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Quantized sound waves—phonons—govern the elastic response of crystalline
materials, and also play anintegral partin determining their thermodynamic
properties and electrical response (for example, by binding electrons into

superconducting Cooper pairs)' . The physics of lattice phonons and elasticity is
absentin simulators of quantum solids constructed of neutral atoms in periodic light
potentials: unlike real solids, traditional optical lattices are silent because they are
infinitely stiff*. Optical-lattice realizations of crystals therefore lack some of the
central dynamical degrees of freedom that determine the low-temperature properties
of real materials. Here, we create an optical lattice with phonon modes using a Bose-
Einstein condensate (BEC) coupled to a confocal optical resonator. Playing the role of
anactive quantum gas microscope, the multimode cavity QED system both images
the phonons and induces the crystallization that supports phonons via short-range,
photon-mediated atom-atom interactions. Dynamical susceptibility measurements
reveal the phonon dispersion relation, showing that these collective excitations
exhibit asound speed dependent on the BEC-photon coupling strength. Our results
pave the way for exploring the rich physics of elasticity in quantum solids, ranging
from quantum melting transitions? to exotic ‘fractonic’ topological defects®in the

quantumregime.

Ultracold neutral atoms confined in optical lattices have been a fruitful
platformfor‘emulating’ theitinerant motion of electronsin crystals’. Opti-
callattices, however, lack acrucial feature of real crystallattices, whichis
elasticity. Real crystal lattices vibrate, deform in response to electrons,
and transmit stresses; in contrast, optical lattices are non-dynamical. Elas-
ticity hasrecently seenarevival of interest, motivated by developments
suchas ‘fracton-elasticity duality®. While the motion of ions in real crystals
isclassical, anatural questionis how elasticity would changein the pres-
ence of strong quantum zero-point motion of the atomsin the crystal; few
controlled experimental studies of this regime exist. We realize asystem
that combines crystalline elasticity with quantum-degenerate motion,
inthe form of acompliant opticallattice arising from the crystallization
of Bose-condensed Rb atoms. While mimicking the effect of phononsin
staticoptical lattices has been proposed®, our methodyieldsa continuum
of phonon modes akin to those in solid-state materials.
Crystallization is the spontaneous breaking of the continuous
translational symmetry of space. Due to this symmetry-breaking, a
crystal has a manifold of physically distinct equilibrium states, which
arerelated toone another by global translations (thatis, by sliding the
entire crystal). Global, zero-momentum (k = 0) translations connect
these equilibrium states and cost no free energy. Additionally, crys-
tals with local interactions have a continuum of finite-k modes with
arbitrarily low energies: these modes, called phonons, involve locally
sliding the crystal by an amount that varies slowly inspace withaperiod
2m/k. Because global translations cost no energy, while local transla-
tionsdo, a crystalis rigid, and responds globally to local stresses. The
phonon excitationbranch, whichisthe Goldstone mode of the broken

translational symmetry, governs the elastic properties of crystals.
The properties of the phonon branch are intimately tied to those of
topological defects, such as dislocations, which have recently been
identified as fractonic excitations. In contrast, for symmetry-breaking
arising from all-to-all interactions (or other sufficiently long-range
interactions), while the k= 0 zero mode may remain in place, there is
agap to all k= 0 excitations. This gives topological defects an exten-
sive energy cost, and thus, in these long-range crystals, any nontrivial
elastic response is frozen out. (When the atoms forming a crystal are
already Bose-condensed, so that the crystalis a ‘supersolid’, there are
additional superfluid Goldstone modes. These superfluid modes are
associated with the U(1) phase of the condensate itself and also exist
in the absence of a lattice®®. Sound propagation and diffusion have
been studied with strongly interacting fermions™™.)

The primarily contactinteractions among Rb atoms do not support
crystallization. Optical cavity photons, however, can mediate interac-
tionsthatdo support crystallization, as follows. We begin by consider-
ingapump field thatis oriented transverse to a Fabry-Pérot cavity axis
that is far detuned from all but a single resonance. Above a critical
threshold pump strength, a density wave (DW) polariton condensate®
forms via a superradiant (Hepp-Lieb-Dicke) phase transition: the N
intracavity atoms cooperatively scatter pump photonsinto the cavity,
formingacoherent optical state, while concomitantly the atomsadopt
one of two chequerboard configurations of the A/2-period lattice'".
This cos k.x cos k,z lattice is formed by the interference of the pump
field with the emergent cavity field. The two-photon scattering process
excites the k=0 BEC into a superposition of |k,, k,)=|xk,, *k.)
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Fig.1| Transverse, double-pumped confocal cavity quantum
electrodynamics system coupled toaBEC. a, Sketch of the vibrating atomic
density wave (orange) created inside the confocal cavity field (green). Blue and
red transverse pump fields are combined (purple) and retroreflected to forma
standing wave. Abeamsplitter directs some pump light onto acharge coupled
device (CCD) camerato serveasalocal oscillator (LO) for the holographicimaging
ofthe spatially dependent phase and amplitude of the cavity emission. A digital
micromirror device (DMD) injects patterns of light for measuring dispersion
relations: this light longitudinally pumps the cavity along 2 at frequency w and
transverse wavevector k, along X. The momentum distribution of the atoms is

