead to an infinite hierarchy of
field and measurement vertices that are sensitive to the pres-
ence of an increasing number of previously excited quasiparticles
in the spacetime cells where quasiparticles are accelerated or
measured. Finally, the nonlinear response also receives contri-
butions from scattering vertices, again of arbitrary order, due
to the phase shift experienced by the measured quasiparticle as
it propagates between the acceleration and measurement cells
in the presence of other excited quasiparticles in the system
(Fig. 2D). The N th-order response in an interacting integrable
system involves N field vertices and a single measurement ver-
tex, linked by advection propagators Dθθ′(z , z ′) and scattering
vertices, and can be organized using spacetime diagrams (SI
Appendix). Crucially, at fixed N , only vertices below some finite
order can contribute: For instance, Fig. 2 contains all processes
contributing to χ(2).

We caution the reader that in Fig. 2 the effects of fields
and collisions are exaggerated for clarity. In fact, the trajectory
shift due to scattering processes as in Fig. 2D is infinitesi-
mal, and similarly a perturbing external field imparts only an
infinitesimal acceleration to each quasiparticle. Thus, there are
kinematic restrictions on allowed processes that Fig. 2 does
not capture. For instance, the process in Fig. 2A is possible
only if the three points—the two where the field acts and
the one at which the measurement occurs—lie on the same
ray x = x0 + vλt for some initial position x0 and some rapid-
ity λ. This aspect is crucial to our discussion in the next
section.

Measuring Interactions in the Lieb–Liniger Gas
As an example of this approach, we apply it to the Lieb–Liniger
model of one-dimensional bosons with contact interactions,

Ĥ0 =
1

2

∑
j

p̂2
j + c

∑
i 6=j

δ(x̂i − x̂j ), [5]

where x̂j and p̂j are the position and momentum of particle j .
The bare group velocity v of a particle is equal to its momen-
tum p. The effective velocity v eff can be obtained from v as
the solution to an integral equation, whose explicit form is pro-
vided in Materials and Methods. An additional fact, peculiar to

B C DA

Fig. 2. Four distinct physical processes contributing to the second-order response χ(2). (A) A thermal quasiparticle (QP; black line) is accelerated twice by
the electric field (red wavy line) and modifies the expectation value 〈Ô〉 in the final spacetime cell. (B) First a thermal QP is accelerated; a second thermal
QP (blue line) is later accelerated when the first one is in its spacetime cell, thus modifying the effective acceleration perceived by the second one; both QPs
proceed ballistically and the second one modifies 〈Ô〉. (C) Two thermal QPs are independently accelerated by two pulses of the electric field; after traveling
to the same spacetime cell, together they modify 〈Ô〉. (D) As in C, two thermal QPs are independently accelerated but one scatters off the other before
influencing 〈Ô〉. Only A is relevant to free systems but all four processes contribute in interacting integrable systems.
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the Lieb–Liniger gas, is that the effective acceleration aeff is not
renormalized by interactions; with our choice of conventions,
aeff = 1. For c→ 0, Ĥ0 is a free Bose gas, while for c→∞ it can
be described as a theory of free fermions. This can be recognized,
for example, by studying v eff, which in both limits tends to the
bare group velocity v . Consequently, linear response in these two
limits approximates that of free bosons or fermions respectively,
with only quantitative corrections from interactions. This hin-
ders a precise measurement of c based only on linear response.
We now demonstrate that a spatially resolved measurement
of χ(2)—or higher-order responses—carries direct information
about the interactions. For concreteness, we consider a specific
charge response of the form χ̃(2)(x , t , τ)≡χ(2)

q̂0
(0, 0; x , τ ; 0, τ +

t), where the first perturbation and the measurement coincide
spatially, and the system is perturbed at an intermediate time
at position x . In the free boson or free fermion limits, we know
from the discussion in the previous section that the only process
contributing to χ(2) is one where a single quasiparticle is repeat-
edly accelerated by the subsequent field applications (Fig. 2A).
Furthermore, as previously noted, this process can take place
only if all the points in which the perturbation is applied and the
measurement point lie on the same ray. Thus, in the two non-
interacting limits χ̃(2)(x , t , τ) will vanish everywhere except at
x = 0. Conversely, if c =O(1), quasiparticles are strongly inter-
acting, and each one influences the dynamics of the others. For
example, processes such as those in Fig. 2D will be nonzero
since v eff of a quasiparticle with momentum p will depend on
all the quasiparticles in the same region (SI Appendix). We thus
expect that χ(2) is generically finite and nonzero for arbitrary
perturbation and measurement points.

