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Repeated local measurements of quantum many-body systems can induce a phase transition in their
entanglement structure. These measurement-induced phase transitions (MIPTs) have been studied for
various types of dynamics, yet most cases yield quantitatively similar critical exponents, making it unclear
how many distinct universality classes are present. Here, we probe the properties of the conformal field
theories governing these MIPTs using a numerical transfer-matrix method, which allows us to extract the
effective central charge, as well as the first few low-lying scaling dimensions of operators at these critical
points for (1þ 1)-dimensional systems. Our results provide convincing evidence that the generic and
Clifford MIPTs for qubits lie in different universality classes and that both are distinct from the percolation
transition for qudits in the limit of large on-site Hilbert space dimension. For the generic case, we find
strong evidence of multifractal scaling of correlation functions at the critical point, reflected in a continuous
spectrum of scaling dimensions.
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The dynamics of an open quantum system can be viewed
as unitary evolution interspersed with events where an
environment measures the system. This competition
between entangling dynamics and collapsing measure-
ments leads to a measurement-induced phase transition
(MIPT) between phases with distinct entanglement struc-
ture [1–13]. By increasing the frequency of measurements,
the system goes from a volume-law phase where the
entanglement entropy of a subsystem scales with its volume
to an area-law phase where it scales with its boundary. This
transition occurs in the individual “trajectories” but is
invisible in the mixed state averaged over measurement
outcomes.
MIPTs exist in various classes of dynamics [14–27],

have been observed experimentally [28], and are analyti-
cally tractable in certain limits, interpreted as a percolation
transition [1,8,9]. Even away from tractable limits, the
numerically extracted critical exponents of the MIPT are
close to the values for percolation [7]. These observations
raise the question: Are MIPTs resulting from different
dynamics in distinct universality classes?

Beyond classifying the universal nature of MIPTs, devel-
oping precise characterizations of this class of critical
phenomena has motivations in quantum information and
computational complexity theory. In particular, an entangle-
ment transition potentially signifies a phase transition in the
resources required to represent the quantum state on a
classical computer [29,30]. Such quantum information-
theoretic observables lack natural counterparts in the conven-
tional framework of statistical physics. Consequently, our
understanding of the “relevant” degrees of freedom in
describing the related critical phenomena remains nascent.
This work presents evidence that MIPTs in different

classes of random circuits belong to distinct universality
classes beyond percolation. These conclusions are supported
by a numerical exploration of the nonunitary conformal field
theories (CFTs) with central charge c ¼ 0 governing the
MIPTs for three classes of dynamics—generic (Haar), dual-
unitary, and Clifford random circuits, each with random
single-site measurements of Pauli operators. The emergence
of conformal invariance at MIPTs is suggested by mappings
onto statistical models [8,9,31] and confirmed in previous
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numerical work [11]. We probe the properties of these CFTs
by numerically computing several leading Lyapunov expo-
nents of the transfer matrix. The Lyapunov exponents are
related to the scaling dimensions characterizing the scaling
of typical [32] observables of the CFT, the first of which is
related to the “effective central charge” ceff [33]—a universal
number [34] distinguishing CFTs with central charge c ¼ 0.

We find evidence that theMIPT forgeneric circuits belongs
to a different universality class than that for Clifford circuits,
while both differ from percolation. The effective central
charge is distinct in the two cases: cHeff ≈ 0.25ð3Þ and
cCeff ≈ 0.37ð1Þ, respectively. We compare these numerical
values to the predictions of large on-site Hilbert space
(d → ∞) mappings onto percolation: cH;d→∞

eff ≈ 0.291 for
Haar and cC;d¼2n→∞

eff ≈ 0.365 for Clifford qudit circuits. Dual-
unitary circuits have a transition in the generic universality
class, but their symmetries allow us to extract the effective
central charge cDUeff ¼ 0.24ð2Þ and the leading Lyapunov
exponents with higher precision. We also find evidence that
the spectra of operators atMIPTs are distinct from those in the
percolationCFT. Thus the generic andCliffordMIPTs appear
to be governed by two distinct CFTs and differ from any
previously known instances. Last, we demonstrate multi-
fractality in the generic MIPT in a chain of qubits.
From quantum channels to CFTs.—Consider a quantum

circuit with a fixed set of unitary gates and measurement
locations and times. The hybrid unitary or measurement
dynamics is described through the quantum channel

