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An optical lattice with sound

Yudan Guo1,2, Ronen M. Kroeze1,2, Brendan P. Marsh2,3, Sarang Gopalakrishnan4, 
Jonathan Keeling5 & Benjamin L. Lev1,2,3 ✉

Quantized sound waves—phonons—govern the elastic response of crystalline 
materials, and also play an integral part in determining their thermodynamic 
properties and electrical response (for example, by binding electrons into 
superconducting Cooper pairs)1–3. The physics of lattice phonons and elasticity is 
absent in simulators of quantum solids constructed of neutral atoms in periodic light 
potentials: unlike real solids, traditional optical lattices are silent because they are 
infinitely stiff4. Optical-lattice realizations of crystals therefore lack some of the 
central dynamical degrees of freedom that determine the low-temperature properties 
of real materials. Here, we create an optical lattice with phonon modes using a Bose–
Einstein condensate (BEC) coupled to a confocal optical resonator. Playing the role of 
an active quantum gas microscope, the multimode cavity QED system both images 
the phonons and induces the crystallization that supports phonons via short-range, 
photon-mediated atom–atom interactions. Dynamical susceptibility measurements 
reveal the phonon dispersion relation, showing that these collective excitations 
exhibit a sound speed dependent on the BEC–photon coupling strength. Our results 
pave the way for exploring the rich physics of elasticity in quantum solids, ranging 
from quantum melting transitions5 to exotic ‘fractonic’ topological defects6 in the 
quantum regime.

Ultracold neutral atoms confined in optical lattices have been a fruitful 
platform for ‘emulating’ the itinerant motion of electrons in crystals7. Opti-
cal lattices, however, lack a crucial feature of real crystal lattices, which is 
elasticity. Real crystal lattices vibrate, deform in response to electrons, 
and transmit stresses; in contrast, optical lattices are non-dynamical. Elas-
ticity has recently seen a revival of interest, motivated by developments 
such as ‘fracton-elasticity duality’6. While the motion of ions in real crystals 
is classical, a natural question is how elasticity would change in the pres-
ence of strong quantum zero-point motion of the atoms in the crystal; few 
controlled experimental studies of this regime exist. We realize a system 
that combines crystalline elasticity with quantum-degenerate motion, 
in the form of a compliant optical lattice arising from the crystallization 
of Bose-condensed Rb atoms. While mimicking the effect of phonons in 
static optical lattices has been proposed8, our method yields a continuum 
of phonon modes akin to those in solid-state materials.

Crystallization is the spontaneous breaking of the continuous 
translational symmetry of space. Due to this symmetry-breaking, a 
crystal has a manifold of physically distinct equilibrium states, which 
are related to one another by global translations (that is, by sliding the 
entire crystal). Global, zero-momentum (k = 0) translations connect 
these equilibrium states and cost no free energy. Additionally, crys-
tals with local interactions have a continuum of finite-k modes with 
arbitrarily low energies: these modes, called phonons, involve locally 
sliding the crystal by an amount that varies slowly in space with a period 
2π/k. Because global translations cost no energy, while local transla-
tions do, a crystal is rigid, and responds globally to local stresses. The 
phonon excitation branch, which is the Goldstone mode of the broken 

translational symmetry, governs the elastic properties of crystals. 
The properties of the phonon branch are intimately tied to those of 
topological defects, such as dislocations, which have recently been 
identified as fractonic excitations. In contrast, for symmetry-breaking 
arising from all-to-all interactions (or other sufficiently long-range 
interactions), while the k = 0 zero mode may remain in place, there is 
a gap to all k ≠ 0 excitations. This gives topological defects an exten-
sive energy cost, and thus, in these long-range crystals, any nontrivial 
elastic response is frozen out. (When the atoms forming a crystal are 
already Bose-condensed, so that the crystal is a ‘supersolid’, there are 
additional superfluid Goldstone modes. These superfluid modes are 
associated with the U(1) phase of the condensate itself and also exist 
in the absence of a lattice9,10. Sound propagation and diffusion have 
been studied with strongly interacting fermions11,12.)

The primarily contact interactions among Rb atoms do not support 
crystallization. Optical cavity photons, however, can mediate interac-
tions that do support crystallization, as follows. We begin by consider-
ing a pump field that is oriented transverse to a Fabry–Pérot cavity axis 
that is far detuned from all but a single resonance. Above a critical 
threshold pump strength, a density wave (DW) polariton condensate13 
forms via a superradiant (Hepp–Lieb–Dicke) phase transition: the N 
intracavity atoms cooperatively scatter pump photons into the cavity, 
forming a coherent optical state, while concomitantly the atoms adopt 
one of two chequerboard configurations of the λ/2-period lattice14,15. 
This k x k zcos cosr r  lattice is formed by the interference of the pump 
field with the emergent cavity field. The two-photon scattering process 
excites the k = 0 BEC into a superposition of k k k k| , = |± , ±x z r r     
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momentum modes, where x̂ (ẑ) is the pump (cavity) axis, the pump 
and cavity fields are of wavelength λ ≈ 780 nm, and kr = 2π/λ ≈ 8 rad µm−1 
is the recoil momentum; ħω ħ k m ħ= /2 ≈ 2π × 3.8r r

2 2  kHz is the recoil 
energy, where ħ2π  is Planck’s constant. The state is stable if the pump 
frequency ωP is red-detuned by ∆C = ωP − ωC < 0 from the cavity 
resonance ωC.