To summarize: If we focus on the region away from x = 0,
i.e., chosen to exclude the case where all points lie along the
same ray, we expect χ̃(2)(x , t , τ) to be directly sensitive to the
interactions and hence generically will have a nonzero value
away from the free limits c→ 0 or c→∞. An immediate corol-
lary is that in these limits, χ̃(2)(x 6= 0, t , τ) should respectively
vanish as O(c) or O(1/c). This should be contrasted with
linear-response measurements where χ(2) =O(1) in all these
cases and the effect of interactions is to determine subleading
corrections.

Indeed, this response is readily computed using the above for-
malism (as detailed in Materials and Methods and SI Appendix);
Fig. 3 shows the results for various interaction strengths, at
fixed temperature T and boson density n̄ . As c decreases
we see that the signal moves closer to x = 0. This is because
for c→ 0 the system is proximate to a Bose–Einstein con-
densate at c = 0 and T = 0 (29, 71), and hence only slow,
low-momentum quasiparticle states are occupied. (See Materi-
als and Methods for another effect contributing to the signal
moving near x = 0.) Furthermore, note that the signal starts to
decrease either for c. 10−2 or for c& 1, as expected. (Recov-
ering free boson response as c→ 0 requires studying very low
c; as c decreases, the density of states initially increases due to
the incipient Bose condensation, enhancing interaction effects.)
These observations are not restricted to the protocol analyzed
above: Any protocol that separates the same-ray “free” con-
tribution from the regular part of the response would yield
similar results. Thus, nonlinear correlators provide a more
direct window into the interacting Lieb–Liniger gas than linear
response.

In passing, note that spatially resolved measurements of mul-
tipoint nonlinear response would also give a powerful diagnostic
for ballistic transport and hence integrability. As we remarked
above, the existence of nontrivial Euler-scale response—absent
strict Galilean invariance—is a hallmark of integrable dynamics
and suffices to diagnose integrability. Even in Galilean-invariant

Fig. 3. χ(2)(0, 0; x, τ ; 0, τ + t) in the Lieb–Liniger model for various inter-
action strengths c. We take T = 2, n̄ = 1, τ = t = 1 and regularize the
δ-function GHD propagator as a Gaussian of width η= 0.1. In a noninter-
acting system, the only response would come from the resolution-limited
spike at x1 = 0; everything else is a signature of interactions.

chaotic fluids with a few conserved currents, quasiparticles prop-
agate subballistically, so one expects a Euler-scale multipoint
correlator like that shown in Fig. 3 to be strongly suppressed
relative to the integrable case.

Higher-Order Drude Weights
So far, we have focused on spatially resolved response. While
this can be measured in cold-atom experiments, most solid-
state spectroscopic techniques access only spatially integrated
quantities. At the Euler scale, the most natural integrated quan-
tity is the generation of a persistent current in response to
a uniform electric field. This follows from the fact that the
current operator in an integrable system generically has some
part that is strictly conserved under time evolution, so the cur-
rent generated in response to an electric field will not decay
over time. For example, specializing to first-order response,∫
dx χ

(1)

ĵ0
(0, 0; x , t) will tend to a constant as t→∞; this limit-

ing value is called the Drude weight (72, 73). Alternatively, in
frequency space, the conductivity goes as σ(ω) =πDδ(ω) + · · · .
Drude weights extend to nonlinear response: A field E applied
to the system for a finite time ∆t drives a persistent current
j0(ϕ), where ϕ≡E∆t is the vector potential variation due to
the field. By expanding j0(ϕ) as a series in its argument and tak-
ing derivatives, we may define a sequence of nonlinear Drude
weights (58, 59) (which can be defined similarly for any other
operator).

