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Operator spreading under unitary time evolution has attracted a lot of attention recently as a way to probe
many-body quantum chaos. While quantities such as out-of-time-ordered correlators (OTOCs) do distinguish
interacting from noninteracting systems, it has remained unclear to what extent they can truly diagnose chaotic
vs integrable dynamics in many-body quantum systems. Here, we analyze operator spreading in generic one-
dimensional many-body quantum systems using a combination of matrix product operator (MPO) and analytical
techniques, focusing on the operator right weight. First, we show that while small bond dimension MPOs allow
one to capture the exponentially decaying tail of the operator front, in agreement with earlier results, they lead to
significant quantitative and qualitative errors for the actual front—defined by the maximum of the right weight.
We find that while the operator front broadens diffusively in both integrable and chaotic interacting spin chains,
the precise shape and scaling of the height of the front in integrable systems is anomalous for all accessible times.
We interpret these results using a quasiparticle picture. This provides a sharp, although rather subtle, signature
of many-body quantum chaos in the operator front.

DOI: 10.1103/PhysRevB.104.104307

I. INTRODUCTION

Understanding the propagation of quantum information in
many-body quantum systems has become a central theme
of modern condensed-matter physics. Quantum information
dynamics sheds light on such seemingly unrelated problems,
including fault-tolerant quantum computing, the foundations
of statistical mechanics [1–3], the physics of black holes [4],
and holography [5]. This renewed interest in quantum infor-
mation quantities was partly sparked by recent experimental
developments that explored questions related to thermaliza-
tion of isolated quantum systems [6–9] and even characterized
thermalization or lack thereof by measuring directly entan-
glement entropies [10–12]. Recently, much work has been
devoted to understanding the spreading of quantum operators
under unitary evolution in the Heisenberg picture [5,13–18]
as a way to characterize the scrambling of information into
increasingly nonlocal observables. Starting from a local op-
erator O at x = 0, an especially interesting quantity is the
operator “front” (or “light cone”) at a given time t , corre-
sponding to the location of the farthest nonidentity operators
in O(t ). In lattice quantum systems, the operator front is
constrained by the Lieb-Robinson bound [19].

Conventional linear response functions do not diagnose the
operator front since conventional observables relax locally.
For example, in the presence of conserved quantities, auto-
correlation functions spread diffusively, while the operator
front spreads ballistically [20–24]. Instead, the dynamics of
the operator front can be captured by out-of-time-order com-
mutators (OTOCs) [5,25,26]

C(x, t ) ≡ 1
2 〈[V (t ),W ]†[V (t ),W ]〉, (1)

where V andW are local operators separated by a distance x
and the expectation value is taken in a chosen equilibrium en-
semble. Initially, the operatorsV andW are well separated, so
C ≈ 0, but as V (t ) spreads in a chaotic system, C approaches
an O(1) number as the light cone of V (t ) overlaps W . The
general behavior of OTOCs has been studied in various con-
texts, ranging from random circuits to many-body localized
systems [21,23,24,27–34], and a number of proposals and
subsequent promising experiments have been carried out in
the past few years to measure OTOCs directly [35–40].

A natural question that arises in this context is whether
studying operator spreading may elucidate key differences in
the dynamics between integrable and chaotic systems [41,42].
In fact, the main motivation for the line of study of operator
spreading and OTOCs was their promise to probe “many-body
quantum chaos,” which in turn should allow one to distinguish
integrable vs chaotic quantum dynamics. Integrable systems
have extensively many conservation laws [43–51], as well as
stable quasiparticle excitations even at high temperature. It is
thus natural to expect the dynamics of operator spreading in
these systems to differ from that in chaotic systems. Initial
attempts to establish such a distinction compared fully chaotic
systems, such as random circuits, to free-fermion models or
models such as the transverse-field Ising model that can be
mapped to free fermions. The spreading of a generic operator
in a chaotic system is, indeed, very different from that of,
say, a fermion bilinear: notably, in the latter case, the squared
commutator (1) vanishes at late times inside the front, in-
stead of saturating. However, it was realized that there are
natural operators in the transverse-field Ising model, such as
the local order parameter, for which the squared commutator
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saturates behind the front. A more refined distinction was
then sought based on the idea that fronts in chaotic systems
seem to broaden diffusively in time, as one can prove for
random circuits [30,31]; meanwhile, noninteracting systems
have operator fronts that broaden subdiffusively [32,33,52–
55] as t1/3. The behavior of the OTOC behind the front in
free-fermion systems also shows a pattern of oscillations [32],
in sharp contrast to generic chaotic systems in which the
OTOC approaches a universal constant behind the front.