Such single-mode experiments have enabled the exploration of a vari-
ety of quantum collective phenomena16–19, but do not have a continuous 
translational symmetry and are thus neither rigid nor elastic. A continuous 
translational symmetry can be restored if one adds a second cavity mode. 
For example, one emerges from the phase difference of forward- and 
backward-travelling waves in a ring-cavity geometry20–23, or from the ampli-
tude ratio when crossing two cavities24,25. In both these cases, this gives 
rise to a continuous U(1) family of steady states, which can be related by 
continuous global displacement of the atoms. We will explain this mecha-
nism below. However, since in these experiments the interactions are 
mediated by only a few cavity modes, the interactions are infinite-range, 
so the ‘crystal’ does not allow for non-trivial elastic deformations.

Coupling atoms to far more than two modes is necessary to create a 
compliant lattice that may, for example, lead to superfluids with quantum 
liquid crystalline structure or exhibiting Meissner-like effects and Peierls 
instabilities20,21,26,27. One can superpose many degenerate modes to form 
compact supermodes—localized photon wavepackets18,28. Exchanging 
these localized photons leads to finite-range interactions and momen-
tum exchange28–30. As such, when a multimode cavity is combined with 
a double-pumping scheme to engineer a U(1) symmetry, a fully fledged 
Goldstone mode with a dispersion relation should emerge. If using a BEC, 
the result would be a supersolid with phonons. (Phonons have also been 
proposed and sought via the refractive index change of atoms coupled 
to strong light fields31–33 and exist as natural modes in ion traps34.)

In what follows, we first review how a U(1) symmetry can be engi-
neered by double-pumping in the context of a two-mode cavity30; we 
then extend it to multimode cavities. We consider two pump fields, 
labelled ‘a’ and ‘b’, each detuned by ∆C from one of two cavity modes 
spaced one free spectral range (FSR) apart. Figure 1a sketches a trans-
versely double-pumped cavity, while Fig. 1b shows the spectrum of a 
cavity whose length L greatly exceeds its mirrors’ radius of curvature 

R. Each pump induces an interaction between atom pairs. The combined 
interaction takes the form:

U U k z k z U k z k z∝ cos cos ′ + sin sin ′, (1)r r r rtotal
sm

a
sm

b
sm

where U x x η k x k x( , ′) = cos cos ′/∆i i r r
sm 2

C  is the interaction strength 
induced by each pump field of intensity Ω∝ i

2 and is negative under red 
detuning. The two-photon coupling is η g Ω≡ /4 ∆i i

i
0 A, and for notational 

simplicity, we will drop the x x( , ′) arguments of Ui
sm. The coupling strength 

of a single atom to the cavity field is g0, and the pumps are detuned from 
the atomic level by ∆i

A, which are much greater than ∆C and the transition 
linewidth. The change from cosine to sine reflects the shift by λ/2 in the 
longitudinal field profile as the modes' longitudinal index Q changes by 
one; Q is the number of optical half-wavelengths separating the mirrors. 
The interaction strengths become equal when η η η= ≡a b , with the result 
that U U U= ≡a

sm
b
sm sm and the interaction has a continuous translational 

symmetry along ẑ: U U k z z= cos[ ( − ′)]rtotal
sm sm  .

To create a lattice where phonons exist, we extend this double- 
pumping scheme to a multimode cavity of confocal configuration 
L =R = 1 cm. Figure 1c shows the confocal mode spectrum, which  
contains families of degenerate modes of either all-even or all-odd 
parity35. We pump two even mode families spaced one FSR apart. As in 
the single-mode case, the longitudinal mode profile alternates between 
cosine and sine. In addition, higher-order transverse modes in the same 
family also alternate in longitudinal profile. The interaction driven by 
the pumps is therefore U U U∝ +total

