
PHYSICAL REVIEW RESEARCH 3, 043165 (2021)

Topological and geometric patterns in optimal bang-bang protocols for variational quantum

algorithms: Application to the XXZ model on the square lattice

Matthew T. Scoggins 1 and Armin Rahmani2,3

1Department of Physics and Astronomy, Western Washington University, Bellingham, Washington 98225, USA
2Department of Physics and Astronomy and Advanced Materials Science and Engineering Center, Western Washington University,

Bellingham, Washington 98225, USA
3Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

(Received 14 December 2020; revised 10 September 2021; accepted 22 November 2021; published 8 December 2021)

In this paper, we address the challenge of uncovering patterns in variational optimal protocols for taking the

system to ground states of many-body Hamiltonians, using variational quantum algorithms. We develop highly

optimized classical Monte Carlo (MC) algorithms to find the optimal protocols for transformations between

the ground states of the square-lattice XXZ model for finite system sizes. The MC method obtains optimal

bang-bang protocols, as predicted by Pontryagin’s minimum principle. We identify the minimum time needed

for reaching an acceptable error for different system sizes as a function of the initial and target states and uncover

correlations between the total time and the wave-function overlap. We determine a dynamical phase diagram for

the optimal protocols, with different phases characterized by a topological number, namely, the number of on

pulses. Bifurcation transitions as a function of initial and final states, associated with new jumps in the optimal

protocols, demarcate these different phases. The number of pulses correlates with the total evolution time. In

addition to identifying the topological characteristic above, i.e., the number of pulses, we introduce a correlation

function to characterize bang-bang protocols’ quantitative geometric similarities. We find that protocols within

one phase are indeed geometrically correlated. Identifying and extrapolating patterns in these protocols may

inform efficient large-scale simulations on quantum devices.
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I. INTRODUCTION

The simulation of many-body quantum states with quan-

tum devices [1] has made substantial progress. Significant

efforts have focused on single-purpose quantum simula-

tors [2], where we physically create systems described by the

model we would like to simulate. Adiabatic evolution is a

common approach to preparing the ground state of the model

Hamiltonian. If done sufficiently slowly in the absence of a

vanishing spectral gap, this approach effectively prepares the

desired ground state [3,4]. However, in most cases, the target

states lie across quantum phase transitions from the initial

state, resulting in a vanishing gap and divergent adiabatic

timescales. Furthermore, antiadiabaticity [5,6] exacerbates the

issue in the presence of noise.

For certain problems, nonadiabatic methods have proven

promising [7,8]. Despite its challenges, one promising ap-

proach for finding the ground state of many-body quantum

Hamiltonians is the variational quantum algorithm (VQA).

This method relies on starting from an easy-to-prepare initial

state and evolving into the desired ground state of a target
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Hamiltonian by variationally modifying the parameters in

the time-dependent Hamiltonian of the device. The idea has

been explored for state preparation [9–11] and has showed

remarkable theoretical [12–26] and experimental [27–34]

success, particularly in quantum chemistry simulations. It

is also closely related to the quantum approximate opti-

mization algorithm [35–37]. The scheme utilizes a hybrid

quantum-classical system. Repeated physical evolutions on

the quantum machine are optimized in a feedback loop to

minimize the expectation value of the target Hamiltonian, thus

creating the ground state of the model Hamiltonian.

There are two broad approaches to VQA, methods based

on quantum circuits with parametrized gates and gate-free

strategies, which may offer better coherence times [38]. A

version of gate-free VQA is based on quantum optimal con-

trol (QOC). It uses a device Hamiltonian of fixed form, with

the time evolution generated by varying the device’s tunable

parameters. The target Hamiltonian only affects the cost func-

tion, giving rise to a general-purpose simulator. However,

a large number of variational parameters and the absence

of generic good initial guesses for the protocol pose chal-

lenges to this scheme. Therefore it is crucially important to

find and characterize patterns in the time dependence of tun-

able parameters in the Hamiltonian of the device. Possible

extrapolation of these patterns to large systems may then

allow efficient parametrization of the protocol to be opti-

mized. Pontryagin’s minimum principle plays a crucial role in

QOC [39,40]. This minimum principle implies that, if a given
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set of conditions are met, the optimal path has controls that

take on either their maximum or minimum value at any given

time—a bang-bang protocol. The bang-bang nature makes the

protocols amenable to characterization and potential extrapo-

lation.

In this paper, focusing on the ground-state transformation

of the XXZ model on the square lattice, we explore optimal-

protocol patterns. We search for the optimal protocols that

prepare the desired target state using two different types of

Monte Carlo (MC) simulations on a classical computer. The

first method is direct brute-force Monte Carlo (BFMC), which

does not assume bang-bang protocols, but still converges to

them. Since Pontryagin’s principle does not guarantee bang-

bang protocols (due to the possibility of singular intervals),

this inefficient algorithm is important for initial verification

of the protocols’ bang-bang nature. The second, bang-bang

Monte Carlo (BBMC), assumes bang-bang parametrization of

protocols and outperforms the BFMC in accuracy and compu-

tational efficiency. For a fixed initial and target, we find almost

identical protocols for the two approaches. These optimal

protocols significantly outperform the adiabatic method.

Our studies are naturally limited to small system sizes

due to the computational complexity of simulating VQA on

classical computers for a many-body state. Using an actual

quantum device to perform the time evolution physically, we

expect to access much larger systems. Nevertheless, finding

the optimal protocol could still be difficult due to the com-

plexity of the control space and the number of iterations

required to reach the expectation value’s global minimum.