However, interacting integrable quantum systems also
have an operator front that spreads ballistically and broadens
diffusively [34]. Although the mechanisms of this behavior
are very different than in quantum chaotic systems (in inter-
acting integrable systems, diffusion is due to random time
delays as a result of collisions between different quasiparti-
cles [34,56]), no qualitative distinctions between the operator
fronts of interacting integrable systems and chaotic systems
have yet been identified. Even in integrable cellular automata,
a class of exceedingly simple interacting integrable systems,
operator spreading probes are hard to distinguish from the
chaotic case [57,58].

In this work, we identify ways in which the operator front
differs in integrable vs chaotic many-body quantum systems.
To carry out the analysis we focus on the right weight of
a given operator [30,31], which measures the spreading of
an initially local operator under Heisenberg time evolution
propagating to the right of a one-dimensional (1D) system.
This quantity has the advantage of being peaked at the op-
erator front compared to the OTOC. (For unitary random
circuits, the right weight is simply related to the OTOC by
a spatial derivative [30,31], but the two quantities are distinct
in general.) We study the right weight using matrix product
operator (MPO) techniques [33,59]. One of our key observa-
tions is that while small bond dimension MPOs do allow one
to capture the exponentially decaying tail of the front [33,59]
(and describe the front exactly in the case of dual-unitary
quantum circuits [60–63]), they lead to significant quantita-
tive and qualitative errors for the actual front (defined by
the maximum of the right weight). This feature is espe-
cially obvious when considering the right weight compared
to OTOCs. Truncation errors are actually fairly dramatic: for
chaotic systems, we find that the operator front stops moving
at finite time or even disappears at small bond dimensions.
For integrable systems, small bond dimension MPOs lead to
operator fronts broadening subdiffusively (close to ∼t1/3 as
in noninteracting systems) [33], while the front is expected
to broaden diffusively on general grounds [34]. We show
that this discrepancy is resolved by considering larger bond
dimensions and confirm numerically that the operator front
does broaden diffusively in interacting integrable quantum
systems.

Armed with these results, we analyze numerically how
the operator front broadens in integrable systems. We find
that contrary to chaotic systems where the diffusive front
broadening is characterized by a Gaussian function, the op-
erator front in integrable systems scales anomalously for all
accessible times. In particular, we find that the height of the
operator front in such systems decays as t−3/4, instead of t−1/2

in the nonintegrable case. We explain these results using a
quasiparticle picture of operator spreading and compute the

universal scaling function characterizing the front broadening
in integrable systems.

The organization of the paper is as follows. In Sec. II we
introduce the main object under study in this work, the right
weight of a given operator which will allow us to analyze
operator front broadening in the rest of the paper. We also
briefly discuss some basics of the time-evolving block deci-
mation (TEBD) numerical algorithm adapted to the study of
operator spreading. We also discuss truncation errors due to
the finite bond dimension of matrix product operators. We
present the results of operator front broadening in Sec. III for
integrable systems and in Sec. IV for nonintegrable systems.
We conclude in Sec. V and give an outlook for future work.

II. OPERATOR RIGHT WEIGHT, MATRIX PRODUCT
OPERATORS, AND TRUNCATION ERRORS

In this section, we introduce our main quantity of interest,
the operator right weight, and explain how it can be computed
numerically using MPOs. We also address the effects of trun-
cation errors.

A. Operator right weight

Consider the spreading of an initially local operator O0 ≡
O(x = 0) under Heisenberg time evolution. Under time evo-
lution, this operator will grow into a more complicated one
O(t ) = [U (t )]†O0U (t ), which is a superposition of many
strings made of products of nontrivial local operators. A way
to characterize the complexity of this object is by means
of the OTOC. Consider another local operator at site x,
Vx. The OTOC is defined as the square of the commuta-
tor between these two operators, C(x, t ) ≡ ||[O(t ),Vx]||2 =
2(1 − Re{tr[O(t )†V†

xO(t )Vx]}). The shape of the OTOC has
universal features across generic systems, including ballistic
spreading of the wave front, rapid growth ahead of the wave
front, and saturation behind the wave front at late times.
These features are showcased in Fig. 1 for the integrable XXZ
model.

To characterize the size of an initially local operatorO0 un-
der Heisenberg evolution, consider instead the decomposition

O(t ) =
∑
S

aS (t )S, (2)

where the sum above goes over all possible string operators
(Pauli strings in the case of spin-1/2 operators). A complete
understanding of operator spreading can be captured by the set
of coefficients {aS (t )}, a task which is out of reach. Instead,
we are interested in coarse-grained quantities relating these
coefficients. One such quantity is the right weight. For a given
operator O(t ) it reads [30,31]

ρR( j, t ) =
∑

strings w/
rightmost
nonidentity
on site j

|aS (t )|2. (3)