momentum modes, where X (2) is the pump (cavity) axis, the pump
and cavity fields are of wavelength A= 780 nm, and k,= 2i/A= 8 rad pm™*
is the recoil momentum; Aw, = h*k*/2m = 21th x 3.8 kHz is the recoil
energy, where 21this Planck’s constant. The state is stable if the pump
frequency w; is red-detuned by Ac = w, — w: < 0 from the cavity
resonance @c.

Suchsingle-mode experiments have enabled the exploration of a vari-
ety of quantum collective phenomena’®™*?, but do not have a continuous
translational symmetry and are thus neither rigid nor elastic. A continuous
translational symmetry canberestored if one adds asecond cavity mode.
For example, one emerges from the phase difference of forward- and
backward-travellingwavesinaring-cavity geometry?* >, or fromthe ampli-
tude ratio when crossing two cavities**?. In both these cases, this gives
rise to a continuous U(1) family of steady states, which can be related by
continuousglobal displacement of the atoms. We will explain this mecha-
nism below. However, since in these experiments the interactions are
mediated by only afew cavity modes, the interactions are infinite-range,
sothe ‘crystal’ does not allow for non-trivial elastic deformations.

Coupling atoms to far more than two modes is necessary to create a
compliantlattice that may, for example, lead to superfluids with quantum
liquid crystalline structure or exhibiting Meissner-like effects and Peierls
instabilities?**?*¥, One can superpose many degenerate modes to form
compact supermodes—localized photon wavepackets'®, Exchanging
these localized photons leads to finite-range interactions and momen-
tum exchange®°. As such, when a multimode cavity is combined with
adouble-pumping scheme to engineer a U(1) symmetry, afully fledged
Goldstone mode with adispersionrelation should emerge. If using a BEC,
theresult would be asupersolid with phonons. (Phonons have alsobeen
proposed and sought via the refractive index change of atoms coupled
tostrong light fields®** and exist as natural modes in ion traps®*.)

In what follows, we first review how a U(1) symmetry can be engi-
neered by double-pumping in the context of a two-mode cavity*’; we
then extend it to multimode cavities. We consider two pump fields,
labelled ‘a’ and ‘b’, each detuned by A. from one of two cavity modes
spaced one free spectral range (FSR) apart. Figure 1a sketches a trans-
versely double-pumped cavity, while Fig. 1b shows the spectrum of a
cavity whose length L greatly exceeds its mirrors’ radius of curvature
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measured in time-of-flight viaabsorptionimaging along X (not shown).

b, Spectrum of a cavity whose radius of curvature Ris much greater thanits
length L, which thus operatesin the resolved-mode regime of single or few-
mode cavities. Families of modes with fixed longitudinal mode number Q have
thesamelongitudinal phase offset; they differ in phase by +1/2 from families
with Q+1one FSRaway.c, The confocal cavity mode spectrum showing even
parity families. (Frequency-degenerate transverse modes, labelled by the sum
oftheirindices/+m,aredispersedinw for ease of viewing.) The modesineach
family alternate in longitudinal phase. The blue and red arrows indicate the
transverse pumpsaandb, respectively.

R.Eachpumpinducesaninteraction between atom pairs. The combined
interaction takes the form:

total < Ut cos k,z cos k.2’ + UyTsink.z sink,z’, 1)

where Ui™(x,x’) =n; 2coskxcoskx’/Ac is the interaction strength
induced by each pump field of intensity «(? and is negative under red
detuning. The two-photon couplingis 7,= g,Q,/4 AL, andfor notational
simplicity, we willdrop the(x, x")arguments of U;™ The coupling strength
ofasingleatomtothe cavity fieldis g, and the pumps are detuned from
the atomiclevel by A%, which are much greater than Ac and the transition
linewidth. The change from cosine to sine reflects the shift by 1/2in the
longitudinalfield profile as the modes' longitudinalindex Q changes by
one; Qisthe number of optical half-wavelengths separating the mirrors.
Theinteractionstrengths becomeequalwhenn, = 7, = n, withtheresult
that U™ = Uy = U™ and the interaction has a continuous translational
symmetry along 2:.US = U coslk(z- 2')].