mm
a
mm

b
mm, where

U U k z k z U k z k z= cos cos ′ + sin sin ′ (2)r r r ra
mm

0 2

U U k z k z U k z k z= sin sin ′ + cos cos ′. (3)r r r rb
mm

0 2

As discussed in the Supplementary Information, the interaction 
strengths U0,2 are28–30
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Fig. 1 | Transverse, double-pumped confocal cavity quantum 
electrodynamics system coupled to a BEC. a, Sketch of the vibrating atomic 
density wave (orange) created inside the confocal cavity field (green). Blue and 
red transverse pump fields are combined (purple) and retroreflected to form a 
standing wave. A beamsplitter directs some pump light onto a charge coupled 
device (CCD) camera to serve as a local oscillator (LO) for the holographic imaging 
of the spatially dependent phase and amplitude of the cavity emission. A digital 
micromirror device (DMD) injects patterns of light for measuring dispersion 
relations: this light longitudinally pumps the cavity along ẑ at frequency ω and 
transverse wavevector k⊥ along x̂. The momentum distribution of the atoms is 

measured in time-of-flight via absorption imaging along x̂ (not shown). 
b, Spectrum of a cavity whose radius of curvature R is much greater than its 
length L, which thus operates in the resolved-mode regime of single or few- 
mode cavities. Families of modes with fixed longitudinal mode number Q have 
the same longitudinal phase offset; they differ in phase by ±π/2 from families 
with Q± 1 one FSR away. c, The confocal cavity mode spectrum showing even 
parity families. (Frequency-degenerate transverse modes, labelled by the sum 
of their indices l m+ , are dispersed in ω for ease of viewing.) The modes in each 
family alternate in longitudinal phase. The blue and red arrows indicate the 
transverse pumps a and b, respectively.
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Fig. 2 | Efficacy of double-pumping scheme. a, Cavity emission intensity 
versus time (left axis); background counts have been subtracted. The pump 
lattice depth η∝ 2 (right axis, dashed black line) is linearly ramped through the 
superradiant threshold η η( =2

th
2  at the blue vertical dash-dotted line) before 

being held constant at the measurement time (grey vertical solid line).  
b–e, Evidence that the non-local interaction is cancelled by double-pumping. 
Holograms of emission from a double-pumped confocal cavity with either the 
blue pump LO (b) or the red pump LO (c) illuminating the camera. The BEC 
image appears as the bright rainbow-like stripe. Its position in panel b is 
indicated by the dotted oval. While this emission arises from the local 
interaction—the first term in equation (4)—emission outside this region is due 
to photons mediating the non-local interaction (the second term). Note that 
the linear phase gradient (rainbow-like feature) in the local emission is an 
artefact caused by nonlinearities arising at strong pumping strengths: While 
large strengths of η η/ ≈ 102

th
2  are needed to obtain high signal-to-noise in these 

images, far weaker strengths η η/ ≤ 1.252
th
2 , at which these nonlinearities are 

negligible, are sufficient for taking the dispersion data in Figs. 3 and 4. 

See Supplementary Information for details. d, The absence of the non-local 
interaction is revealed by taking the digital sum of these holograms. e, This is 
more clearly shown by integrating each of these images along x̂ and comparing 
the intensity level of non-local emission in the single-pumped traces (blue for 
panel b, red for c) to the double-pumped trace (orange). The emission from the 
non-local interaction is much reduced due to the cancellation of the non-local 
parts in U a

mm and U b
mm when both pumps are present. f, A scatter plot of the 

shot-to-shot phase of the DW polariton under the single (square) and double 
(circle) pumping scheme is overlaid on the colour scale for the field amplitude 
E| | and phase ϕ. This phase is the difference between the local and non-local 

phase in the emission regions indicated by, for example, the dashed boxes 
in panel c. (Symbols in each set are offset in radius for clarity; 60 points are 
shown for each.) The near-random distribution about 2π for the double- 
pumping scheme, as opposed to the clumping of the single-pumped phases, 
illustrates the emergence of the U (1) symmetry. This demonstrates that in 
panels d, e the non-local interaction is sufficiently cancelled; 
see Supplementary Information for derivation.
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Fig. 3 | Soft-mode dispersion of density-wave polaritons below threshold. 
a, The two-photon scattering process excites atoms by receiving one 
momentum kick from a pump photon along x± ˆ and another from a cavity 
photon along z± ˆ. The transverse momentum of the higher-order cavity modes 
shifts the x± ˆ momentum by an amount k± ⊥. Shown is one possible momentum 
state. b, While transversely pumping below threshold, we stimulate a soft mode 
with a particular k⊥ by seeding the cavity longitudinally. An example of a seed 
field is shown here, as imaged by the transmission from an empty cavity. Cavity 
and imaging distortions curve the k x⊥  phase fronts. c, Below-threshold 
absorption image of atoms in time-of-flight after a small fraction have been 
Bragg-stimulated into the four peaks indicated by squares. The other two 
peaks arise from the pump lattice alone. d, Example Bragg scattering spectrum 

showing the number of scattered atoms versus probe detuning from ωP. 
Data are the sum of atoms within the squares in panel c for η η/ = 0.52