The coefficients aS (t ) appearing in the expression can be
obtained by exploiting the fact that these strings form an
orthogonal basis in a Hilbert space of dimension D2: aS (t ) =
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FIG. 1. Operator spreading in integrable and chaotic spin chains starting fromO0 = σ z
0 . Left: OTOC spatiotemporal profile in the integrable

XXZ model for � = 0.5 and Vx = σ z
x . Middle: right-weight profile still in the integrable XXZ model with � = 0.5. Right: right-weight profile

in the nonintegrable transverse-field Ising model with hz = 0.9045 and hx = 0.8090. The dashed lines are contour lines following a given
threshold θ . Data were obtained with bond dimension χmax = 128. For integrable models, both the OTOC and the right weight behave in a
reasonable way, despite the relatively small bond dimension, but the front broadens subdiffusively because of truncation errors. In the chaotic
case (right panel), the operator front disappears at finite time because of truncation errors.

tr[S†O(t )]/D. (Here D is the Hilbert space dimension of
states; that is, D = 2L for spin-1/2 chains). We require the
initial operator to be normalized, i.e., tr[O†

0O0]/D = 1, which
implies (using unitarity) the sum rule:

∑
S |aS (t )|2 = 1. Note

that by construction we also have
∑

j ρR( j, t ) = 1. This con-
servation law has important consequences for the “hydrody-
namics” of operator spreading in both integrable and noninte-
grable systems. On general grounds, we expect the associated
current to behave as j = vBρR − D∂xρR + · · · , where vB is the
butterfly velocity characterizing the speed of the ballistically
moving operator front, D is a diffusion constant that sets the
generic diffusive broadening of the front, and the dots repre-
sent nonlinear and higher-derivative terms. In what follows we
shall focus on spin-1/2 chains, both integrable and chaotic.

B. Matrix product operators

In order to measure the right weight numerically, we
use MPO techniques. For this purpose, we express Eq. (2)
as a state in the Hilbert space of operators as is routinely
done in the context of time evolution of MPOs [64], so
that O(t ) → |O(t )〉〉 ≡ ∑

S aS (t )|S〉〉. To evaluate the right
weight as a correlator, we introduce the projector onto the
identity acting on site x, P1,x (i.e., P1,x ≡ |1〉〉x〈〈1|x), where
|1〉〉 ≡ ⊗L

x=1(|00〉x + |11〉x )/
√
2. We reserve odd entries of

any matrix product state (MPS) in this newly enlarged Hilbert
space for the physical sites and the even sites for the ancilla
sites [64]. It is then straightforward to show that the right
weight can be computed as follows:

ρR(x, t ) = ∂

∂x
〈〈O(t )|

∏
x′�x

P1,x′ |O(t )〉〉, (4)

where ∂x should be interpreted as a discrete spatial derivative.
We compute the right-hand side of Eq. (4) using the TEBD

algorithm [65,66] applied to matrix product operators. We
denote the maximum bond dimension as χmax. Time evolution
is implemented directly in operator space as |O(t )〉〉 =
e−itL|O0〉〉, where L ≡ −H ⊗ 1 + 1 ⊗ HT , where the

Kronecker product here is used to distinguish physical
from ancilla space. In this language, standard two-point
correlation functions can be computed as simple overlaps
between states in this doubled Hilbert space.

In our numerical simulations, unless otherwise stated, we
will be considering a system size of L = 401 sites, a fourth-
order Trotter decomposition of step size dt = 0.1, and a cutoff
error of ε = 10−10. The system size was chosen so that the
right-weight front never reaches the boundary of the sys-
tem within the timescale of interest, which is tmax ∼ O(102).
These simulations are carried out using the C++ ITensor
library [67].

C. Operator front and truncation errors

In the remainder of this paper, we will use this MPO
approach to compute the right weight in various interacting
chaotic and integrable spin-1/2 chains. Before we address
specific features of operator spreading in those different
classes of systems, we address here the dramatic effects of
truncation errors in the MPO approach. Representative plots
of the right weight and of OTOCs are shown in Fig. 1 for both
a chaotic Ising chain and the integrable XXZ spin chain, using
a finite bond dimension χmax = 128.

For integrable chains, both the OTOC and the right weight
behave as expected, despite the finite bond dimension. How-
ever, as we will show below, some qualitative details end
up being affected by the truncation errors. In particular, for
finite bond dimension, we will see that the front broadens
subdiffusively as tα with α ≈ 1/3 for small bond dimensions,
while we recover α = 1/2 as χmax → ∞. This explains the
apparent t1/3 broadening in the integrable Heisenberg chain
observed in Ref. [33] using small bond dimension MPOs.