N tðρÞ ¼
X
m

KmρK
†
m; ð1Þ

where ρ is the system’s density matrix, and Km ¼
Kmt

t Kmt−1
t−1 …Km1

1 is a Kraus operator. The operators

Kms
s ¼ Pms

s Us consist of random unitary gates Us and
random projectors Pms

s onto measurement outcomes ms.
Each summand KmρK

†
m in Eq. (1) represents a “quantum

trajectory” of the system. Moreover, TrðKmρK
†
mÞ ¼ pmðρÞ

is the probability of the set of outcomesm. We suppress the
argument ρ since at late times the probabilities pm become
independent of the initial density matrix at the critical point.
Following Ref. [11], we posit that each trajectory can be

identified with a (1þ 1)-dimensional statistical mechanics
model, defined implicitly through the identification that its
partition function Zm ≡ pm. Without defining an explicit
model, we note that the partition functions of canonical
statistical mechanics models can be written as tensor net-
works with a similar structure to the single-trajectory circuit
[35], so this identification is natural. The trajectories making
up a particular channel form an ensemble of statistical
mechanics models with quenched spacetime randomness
due to the measurement outcomes. Each model’s weight in
the ensemble is set by its Born probability pm.
It follows from these observations that, for a circuit of

fixed length L, a layer of time evolution for a particular
trajectory [i.e., the map ρ → T tρT

†
t , where T j ¼

K
m2j

2j K
m2j−1
2j−1 is depicted in Fig. 1(a)] acts as a transfer matrix

for the statistical mechanics model describing that trajec-
tory. Note that one can write Zm ¼ P

iðσmi Þ2, where ðσmi Þ2
are the eigenvalues of KmK

†
m, i.e., the squares of the

singular values of Km. Equivalently, these are the eigen-
values of an initially completely mixed density matrix that
is purified by the evolution [5]. At late times, Km is given
by a large product of the operators T j and σmi decays
exponentially, as the state purifies. This exponential decay
motivates the definition of trajectory dependent exponents
[32,36] λmi , through ½σmi ðtÞ�2 ¼ eλ

m
i t as t → ∞; note that

(a) (b) (c)

FIG. 1. (a) The cylindrical geometry of the random circuit model for a system of qubits of length Lwith periodic boundary conditions.
The blue rectangles represent the entangling gates and the green dots are the location of measurements. The time evolution can be
viewed as a product of transfer matrices denoted by T j whose leading Lyapunov exponent is given by the entropy of the measurement
record F. (b) The free energy density displays the 1=L2 dependence expected from Eq. (3), allowing us to extract ceff . Darker blue
indicates increasing Lmin ¼ 8 → 14. (Inset) To improve our estimate we successively remove the smallest system size from the fit and
findm0ðLminÞwhich contains the leading order correction to Eq. (3). The dotted line corresponds to the fitm0ðLÞ ¼ −0.13þ ð0.98=L2Þ.
(c) The differences of the generalized free energy densities, fiðLÞ − fðLÞ, show the 1=L2 behavior expected from Eq. (4). The dotted
lines correspond to the extrapolated values miðLmin → ∞Þ. The data shown is for the dual unitary model at p ¼ pc ≈ 0.14 and 25000
samples for L ¼ 8, 10, 12, 14, 16 and 10000 for L ¼ 18.
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λmi < 0, and we compute them as specified in Ref. [37]. We
then average λmi over trajectories (using the Born weights
pm) to yield the Lyapunov exponents λ0; λ1; λ2;… in
descending order.
The leading Lyapunov exponent of the transfer matrix

has an appealing interpretation. In general, this quantity is
the free energy of the statistical mechanics model up to a
factor of time, i.e., tλm0 ¼ lnpm. Averaging the free energy
with Born weights gives us that F=t ¼ −λ0, where

F ¼ −
X
m

pm lnpm: ð2Þ

This averaged free energy is the Shannon entropy of the
measurement record, see Fig. 1(a).
As in more conventional disordered systems, the aver-

aged free energy can be computed within a replica
formalism. Introducing the annealed average replicated
partition function Z̄r ¼