Our work aims to mitigate this issue by finding patterns in

the classically obtained protocols for smaller system sizes,

which we hope may inform an efficient search for optimal

VQA protocols for larger system sizes. The patterns may yield

an efficient parametrization upon extrapolation, helping the

algorithm hone in on the optimal protocol with significantly

fewer iterations.

The results of this paper are twofold. First, we develop

highly efficient numerical methods for finding optimal bang-

bang controls. Several improvements to the state-of-the-art

algorithms are presented; these improved algorithms use

adaptive moves in MC, combined discrete and continuous

parametrizations, and the precompiling of unitary operators

and diagonalized Hamiltonians. Second, we apply these al-

gorithm advances to the two-dimensional XXZ model. We

present a full characterization of the optimal protocols for

several numerically accessible system sizes and filling frac-

tions, scanning over all initial and target ground states. In

the context of our model, the exhaustive investigation al-

lows us to raise and answer multiple new questions discussed

below.

The determination of the optimal protocols for all initial

and target ground states allows us to determine the total time

it takes to optimally transform the ground states of a class of

Hamiltonians to each other. This time serves as a practical

measure of distance between all ground states, endowing the

equilibrium ground states with valuable dynamical informa-

tion. Furthermore, in addition to the time needed for the

transformation, the associated bang-bang protocols’ charac-

teristics are of considerable interest. A salient property of

bang-bang protocols is the number of square pulses in the

signal. As we change the initial or target ground state, we find

transitions where the number of pulses changes.

We find that the transitions mentioned above are continu-

ous bifurcations. For example, in an interval with the control

field on, an infinitesimally small interval appears, where the

control field is turned off. This interval then grows continu-

ously. We next find phase diagrams as a function of initial and

target states, with different phase-diagram regions having dif-

ferent pulse numbers. These transitions are between distinct

pulse topologies, characterized by integer numbers, so they

are reminiscent of topological transitions. Furthermore, they

are continuous in the sense that the duration of the new pulse

emerging at a transition grows continuously from zero. We

have verified that in the vicinity of the transition, the pulse

durations fit power laws.

In addition to the topological characteristic of the num-

ber of pulses, the geometric correlations between bang-bang

pulses are of interest. How similar are the pulses in various

regions of the space of the initial and target states? In this

paper, we define a shape-shape correlation function that cap-

tures the quantitative similarity of two bang-bang protocols.

Correlations and anticorrelations appear across the transitions.

The outline of this paper is as follows. In Sec. II, we

discuss the model and the general setup of state transfor-

mations, including the measures of distance in the optimal

protocol. In Sec. III, we discuss the brute-force MC algorithm

used for an initial approximate determination of the optimal

protocols. Section IV discusses Pontryagin’s minimum prin-

ciple and the bang-bang nature of the optimal protocols. In

Sec. V, we present our efficient algorithm for the final exact

determination of the optimal bang-bang protocols. We then

discuss our numerical results on the critical time needed for

the optimal protocols in Sec. VI. In Sec. VII, we present

our results on the topological phase structure of the optimal

protocols and the continuous bifurcation transitions between

the phases. In Sec. VIII, we introduce a correlation function to

capture the geometric similarities of bang-bang protocols and

present results on the correlations between the protocols in

one phase. Finally, we present our conclusion in Sec. IX. The

details of the optimized MC implementation are presented in

the Appendix.

II. MODEL AND SETUP

A. The XXZ model

In this paper, we focus our studies on the XXZ model

on the square lattice. Generally, in variational quantum algo-

rithms, we can have two distinct Hamiltonian forms, the target

Hamiltonian whose ground state we want to create, and the

device Hamiltonian, which generates the quantum evolution

of the state. However, in this paper, we focus on the case

where we want to create the ground state of a Hamiltonian

that has the same form as the device Hamiltonian. With this

choice, the problem can be viewed as finding an optimal

shortcut to the adiabatic evolution [41–49], as for initial states

that are also ground states for some choice of Hamiltonian

parameters, adiabatic transformations are always possible in

the presence of a spectral gap. Our Hamiltonian, importantly,

occurs in existing systems based on superconducting qubits.
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We have

H (J, K ) =
∑

〈i j〉

[

J
(

σ x
i σ x

j + σ
y

j σ
y

i

)

+ Kσ z
i σ z

j

]

.

We note that the Hamiltonian conserves
∑

i σ
z
i . The model is

relevant to superconducting qubit devices [50].

Due to the total σ z conservation, for a square lattice with

M sites and C occupants, the Hamiltonian dimension becomes

d =
(

M

C

)

. We need a dimension of around 5000 or smaller

to perform the complex optimization algorithm and find the

optimal protocols. We are therefore able to explore all occu-

pancies with a square lattice for M ǫ {4, 9}, along with some

small occupancies for M ǫ {16, 25, 36} systems. We also skip

the trivial cases of C ǫ {0, 1}. Furthermore, M − C occupants

give rise to the same evolution as C occupants due to the

spin rotation symmetry. We therefore focus on occupancies

C � M/2.

B. Measures of distance for optimal control

To prepare the ground state of the target Hamiltonian for

parameters J and K using Monte Carlo simulations, we need

to minimize a cost function. In variational quantum algo-

rithms, the standard cost function is the expectation value of

the energy. We can also define a cost function in terms of the

wave function [51–53]:

C[ψ (τ )]E ≡ 〈ψ (τ )|Htarget|ψ (τ )〉,

C[ψ (τ )]S ≡ 1 − |〈ψ (τ )|ψtarget〉|
2,

where ψ (τ ) is the final wave function after a total evolution

time τ . Upon successfully evolving into the target state, CS

vanishes and CE attains its minimum possible value for any

wave function, namely, the ground-state energy, E0, of the

target Hamiltonian.