Our diagrammatic approach can straightforwardly be used
to compute N th-order Drude weights D(N ), by integrating the
N th-order response over the positions of the field insertions. As
shown in SI Appendix, this yields the recursive formula

D(N )

Ô
=−

∫
dθNaeff∂θN n

δ

δnθN
D(N−1)

Ô
, [6]

with D(0) = 〈Ô〉. This recursive formula allows us to obtain a
closed-form expression for nonlinear Drude weight of arbitrary
order only using TBA technology, with explicit expressions up to
third order given in SI Appendix.

While Eq. 6 rapidly becomes complex with increasing N , a
simple limit emerges for the first term of a high-temperature
expansion: Since each factor of ∂θn is proportional to T−1, the
leading contribution to D(N )

Ô
is always obtained by acting with
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δ
δnθN

on the factor ∂θN−1nθN−1 in D(N−1)

Ô
. Integrating by parts,

we find that as T→∞,

D(N )

Ô
=−

∫
dθ∂θn

[
aeff ∂

∂θ

]
N−1aeff δ〈Ô〉

δn(θ)
+O(T−2). [7]

We benchmark this GHD result against numerical simulations
of a paradigmatic integrable model, the XXZ spin chain, and
focus on spin current response. Since spatial inversion symmetry
forces spatially averaged current response functions to vanish for
any even N , we focus on D((3)). We work in the easy-axis limit
and exploit the generalized Kohn equation (58, 59) combined
with exact diagonalization (ED) on small systems. [Unfortu-
nately, state-of-the-art matrix product operator techniques for
linear Drude weights (74) do not give comparably good results
for higher-order Drude weights (SI Appendix).] Our results are
presented in Fig. 1; despite the difficulty of extrapolating reliably
to the thermodynamic limit from the small system sizes accessi-
ble to ED, we see that the GHD results are within the range of
our extrapolations at high temperature and agree extremely well
at lower temperatures. We also see good agreement as we vary
the easy-axis anisotropy at fixed temperature.

Discussion
In this work we have presented a general framework for comput-
ing nonlinear response within GHD, demonstrated that it is in
excellent agreement with exact numerics, and illustrated how it
can directly distinguish between free and interacting integrable
systems. Our results suggest a natural experimental protocol for
directly measuring quasiparticle interaction effects in the Lieb–
Liniger model using ultracold atomic gases. (Importantly, this
approach does not require single-site imaging resolution.) Since
our proposal involves finite-time behavior, it can be applied to
realistic experimental settings where integrability is only approxi-
mate. We have focused on regimes where the nonlinear response
is perturbative and can be expanded in powers of the field
strength. In such regimes, our results for nonlinear response bear
some resemblance to those for full counting statistics (26–28).
The multipoint correlators that appear in that theory (with all
operators evaluated at the same point in space) are a special case
of those computed here.

We need not look far for integrable systems in which response
is inherently nonperturbative. The most transparent example is
the isotropic Heisenberg model, at h = 0. In linear response, this
model exhibits anomalous transport in the Kardar–Parisi–Zhang
universality class (60–66). We may approach this regime from
nonzero βh by taking appropriate limits. Explicitly computing
the spin current due to an impulse ϕ=E∆t , we find that

J (h,ϕ)≈ h

1/h∑
s=1

s−4f (hϕs3), [8]

for some scaling function f that is approximately sinusoidal in its
argument (SI Appendix). The sum is over quasiparticle “strings,”
which are bound states of s elementary magnons. If we now take
ϕ→ 0 at fixed h 6= 0, we obtain a series in powers of ϕ, where
the first term is the linear Drude weight [ϕD(1)∼ϕh2| log h|],
the next nonvanishing term is ϕ3D(3)∼ϕ3/h2, and higher-order
terms are even more singular in the half-filling limit. The ϕ→ 0
and h→ 0 limits strikingly fail to commute: If we instead take
h→ 0 at fixed ϕ, we find that J (h,ϕ)∼ h2ϕ| log hϕ|. In effect,
ϕ can act as a cutoff on response: For any fixed field, sufficiently
large bound states respond nonperturbatively and undergo Bloch
oscillations. A proper description of such nonperturbative phe-

nomena requires extending the present framework beyond Euler
scale, e.g., by including diffusive corrections (45, 46, 69) and
other sources of irreversibility (75). We leave this as an important
direction for future work.