P
m pmZr

m, where r is the replica
index, the corresponding annealed average free energy is
Fr ¼ − ln Z̄r. The quenched average free energy from
Eq. (2) is then given by F ¼ limr→0ðdFr=drÞ in the replica
limit r → 0. The annealed average replicated statistical
model has a phase transition for finite r > 0, which we
assume is described by a CFT whose properties approach
those of the MIPT in the r → 0 limit.
Effective central charge and operator spectrum.—The

central charge cðrÞ of the CFT describing the replicated
model Z̄r goes to cðrÞ → 0 in the replica limit r → 0; this
follows from the trivial partition function Z̄r→0 ¼ 1.
However, standard CFT results on a cylinder of circum-
ference L and length t (in the limit t ≫ L) imply that the
averaged free energy density FðL; tÞ=A ¼ fðLÞ [33,36]
scales as

fðLÞ ¼ fðL ¼ ∞Þ − πceff
6L2

þ…; ð3Þ

where ceff ¼ limr→0ðdcðrÞ=drÞ is a universal number
called the effective central charge, and A≡ αLt is the
effective spacetime area. Since the statistical mechanics
model is only defined implicitly, its intrinsic space and
time scales (and the anisotropy α between them) must be
extracted numerically, as we discuss below.
We now turn to the subleading Lyapunov exponents. In

the statistical mechanics picture, the difference of the two
leading Lyapunov exponents controls the decay of corre-
lations along the direction of the transfer matrix, i.e., it
determines the scale on which initial conditions are for-
gotten. The next-to-leading Lyapunov exponent thus cor-
responds to the most relevant (i.e., longest-lived) operator
while higher Lyapunov exponents correspond to faster-
decaying operators. Conformal invariance dictates how
these quantities behave at critical points:

fiðLÞ − fðLÞ ¼ 2πxtypi =L2; ð4Þ

where fiðLÞ ¼ −λi=ðαLÞ is obtained from the Lyapunov
exponents (i ¼ 1; 2;…) and xtypi is the scaling dimension of
the ith most relevant operator characterizing the decay of
typical [32] correlators, defined only in the generic case—
averaged correlators will be discussed below.
Circuit models.—We consider two main ensembles of

random circuits: Haar random circuits with two-qubit gates
chosen from the Haar measure and stabilizer circuits with
gates chosen from the Clifford group. Stabilizer circuits
have an efficient classical algorithm for the simulation of
the single-circuit observables studied in this work [38].
Additionally, we consider subclasses of Haar and Clifford
circuits in which all gates are “dual unitary” [39,40], i.e.,
unitary in both space and time directions. The most generic
dual unitary gates are given by U ¼ eiϕðuþ ⊗ u−Þ · V½J�·
ðv− ⊗ vþÞ, where ϕ, J ∈ R, u�, v� ∈ SUð2Þ, and V½J� ¼
expf−iðπ=4Þσx ⊗ σx þ ðπ=4Þσy ⊗ σy þ Jσz ⊗ σz�g [39].
We present evidence that the dual unitary Haar (Clifford)
circuits lie within the same universality class as Haar
(Clifford) circuits (to within our numerical precision, see
below). However, these circuits allow for a more accurate
estimate of the critical properties since their statistical
self-duality under spacetime rotations forces α ¼ 1 and
the associated rescaling factors are known exactly [37].
Below, all results are taken at the critical point determined
using the ancilla order parameter described in Ref. [10]. We
find pH

c ¼ 0.17ð1Þ, pDU
c ¼ 0.14ð1Þ, pC

c ¼ 0.1596ð3Þ, and
pDC
c ¼ 0.205ð1Þ for the Haar, dual unitary, Clifford, and

dual Clifford models, respectively [7,37].
The anisotropy parameters for the Haar and Clifford

models are estimated by comparing the correlation func-
tions along the space and time directions. These correlation
functions are determined in the quantum circuit by com-
puting the mutual information between two ancilla qubits
separated in space and time [7,10]. In the Haar model,
αH ¼ 0.81ð9Þ while for the stabilizer model αC ¼ 0.62ð3Þ.
As a check, we compute the anisotropy for the dual unitary
variants and find αDU ¼ 1.0ð1Þ in agreement with the
known value α ¼ 1 [37].
Numerical approach.—We now discuss our algorithm