To create a lattice where phonons exist, we extend this double-
pumping scheme to a multimode cavity of confocal configuration
L=R=1cm. Figure 1c shows the confocal mode spectrum, which
contains families of degenerate modes of either all-even or all-odd
parity®. We pump two even mode families spaced one FSR apart. Asin
the single-mode case, the longitudinal mode profile alternates between
cosineand sine.Inaddition, higher-order transverse modesin the same
family also alternatein Iongitudinal proﬁle Theinteractiondriven by

the pumpsis therefore Uy =< Us™ + Up™, where
UT™=U,coskzcoskz’ +U,sinkzsink,z’ )
UQ'™=U,sink,zsink,z’ + U, cosk,z cosk,z’. 3)

As discussed in the Supplementary Information, the interaction
strengths U, ,are”®>°

~-Ar/€ ’
e rr
U, ,/U™= + Cos . 4
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Fig.2|Efficacy of double-pumping scheme. a, Cavity emissionintensity
versus time (left axis); background counts have been subtracted. The pump
lattice depth <p? (right axis, dashed black line) is linearly ramped through the
superradiant threshold (7%= qfhat theblue vertical dash-dotted line) before
being held constant at the measurement time (grey vertical solid line).

b-e, Evidence that the non-local interaction is cancelled by double-pumping.
Holograms of emission from a double-pumped confocal cavity with either the
blue pump LO (b) or the red pump LO (c) illuminating the camera. The BEC
image appearsas the bright rainbow-like stripe. Its positionin panelbis
indicated by the dotted oval. While this emission arises from the local
interaction—the first terminequation (4)—emission outside this regionis due
to photons mediating the non-localinteraction (the second term). Note that
thelinear phase gradient (rainbow-like feature) in the local emissionis an
artefact caused by nonlinearities arising at strong pumping strengths: While
large strengths ofrzz/qfh ~10areneeded to obtain highsignal-to-noiseinthese
images, far weaker strengths r]z/qfh <1.25,atwhich these nonlinearities are
negligible, are sufficient for taking the dispersion datain Figs.3and 4.

0.2 0

|E] (arb.)
See Supplementary Information for details. d, The absence of the non-local
interactionis revealed by taking the digital sum of these holograms. e, Thisis
more clearly shown by integrating each of these images along X and comparing
theintensity level of non-local emissionin the single-pumped traces (blue for
panel b, red for c) to the double-pumped trace (orange). The emission fromthe
non-localinteractionis much reduced due to the cancellation of the non-local
partsinU;"™and Uy whenboth pumps are present. f, Ascatter plot of the
shot-to-shot phase of the DW polariton under the single (square) and double
(circle) pumping scheme is overlaid on the colour scale for the field amplitude
|Eland phase ¢. This phase s the difference between the local and non-local
phaseinthe emissionregionsindicated by, for example, the dashed boxes
inpanel c. (Symbolsineachsetare offsetin radius for clarity; 60 points are
shown foreach.) The near-random distribution about 2t for the double-
pumpingscheme, as opposed to the clumping of the single-pumped phases,
illustrates theemergence of the U(1) symmetry. This demonstrates thatin
panelsd, ethenon-local interaction s sufficiently cancelled;
see Supplementary Information for derivation.
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Fig.3|Soft-mode dispersion of density-wave polaritons below threshold.
a, Thetwo-photonscattering process excitesatoms by receiving one
momentumkick fromapump photonalong =% and another fromacavity
photonalong +2. The transverse momentum of the higher-order cavity modes
shifts the £X momentum by an amount +k,. Shownis one possible momentum
state. b, While transversely pumping below threshold, we stimulate a soft mode
witha particular k; by seeding the cavity longitudinally. An example of aseed
fieldisshown here, asimaged by the transmission from an empty cavity. Cavity
and imaging distortions curve the k. x phase fronts. ¢, Below-threshold
absorptionimage of atoms in time-of-flight after asmall fraction have been
Bragg-stimulated into the four peaksindicated by squares. The other two
peaksarise fromthe pump lattice alone.d, Example Bragg scattering spectrum