th
2  and 

k k/ ≈ 2.5 × 10r⊥
−3. A double Lorentzian (blue curve) is fit to the data, and the 

excitation energy is half the separation between peaks. Vertical bars represent 
standard error here and below. e, Dispersion relation ω versus k⊥ for momenta 
offset from zero by kr. The curves are plotted for pump strengths ranging from 
η η/ = 0.32

th
2  at the top (lightest blue) to 0.7 at bottom (darkest blue) in steps of 

0.1. Each column of data at fixed k⊥ shows a softening roton mode as the 
supermode DW polariton condenses at threshold. Data are compared to 
parameter-free theory curves (with error bands) derived from the theory 
developed in the Supplementary Information.
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The waist of the lowest-order cavity mode is w0 = 35 μm. The first 

term is the local interaction with ∆r = |r − r′| and a range ξ ≳ 2 μm; 
ξ ≈ 5 μm for the data presented and is set by the number of degenerate 
modes supported by the confocal cavity and ∆C (ref. 28). The second 
term is the non-local interaction. It cancels in the double-pump scheme, 
yielding both the desired local interaction and the U(1) translational 
symmetry:

U U
r ξ

k z=
e

Δ /
cos Δ . (5)

r ξ

rtotal
mm sm

−Δ /

A local mirror image term, omitted above, does not play a role in this 
work because we place the atoms in only one half-plane of the cavity.

We demonstrate the cancellation of the non-local contribution to 
the cavity-mediated interaction by imaging the phase and amplitude 
of the above-threshold superradiant emission under double-pumping; 
see Methods regarding holographic imaging. Figure 2b, c show the 
cavity emission from photons mediating Ua

mm and Ub
mm, respectively. 

The local interaction created by the atoms gives rise to the image of 
the BEC in the emergent lattice. That is, the interaction manifests as 
an emitted image because it is the local light in the cavity that mediates 
the interaction and this same light leaks out of the cavity28; see also Sup-
plementary Information. The emission surrounding the BEC is from 
the non-local interaction29,30. This non-local interaction is cancelled 
under double pumping. This manifests as an image without non-local 
emission U∝ total

mm , which we can obtain through the digital summation 
of the single-local-oscillator (LO) images. Indeed, this is what we 
observe in Fig. 2d and in the line integrations of Fig. 2e. The resulting 
emergence of the U(1) symmetry manifests as a random distribution 
of DW phases each time the system is pumped above threshold. This 
is shown in Fig. 2f; see Methods for measurement procedure and dis-
cussion. A representative time trace of cavity emission is shown in 
Fig. 2a.

As a first study of this translationally symmetric system, we focus 
on the below-threshold spectroscopy of the k-dependent, normal 
(roton) dispersion where there is no lattice and thus no phonon. We 
will then show how the excitation spectrum changes above threshold 
in the presence of the emergent lattice. In single-mode cavities, a roton 
instability at k k= r results in a DW polariton condensate at threshold36. 
In a confocal cavity, by contrast, momentum-exchange mediated by 
the local interaction allows atoms to scatter into a range of states with 
k⊥  added to kr  along x± ˆ, as illustrated in Fig. 3a. Consequently, the 
supermode DW polariton shows broad roton minima softening near 
kr. We can probe the dispersion around this point by stimulating the 
cavity at a particular k ≥ 0⊥ . This is done by injecting a longitudinal 
pump field whose amplitude and phase has been programmed by the 
digital micromirror device (DMD) to be ∝eik x⊥ (ref. 37); see Fig. 1a for an 
illustration. Figure 3b shows an example field pattern. We can stimulate 
values close to the characteristic momentum scale of this multimode 
cavity ζ ξ k≡ ≈ 0.02 r

−1 .
We measure the dispersion of these k-dependent roton soft modes 

by cavity-enhanced Bragg stimulation. While pumping below threshold, 
we stimulate the cavity with the longitudinal probe field at a particular 
k⊥ set by the DMD. Atoms are more efficiently scattered into the Bragg 
peaks of Fig. 3a when the frequency and wavevector of the probe field 
match the roton dispersion, which varies with pump strength η∝ . We 
directly absorption-image these scattered atoms in time-of-flight, as 
shown in Fig. 3c. Summing the atoms in all four peaks, we can plot the 
excitation spectrum for a given k⊥ and η; see Fig. 3d. Figure 3e compiles 
the excitation frequencies. As η increases, we see the rotons soften and 
become more strongly dispersive—that is, display a stronger k depend-
ence. At η → 0, the dispersion is that of atomic DWs set by the atomic 
mass; with increasing η, atomic DWs mix with photons to form 
DW-polaritons, leading to a steeper dispersion; see Supplementary 
Information.