The effects of truncation errors on the operator front in
chaotic chains are much more dramatic. As shown in the
right panel of Fig. 1, the operator front (defined as the max-
imum of the right weight, moving at the butterfly velocity
vB) fades away and disappears at short times. We will show
below that this unphysical feature is entirely due to truncation
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errors and can be deferred to longer times by increasing the
bond dimension. Thus, large bond dimensions are absolutely
essential to describe the operator front correctly. In contrast,
bond dimensions as low as χmax = 4 can be enough to capture
the exponentially decaying tails of the operator front, as noted
in Refs. [33,59]. Our results are also consistent with contour
lines for the OTOC being less than a given threshold ε and
less sensitive to truncation errors for small ε (see dashed lines
in Fig. 1). However, as we show here, the small-ε contours
outside the front are an unreliable guide to the location of
the front itself (i.e., the maximum of the right weight). In the
case of integrable systems, using those tails to analyze the
front broadening gives rise to incorrect results for low bond
dimensions. In the following, we will carefully analyze the
convergence of our results with respect to bond dimension;
for practical purposes we restrict ourselves to maximal bond
dimensions less than χmax = 512 in most cases to access long
enough times.

III. OPERATOR FRONT IN INTEGRABLE SYSTEMS

Armed with this numerical tool, we analyze the operator
front in integrable quantum systems. As in chaotic systems,
we expect a ballistically moving front, broadening as t1/3 in
free systems [32,33,52–55] and t1/2 in interacting integrable
systems [34]. In integrable systems, we expect the opera-
tor front to follow the fastest quasiparticle. For interacting
integrable systems, quasiparticles behave as biased random
walkers due to their random collisions with other quasipar-
ticles [34,56–58,68]. In the following, we will confirm those
predictions numerically but also identify a key difference with
chaotic systems. As we will show, the quasiparticle picture
suggests that the peak height of the front decays anomalously
as t−3/4, at least at intermediate times, and scales with a
non-Gaussian universal function that we compute exactly.

A. Free fermions

Before turning to interacting integrable quantum systems,
we briefly recall how operators spread in spin chains dual to
free fermions, following Ref. [32]. For concreteness, we focus
on the XX spin chain with Hamiltonian

H = J
∑
j

Sxj S
x
j+1 + SyjS

y
j+1, (5)

where Sα
j are spin-1/2 operators acting on site j and J = 1

in the following. Let us consider the spreading of the Pauli
operator σ z of the XX model initially at site 0, that is, O0 =
σ z
0 . The fact that this Hamiltonian is Jordan-Wigner dual to

free fermions reduces the possible Pauli strings participat-
ing in O0(t ). Out of the 4L possible Pauli strings, only L2

Pauli strings will contribute here. Indeed, only the operators
σ+
i (

∏
i<l< j σ

z
l )σ

−
j , σ

z
j for general i, j will contribute, as those

are the only spin operators that map to quadratic fermions
under a Jordan-Wigner transformation. Thus, using this fact
and (3), the right weight of O0 takes the form

ρR( j, t ) = ∣∣aσ z
j
(t )

∣∣ +
∑
i< j

∣∣aσ+
i (

∏
i<l< j σ

z
l )σ

−
j
(t )

∣∣2

+ ∣∣aσ−
i (

∏
i<l< j σ

z
l )σ

+
j
(t )

∣∣2. (6)

FIG. 2. Right-weight spatial profile at t = 20 in the XXZ
spin chain with � = 5 and O0 = σ z

0 for various maximum bond
dimensions. The yellow data points correspond to the squared corre-
lator | 〈σ z

0 (t = 20)σ z
j 〉 |2 at infinite temperature β = 0, which lower

bounds the right weight.

The correlators appearing in (6) can be evaluated straight-
forwardly by mapping spin operators to spinless fermions to
yield

ρR(x, t ) = [Jx(t )]
4 + 2[Jx(t )]

2
∑
y<x

[Jy(t )]
2, (7)

where Jx(t ) ≡ 1/2π
∫ π

−π
e−i(kx+cos(k)t )dk are Bessel functions

of the first kind. As t and x become large, Eq. (7) yields the
following scaling form for the right weight [69]:

ρR(x, t ) ∼ 1

t2/3
F

(x − t

t1/3

)
, (8)

where the butterfly velocity is vB = 1 and F is some universal
scaling function. Equation (8) establishes that the operator
front broadens subdiffusively as t1/3 in free-fermion systems.

B. Interacting integrable spin chains

We now turn our attention to operator spreading in inter-
acting integrable systems. Our model of interest will be the
paradigmatic spin-1/2 XXZ Hamiltonian

H = J
∑
j

Sxj S
x
j+1 + SyjS

y
j+1 + �SzjS

z
j+1. (9)

In what follows, we set J = 1. This model is integrable and,
in this sense, “exactly solvable,” although quantities such as
the OTOC or the right weight are analytically out of reach and
have to be computed numerically.