for finding the leading Lyapunov exponents in the Haar and
dual unitary models (see Ref. [37] for the approach used for
Clifford and percolation models). The first few singular
values σmi ðtÞ are computed by picking a random initial
state, generating a set of mutually orthogonal vectors to the
initial state, and iteratively applying the same set of transfer
matrices T j [depicted in Fig. 1(a)] to the set. Each projector
in T j is chosen based on the Born probability of the time-
evolved initial state and after each application of T j the
set is re-orthogonalized. This allows us to estimate F in
Eq. (2) and fiðLÞ ¼ −λi=ðαLÞ in Eq. (4) [37] through a
Monte Carlo sampling of the Born probabilities [37]. We
note that our results are sensitive to the initial state at early
times; to achieve results independent of initial conditions,
we wait for an “equilibration” time of τ ¼ 4L and average
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over different initial states (see Supplemental Material
[37]). This approach agrees well with a direct evaluation
of the spectrum of the transfer matrix on small system
sizes [37].
Results.—The data for the leading Lyapunov exponent at

long times provide an estimate of Fðt → ∞Þ and are shown
in Fig. 1(b). We find that this displays a clear linear behavior
as a function of 1=L2 with slope m0 related to the effective
central charge as expected from Eq. (3). To improve our
estimate of m0, we can successively remove smaller system
sizes, L < Lmin, from the fit and write m0ðLminÞ ¼
m0ð∞Þ þ ðb=L2

minÞ, which accounts for the leading order
correction to Eq. (3). The procedure is illustrated in Fig. 1(b)
and its inset. Using ceff ¼ −ð6m0ð∞Þ=πÞ, we find cHeff ¼
0.25ð3Þ for the Haar model with an improved estimate of
cDUeff ¼ 0.24ð2Þ from the dual unitary variant. Similarly,
cCeff ¼ 0.37ð1Þ for the stabilizer circuit [37]. A rudimentary
analysis of ceff as a function of p displays a broad maximum
near pc suggesting deviations within the uncertainty
of pc should not significantly affect the quoted values
(results not shown). These values can be compared to the
exact predictions for large on-site Hilbert space dimension
d → ∞, where the MIPT maps onto percolation. Following
methods developed in prior work [8,9,31,41,42], we find
cH;d→∞
eff ¼ ½5 ffiffiffi

3
p ð1 − γÞ=4π� ¼ 0.291… in the Haar case

and, using additional properties of the Clifford group proved
in Ref. [43], cC;d¼2n→∞

eff ¼ 0.365… for stabilizer circuits
[37]. Our numerical estimate of cCeff for qubits (d ¼ 2) is
consistent with the percolation value (d ¼ 2n → ∞), thus
more exponents (or universal data) are needed to distinguish
those two universality classes.
The differences between Lyapunov exponents,

fiðLÞ − fðLÞ ∼ 1=L2, as expected [Fig. 1(c)]; the slope
of the fitted line, miðLminÞ can then be used to determine
xtypi . The scaling dimension xtyp1 is related to the (typical)
bulk exponent of the “order parameter, ”xtyp1 ¼ η=2 [10].
Our estimates for the Haar model ηH=2 ¼ 0.14� 0.02 and
the dual unitary variant ηDU=2 ¼ 0.122� 0.001 are con-
sistent with the result η=2 ≈ 0.125 for the mutual informa-
tion computed in Ref. [7], for Renyi indices n > 1, and
are close to, but outside of error bars from, the percolation
value η=2 ¼ ð5=48Þ ≈ 0.104. The next lowest scaling
dimensions are given by xtyp2 ¼ 0.18ð2Þ and xtyp3 ¼
0.23ð3Þ for the Haar model and xtyp2 ¼ 0.163ð1Þ and xtyp3 ¼
0.202ð1Þ for the dual unitary model. It is unclear at present
which operators these correspond to. The error bars in ceff
and xtypi only include the uncertainty in the averaged
measurement record (estimated via bootstrapping) and α
as discussed in the Supplemental Material [37].
In the stabilizer circuit models, we have also extracted

the order parameter exponent using an improved numerical
method with the results given in Table I. Further details
are provided in the Supplemental Material [37], where we
also generalize the order parameter exponent to an infinite