We now demonstrate that the dispersion of the lattice phonon branch 
is gapless and linear. We do so by measuring the Goldstone dispersion 
of the phonon modes of the lattice that forms above threshold. We 
again use cavity-enhanced Bragg stimulation to measure dynamic 
susceptibility ω k( )⊥ . Above threshold, however, the Bragg peaks of the 
DW polariton condensate are too populous to discern the additional 
Bragg-scattered atoms. Moreover, ≪k kr⊥  and our maximal 
time-of-flight is too short to discern the additional k± ⊥ from the spread 
in k about the peaks. We instead employ a self-correlation analysis of 
the momentum distribution to extract the phonon mode resonances; 
see Methods. For example, Fig. 4b is the self-correlation of the momen-
tum image in Fig. 4a for a particular ω and k⊥. The result is the Goldstone 
mode dispersion curve in Fig. 4c. As derived in the Supplementary 
Information, the low-k dispersion is linear: ω(k⊥) = vs|k⊥|, with a sound 
speed v ħω η η m E ζ[1 + ( / ) ](1/2 + / )rs th

2
I

2≃ , where the cavity-mediated 
interaction strength is EI = −8η2N/∆C. One may note that typically 
E ζ m/ 1/2I

2≫ , so the phonon dispersion is predominantly set by the 
cavity-mediated interactions. These phonon excitations have a sound 
velocity of 16 cm s−1, 104× slower than that in, for example, copper at 
room temperature. The theory curve contains no free parameters.

The self-consistent cavity optical lattice and atomic DW create a 
compliant lattice, while individual atoms remain itinerant within the 
lattice. In real space, the acoustic phonon modes manifest as a sliding 
motion of the lattice along the cavity axis ẑ, modulated along the x̂ 
direction with wavevector k⊥, corresponding to a transverse phonon 
mode; this motion is illustrated in the Supplementary Video. (Here, 
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c, The dispersion relation curve (blue) is overlaid using the theory presented in 
the Supplementary Information and is parameter-free. The data are plotted with 
momenta offset from zero by kr. They are consistent with a linear dispersion for 

≪k ζ⊥ . The pump strength is η η/ = 1.252
th
2 . The error band (light blue) represents 

one-sigma error in the theory parameters. Inset shows an example dynamic 
susceptibility spectrum obtained from self-correlation analyses taken for 
k k/ ≈ 0.01r⊥ . Correlations decrease on resonance because the momentum 
structure factor differs from the |0, 0  state due to the addition of k⊥.



Nature  |  Vol 599  |  11 November 2021  |  215

we use ‘transverse’ to refer to the relative directions of displacement 
versus wavevector, rather than with respect to the cavity axes.)

Note that instead of imaging the momentum distribution, we could 
also have imaged the phonon through the pattern of light emitted from 
the cavity (see Supplementary Information for an example). In this 
sense our system acts as an unusual ‘active’ quantum gas microscope, 
in which the cavity fields mediate interactions that support phonons, 
while their emission provides spatial information about the atomic 
density profile.

Adding other atomic spin states or species within this dynamic lat-
tice would more directly mimic electrons in traditional solid-state 
systems. Replacing the BEC with a degenerate Fermi gas might pro-
vide opportunities to study the electron–phonon physics related to 
polarons38 in a context complementary to previous studies39–41 or to 
study metallic transport in strange metals beyond the semiclassical 
approximation of long-lived quasiparticles42. Moreover, the dual role 
of itinerant coherent atoms forming a compliant dynamical lattice may 
also provide access to regimes not attainable in solid-state systems, 
for example, to resolve phonon number states to perform quantum 
acousto-optical experiments with supersolids.
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maries, source data, extended data, supplementary information, 
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Methods

BEC preparation
BEC production proceeds as in ref. 43. To shape the BEC for this exper-
iment, we use the same dynamical trap shaping technique as employed 
in our previous work30. A nearly pure BEC is created in state 
F m| = 1, = − 1F . A harmonic potential consisting of two crossed  
beams of wavelength 1,064 nm forms a trap of frequencies 
ω ω ω( , , ) = 2π × [52.6(2), 52.8(2), 91.5(4)]x y z  Hz. The BEC population is 
N = 4.1(3) × 105  and has Thomas–Fermi radii of R R R( , , )=x y z  
[12.3(2), 12.2(2), 7.1(1)] μm. Finally, by changing the dither pattern of 
the trapping beams perpendicular to the pump, the trap shape is adi-
abatically deformed to produce an elongated gas of 93 μm along the 
pump direction x̂. A harmonic potential in the other two directions is 
maintained with similar trap frequencies in the other two directions. 
The centre-of-mass of its density distribution lies at rcm = (49 µm, 35 µm) 
along x̂ and ŷ with respect to the cavity centre.