0 4 8
Probe detuning (kHz)

showing the number of scattered atoms versus probe detuning from wp.
Dataare the sum of atoms withinthe squaresin panel ¢ forqz/r[fh =0.5and

k /k,=2.5%107, Adouble Lorentzian (blue curve) s fit to the data, and the
excitationenergy is halfthe separation between peaks. Vertical bars represent
standard error here and below. e, Dispersionrelation w versus k, for momenta
offsetfromzero by k,. The curves are plotted for pump strengths ranging from
qz/qfh =0.3atthe top (lightestblue) to 0.7 at bottom (darkest blue) in steps of
0.1.Each column of data at fixed k; shows asoftening roton mode as the
supermode DW polariton condenses at threshold. Data are compared to
parameter-free theory curves (with error bands) derived from the theory
developedinthe Supplementary Information.
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The waist of the lowest-order cavity mode is w, = 35 pm. The first
term is the local interaction with Ar=|r-r’| and arange {2 2 um;
&= 5 umforthe datapresented andis set by the number of degenerate
modes supported by the confocal cavity and A. (ref. ?%). The second
termisthenon-localinteraction. It cancelsinthe double-pump scheme,
yielding both the desired local interaction and the U(1) translational
symmetry:

-Ar/§

JAr/§

Alocal mirror image term, omitted above, does not play arole in this
work because we place the atoms in only one half-plane of the cavity.

We demonstrate the cancellation of the non-local contribution to
the cavity-mediated interaction by imaging the phase and amplitude
ofthe above-threshold superradiant emission under double-pumping;
see Methods regarding holographic imaging. Figure 2b, c show the
cavity emission from photons mediating U™ and U{'™, respectively.
The local interaction created by the atoms gives rise to the image of
the BECin the emergent lattice. That is, the interaction manifests as
anemitted image because itis thelocallightin the cavity that mediates
theinteractionand this same light leaks out of the cavity®; see also Sup-
plementary Information. The emission surrounding the BEC is from
the non-local interaction®?. This non-local interaction is cancelled
under double pumping. This manifests as animage without non-local
emission <Ufm, which we can obtain through the digital summation
of the single-local-oscillator (LO) images. Indeed, this is what we
observein Fig. 2d and in the line integrations of Fig. 2e. The resulting
emergence of the U(1) symmetry manifests as a random distribution
of DW phases each time the system is pumped above threshold. This
is shown in Fig. 2f; see Methods for measurement procedure and dis-
cussion. A representative time trace of cavity emission is shown in
Fig. 2a.

As afirst study of this translationally symmetric system, we focus
on the below-threshold spectroscopy of the k-dependent, normal
(roton) dispersion where there is no lattice and thus no phonon. We
will then show how the excitation spectrum changes above threshold
inthe presence of the emergent lattice. In single-mode cavities, aroton
instability at k = k, resultsin a DW polariton condensate at threshold*®.
In a confocal cavity, by contrast, momentum-exchange mediated by
thelocalinteractionallows atomsto scatter into a range of states with
|k,|added to |k,|along =X, as illustrated in Fig. 3a. Consequently, the
supermode DW polariton shows broad roton minima softening near
k.. We can probe the dispersion around this point by stimulating the
cavity at a particular k, > 0. This is done by injecting a longitudinal
pump field whose amplitude and phase has been programmed by the
digital micromirror device (DMD) to be <e’*(ref. ¥); see Fig. 1a for an
illustration. Figure 3b shows an example field pattern. We can stimulate
values close to the characteristic momentum scale of this multimode
cavity (="~ 0.02k,.

We measure the dispersion of these k-dependent roton soft modes
by cavity-enhanced Bragg stimulation. While pumping below threshold,
we stimulate the cavity with the longitudinal probe field at a particular
k, set by the DMD. Atoms are more efficiently scattered into the Bragg
peaks of Fig. 3a when the frequency and wavevector of the probe field
match the roton dispersion, which varies with pump strength «<n. We
directly absorption-image these scattered atoms in time-of-flight, as
shown in Fig. 3c. Summing the atoms in all four peaks, we can plot the
excitationspectrum foragiven k, and r; see Fig. 3d. Figure 3e compiles
the excitation frequencies. As pincreases, we see the rotons soften and
become more strongly dispersive—that s, display astronger k depend-
ence. At > 0, the dispersion is that of atomic DWs set by the atomic
mass; with increasing n, atomic DWs mix with photons to form
DW-polaritons, leading to a steeper dispersion; see Supplementary
Information.

mm _ yysm
total ~ U

cosk,Az. 5)