Experimentally, the energy-based cost function is preferred

because it is measurable even if the target ground-state wave

function is a priori unknown. We note that the ground-state

wave function is independent of the overall energy scale of

the Hamiltonian and only depends on the ratio of the coupling

constants:

r ≡
J

K
.

Thus a unique initial and target combination is specified by

two variables, ri and rt .

While C[ψ (τ )]S only depends on r by construction,

C[ψ (τ )]E also depends on the energy scale of the target

Hamiltonian. It is convenient to use normalized measures of

distance, which are equal to 1 (0) in the initial (target) state.

These can be defined in energy and state spaces as

D[ψ (τ )]E ≡
〈ψ (τ )|Htarget|ψ (τ )〉 − E0

〈ψinitial|Htarget|ψinitial〉 − E0

,

D[ψ (τ )]S ≡
1 − |〈ψ (τ )|ψtarget〉|

2

1 − |〈ψinitial|ψtarget〉|
2
,

respectively. Clearly, D[ψ (τ )]E is linearly related to

C[ψ (τ )]E , and minimizing the experimentally accessible

C[ψ (τ )]E minimizes D[ψ (τ )]E . We have found that min-

imizing D[ψ (τ )]E and D[ψ (τ )]S gives rise to practically

FIG. 1. A representative example of two different minimization

schemes, achieving nearly identical protocols. M = 9, C = 2.

identical protocols, with a representative example shown in

Fig. 1. Hereinafter, we focus on D[ψ (τ )]S in our numerical

investigations as it is customary to quantify the errors in terms

of the fidelity of states, bearing in mind that a measurable

energy-based cost function amenable to the variational quan-

tum algorithms on actual quantum devices leads to similar

protocols.

We also note that for longer timescales than the time

needed to reach the target state exactly, many different paths

evolve into the desired target state. The optimization does not

converge to unique protocols. To get the exact minimum total

time, we choose to find the optimal protocols that evolve the

state just short of the target state. We thus avoid convergence

issues arising right at the critical time needed to reach the

target state.

With the measure of distance above, we stop our Monte

Carlo simulations when D[ψ (τ )]S � 0.02 and call the total

time required to achieve the small error above, τcritical. We

can approximate the exact critical time by doing a low-order

polynomial fit to the distance as a function of total time and

extrapolate the time where D[ψ (τ )]S = 0. The extrapolation

of these protocols yields very similar protocols, characterized

by minor, unimportant modifications.

III. BRUTE-FORCE MONTE CARLO METHOD

To find the optimal protocol and shortcut the adiabatic

method, we first use a brute-force Monte Carlo (BFMC),

previously used in several publications [40,45,52,54]. In this

approach, we discretize time into identical fixed intervals and

allow the protocols to take on any value within the bounds of

our parameters, in this case [0,1]. With N intervals, the final

state is

|ψ (τ )〉 =

N
∏

j

e−i τ
N

H (J j ,K j )|ψinitial〉. (1)

The specific algorithm used is simulated annealing, where

implementation requires a random initial protocol {Ji}0, {Ki}0

and a pseudotemperature T that decreases with the progres-

sion of the algorithm. This pseudotemperature T controls the
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FIG. 2. A random initial protocol vs the optimal post-BFMC

protocol for parameter J

probability that nonoptimal changes are accepted, which pre-

vents the algorithm from being stuck in local minima. We pick

an initial pseudotemperature T0 to have an initial acceptance

rate of around 85% for changes in the protocol that increase

the cost C, which can be calculated by numerically sampling

random changes in the protocol. We also initially run the

simulations for a smaller total time than the evolution time

and slowly increase τ to the desired value as the simulations

progress. We then follow this simulated-annealing procedure:

(1) Change the value of the protocol at a random time step

by some small amount randomly selected from the interval

[0, T
T0

].

(2) Repeat the evolution, and measure the new cost Cnew.

(3) If this value is smaller than the previous cost, keep

the change. Otherwise, keep the change with probability

exp[− 1
T

(Cnew − Cold )].

(4) Repeat steps (1)–(3) for Nsweeps sweeps, then reduce T

(we decreased T by 5%, i.e., T → 0.95T ).

(5) Repeat steps (1)–(4) Ndecay times, calculating Ndecay to

allow T to get close to 0. Set T = 0 and run Nfrozen more times,

then increase τ .

(6) Repeat steps (1)–(5) until D[ψ (τ )] � ǫ for some al-

lowable error ǫ. In our case, ǫ = 0.02.

This algorithm is inefficient as it does not utilize the

bang-bang nature of the optimal protocols. However, due to

the possibility of singular intervals, Pontryagin’s minimum

principle does not guarantee bang-bang protocols. This brute-

force search is necessary for verifying that the protocols are

indeed bang-bang. The piecewise-constant parametrization

is more suitable for finding bang-bang protocols than other

parametrizations such as a truncated Fourier series.

The iteration limits Nsweeps, Ndecay, Nfrozen should be chosen

to get sufficiently close to the optimal protocol for each τ . To

have confidence that we are reaching the optimal protocol for

each τ , we repeat the process for multiple seeds that create

different initial protocols and changes throughout the process

but converge on the same protocol. This BFMC process is

also repeated for a different number of intervals N until an

increase in N creates a negligible difference in convergence.

For our case, N = 20 was sufficient. We find that the protocols

indeed collapse into bang-bang protocols, approaching either

the maximum or the minimum value (1 or 0) shown in Fig. 2.

FIG. 3. An example of the distance vs τ for the two methods with

M = 2, C = 2, ri = 0.11, rt = 9. The BFMC achieves the ground

state in a much shorter time. The optimal protocol for DS[ψ (τ )] = 0

is shown in the insets.