hierarchy of “purification” exponents with distinct behavior
from the minimal-cut percolation model. We further
improve our precision in extracting the order parameter
exponent by using a dual-unitary Clifford model, where
each two-qubit gate is drawn randomly from the uniform
set of dual-unitary Clifford gates. The critical pc ¼
0.205ð1Þ of this model violates a conjectured bound on
pc ≤ 0.1893 in 1þ 1 dimensions arising from the Hashing
bound for the depolarizing channel [13]. In this dual-
unitary Clifford model, we observe a significant difference
from the percolation value for the order parameter expo-
nent, providing convincing evidence that these models lie
in different universality classes.
Multifractality.—The exponent xtyp1 captures how the

correlation function of the order parameter, Gm
1 ðtÞ—defined

through lnGm
1 ðtÞ ¼ tðλm1 − λm0 Þ—decays as t → ∞ in a

typical trajectory m. Specifically, lnGm
1 ðtÞ∼−ð2πt=LÞxtyp1 ,

when t ≫ L, see Eq. (4), where ð…Þ denotes an average
over trajectories. Below, we suppress the trajectory indexm.
Quantities such as lnG1ðtÞ are self-averaging and can be
extracted numerically. However, the decay of the sample-
averaged correlation function G1ðtÞ and its moments,
G1ðtÞn ∼ exp ½−2πtx1ðnÞ=L� (in the limit t ≫ L), are gov-
erned by a continuous family of critical exponents x1ðnÞ
due to multifractal scaling at the critical point of the Haar
transition. We characterize the multifractal scaling through
the distribution function P½YðtÞ� where YðtÞ≡ − lnG1ðtÞ.
If this correlation function exhibits multifractal scaling, its
distribution will follow the universal scaling form [32]

P½YðtÞ� ∼
�
2παt
L

�
−1=2

exp

�
−
2παt
L

H

�
YðtÞ

2παt=L

��
; ð5Þ

for some (universal) function HðsÞ. As shown in Fig. 2,
our numerical results for various system sizes and times,
when rescaled according to Eq. (5) collapse onto a single
curve, demonstrating multifractality at the Haar critical
point. This observation is one of the central results of
our work.

TABLE I. Critical data for the various models: effective central
charge ceff , order-parameter exponent x1, and whether order-
parameter correlations exhibit multifractality (MF). For critical
points exhibiting multifractality, we have quoted the order-
parameter exponent governing typical correlations (marked
with †). This is not strictly comparable to the exponent governing
average correlations quoted for the three other models.

Haar
Dual
unitary Clifford

Dual
Clifford

d ¼ ∞
Haar=Clifford

ceff 0.25(3) 0.24(2) 0.37(1) 0.2914=0.3652
x1 0.14(2)† 0.122(1)† 0.120(5) 0.111(1) 0.1042
MF ✓ ✓ ✗ ✗ ✗
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Finally, the exponents x1ðnÞ are connected to the scaling
function HðsÞ; one can use the standard relation between
moments and cumulants

lnG1ðtÞn ¼ nlnG1ðtÞ þ
n2

2!
ðlnG1ðtÞ − lnG1ðtÞÞ2 þ…;

ð6Þ
where all terms are self-averaging, to find an expansion for

the nth moment exponent x1ðnÞ¼nxð1Þ1 þðn2=2!Þxð2Þ1 þ���,
valid at small n. (Here, xð1Þ1 ¼ xtyp1 .) In the inset of Fig. 2,
we see that the first two cumulants k1;2 of lnG1ðtÞ have,
when divided by tL, the expected ∼1=L2 scaling. We

estimate xð1Þ1 ¼ 0.14ð2Þ, xð2Þ1 ¼ 0.15ð2Þ for the Haar model

and xð1Þ1 ¼ 0.122ð1Þ, xð2Þ1 ¼ 0.145ð2Þ for the dual unitary

model. The substantial value of xð2Þ1 indicates that multi-
fractality is strong: the average and typical exponents are
appreciably different.
Concluding, we studied the effective central charge and

critical exponents for a variety of random circuit models of
measurement-induced criticality. We found strong evidence
that the transitions in the Haar, Clifford, and percolation
problems belong to three distinct universality classes.
Using the dual unitary variation of these models, we
extracted accurate values for the aforementioned quantities.
Additionally, we have clear evidence of multifractal scaling
and thus a continuous spectrum of scaling dimensions at
the transition in the Haar model.
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