214 | Nature | Vol 599 | 11 November 2021

a
o
il
=
©
[}
=
o
@
=
Q
(2]
[
S
254 %
e
S
[&]
2.0 1
% 4 2 0 2 4 6
= Probe detuning (kHz)
T 45
=
N
S 1.0-
0.5
04

0 2 4 6 8 10
Momentum offset k| /k, (x1073)

Fig.4|Goldstonedispersionrelation w(k,). a, Example above-threshold
time-of-flightimage that records the momentumdistribution p(k). b, The self-
correlation analysis yielding {p(k + 6k)p(k)). The white dashed squaresindicate
regions of interest for extracting the correlation strength associated with the
chequerboard lattice. The correlationstrengthis calculated by normalizing the
sumofthe valuesin white squares by thatin the central red dashed square.

¢, Thedispersionrelation curve (blue) is overlaid using the theory presented in
the Supplementary Information andis parameter-free. The data are plotted with
momenta offset fromzeroby k,. They are consistent with alinear dispersion for
k < {.Thepumpstrengthis nz/rlfh =1.25.Theerrorband (light blue) represents
one-sigmaerrorinthetheory parameters. Inset shows anexample dynamic
susceptibility spectrum obtained from self-correlation analyses taken for

k, /k,=0.01.Correlations decrease on resonance because the momentum
structure factor differs fromthe|0, 0) state due to the addition of k,.

We now demonstrate that the dispersion of the lattice phonon branch
isgapless and linear. We do so by measuring the Goldstone dispersion
of the phonon modes of the lattice that forms above threshold. We
again use cavity-enhanced Bragg stimulation to measure dynamic
susceptibility w(k,). Above threshold, however, the Bragg peaks of the
DW polariton condensate are too populous to discern the additional
Bragg-scattered atoms. Moreover, k, <k, and our maximal
time-of-flightis too short to discern the additional +k, from the spread
in k about the peaks. We instead employ a self-correlation analysis of
the momentum distribution to extract the phonon mode resonances;
see Methods. Forexample, Fig. 4bis the self-correlation of the momen-
tumimagein Fig.4aforaparticular wand k. Theresultis the Goldstone
mode dispersion curve in Fig. 4c. As derived in the Supplementary
Information, the low-k dispersionislinear: w(k,) = vJk, |, withasound
speed y, ~ ,Jhw,[l +(n/n,,)*1(1/2m+ E,/7%), where the cavity-mediated
interaction strength is £, = -817*N/A.. One may note that typically
E/7*>1/2m, so the phonon dispersion is predominantly set by the
cavity-mediated interactions. These phonon excitations haveasound
velocity of 16 cm s, 10*x slower than that in, for example, copper at
room temperature. The theory curve contains no free parameters.

The self-consistent cavity optical lattice and atomic DW create a
compliant lattice, while individual atoms remain itinerant within the
lattice. Inreal space, the acoustic phonon modes manifest asasliding
motion of the lattice along the cavity axis 2, modulated along the X
direction with wavevector k;, corresponding to a transverse phonon
mode; this motion isillustrated in the Supplementary Video. (Here,




we use ‘transverse’ to refer to the relative directions of displacement
versus wavevector, rather than with respect to the cavity axes.)

Note thatinstead of imaging the momentum distribution, we could
also have imaged the phonon through the pattern of light emitted from
the cavity (see Supplementary Information for an example). In this
sense our systemacts as an unusual ‘active’ quantum gas microscope,
inwhichthe cavity fields mediate interactions that support phonons,
while their emission provides spatial information about the atomic
density profile.

Adding other atomic spin states or species within this dynamic lat-
tice would more directly mimic electrons in traditional solid-state
systems. Replacing the BEC with a degenerate Fermi gas might pro-
vide opportunities to study the electron-phonon physics related to
polarons® in a context complementary to previous studies® * or to
study metallic transport in strange metals beyond the semiclassical
approximation of long-lived quasiparticles*?. Moreover, the dual role
ofitinerant coherent atoms forming a compliant dynamical lattice may
also provide access to regimes not attainable in solid-state systems,
for example, to resolve phonon number states to perform quantum
acousto-optical experiments with supersolids.
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Methods

BEC preparation

BEC production proceeds as in ref. **. To shape the BEC for this exper-
iment, we use the same dynamical trap shaping technique as employed
in our previous work®. A nearly pure BEC is created in state
|IF=1, m=-1). A harmonic potential consisting of two crossed
beams of wavelength 1,064 nm forms a trap of frequencies
(0, 0y, w,) =21 x[52.6(2), 52.8(2), 91.5(4)]Hz. The BEC populationis
N=4.13)x10° and has Thomas-Fermi radii of (Rw Ry, R,)=
[12.3(2),12.2(2), 7.1(1)] pm. Finally, by changing the dither pattern of
the trapping beams perpendicular to the pump, the trap shape is adi-
abatically deformed to produce an elongated gas of 93 pm along the
pump direction X. A harmonic potential in the other two directionsis
maintained with similar trap frequencies in the other two directions.
The centre-of-mass of its density distribution lies at r.,, = (49 pm, 35 pm)
along X and y with respect to the cavity centre.