Materials and Methods
Computation of Γ(2). In this subsection, we describe how

Γ(2) =
δ2nθ (z)

δnθ1
(z1)δnθ2

(z2) can be expressed in terms of linear propaga-

tors D and a scattering vertex. For the most general case of Γ(p), we refer
the reader to SI Appendix.

To compute Γ(2) we take the functional derivative of Eq. 1 with respect to
n(x0, t0) and n(x1, t1) and evaluate it on top of a homogeneous background,
obtaining

(
∂t + veff

θ ∂x

)
Γ

(2)

=−
(∫

dθ′
δveff
θ

δnθ′
Dθ′ ,θ1

(z1, z)∂xDθ,θ0 (z0, z) + (0↔ 1)

)
. [9]

Note that, since we have now fixed n to be the uniform thermal back-
ground, we have dropped terms proportional to ∂xn. The left-hand side
of this equation consists of Γ(2) acted upon by a linear partial differential
operator (PDO) (since n is now fixed to be the thermal background) whose
Green’s function is given by the propagator D. Inverting the PDO using its
Green’s function, we have

Γ
(2)

=−δθ,θ2

∫
d2zs Dθ(zs, z)

δveff
θ

δnθ1

Dθ1 (z1, z)∂xDθ(z0, z) + (0↔ 1), [10]

where we introduced Dθ(z0, z1) = δ(x1− x0− veff
θ (t1− t0)), zs = (xs, ts) label-

ing the position of the scattering process, and d2zs = dxs dts.
In this expression we can recognize the structure of a process like that

depicted in Fig. 2D. Note that
δveff
θ

δnθ1
and hence Γ(2) will be nonzero only if

the model is interacting; in a free theory veff reduces to the group velocity
and will hence be independent of nθ1 .

χ(2) in the Lieb–Liniger model. In this section we focus on the protocol
described in Measuring Interactions in the Lieb–Liniger Gas and the corre-
sponding computation of χ(2)

q̂0
(0, 0; x, τ ; 0, τ + t). In particular, for x 6= 0, χ(2)

is given by the sum of two contributions, represented in Fig. 2 C and D. In
fact, Fig. 2A is zero whenever x 6= 0, and Fig. 2B is zero in the Lieb–Liniger
model since aeff = 1 and does not carry any dependence on the state n.

For continuity with the previous section, we focus on the contribution in
Fig. 2D, which is given by

χ
(2)
d =

∫
dθ dθ1 dθ2 aeff

θ1
∂θnθ1 aeff

θ2
∂θnθ2 Γ

(2) δ〈Ô〉
δn(θ)

, [11]

where Γ(2) =
δnθ (0,t+τ )

δnθ1
(0,0)δnθ2

(x,τ ) is given in the previous section in terms of

δveff
θ

δnθ1
. In the Lieb–Liniger model the momentum corresponds to the rapidity

k = θ and the energy is given by e = k2/2 (as customary, we are choosing
units in which the mass of the particles is 1). The bare group velocity is then
given by vθ = k = θ. The effective group velocity, which is renormalized by
the interactions, is then given by the solution of the integral equation (32)

ρ
t
θveff
θ = ρ

t
θvθ +

∫
dθ′ Kθ−θ′nθ′ρ

t
θ′v

eff
θ′ . [12]

Kθ−θ′ is the so-called scattering kernel, which encodes the phase shifts
(or equivalently time delays) of quasiparticles upon scattering. In the
Lieb–Liniger model it takes the form

Kθ−θ′ =
1

π

c

(θ− θ′)2 + c2
. [13]
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Before separately analyzing the two limits c→ 0 and c→∞, we report the
free-particle result, which holds for both free fermions and bosons and is
entirely due to the diagram in Fig. 2A:

χ
(2)
a =

∫
dp

2π

δ〈Ô〉
δnp

Dp(z2, z1)ap∂p (Dp(z1, z0)ap∂pnp). [14]