We analyze numerically the right weight ρR( j, t ) for vari-
ous values of the anisotropy �. In what follows, we mostly
focus on the initial operator σ z

0 , but we will also consider
other operators. A typical plot of the right weight at a given
time (here t = 20) for � = 5 is shown in Fig. 2 for dif-
ferent maximum bond dimensions. A few key features are
worth noting. First, as already anticipated above, the oper-
ator front—corresponding to the right-moving peak in the
right weight—clearly requires large bond dimensions to be

104307-4



OPERATOR FRONT BROADENING IN CHAOTIC AND … PHYSICAL REVIEW B 104, 104307 (2021)

captured accurately. Second, the right weight also shows a
diffusively spreading lump near the origin, lagging behind
the operator front. This is a signature of the diffusive spin
transport in this model [70]: the right weight is lower bounded
by the square of the infinite-temperature spin autocorrelation
function | 〈σ z

j (t )σ
z
0 〉 |2, which is known to behave diffusively

in the XXZ spin chain for � > 1 [70]. The effects of U (1)
conservation laws on operator spreading in chaotic systems
were studied in Refs. [23,24] and are qualitatively similar in
the XXZ spin chain with � > 1, as finite-temperature spin
transport is diffusive in this regime [56] (see also Ref. [71]). In
contrast, when � < 1, spin transport in this system is known
to be ballistic, and we do not observe a lump of right weight
near the origin (Fig. 1, left panel). The right weight in this
regime is still nontrivially lower bounded by the dynamical
correlation function; however, in this case the dynamical cor-
relation function scales as 1/t all the way out to the light cone,
so one does not expect a visible lump near the origin.

In integrable systems, we expect the operator front to co-
incide with the speed of the fastest quasiparticle [34]. As a
result, the butterfly velocity should depend on the density
of all other quasiparticles, and thermal fluctuations naturally
give rise to diffusive broadening of the front. To check this
numerically, we compute the width of the operator front for
an initially local operator as a function of time. By computing
the standard deviation of the front of the right weight for both
� = 1/2 and � = 5 (Fig. 3), we find that the operator front
does broaden as σ f ∼ t a, with a ∼ 0.5. As anticipated above,
our results show that large bond dimensions are required to
capture this diffusive broadening of the front (with bond di-
mensions larger than χmax ∼ 102). Below that threshold, the
results do not converge at intermediate to large times, and we
find instead some apparent subdiffusive front broadening (see
insets in Fig. 3).

An intuitive way to understand why one cannot restrict
oneself to low maximum bond dimension to study the entire
operator front is to realize that finite bond dimension trunca-
tions are a nonlocal operation: while the tail is well captured
by a low maximum bond dimension (since it lies outside the
light cone, where the MPO is represented by lightly entangled
blocks) at short enough times, the width of the front is affected
in a nontrivial way because of truncations deep in the light
cone (see Fig. 2).

C. Scaling of the front and quasiparticle picture
of operator spreading

At the moment, there is no theory for computing quantities
like the right weight (or the OTOCs) in interacting integrable
systems. However, it is natural to expect that operator spread-
ing should be captured by the quasiparticles of the underlying
integrable model, similar to the quasiparticle picture of en-
tanglement spreading [43,51,72–76]. Thermodynamics and
hydrodynamics in integrable systems can entirely be under-
stood in terms of quasiparticles. This is the basis of the recent
framework of generalized hydrodynamics (GHD) [77–79].
Within a given (generalized) equilibrium state, quasiparticles
with quantum number λ (called rapidity) move ballistically
with a velocity vλ, with an associated diagonal diffusion con-
stant Dλ due to random collisions with other quasiparticles

FIG. 3. Standard deviation of the front of the right weight versus
time for various maximum bond dimensions plus a linear fit over
the data for χmax = 128 showing approximately diffusive spreading.
Top: � = 1/2 and O0 = σ z

0 . Bottom: � = 5 and O0 = σ x
0 . Insets

in both panels depict the standard deviation of the front for a small
bond dimension χmax = 32, showing that truncation errors lead to an
operator front that broadens subdiffusively with an exponent close
to 1/3.

in the thermal background. Both vλ and Dλ can be com-
puted analytically in a given generalized equilibrium state.
These quasiparticles are known to control transport prop-
erties and entanglement scaling, so it is natural to expect
them to control operator spreading as well. Let us assume
phenomenologically that the right weight couples to quasi-
particles propagating from the position of the initial operator
in a featureless (infinite temperature) background, with an
unknown weight ωλ (normalized so that

∫
dλωλ = 1). This

means that we expect the right weight to be given by

ρR(x, t ) ∼
∫

dλωλ

1√
4πDλt

e− (x−vλt )
2

4Dλt . (10)