Cavity, pump lasers and frequency locks
The confocal cavity is vibrationally stabilized using the method pre-
sented inref.®. It is 1 cm long and has a radius of curvature R=1cm,
resulting in a waist of its TEM, , mode of w, =35 pm. Its finesse is
5.5x10%, yielding a cavity linewidth of x = 2r x 137 kHz. With a
single-atom, single-mode coupling g, of 21t X 1.47 MHz, the single-atom,
single-mode cooperativityisC= 2g§/1<y =5, where theatomiclinewidth
isy =21 x 6 MHz. Assuming a supermode enhancement factor of ~10
(proportional to the inverse local interaction length scale €)%, the
supermode single-atom cooperativity isC*= 50.
The780-nmpumpbeamsareeachderived fromafrequency-doubled
1,560-nm fibre amplifier and seed laser; see Supplementary Informa-
tion foraschematic. The relative frequency between the two1,560-nm
seed lasersis stabilized with respect to afrequency source oscillating
at half of the cavity free spectral range ~7.5 GHz. This frequency
differenceis controlled using a proportional-integral loop filter with
feedback applied to seed ‘b’. A portion of the doubled 780-nm light
fromseed ‘a’is used as the illumination beam for the DMD. The DMD
reflects this light into the path of the longitudinal cavity injection
beam. Acousto-optical modulators are used to stabilize the intensity
and adjust the relative detuning between the beams. Additional
1,560-nm light from seed ‘a’ is used to stabilize the science cavity
using the Pound-Drever-Hall technique. The two pumps are detuned
from the 5 S, ,|2, - 2) to 5 %P, , transition by 96 GHz and 111 GHz,
respectively. Throughout the experiments, the pumps are equally
detuned from the relevant cavity resonances by
AL=Al=A.=-2mx50MHz.

Lattice calibration and pump balancing

We calibrate the lattice depth of pump beams by performing Kapitza-
Diracdiffraction of the BEC. The phase of the pump fields at the BECis
controlled by the retroreflection mirror shared by the pump beams.
Measuring the lattice depth of the combined pump beams, we adjust
the translation stage on which this mirror is mounted to match the
phases of the pump lattices at the position of the atoms. We note that
thebeatlength of the two pump lattices (separated in optical frequency
by 15 GHz) is -5 mm, much larger than the atomic cloud size. Therefore,
small mechanical fluctuations from the mirror mount will not cause the
lattice to become out-of-phase at the atoms. The difference in recoil
energy fromthis differencein frequencyis onthe order of -0.1 Hzand
thus negligible, as is the change in wavelength.

To bring into balance the cavity-mediated interactions induced by
each pump, we perform a sequence of single-pump self-organization
experiments. We linearly ramp up eachbeamin 5 msand note the time
atwhich thesuperradiant thresholdisreached. Theinteractionstrength
can then be balanced by adjusting the ramp rate such that superradi-
anceonasingle FSR occurs at the same time for each beam. This ensures

that the Raman coupling rate from each FSRis balanced, that s, i, = ,,
which then balances the cavity interaction strength for each pump.

Holographicreconstruction of cavity emission

To perform the holographic imaging (spatial heterodyne detection)
of the cavity emission, we follow the procedure established in refs. #*
for a single pump field and extend it to the case of two pumps. Above
threshold, the cavity emission has optical frequency content at both
w,and w,, (the two pump frequencies), separated by one FSR. To fully
reconstruct the cavity electric field, therefore, one mustilluminate the
camera with two large LO beams at frequencies w, and w, at different
angles withrespect to the propagation direction of the cavity emission.
Thisisillustrated in Fig. 1a in the main text. The interference between
LO and the cavity emission produces an image with an intensity /,(r)
that may be expressed as

1))=Y |E D +] Eo 0

i=a,b

+2x.|E. (1) o, ((F)IcOS[AKsr + Ag(F) + 5],

where we have ignored the fast oscillating term at w, - w,, and £ ; and
E,,;are the cavity fields and LO fields for the two FSRs, respectively.
Reductionof fringe contrastis characterized by the factor x. The addi-
tional phase terms §; account for the overall phase drift between the
LO beams and the cavity emissionin each experimental realisation due
to technical fluctuations of the apparatus. Because of the angle differ-
ence, information from the cavity fields £. , and £, ,, are encoded in
spatial wavevectors Ak, and Ak, respectively. Assuming the cavity
field varies slowly over the spatial scale 21t/|Ak,|, we may then extract
the cavity field amplitudes |E, (r)| and phase profiles A@,(r) + ; by
demodulating the image at Ak;.