As previously noted, the products Dp(z2, z1)Dp(z1, z0) and
Dp(z2, z1)∂pDp(z1, z0) vanish whenever all the points {z0, z1, z2} do
not lie on the same ray. Finally, we can see that the only difference between
fermions and bosons is in the dependence of np; i.e.,

np =
1

1± eβ(ep−µ)
, [15]

in the two cases.
For the Lieb–Liniger gas, it is easiest to recover this form in the free-

fermion limit c→∞, in which Kθ−θ′→ 0. In this case, it is then clear that

veff
p → vp = p independently of the state nθ . As a consequence

δveff
θ

δnθ1
→ 0 and

Γ(2) will vanish.
The free-boson limit c→ 0 of the Lieb–Liniger gas is more subtle. The

key observation is that the width of the function Kθ−θ′ is proportional

to c. Combining this observation with Eq. 12 we expect that
δveff
θ

δnθ1
will be

nonnegligible only if θ− θ1 . c. Looking at Fig. 2D, note that the slope of
the black trajectory is given by veff(θ1), while the slope of the blue one
is veff(θ). Thus, as c→ 0, for an effective scattering process to take place
veff(θ)− veff(θ1) = O(c), requiring that the three points lie approximately on
the same ray; i.e., x = O(c). We can then see that ultimately this contribution
will be peaked in the same region where the diagram in Fig. 2A is nonzero
and it will be impossible to separate them. Similar considerations would also
hold for the diagram in Fig. 2C.

While the above discussion implies that χ̃(2)(x 6= 0, t, τ ) tends to zero in
the c→ 0 limit, as it should for a free-particle system, it is not immediately
clear analytically that the signal at x = 0 tends to its free boson value. This
can, however, be verified numerically, by showing that the sum of diagrams
in Fig. 2 C and D tends to zero as c→ 0.

Numerical Computation of the Nonlinear Drude Weights. In our numerical cal-
culations we used the generalized Kohn equation (58, 59) combined with
exact diagonalization. The generalized Kohn formula relates the current
Drude weights to the derivatives of the energy levels when a gauge flux
ϕ is threaded through a system with periodic boundary conditions. E.g., for
D(3)

ĵ0
it gives

D(3)
ĵ0

=
1

L

∑
n

pn
d4εn

dϕ4
=

1

L

∑
n

pn
d3 〈̂J0〉n

dϕ3
, [16]

where L denotes the length of the system, and n runs over the eigenstates
of Ĥ0, each of whom has energy εn and is occupied with probability pn.
In the second part Ĵ0 is the total charge current

∑
j ĵ0( j) and 〈·〉n denotes

the average over the nth eigenstate. The figures reported in the main
text are obtained by summing over all symmetry sectors (momentum and
magnetization).

Note that a naive implementation of this formula based on finite differ-
ences would be problematic. For small enough ϕ the numerical precision
on the finite difference (which must then be divided by ϕ3) would limit the
accuracy of the results. On the other hand, at large enough ϕ, level cross-
ings start to occur, thus compromising the results. Empirically, it seems that
these two problems significantly compromise the results for all values of ϕ
starting at L & 15. There are two possible solutions to this problem. One is

to use perturbation theory to express d4εn
dϕ4 based on matrix elements of Ĥ0

and Ĵ0 (see equation 31 of ref. 59). Another alternative exploits the inte-
grability of the model in question. In fact, we could choose a large ϕ'
10−2 and track levels through the various crossings based on their fidelity
〈n(ϕ0)|n(ϕ1)〉. Both approaches give consistent results for the cases we
considered.

Finally, we point out that this approach is heavily limited by finite-size
effects, specifically at small |∆| − 1 or medium-high temperatures, where
a reliable extrapolation to the thermodynamic limit is not possible (SI
Appendix).

Note. As this paper was being completed, we became aware of recent work
(76) that computes exact nonlinear Drude weights for the XXZ chain. Ref.
76 considers only T = 0 and |∆|< 1 and hence has limited overlap with the
results presented here. We have checked that our results for T→ 0 agree in
the relevant regime of ∆. Since the issue of irreversibility for finite-T GHD
calculations is particularly challenging to address in the easy-plane regime
for reasons noted in ref. 75, we defer detailed study of this regime to future
work.

Data Availability. All study data are included in this article and/or SI
Appendix.
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