Cavity, pump lasers and frequency locks
The confocal cavity is vibrationally stabilized using the method pre-
sented in ref. 43. It is 1 cm long and has a radius of curvature R = 1 cm, 
resulting in a waist of its TEM0,0 mode of w0 = 35 μm. Its finesse is 
5.5 × 104 , yielding a cavity linewidth of κ = 2π ×  137 kHz. With a 
single-atom, single-mode coupling g0 of 2π × 1.47 MHz, the single-atom, 
single-mode cooperativity is C g κγ= 2 / = 50

2 , where the atomic linewidth 
is γ = 2π × 6 MHz. Assuming a supermode enhancement factor of ~10 
(proportional to the inverse local interaction length scale ξ)28, the 
supermode single-atom cooperativity is C ≈ 50⁎  .

The 780-nm pump beams are each derived from a frequency-doubled 
1,560-nm fibre amplifier and seed laser; see Supplementary Informa-
tion for a schematic. The relative frequency between the two 1,560-nm 
seed lasers is stabilized with respect to a frequency source oscillating 
at half of the cavity free spectral range ~7.5 GHz. This frequency  
difference is controlled using a proportional-integral loop filter with 
feedback applied to seed ‘b’. A portion of the doubled 780-nm light 
from seed ‘a’ is used as the illumination beam for the DMD. The DMD 
reflects this light into the path of the longitudinal cavity injection 
beam. Acousto-optical modulators are used to stabilize the intensity 
and adjust the relative detuning between the beams. Additional 
1,560-nm light from seed ‘a’ is used to stabilize the science cavity 
using the Pound–Drever–Hall technique. The two pumps are detuned 
from the 5 S |2, − 2⟩2

1/2  to 5 P2
3/2 transition by 96 GHz and 111 GHz, 

respectively. Throughout the experiments, the pumps are equally 
d e t u n e d  f r o m  t h e  r e l e v a n t  c a v i t y  r e s o n a n c e s  b y 
Δ = Δ ≡ Δ = − 2π × 50C

a
C
a

C  MHz.

Lattice calibration and pump balancing
We calibrate the lattice depth of pump beams by performing Kapitza–
Dirac diffraction of the BEC. The phase of the pump fields at the BEC is 
controlled by the retroreflection mirror shared by the pump beams. 
Measuring the lattice depth of the combined pump beams, we adjust 
the translation stage on which this mirror is mounted to match the 
phases of the pump lattices at the position of the atoms. We note that 
the beat length of the two pump lattices (separated in optical frequency 
by 15 GHz) is ~5 mm, much larger than the atomic cloud size. Therefore, 
small mechanical fluctuations from the mirror mount will not cause the 
lattice to become out-of-phase at the atoms. The difference in recoil 
energy from this difference in frequency is on the order of ~0.1 Hz and 
thus negligible, as is the change in wavelength.

To bring into balance the cavity-mediated interactions induced by 
each pump, we perform a sequence of single-pump self-organization 
experiments. We linearly ramp up each beam in 5 ms and note the time 
at which the superradiant threshold is reached. The interaction strength 
can then be balanced by adjusting the ramp rate such that superradi-
ance on a single FSR occurs at the same time for each beam. This ensures 

that the Raman coupling rate from each FSR is balanced, that is, ηa = ηb, 
which then balances the cavity interaction strength for each pump.

Holographic reconstruction of cavity emission
To perform the holographic imaging (spatial heterodyne detection) 
of the cavity emission, we follow the procedure established in refs. 29,44 
for a single pump field and extend it to the case of two pumps. Above 
threshold, the cavity emission has optical frequency content at both 
ωa and ωb (the two pump frequencies), separated by one FSR. To fully 
reconstruct the cavity electric field, therefore, one must illuminate the 
camera with two large LO beams at frequencies ωa and ωb at different 
angles with respect to the propagation direction of the cavity emission. 
This is illustrated in Fig. 1a in the main text. The interference between 
LO and the cavity emission produces an image with an intensity Ih(r) 
that may be expressed as

r r r

r r k r r

∑I E E

χ E E ϕ δ

( ) = | ( )| + | ( )|

+2 | ( ) ( )|cos[∆ + ∆ ( ) + ],
i

i i

i i i i i i

h
=a,b

c,
2

LO,
2

c, LO, ∙

where we have ignored the fast oscillating term at ω ω−b a, and Ec,i and 
ELO,i are the cavity fields and LO fields for the two FSRs, respectively. 
Reduction of fringe contrast is characterized by the factor χi. The addi-
tional phase terms δi account for the overall phase drift between the 
LO beams and the cavity emission in each experimental realisation due 
to technical fluctuations of the apparatus. Because of the angle differ-
ence, information from the cavity fields Ec,a and Ec,b are encoded in 
spatial wavevectors ∆ka and ∆kb, respectively. Assuming the cavity 
field varies slowly over the spatial scale 2π/|∆ki|, we may then extract 
the cavity field amplitudes |Ec,i(r)| and phase profiles rϕ δΔ ( ) +i i  by 
demodulating the image at Δ ik .