The weight ωλ is an unknown function in general. On gen-
eral grounds, we expect the operator front to be described
by the fastest quasiparticle excitation in the system [34]. It
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FIG. 4. Scaling of the front for the XXZ spin chain with� = 1/2
and O0 = σ z

0 . Top: collapse of right weight from the model (10) for
different times and asymptotic form F (u). Here ωλ was chosen to be
Gaussian, although its precise form does not matter. Bottom: collapse
of right weight from TEBD at short times.

would correspond to ωλ = δ(λ − λ0), with λ0 being the rapid-
ity corresponding to the fastest quasiparticle, and ρR(x, t ) =

1√
4πD0t

e− (x−vBt )
2

4D0t , with D0 = Dλ0 , vB = vλ0 . This would be a
Gaussian front, as in 1D chaotic systems [30,31] (in particular
the height of the front should decay as ∼t−1/2). Our numerical
data are, however, not consistent with this picture for the times
we can access: (1) We find numerically that the speed of the
front is slightly lower than vλ0 . (2) The diffusion constant
associated with the diffusive broadening of the front in Fig. 3
does not coincide with the GHD predictions for D0. (3) The
operator front observed numerically is clearly non-Gaussian
(Fig. 4), and in particular, its height decays as ∼t−3/4 (instead
of ∼t−1/2).

All those observations indicate that, at least for times
accessible within TEBD, the right weight couples more gener-
ically to a continuum of quasiparticles with rapidity near λ0.
In fact, Eq. (10) predicts a universal form for the operator front
as long as ωλ is nonzero within a finite neighborhood of λ0.
The asymptotic behavior of (10) at long times can then be
obtained through a saddle point analysis. Expanding all quan-
tities near the front, we have vλ = vB − w(λ − λ0)2 + · · · ,
Dλ = D0 + · · · , and ωλ = ω0 + · · · , where w > 0 since by
assumption vB is the maximum velocity. Plugging these ex-
pressions into Eq. (10) and changing variables, we find that

ρR(x, t ) ∼ t−3/4F (u), (11)

where u ≡ (x − vBt )/
√
2D0t , with the universal scaling

function

F (u) =
∫

dη√
2π

e− 1
2 (u+η2 )2 . (12)

This intermediate-time scaling form is one of our main
results. It is entirely independent of the weight ωλ, as long as
the right weight couples to a continuum of quasiparticles with
rapidity near λ = λ0. The height of the operator front decays

FIG. 5. Collapse of the right weight for various operators O0 for
the XXZ model with � = 1/2. Top: O0 given by the energy density
on site 0. Middle: local charge of a nonconserved operator that cou-
ples to conserved charges O0 = σ+

0 σ−
1 + H.c. Bottom: local charge

of a nonconserved operator that does not couple to any conserved
charge O0 = σ x

0 . In this last case, we find that the height of the front
scales as t−1/2.

as t−3/4 rather than decaying as t−1/2 as in chaotic systems,
with the associated non-Gaussian scaling function (12). In
particular, we have F (u) ∼ 1/

√|u| as u → −∞, indicating a
fat tail behind the front that scales as t−3/4u−1/2 ∼ 1√

t
1√

vBt−x
.

As shown in Fig. (4), Eq. (10) approaches the scaling
form (11) at only long times (t ∼ 104) for generic functions
ωλ, making it challenging to observe numerically. However,
we find that our TEBD data collapse very well against the
scaling (11), even though the resulting collapse is not fully
converged to the scaling function (12) at those times (Fig. 4).
Our TEBD data very clearly indicate a non-Gaussian front,
with the height decaying with an exponent consistent with
t−3/4.

In Fig. 5 we show results of the right weight for various
choices of initial operators in the XXZ spin chain. Opera-
tors corresponding to conserved charges, such as energy, are
expected to have a right weight that scales as in (11). Other op-
erators such as O0 = σ+

0 σ−
1 + H.c. are not conserved but do

couple to hydrodynamic modes (in this case energy) and thus
are expected to scale as in (11) as well. To see this note that
one may introduce the projector onto hydrodynamic modes
P = ∑

i, j |Ii〉〉C−1
i j 〈〈I j |, where the sum goes over all pairs of

conserved charges, {|Ii〉〉} is the set of all conserved charges
in vector form (using the notation from Sec. II), and Ci j =
〈〈Ii|I j〉〉 ≡ 2−Ltr(IiI j ). Thus, any operator O with P|O〉〉 �= 0
is expected to have a corresponding right weight scaling as
in (11) (at least for intermediate times). In comparison, the
bottom panel in Fig. 5 shows the right weight of the operator
σ x; this operator manifestly does not couple to any hydrody-
namic modes as it breaks the U (1) symmetry. The behavior
of this operator is quite unlike that described above: it has a
Gaussian front that closely resembles what one would see in
a chaotic system. In particular, the height of the front scales
down as t−1/2 rather than as t−3/4. The anomalous scaling
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TABLE I. Scaling exponents for generic operator fronts in quan-
tum spin chains (for intermediate, accessible timescales). The width
of the front scales asw(t ) ∼ tα , while the height scales as h(t ) ∼ t−β .