It is illuminating to compare the performance of these

optimal protocols with the adiabatic method. Evolving from

an initial to a target state can be carried out adiabatically

by smoothly changing the controls into the controls corre-

sponding to the target state. If done sufficiently slowly in the

absence of a vanishing spectral gap, this approach prepares the

desired ground state. We choose a linear time dependence for

the Hamiltonian parameters. The results are shown in Fig. 3

and show a substantial difference in the absolute error in the

vicinity of the critical time for optimal evolution.

IV. PONTRYAGIN’S MINIMUM PRINCIPLE

Pontryagin’s minimum principle is a theorem in applied

mathematics that predicts generically bang-bang protocols

for linear control functions. Here, we briefly review the

formalism. Consider a set of dynamical variables x, which

evolve with a first-order differential equation ẋ = f (x, g) that

contains certain time-dependent parameters g(t ). Given the

initial values of the dynamical variables x(0), the differential

equation determines their final values for each set of time-

dependent control parameters. Suppose we want the optimal

controls g∗(t ) that minimize a function F [x(τ )] of the dy-

namical variables at the final time τ . Pontryagin’s minimum

principle states that

H (x∗, p∗, g∗) = min
g
H (x∗, p∗, g) (2)

for any time 0 < t < τ , where we have defined conjugate

momenta p that evolve as ṗ = −∂xH with boundary condi-

tions p(τ ) = ∂xF [x(τ )] and the optimal-control Hamiltonian

H (x, p, g) ≡ f (x, g) · p. In Eq. (2), x∗ and p∗ represent the

solutions for the dynamical variable and their conjugate mo-

menta, respectively, corresponding to the optimal controls

g∗(t ). If the equations of motion are linear in g(t ), then

the optimal-control Hamiltonian will be a linear function of
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g(t ), and Eq. (2) indicates that g∗(t ) takes its minimum or

maximum allowed value at every point in time, leading to

bang-bang protocols.

Now consider a general quantum state evolving with the

Schrödinger equation ∂t |ψ (t )〉 = −iH (t )|ψ (t )〉. The Hamil-

tonian contains some tunable coupling constants gα (t ), which

we can change as a function of time:

H (t ) =
∑

α

gα (t )Oα, (3)

where Oα are some Hermitian operators. We can tune each of

the coupling constants in some range

gmin
α < gα (t ) < gmax

α . (4)

Apart from the constrained range above, we assume that

we can impart an arbitrary time dependence to the coupling

constant, to transform the initial state |ψ (0)〉 into the tar-

get state |ψtarget〉. This can be achieved by fixing the total

time of the evolution, τ , and minimizing the cost function

C(|ψ (τ )〉) = 1 − |〈ψ (τ )|ψtarget〉|
2.

To apply Pontryagin’s minimum principle, we consider all

the amplitudes needed to specify the wave function |ψ (t )〉

in an orthonormal basis as our dynamical variables x. For

the conjugate momenta p, we define a conjugate state |�(t )〉

that evolves with the same Schrödinger equation ∂t |�(t )〉 =

−iH (t )|�(t )〉. Unlike the quantum state whose boundary con-

dition is known at the initial time, the conjugate states have

known boundary conditions at the final time

|π (τ )〉 = ∂ψC(|ψ〉)
∣

∣

t=τ
, (5)

where C(|ψ (τ )〉) plays the role of F [x(τ )] of the general for-

malism. The above derivative should be interpreted in terms

of the real and imaginary parts of the components of ψ . For

our particular fidelity-based cost function, we have

|�(τ )〉 = −2|ψtarget〉〈ψtarget|ψ (τ )〉. (6)

The state and its conjugate determine whether the controls

take their minimum or the maximum allowed values accord-

ing to [54]

gα (t ) =

{

gmax
α , Im[〈�(t )|Oα|ψ (t )〉] < 0

gmin
α , Im[〈�(t )|Oα|ψ (t )〉] > 0.

(7)

In our case, the Hamiltonian has two tunable coupling

constants J and K , and we can write OJ = H (J = 1, K = 0)

and OK = H (J = 0, K = 1). An example is shown in Fig. 4.

The flat pieces in the figure are a consequence of the evolution

generated by a Hamiltonian H = Oα in these intervals, which

gives eiHt Oαe−iHt = Oα .

V. BANG-BANG MONTE CARLO TECHNIQUES

With the bang-bang nature of the protocols confirmed,

we take advantage of this form and create more efficient

Monte Carlo processes, allowing exploration of larger system

sizes that were previously limited due to infeasible comput-

ing times. Computationally, the unitary operator generation

is by far the most demanding part of the simulation, taking

O(d3) where d =
(

M

C

)

is the dimension of the Hamiltonian.

FIG. 4. An example of H for M = 9, C = 2, ri = 4.752, rt =

0.582.

Of course, this step is precisely what the quantum device will

perform by physical evolution and measurement instead of

calculating the solution to the Schrödinger equation on a clas-

sical computer. In our investigation on a classical computer,

however, we need to reduce the number of times we generate

the unitary operator to make the simulations more efficient.

We run a two-step bang-bang Monte Carlo (BBMC) algo-

rithm. First, we apply the discrete-bang Monte Carlo (DBMC)

algorithm, which is similar to the BFMC, but the protocols are

restricted to the maximum and minimum within our parameter

range, 1 and 0. After that, we apply the continuous-bang

Monte Carlo (CBMC) algorithm, which changes the simula-

tion parameter to when transitions occur, avoiding restricting

the jumps to discrete intervals.