By using this scheme—an LO at each frequency but at different spatial 
wavevectors—we take a single spatial heterodyne image that simultane-
ously allows us to reconstruct the intracavity field for each resonance. 
The phase of the non-local emission should differ by π in the two images 
and indeed this signal cancels in their digital sum, as shown in Figs. 2d, 
e in the main text.

Generation of longitudinal probe with the DMD
The DMD plane is set at approximately the Fourier plane of the cavity 
centre by using a 100-mm focal length in-vacuum plano-convex lens. 
The phase aberration of the DMD and misalignment of the illumination 
beam must be calibrated out of the field images sent into the cavity. 
We first calibrate these aberrations with an out-of-vacuum setup, 
similar to that used in ref. 37. Then, using a cavity that is far from the 
confocal degeneracy point, an additional quadratic phase correction 
is added onto the DMD transfer function to effectively bring the DMD 
plane to the Fourier plane of the cavity centre. Finally, any intracavity 
field we desire can be generated by programming its Fourier transform 
to be displayed on the DMD. In our experiment, we perform Bragg 
spectroscopy at six different momenta; the measured DMD probe 
fields associated with these momenta are shown in Extended Data 
Fig. 1. The maximum k⊥ modulation we can inject is limited by the 
numerical aperture of the lens that in-couples the DMD light and by 
the piece holding the mirror.

Bragg spectroscopy and self-correlation analysis
The dynamic susceptibility of the system can be measured by using 
the longitudinal probe imprinted with a phase modulation k∝ ⊥ along 
x̂ to stimulate, along with the pump fields, the scattering of atoms into 
the momentum states k τk σk σk|Ψ( )⟩ = ∑ | + , ⟩σ τ r r⊥ + , =±1 ⊥ , as illustrated in 
Fig. 3a. There is another possible set of states that we do not choose to 
stimulate or imprint given by k τk σk σk|Ψ( )⟩ = ∑ | − ,σ τ r r⊥ − , =±1 ⊥ ; note that 

k k|Ψ(− ) = |Ψ( )⊥ + ⊥ −. We choose |Ψ + versus |Ψ − by setting the phase of 
the field imprinted by the DMD. The |Ψ + state yields the phase  



advancing images in the main text. Because the scattering is coherent, 
the total atomic state is in a superposition of  k|Ψ( )⊥ + and |0, 0 . In real 
space, adding the |Ψ + excitation on top of a uniform chequerboard 
lattice corresponds to adding a shearing lattice distortion.

We perform Bragg spectroscopy of the system’s excitations by mon-
itoring the increase in the population of the scattered atoms in the 
time-of-flight images versus the relative detuning between the longi-
tudinal probe and the transverse pump. This detuning is adjusted with 
an acousto-optic modulator on the longitudinal probe beam path. The 
pump power is first ramped up to prepare the system with a given 
cavity-mediated interaction strength, and then the longitudinal probe 
beam is pulsed on for 0.5 ms. For measurements of mode-softening 
below the transition threshold, the response can be read out by directly 
counting the atom population excited into the |Ψ + momentum state. 
There are no background atoms at these momenta because there is no 
population of this momentum state in the normal phase: any atom 
signal is due to the Bragg excitation. The resonance frequency is 
extracted by fitting the spectrum to a symmetric double-Lorentzian 
peak. The set of such frequencies is plotted in Fig. 3e along with curves 
produced using the theory presented below. The blue uncertainty 
bands are primarily due to the atom number uncertainty in the 
cavity-mediated interaction strength. The bands broaden close to 
threshold where the photon contribution plays an increased role.

For measurements above the threshold, however, the situation is 
complicated by the macroscopic population of atoms already in the 

τk σk|Ψ⟩ = ∑ | , ⟩σ τ r r0 , =±1  excited momentum state. While the longitudinal 
probe creates an additional momentum excitation, the additional atoms 
are hard to distinguish from that already present because (1) the num-
ber of these atoms is small compared to the number already condensed 
into this state; and (2) ≪k kr⊥ , so that |Ψ + cannot be distinguished from 
|Ψ 0 given the limited 20-ms time-of-expansion of the time-of-flight 
image. Thus, the same momentum-space atom-counting method used 
for below-threshold spectroscopy measurements is not viable.