Free Integrable Chaotic

α 1/3 1/2 1/2
β 2/3 3/4 1/2

observed in Figs. 4 and 5 is stable against increasing bond
dimension (data shown for χmax = 256). In the Appendix we
show the scaling collapse for a different conserved operator
(in this case Sz) for two different bond dimensions, providing
numerical evidence that the anomalous scaling is not the result
of a finite bond dimension.

Our results do not settle the asymptotic late-time behavior
of the right weight in integrable systems. It seems plausible
that for generic operators there will be some nonhydrody-
namic piece (that does not couple to single quasiparticles)
in addition to the hydrodynamic piece—we have no reason
to expect that the coupling to single quasiparticles exhausts
the operator weight. Assuming there is some such nonhydro-
dynamic piece, the t−1/2 peak of the nonhydrodynamic part
of the front will eventually dominate the t−3/4 peak due to
quasiparticles. We do not see any sign of this in our numerics,
but we do not have access to late enough times to address
this asymptotic question. Whether the quasiparticles capture
all the operator weight for some reason we do not yet under-
stand or whether there is, instead, a late-time crossover to a
Gaussian front is an interesting question for future work.

Table I summarizes the various scalings for the width
and height of the operator weight for generic operators in
integrable, chaotic, and noninteracting systems. We also note
that our prediction for the operator front (11) in interact-
ing integrable systems also applies to the front of standard
two-point correlation functions. Linear response correlation
functions admit a hydrodynamic decomposition in terms of
quasiparticles as in Eq. (10), so our argument carries over to
such correlation functions. It will be interesting to check this
prediction in future work.

FIG. 6. Truncation errors on the right weight for random circuit
dynamics. Here we show a single Haar random circuit realization.
Left: χmax = 4. Right: χmax = 1024. The dashed lines are contour
lines of the right weight with threshold θ . For small bond dimension,
the operator front slows down and stops at finite time. This is an
artifact of truncation errors, which can be postponed to longer times
by increasing the bond dimension.

FIG. 7. Slowdown in operator spreading due to truncation errors.
Top: average front position vs time averaged over different circuit re-
alizations and for various maximum bond dimensions χmax. Bottom:
the same, but for the front variance.

IV. OPERATOR FRONT IN CHAOTIC SYSTEMS

We now briefly contrast our findings for interacting in-
tegrable systems with chaotic (nonintegrable) chains. In
chaotic systems, the operator front is expected to broaden
diffusively [30,31] as in integrable systems (albeit for very
different reasons [34]), but with a Gaussian scaling function.
As we will show below, the effects of truncation errors using

FIG. 8. Comparison of integrable vs chaotic dynamics in op-
erator spreading. Left (Right): XXZ model at � = 1/2 and a
homogeneous (staggered) magnetic field of hz = 0.1. Results at
χmax = 64.
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finite-dimension MPOs are even more drastic for chaotic sys-
tems. In practice, this provides yet another way to distinguish
integrability and chaos using finite bond dimension numerics,
but this also makes accessing the true operator front properties
of chaotic systems numerically very challenging.

We first study random Haar quantum circuits where each
two-site gate is independently drawn from the ensemble of
Haar random matrices of size q2 × q2, with q being the lo-
cal Hilbert space dimension. Our results will focus on the
case q = 2 corresponding to spin-1/2 systems. The seminal
works [30,31] analyzed this setup analytically and character-
ized operator spreading exactly. Our main motivation here is
to study operator front broadening in this setup numerically
to illustrate the effects of truncation errors due to finite bond
dimension. Our results indicate the following two features
present in quantum chaotic models at finite bond dimensions:
(1) artificial slowdown of operator spreading as shown in
Figs. 6 and 7 (see also Ref. [59]) and (2) a front that broadens
subdiffusively and eventually stops broadening altogether, as
shown in Fig. 7 (see also [33] for similar results in the chaotic

kicked Ising model). In Fig. 8 we show how, even close to
integrability, this slowdown in operator spreading becomes
patent when studying the XXZ model for � = 1/2 and a
staggered magnetic field along the z direction of hz = 0.1.
Taking instead a homogeneous magnetic field of the same
strength, in which case the system remains integrable, the
front spreads ballistically at all times following the trace of
the fastest quasiparticles in the system.