A. Part 1: Discrete-bang Monte Carlo

The DBMC avoids the expensive unitary operator genera-

tion at each step in the evolution by precompiling the unitary

operators once for each time step τ
N

for N total intervals.

The protocol is parametrized as a piecewise constant proto-

col, where the control parameter for each interval is set at

either the minimum or the maximum allowed value instead

of searching over all intermediate values, utilizing the result

of Pontryagin’s principle. The computations then resemble

Monte Carlo simulations of an Ising-type system. For a sin-

gle time step, we are only required to generate three UJK ,

operators U11,U10, and U01, where the subscript indicates the

constant values of J and K over a time τ/N . For example,

U10 corresponds to an interval where J takes its maximum

value and K is turned off. We note that U00 = I and should not

appear in any optimal protocols since its only effect is wasting

time without changing the state. Then, each step in the evolu-

tion is reduced to O(d2) matrix-vector multiplication. We also
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take advantage of adaptive step sizes for a given τ , allowing

us to start with a coarse protocol, i.e., small N , and iteratively

double the number of intervals for a fixed τ . For small N ,

optimization is computationally inexpensive but typically far

from the true optimal protocol. For large N , convergence re-

quires many sweeps if starting from a random initial protocol.

This adaptive method, where the initial protocol for larger step

sizes is generated by the optimized protocol for the previous

step size, significantly reduces the total number of sweeps

required for convergence.

B. Part 2: Continuous-bang Monte Carlo

In this approach, a certain number of jumps are assumed,

and the corresponding times for these jumps are treated as the

variational parameters of the protocol. This number is typi-

cally very small (less than 5) so we are left with a simulation

with very few variational parameters. Of course, the results of

the DBMC provide a good estimate for the number of jumps

and their approximate time. With a continuous parameter,

namely, the time of each pulse, treated as a variational param-

eter, we cannot precompile the operators and must generate

the unitary operators at each step in the evolution. However,

the CBMC shortcuts this generation by prediagonalizing HJK

for the three possible combinations of J and K, saving the

eigenvectors and eigenvalues VJK and DJK , and expressing

the unitary operator as U (△t ) = VJK e−i△tDJK V
†

JK for time step

△t . Then, the only time-dependent component which must be

generated at each step in the evolution is e−i△tDJK , which takes

O(d ) operations. We then evolve the state according to |ψ (t +

△t )〉 = VJK e−i△tDJK V
†

JK |ψ (t )〉, where we avoid matrix-matrix

multiplication by doing three matrix-vector multiplications.

This approach reduces the evolution down to O(d2) opera-

tions. This approach allows for true optimal convergence due

to avoiding the interval restriction. It is also quite efficient,

particularly when combined with the first discrete step that

effectively determines the number and approximate jumps’

location.

This technique outperforms the BFMC in optimal-protocol

accuracy and computational efficiency. The performance

gains are substantial. For small systems accessible to BFMC,

the running times are improved by around three to four orders

of magnitude, reducing the total computation time for all

initial and target states from weeks to minutes. For larger

systems, the computations become infeasible with the BFMC

algorithm. Thus our BBMC method gives access to system

sizes with Hilbert spaces of dimension up to around 5000

with our computing power. We compare the protocols found

from this simulation with the BFMC in Fig. 5; they are nearly

identical. We discuss several more algorithm optimizations in

the Appendix.

As our ultimate goal is to search for patterns in the opti-

mal protocols across system sizes, different protocols must

achieve the same measurement of distance D. Scaling τ

makes it unlikely that two different initial-target combinations

will have the same D. So, after achieving D � 0.02, we

implement a binary search in τ which hones in on the total

time required to achieve the optimal protocolD = 0.02.

FIG. 5. Examples of the final optimal protocols for the two MC

methods. Assuming bang-bang protocols achieves the same shape

but performs slightly better inD[ψ (τ )].

VI. PROPERTIES OF THE CRITICAL TOTAL TIME

We first present our numerical results for the critical total

time τcritical for reaching the target. The data are presented in

a color plot with the horizontal (vertical) axis representing the

initial (target) state in terms of the parameters ln(ri ) and ln(rt ).

We explore a wide range of parameters with either J or K

dominating.

For a fixed initial and target state, a perfect optimal evo-

lution with D = 0 has an evolution determined by |ψrt
〉 =

U |ψri
〉, which means the optimal evolution from |ψrt

〉 into

|ψri
〉 can be done with the same protocol running backwards

in time. Therefore the total evolution time and other quantities

calculated in this paper (including the number of pulses and

characteristic pulse time) are symmetric about the diagonal in

the (ri, rt ) space. Although we useD = 0.02, and despite pos-

sible numerical artifacts and inaccuracies, we indeed observe

this symmetry, confirming that we are finding very similar

optimal protocols to those that prepare the target state exactly.

Patterns emerge in τcritical across all system sizes, as shown

in Fig. 6. As (ri, rt ) gets further away from the diagonal, τcritical

increases, as expected. This increase correlates with a de-

crease in |〈ψtarget|ψinitial〉|
2, and this overlap is shown in Fig. 7.

Intuitively, increasing the distance between the initial and

target states should increase the total time. Figure 8 directly

shows the relationship between τcritical and |〈ψtarget|ψinitial〉|
2

for two different system sizes. For a fixed ri, there is a clear

correlation between the two.

An important finding of these numerical studies concerning

the promise of applying them to actual hybrid classical-

quantum devices for VQA involves the dependence of the

critical time on the Hilbert space dimension. Although sys-

tems with a larger Hilbert space lead to an increase in classical

computing time, we sometimes find a shorter τcritical in a larger

Hilbert space. As shown in Fig. 9, for ln(ri) < 0, ln(rt ) < 0

we see that τ3 > τ4, where τC is for M = 9 with C occupants.