We therefore turn to an alternative method that uses these same 
absorption time-of-flight (TOF) images, but performs an analysis based 
on momentum correlations rather than momentum-space atom count-
ing. To explain how this works, we first note that in real space, the lon-
gitudinal probe creates a small periodic distortion in the originally 
perfect chequerboard lattice. We can quantify this distortion by com-
puting the momentum-space self-correlation ρ δ ρ( + ) ( )k k k  of the 
atomic momentum distribution kρ( ), which can be computed from 
ρ δ ρ( + ) ( ) TOFr r r  in each time-of-flight image. By focusing on the cor-

relation between the shape of the wavepackets centred at momentum 
states |Ψ 0 and |0, 0 , we can discern the presence of atoms excited to 
k± ⊥ states. This is because the correlation in the shape of ρ( )k  at 
= (0, 0)k  and at the four k k( ± , ± )r r  regions is strongest when a perfect 

chequerboard lattice is present: the wavepacket of the excited momen-
tum state |Ψ 0 is simply a momentum displacement of that at k = (0, 0). 
However, in the presence of a small lattice distortion given by k⊥, the 
structure factor is reduced and destructive matter–wave interference 
results in a reduction in the correlation. This correlation reduction is 
what is plotted in the inset of Fig. 4c. The phonon mode resonances 
are manifest in the correlation signal dips.

To perform the above-threshold measurement, we first fit the entire 
image to a broad two-dimensional Gaussian profile as an estimate of 
the background contribution arising from atom heating and from 
atom scattering halos resulting from the pumps. Then the 
self-correlation analysis is performed on the background-subtracted 
images. Due to imperfect subtraction, negative values appear in parts 
of the correlation. Note that since we are only interested in the cor-
relations between Bragg peaks—all positive valued—the negative val-
ues do not affect the results. This analysis is repeated for each value 

of probe detuning ω and k⊥ to form the experimental ω k( )⊥  dispersion 
curve shown in Fig. 4c. Due to the sensitivity to atom number fluctua-
tions in the correlation versus ω spectroscopy data, we perform boot-
strap sampling to obtain a more reliable error estimate for the data 
points comprising ω k( )⊥ .

Measuring spontaneous symmetry breaking of U (1) symmetry
We now discuss how we measured the shot-to-shot phase fluctuations 
presented in Fig. 2f in the main text. In principle, the breaking of U(1) 
symmetry can be directly measured from the phase difference between 
the LO beam and the cavity emission. This phase difference can be 
extracted from the image in a spatial heterodyne measurement, which 
would manifest as an overall shot-to-shot phase shift in the interference 
fringes in the entire image. However, the shot-to-shot relative phase 
between the LO and the cavity emission suffers from technical drift 
due to fluctuations in optical path lengths. Nevertheless, in our previ-
ous work of ref. 30, we showed that in a confocal cavity, the spatial phase 
difference ϕΔ  between the local and non-local part of the cavity field 
is directly related to the phase of the atomic DW along the cavity axis 
ϕA via the relation ϕ ϕ= − 2∆A . With this approach of measuring relative 
spatial phase in cavity emission, the technical phase drift is reduced 
to an overall phase shift on both the local part and non-local part of the 
field that drops out of their difference. Computing the quantity ϕΔ  in 
the spatial heterodyne image then cancels this overall phase drift, and 
the atomic DW phase ϕA can be measured from shot-to-shot.

As discussed in the Supplementary Information regarding time 
dynamics, when the power of two pump beams is balanced, the phase 
of the atomic density wave is allowed to freely slide along the cavity 
axis, which results in a substantial reduction in the spatial heterodyne 
signal strength for integration time longer than around 2 ms. As such, 
to achieve a reasonable level of signal-to-noise ratio for measuring the 
phase of the cavity field for both the local and non-local components, 
we rapidly ramp up the pump power to η η/ = 102

th
2  in 750 μs, faster  

than the typical timescale of the phonon dynamics. Additionally, we 
employ a ~35-μm-long gas to obtain higher atomic density for further 
enhancing the cavity emission field amplitude. As shown in Fig. 2c in 
the main text, the phase of the local part of the field is taken from the 
peak amplitude of the electric field localized around the atoms, while 
the phase of the non-local part is computed from an average of a patch 
of the electric field off to the side of the atoms.

Data availability
The datasets generated during the current study are available in the 
Harvard Dataverse Repository, https://doi.org/10.7910/DVN/LGT5O6.
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Extended Data Fig. 1 | DMD momentum probes. a–g, Measured DMD probe 
transmission cavity field and their phase profile line cuts. The values of k k/ r⊥  in 
panels a–f are [0, 2.1, 4.2, 6.3, 8.5, 10.6] × 10−3, respectively. The white dashed 
line in panel a shows the length of the cuts in panel g. Additional features 

around the main probe field are due to imperfections of the confocal cavity and 
stray light from the DMD probe beam. The grey area is the half plane that 
contains the mirror image of the probe field, and we do not show this redundant 
portion of the image in the main text figures.
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