Those findings are consistent across all nonintegrable mod-
els we have considered. We have also studied the chaotic Ising
chain Hamiltonian given by

H = J
∑
j

σ z
j σ

z
j+1 + hzσ

z
j + hxσ

x
j . (13)

For simplicity we set again J = 1. To ensure we are far
into the nonintegrable regime, we set hx = (1 + √

5)/4 and
hz = (5 + √

5)/8, as in Ref. [20]. Our simulations for the
computation of the right weight in this case require a time
step dt � 0.01. In contrast to the integrable case analyzed in

FIG. 9. Operator front broadening in the XXZ model in the four possible regimes showing that large bond dimensions are required for
convergence on diffusive front broadening behavior (except right at � = 1): (1) free fermions (� = 0), (2) gapless regime (|�| < 1), (3)
isotropic point (� = 1), and (4) gapped regime (|�| > 1). Insets: results for χmax = 32.
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the previous section, the present nonintegrable model yields
a front that evades our MPO simulations entirely: The en-
tire light cone structure vanishes after the maximum bond
dimension is reached, after which the front fails to spread at
all. We note that this phenomenon is absent in the integrable
case (see middle panel in Fig. 1). In fact, the maximum bond
dimensions in both the transverse field Ising (TFI) model
and the XXZ model are reached at around the same time in
both cases. This hints at a possible connection already put
forward in Ref. [41] between operator entanglement growth
and integrability.

V. CONCLUSION

We have analyzed operator spreading in generic quantum
many-body systems by computing the right weight numer-
ically using matrix product operators. Contrary to earlier
expectations, we have shown that correctly capturing the op-
erator front and its broadening requires large bond dimensions
and that truncation errors can lead to erroneous conclusions.
In chaotic systems, we find that the operator front is quickly
out of reach even using large bond dimensions of order
O(1000). While the operator front broadens diffusively for
both chaotic and integrable systems, we identified a key differ-
ence in the precise shape of the front. For all times accessible
to MPO calculations, the operator front in integrable systems
couples to a continuum of quasiparticles with velocities close
to vB = maxλvλ. As a result, we argued on general grounds
that hydrodynamic contributions to the front are non-Gaussian
and have a height that decays anomalously as t−3/4. These
contributions will be accompanied for generic operators by
additional nonhydrodynamic contributions decaying as t−1/2,
which would dominate at asymptotically late times. However,
our numerical simulations detect the hydrodynamic contribu-
tions for operator evolutions of the local charge densities, and
the presence of the nonhydrodynamic contributions is still
an open question. This provides a signature of integrability

in operator spreading, albeit a rather subtle one, which may
not persist to asymptotically late times. Most other features
of the OTOC or right weight appear to be qualitatively and
quantitatively similar in integrable and chaotic systems.

It would be interesting to identify more differences in
the future. A promising candidate is the value of the satu-
ration of the OTOC behind the front, which is universal in
chaotic systems but is likely different in integrable systems.
Another interesting direction is to understand further operator
spreading at the isotropic point � = 1 in the XXZ model
(Heisenberg chain). Indeed, our numerical results for front
broadening are consistent with diffusive broadening for all the
integrable systems we have considered, except at the Heisen-
berg chain (see the Appendix, where we observe subdiffusive
front broadening). While the Heisenberg chain is known to
exhibit anomalous spin transport [70,80,81], there is reason to
expect it should have an effect on the operator front. In fact,
the fastest quasiparticle in the XXX spin chain has a finite
diffusion constant [82], suggesting diffusive broadening. We
leave the resolution of this mystery to future work.
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APPENDIX: ADDITIONAL NUMERICAL RESULTS FOR
THE FRONT BROADENING IN INTEGRABLE SYSTEMS

In this Appendix we provide further evidence of the sub-
diffusive spreading of the operator front generically in the
integrable XXZ spin chain. In Fig. 9, we show how at

FIG. 10. Benchmark of the anomalous exponent for the right weight in the integrable XXZ model at � = 1/2 against increasing bond
dimension. Left: Scaling collapse of the front of the right weight for the conserved operator Sz for χmax = 128 (χmax = 256), shown by solid
lines (dashed lines), in agreement with Eq. (11). Right: the same data as in the left panel, but multiplying the y axis by t1/2, indicating that the
front fails to collapse to a Gaussian.
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finite bond dimension the right weight spreads instead sub-
diffusively, approaching diffusive front broadening only at
sufficiently large χmax. While we numerically observe such
a trend for almost all integrable models we have consid-
ered (see also Fig. 10), right at � = 1, our results seem to
indicate instead a saturation to an anomalous exponent in-
dicating subdiffusive broadening. We do not understand the

reason for this subdiffusive broadening at the moment. From
GHD calculations, the fastest quasiparticle in the isotropic
Heisenberg spin chain is known to have a finite diffusion
constant [82]. It would be interesting to understand the reason
for this apparent subdiffusive front broadening, as well as pos-
sible relations to operator entanglement growth [76] in future
works.
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