τ3 = 1.11 ± 0.92 and τ4 = 0.99 ± 0.78. The correlation of

the wave-function overlap with the total time plays an im-

portant role here. Although, when τ3 > τ4, the C = 4 system

does not always have a larger overlap between the initial and

the target states than the C = 3 system, in most of the darker

red region where τ3 ≫ τ4, there is indeed a larger overlap

between the initial and target states for the C = 4 system.

This result implies that the complexity of the VQA does not

necessarily increase as the fully classical counterpart becomes
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FIG. 6. τcritical for all nine system sizes explored. As the dimension d =
(

M

C

)

increases, we decrease the resolution due to computational

complexity. White space indicates no data due to the initial and target states being nearly identical.

exponentially more expensive, suggesting a path to quantum

supremacy for the determination of many-body ground states

using optimal control.

VII. TOPOLOGICAL PHASE DIAGRAM OF THE

OPTIMAL PROTOCOLS

Bang-bang protocols are characterized by one integer,

namely, the number of pulses in the protocol. This topological

property is associated with every protocol in the (ri, rt ) space.

Thus the above space breaks into equivalence classes, each

with a fixed number of on pulses. These regions of the (ri, rt )

space are reminiscent of different topological phases. We thus

refer to them as a topological phase diagram. The analogy

might appear superficial at this stage. However, the emergence

of critical exponents at the transitions between these regions

and geometric correlations between protocols within one re-

gion suggest a possibly deeper relationship.

Close to the diagonal, we seem to have only one on pulse in

both J and K (Fig. 10). As we move away from the diagonal to

regions with a smaller overlap and a longer critical total time,

we see an increase in the number of pulses. The number of

pulses is correlated with the critical time.

The number of pulses changes by 1, going from P to

P + 1, as we cross a phase boundary. Thus the diagram has

a layered structure, where phases with P + 1 pulses appear

as islands enclosed by phases with P pulses. This feature

can be explained by noticing that the transition mechanism

is through a bifurcation. As an example, consider an interval

where a control is turned off. At the transition, an infinites-

imally narrow square on pulse occurs at some point in this

interval. The width of the pulse emerging at the transition

grows continuously from zero. Interestingly, there are many

similarities in the structure of the phase boundaries in the

number of pulses and the overlap |〈ψtarget|ψinitial〉|
2.

Another pattern emerges in the characteristic time for on

pulses, t J
on/(PJτ ) and tK

on/(PKτ ). The upper right quadrant with
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FIG. 7. A decrease in |〈ψtarget|ψinitial〉|
2 increases τcritical, which in turn increases the number of pulses in the optimal protocol shown in

Fig. 10. As the dimension d =
(

M

C

)

increases, we decrease the resolution due to computational complexity. White space indicates no data due

to the initial and target states being nearly identical.

ln(ri ), ln(rt ) > 0 has a single constant on pulse in J across

all system sizes explored, with a similar pattern in K where

ln(ri ), ln(rt ) < 0 shown in Fig. 11. From these times, where

t J
on/(PJτ ) = 1, we transition into t J

on/(PJτ ) = 0.5, which sig-

nals a bifurcation opening up, with smooth transitions to

t J
on/(PJτ ) < 0.5. The data also suggest that rirt > 1 results in

J-dominant protocols, with rirt < 1 resulting in K-dominant

protocols. We note that the number of pulses (Fig. 10) and the

typical timescale of the each pulse (Fig. 11) reflect different

and complementary aspects of the protocols. For example, the

red region in the PJ plot for M = 9 and C = 3 in Fig. 10 indi-

cates many pulses in J . However, the complementary panels in

Fig. 11 indicate that these are short J pulses and the dynamics

are actually dominated by fewer but longer K pulses.

The continuous nature of the bifurcations raises the ques-

tion of any connection to critical phenomena. Interestingly,

the duration of the pulses that appear at the bifurcation tran-

sition grows as a power law for all transitions in the phase

diagram, as shown, e.g., in Fig. 12. A representative three-

dimensional plot of the optimal protocols in K for M = 9,

C = 2 is shown in Fig. 12. Different surfaces indicate the

times of jumps in the bang-bang protocols. We see continuous

changes in the optimal protocol as a function of ri, rt .

Searching for universality, we investigated these power

laws for many different bifurcations. While generally there is

a good critical fit for all bifurcations, we have not been able to

find a universal exponent governing the transitions throughout

the phase diagram. The exponents may be analogous to other

continuously changing critical exponents, e.g., in a Luttinger

liquid.

VIII. CHARACTERIZING GEOMETRIC CORRELATIONS

BETWEEN BANG-BANG PROTOCOLS

To further scrutinize the analogy between the region of the

(ri, rt ) space with phases, we note that in a ground-state phase
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FIG. 8. τcritical as a function of initial-target overlap.

FIG. 9. The log of the ratios of τ for M = 9 between C = 3 and

C = 4 occupants across all combinations of ri, rt . For ri � 1, rt �

1, most optimal protocols for three occupants had total times which

were greater than those for four occupants. τ3 = 1.11 ± 0.92, τ4 =

0.99 ± 0.78.

diagram, states within a phase have unifying properties. In

addition to the topological pulse number above, each protocol

has a geometric structure associated with the precise times the

control is turned on and off. Is the geometry correlated within

each phase?

To capture the geometric similarity, we need to quantify it

in terms of a correlation function. We define

C[a(t ), b(t )] ≡

∫ 1

0

1

2
{[2a(t ) − 1][2b(t ) − 1] + 1}dt

for normalized protocols a(t ), b(t ). This function measures

the fractional overlap of bang-bang protocols where the val-

ues of a(t ), b(t ) are restricted to 1 or 0 at any given time t.