By using this scheme—an LO at each frequency but at different spatial
wavevectors—we take a single spatial heterodyne image that simultane-
ously allows ustoreconstruct theintracavity field for each resonance.
The phase of the non-local emission should differ by min the twoimages
andindeed this signal cancels in their digital sum, as shownin Figs. 2d,
ein the main text.

Generation of longitudinal probe with the DMD

The DMD plane s set at approximately the Fourier plane of the cavity
centre by using a100-mm focal length in-vacuum plano-convex lens.
The phase aberration of the DMD and misalignment of the illumination
beam must be calibrated out of the field images sent into the cavity.
We first calibrate these aberrations with an out-of-vacuum setup,
similar to that used in ref. ¥, Then, using a cavity that is far from the
confocal degeneracy point, an additional quadratic phase correction
isadded onto the DMD transfer function to effectively bring the DMD
plane to the Fourier plane of the cavity centre. Finally, any intracavity
field we desire can be generated by programmingits Fourier transform
to be displayed on the DMD. In our experiment, we perform Bragg
spectroscopy at six different momenta; the measured DMD probe
fields associated with these momenta are shown in Extended Data
Fig. 1. The maximum &, modulation we can inject is limited by the
numerical aperture of the lens that in-couples the DMD light and by
the piece holding the mirror.

Bragg spectroscopy and self-correlation analysis

The dynamic susceptibility of the system can be measured by using
the longitudinal probe imprinted with a phase modulation =k, along
X tostimulate, along with the pump fields, the scattering of atomsinto
the momentum states|W(k,)), =2, ,-., [Tk, + ok, ok,), asillustrated in
Fig.3a.Thereis another possible set of states that we do not choose to
stimulate orimprintgivenby|W(k)). =3, ..., [Tk, — ok, ok,); note that
[W(-k)>,=IW(k))..Wechoose|W), versus|W)_by setting the phase of
the field imprinted by the DMD. The |W), state yields the phase



advancingimagesin the main text. Because the scatteringis coherent,
the total atomic stateisinasuperposition of |W(k;)),and|0, 0).Inreal
space, adding the |W), excitation on top of a uniform chequerboard
lattice corresponds to adding a shearing lattice distortion.

We perform Bragg spectroscopy of the system’s excitations by mon-
itoring the increase in the population of the scattered atoms in the
time-of-flight images versus the relative detuning between the longi-
tudinal probe and the transverse pump. This detuning is adjusted with
anacousto-optic modulator onthe longitudinal probe beam path. The
pump power is first ramped up to prepare the system with a given
cavity-mediated interaction strength, and then the longitudinal probe
beam is pulsed on for 0.5 ms. For measurements of mode-softening
below thetransition threshold, the response can beread outby directly
counting the atom population excited into the|W), momentum state.
There are nobackground atoms at these momentabecause thereisno
population of this momentum state in the normal phase: any atom
signal is due to the Bragg excitation. The resonance frequency is
extracted by fitting the spectrum to a symmetric double-Lorentzian
peak. The set of such frequencies is plotted in Fig. 3e along with curves
produced using the theory presented below. The blue uncertainty
bands are primarily due to the atom number uncertainty in the
cavity-mediated interaction strength. The bands broaden close to
threshold where the photon contribution plays anincreased role.

For measurements above the threshold, however, the situation is
complicated by the macroscopic population of atoms already in the
[W)o=24,:-11 17K, O, ) excited momentumstate. While the longitudinal
probe creates an additionalmomentum excitation, the additional atoms
are hard to distinguish from that already present because (1) the num-
ber of these atomsis small compared to the number already condensed
intothisstate; and (2) k; < k,, so that|W), cannot be distinguished from
|W), given the limited 20-ms time-of-expansion of the time-of-flight
image. Thus, the same momentum-space atom-counting method used
for below-threshold spectroscopy measurements is not viable.