C[a(t ), b(t )] = 1 implies identical normalized protocols, and

C[a(t ), b(t )] = 0 implies perfectly anticorrelated protocols.

We note that perfect anticorrelation is only possible for two

protocols with the same number of jumps occurring at the

same normalized time.

Accounting for the fact that the expected output of C varies

based on the number of jumps in a(t ) and b(t ), we introduce

the modified correlation function

Cm[a(t ), b(t )] ≡ C[a(t ), b(t )] − C[S]

to effectively subtract the background. The above correlation

function calculates the difference between the protocol over-

lap and the average protocol overlap given the total number of

jumps, S, in both protocols. To calculate C[S], we randomly

draw S total jumps from the interval [0,1], sort the times of

jumps in the protocols, and let si correspond to these sorted

times. Then the two protocols have the same value on the

intervals [s2n, s2n+1]. For even S, setting sS+1 = 1, and con-

sidering S! possible orderings for these sorted times, C[Seven]

can be calculated as

C[Seven] =S!

∫ sS+1

0

· · ·

∫ s2

0

S+1
∑

i=1

−1i+1si ds1 · · · dsK

=S!

S+1
∑

i=1

(−1)i+1 i

(S + 1)!
=

S + 2

2(S + 1)
.

In the case of odd S,

C[Sodd] =
1

S + 1

S
∑

i=1

(−1)i+1i =
1

2
,

where the sum only goes up to S rather than S + 1 because

[sS, 1] is now an anticorrelated region. As a check, we nu-

merically generated 106 random protocols for all S � 10 and

calculated the average C, which was in agreement with the

expression above.

The behavior of the correlation function is shown in

Fig. 13. We compare all protocols to two different protocols

for each system size, which are outlined in black. We find

that protocols within one phase exhibit correlations, while

anticorrelations emerge across the phase boundaries.

IX. CONCLUSIONS

In this paper, we studied patterns in the optimal protocols

scanning over a wide range of initial and target ground states

of the two-dimensional XXZ model for various system sizes.
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FIG. 10. The number of pulses for all nine system sizes explored. As the dimension d =
(

M

C

)

increases, we decrease the resolution due to

computational complexity. White space indicates no data due to the initial and target states being nearly identical.

FIG. 11. The characteristic “on” times for all nine system sizes explored. As the dimension d =
(

M

C

)

increases, we decrease the resolution

due to computational complexity. White space indicates no data due to the initial and target states being nearly identical.
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FIG. 12. Top: The optimal protocols in K for M = 9, C = 2,

restricting the image to ri < rt . Colors indicate the orders of jumps,

with blue first, green, red, and cyan last. The optimal protocol seems

to be a continuous function of ri, rt . A bifurcation opens (red and

green surfaces) where ln(rt ) = 1. Bottom: A cross section of the

above plot where ln(ri ) = −1.4, along with a power-law fit tpulse =

(rt − r0)α + c with three fitting parameters, α, r0, and c.

Identifying patterns and properties of the optimal protocols

and characterizing the needed timescales are crucial for ef-

ficiently implementing VQA on near-term hybrid quantum

devices.

To achieve the above goal in the first stage, where the

quantum evolution is simulated on classical computers, we

pushed the state of the art substantially by several algorithmic

inventions and optimizations. These improvements enabled us

to tackle an exceedingly challenging problem of finding glob-

ally optimal protocols for nonequilibrium state transformation

in a truly many-body setup with large Hilbert spaces for a

two-dimensional interacting system.

The complexity of VQA ultimately relies on the critical

time needed for transforming a quantum state to the target

with an optimal protocol. The longer this time, the more

challenging it gets to find the optimal protocol even with a

quantum device that can generate the time evolution (instead

of calculating it as in this paper). We found that for the XXZ

model on the square lattice, the total time does not necessar-

ily increase with the Hilbert space dimension. Although this

counterintuitive finding is specific to the case studied here, it

is highly encouraging for future applications of VQA.

We also find that the wave-function overlap seems to be

the key determinant of the critical time. The overlap is a mea-

sure of distance in the Hilbert space, imposing a fundamental

speed limit even if we could generate a direct rotation in the

Hilbert space. Such direct rotation typically requires nonlo-

cal generators. The fact that the optimal time for dynamics

generated by a physically relevant local device Hamiltonian

also correlated with the overlap is a promising indicator of the

potential of VQA. Similarly, we found this result for the spe-

cific XXZ model. Thus it remains an open question whether

the correlation between wave-function overlap and the critical

preparation time is a generic property of many-body inter-

acting systems, which calls for future investigations on other

models. Fermionic and magnetically frustrated systems are of

particular interest in this regard. Nevertheless, the XXZ model

is nonintegrable and does not map to any noninteracting mod-

els. It therefore appears that our model-specific findings might

apply to a broad class of interacting systems.

We introduced the notion of a phase diagram for the op-

timal protocols in the space of initial and target states. Since

each optimal bang-bang protocol is characterized by an in-

teger number of pulses, the space breaks into regions of the

same pulse number. These topological phases are separated by

continuous bifurcation transitions and exhibit a layered struc-

ture. The number of pulses goes up upon increasing critical

preparation time.

We also introduced a correlation function to capture the

geometric similarities of bang-bang protocols and found that

the protocols within a phase are geometrically correlated for

the XXZ model. These findings can inform efficient VQA

implementation along two directions. First, finding optimal

protocols for a particular initial and target state can yield

excellent initial guesses for other initial and target states for

the same system size. It seems natural that small changes to

the initial and target states should correspond to small changes

in the optimal protocols connecting them regardless of the

model.