We therefore turn to an alternative method that uses these same
absorption time-of-flight (TOF) images, but performs an analysis based
onmomentum correlations rather than momentum-space atom count-
ing. To explain how this works, we first note that in real space, the lon-
gitudinal probe creates a small periodic distortion in the originally
perfect chequerboard lattice. We can quantify this distortion by com-
puting the momentum-space self-correlation (p(k + 6k)p(k)) of the
atomic momentum distribution p(k), which can be computed from
(p(r+61)p(r))p o in eachtime-of-flightimage. By focusing on the cor-
relation between the shape of the wavepackets centred at momentum
states|W),and|0, 0), we can discern the presence of atoms excited to
tk, states. This is because the correlation in the shape of p(k) at
k= (0, 0)and at the four (+k,, +k,) regionsis strongest when a perfect
chequerboard latticeis present: the wavepacket of the excited momen-
tumstate|W),is simply amomentumdisplacement of thatatk = (0, 0).
However, in the presence of a small lattice distortion given by k , the
structure factor isreduced and destructive matter-wave interference
results in a reduction in the correlation. This correlation reduction is
what is plotted in the inset of Fig. 4c. The phonon mode resonances
are manifest in the correlation signal dips.

To perform the above-threshold measurement, we first fit the entire
image to a broad two-dimensional Gaussian profile as an estimate of
the background contribution arising from atom heating and from
atom scattering halos resulting from the pumps. Then the
self-correlation analysis is performed on the background-subtracted
images. Due toimperfect subtraction, negative values appear in parts
of the correlation. Note that since we are only interested in the cor-
relations between Bragg peaks—all positive valued—the negative val-
ues do not affect the results. This analysis is repeated for each value

of probe detuning w and k, to form the experimental w(k,) dispersion
curve showninFig. 4c. Due to the sensitivity to atom number fluctua-
tionsinthe correlation versus w spectroscopy data, we performboot-
strap sampling to obtain a more reliable error estimate for the data
points comprising w(k, ).

Measuring spontaneous symmetry breaking of U(1) symmetry
We now discuss how we measured the shot-to-shot phase fluctuations
presented in Fig. 2f in the main text. In principle, the breaking of U(1)
symmetry canbe directly measured from the phase difference between
the LO beam and the cavity emission. This phase difference can be
extracted from theimage inaspatial heterodyne measurement, which
would manifest as an overall shot-to-shot phase shiftin the interference
fringes in the entire image. However, the shot-to-shot relative phase
between the LO and the cavity emission suffers from technical drift
dueto fluctuationsin optical path lengths. Nevertheless, in our previ-
ouswork of ref.>°, we showed that in a confocal cavity, the spatial phase
difference Ag between the local and non-local part of the cavity field
is directly related to the phase of the atomic DW along the cavity axis
@, viatherelation @, = - 2A¢. With thisapproach of measuringrelative
spatial phase in cavity emission, the technical phase drift is reduced
to anoverall phase shift onboth the local part and non-local part of the
field that drops out of their difference. Computing the quantity Agin
the spatial heterodyne image then cancels this overall phase drift, and
the atomic DW phase ¢, can be measured from shot-to-shot.

As discussed in the Supplementary Information regarding time
dynamics, when the power of two pump beamsis balanced, the phase
of the atomic density wave is allowed to freely slide along the cavity
axis, whichresultsinasubstantial reductionin the spatial heterodyne
signal strength for integration time longer thanaround 2 ms. As such,
toachieve areasonable level of signal-to-noise ratio for measuring the
phase of the cavity field for both the local and non-local components,
we rapidly ramp up the pump power to r]z/qfh =10 in 750 ps, faster
than the typical timescale of the phonon dynamics. Additionally, we
employ a~35-pm-long gas to obtain higher atomic density for further
enhancing the cavity emission field amplitude. As shown in Fig. 2cin
the main text, the phase of the local part of the field is taken from the
peak amplitude of the electric field localized around the atoms, while
the phase of the non-local partis computed from an average of a patch
of the electric field off to the side of the atoms.
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Extended DataFig.1|DMD momentum probes. a-g, Measured DMD probe
transmission cavity field and their phase profileline cuts. The values of k, /k,in
panelsa-fare[0, 2.1,4.2, 6.3, 8.5,10.6] x 1073, respectively. The white dashed
linein panelashowsthelength of the cutsin panel g. Additional features
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around the main probe field are due to imperfections of the confocal cavity and

stray light from the DMD probe beam. The grey areais the half plane that

contains the mirrorimage of the probe field, and we do not show this redundant
portionoftheimage in the main text figures.
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