More importantly, the changes across system sizes also

exhibit a progression that can provide good initial guesses for

the optimal protocols for a slightly larger system or slightly

lower or higher filling fraction. Our results for the XXZ model

suggest that the challenges of applying VQA to large systems

may be mitigated by exploring all smaller systems for a range

of initial and target states. The topological and geometric

patterns in the optimal protocols may be utilized to con-

struct smart initial Ansätze for the larger systems. This finding

calls for further investigations on larger systems beyond the

capabilities of classical computers by using hybrid quantum-

classical machines while utilizing many of the improvements

to the classical optimization algorithm presented in this pa-

per. Such investigations may be transformative for quantum

technology. For example, suppose the slow transformation of

the optimal protocols with system size persists to the ther-

modynamic limit. In that case, a system-size adaptive VQA,

where the optimal protocols for each system size construct the

initial Ansatz for the subsequent system size, would yield a

true quantum advantage in simulating many-body interacting

systems.

043165-11



MATTHEW T. SCOGGINS AND ARMIN RAHMANI PHYSICAL REVIEW RESEARCH 3, 043165 (2021)

FIG. 13. The protocol correlations for all nine system sizes. Black squares indicate the reference protocol with which the protocols labeled

by (ri, rt ) are compared. As the dimension d =
(

M

C

)

increases, we decrease the resolution due to computational complexity. White space

indicates no data due to the initial and target states being nearly identical.
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APPENDIX: ALGORITHM IMPLEMENTATION AND

OPTIMIZATION DETAILS

For a fixed τ and lower and upper limits on the number

of intervals Nmin = 2i, Nmax = 2i+ j , implementation of the

BBMC algorithm is as follows:

(1) Diagonalize the Hamiltonian for the three meaningful

combinations of J and K , and store them in VJK , DJK .

(2) For each possible total interval number Na such that

Nmin � Na = 2a � Nmax for some a, generate and save the

unitary matrices for each combination of time step △t = τ/Na

and HJK . This results in 3 j total unitary matrices where

j = log2( Nmax

Nmin
). Restricting the total number of intervals to a

power of some fixed integer b allows the optimal protocols for

Na = ba to be used as an initial protocol for N = ba+1.

(3) Start with Na = Nmin and some random initial protocol.

Use the standard annealing process outlined by the BFMC,

where a random interval selection now switches the protocol’s

value at that time.

(4) Double the number of steps and repeat step (3). Use

the optimal protocol for the previous step size as an initial

protocol in the next step size. Do this until Na = Nmax.

(5) Convert the optimal protocol for Na = Nmax into one

that specifies the time that jumps occur. With this conversion,

run a second simulation that performs a similar annealing

process, except that it now randomly selects the time that

the jumps occur and makes some change in that time that is

proportional to T .

(6) Repeat steps (2)–(5), scaling time, untilD[ψ (τ )] � ǫ.

Too few steps make the evolution coarse and restrict the

time that these jumps can occur. Too many steps make the

DBMC computationally expensive and make it difficult to find

the optimal protocol with so many indices to choose from. We

find that Nmin = 4, Nmax = 64 is enough to get us close to the

optimal protocol without getting stuck in local minima. Each

time the number of steps is increased, the initial protocol for

the next DBMC run is the optimal protocol for the previous

step size, which reduces the total number of sweeps required.

This adaptive step size also allows for another efficiency

boost. For n � 2Nmin, if a given protocol is unchanged for

many steps, use the larger time-step exponentiated matrix. We

find that most optimal protocols are fixed for many time steps.

When n = Nmax we end up doing significantly fewer than

Nmax matrix-vector multiplications during evolution. Several

optimization techniques are used to increase the speed of the

computation as discussed below.

Scaling total time. We choose a fixed initial time. After the

first iteration of the BBMC process, it linearly extrapolates the

total time we need to get D[ψ (τ )] ≈ 0.2. After this, it scales

total time after each iteration, with the scalar being roughly

proportional to the distance to our target.

Adaptive step size. Early on in the CBMC processes, espe-

cially when near our random initial protocol, it is necessary

to make significant changes in the protocol. When near the

optimal protocol, small changes are required, as it is unlikely

that large changes will lead to improvement. To achieve this,

we set a temperature-dependent upper bound B(T ) for the

allowed change, which starts off as a significant fraction of

total time, usually B(T0) = 0.8τ , and decays at the same rate

as the pseudotemperature to less than 2% of the total time.

For a fixed upper bound B, we randomly draw a change from

[0, B(T )].

Varying total sweeps. For total times much shorter than

τcritical, convergence is relatively easy and requires few

sweeps. As we approach the critical time, with D[ψ (τ )]

approaching 0, convergence becomes more difficult. Fur-

thermore, iterations with fewer variational parameters need

significantly fewer sweeps. To account for these issues, we

allow the total number of sweeps to be proportional to the

total number of intervals or jumps.

Saving each state during evolution. During all MC simu-

lations, changing a given interval does not change the state

leading up to that interval. Therefore we can save the state at

every step in the evolution and only “continue” the evolution

from the change onward. Since the interval that receives the

change is uniformly distributed across all possible steps, this

cuts the computation time by a factor of 2.

Penalizing fictitious jumps. To save steps during the BFMC

and DBMC, we bias our index selection towards points near a

jump. It is unlikely that a single interval getting changed in the

middle of a plateau is going to get us closer to the target state:

Progress is more likely to be made by slightly shifting the time

a jump occurs. To implement this bias, we add a “reroll” if an

index is selected, which has identical neighbors. To further

prevent wasted iterations, we do not allow changes that result

in both J and K being turned off.
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