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In this paper, we address the challenge of uncovering patterns in variational optimal protocols for taking the
system to ground states of many-body Hamiltonians, using variational quantum algorithms. We develop highly
optimized classical Monte Carlo (MC) algorithms to find the optimal protocols for transformations between
the ground states of the square-lattice XXZ model for finite system sizes. The MC method obtains optimal
bang-bang protocols, as predicted by Pontryagin’s minimum principle. We identify the minimum time needed
for reaching an acceptable error for different system sizes as a function of the initial and target states and uncover
correlations between the total time and the wave-function overlap. We determine a dynamical phase diagram for
the optimal protocols, with different phases characterized by a topological number, namely, the number of on
pulses. Bifurcation transitions as a function of initial and final states, associated with new jumps in the optimal
protocols, demarcate these different phases. The number of pulses correlates with the total evolution time. In
addition to identifying the topological characteristic above, i.e., the number of pulses, we introduce a correlation
function to characterize bang-bang protocols’ quantitative geometric similarities. We find that protocols within
one phase are indeed geometrically correlated. Identifying and extrapolating patterns in these protocols may

inform efficient large-scale simulations on quantum devices.
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I. INTRODUCTION

The simulation of many-body quantum states with quan-
tum devices [1] has made substantial progress. Significant
efforts have focused on single-purpose quantum simula-
tors [2], where we physically create systems described by the
model we would like to simulate. Adiabatic evolution is a
common approach to preparing the ground state of the model
Hamiltonian. If done sufficiently slowly in the absence of a
vanishing spectral gap, this approach effectively prepares the
desired ground state [3,4]. However, in most cases, the target
states lie across quantum phase transitions from the initial
state, resulting in a vanishing gap and divergent adiabatic
timescales. Furthermore, antiadiabaticity [5,6] exacerbates the
issue in the presence of noise.

For certain problems, nonadiabatic methods have proven
promising [7,8]. Despite its challenges, one promising ap-
proach for finding the ground state of many-body quantum
Hamiltonians is the variational quantum algorithm (VQA).
This method relies on starting from an easy-to-prepare initial
state and evolving into the desired ground state of a target
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Hamiltonian by variationally modifying the parameters in
the time-dependent Hamiltonian of the device. The idea has
been explored for state preparation [9—11] and has showed
remarkable theoretical [12-26] and experimental [27-34]
success, particularly in quantum chemistry simulations. It
is also closely related to the quantum approximate opti-
mization algorithm [35-37]. The scheme utilizes a hybrid
quantum-classical system. Repeated physical evolutions on
the quantum machine are optimized in a feedback loop to
minimize the expectation value of the target Hamiltonian, thus
creating the ground state of the model Hamiltonian.

There are two broad approaches to VQA, methods based
on quantum circuits with parametrized gates and gate-free
strategies, which may offer better coherence times [38]. A
version of gate-free VQA is based on quantum optimal con-
trol (QOC). It uses a device Hamiltonian of fixed form, with
the time evolution generated by varying the device’s tunable
parameters. The target Hamiltonian only affects the cost func-
tion, giving rise to a general-purpose simulator. However,
a large number of variational parameters and the absence
of generic good initial guesses for the protocol pose chal-
lenges to this scheme. Therefore it is crucially important to
find and characterize patterns in the time dependence of tun-
able parameters in the Hamiltonian of the device. Possible
extrapolation of these patterns to large systems may then
allow efficient parametrization of the protocol to be opti-
mized. Pontryagin’s minimum principle plays a crucial role in
QOC [39,40]. This minimum principle implies that, if a given
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set of conditions are met, the optimal path has controls that
take on either their maximum or minimum value at any given
time—a bang-bang protocol. The bang-bang nature makes the
protocols amenable to characterization and potential extrapo-
lation.

In this paper, focusing on the ground-state transformation
of the XX Z model on the square lattice, we explore optimal-
protocol patterns. We search for the optimal protocols that
prepare the desired target state using two different types of
Monte Carlo (MC) simulations on a classical computer. The
first method is direct brute-force Monte Carlo (BFMC), which
does not assume bang-bang protocols, but still converges to
them. Since Pontryagin’s principle does not guarantee bang-
bang protocols (due to the possibility of singular intervals),
this inefficient algorithm is important for initial verification
of the protocols’ bang-bang nature. The second, bang-bang
Monte Carlo (BBMC), assumes bang-bang parametrization of
protocols and outperforms the BEFMC in accuracy and compu-
tational efficiency. For a fixed initial and target, we find almost
identical protocols for the two approaches. These optimal
protocols significantly outperform the adiabatic method.

Our studies are naturally limited to small system sizes
due to the computational complexity of simulating VQA on
classical computers for a many-body state. Using an actual
quantum device to perform the time evolution physically, we
expect to access much larger systems. Nevertheless, finding
the optimal protocol could still be difficult due to the com-
plexity of the control space and the number of iterations
required to reach the expectation value’s global minimum.
Our work aims to mitigate this issue by finding patterns in
the classically obtained protocols for smaller system sizes,
which we hope may inform an efficient search for optimal
VQA protocols for larger system sizes. The patterns may yield
an efficient parametrization upon extrapolation, helping the
algorithm hone in on the optimal protocol with significantly
fewer iterations.

The results of this paper are twofold. First, we develop
highly efficient numerical methods for finding optimal bang-
bang controls. Several improvements to the state-of-the-art
algorithms are presented; these improved algorithms use
adaptive moves in MC, combined discrete and continuous
parametrizations, and the precompiling of unitary operators
and diagonalized Hamiltonians. Second, we apply these al-
gorithm advances to the two-dimensional XXZ model. We
present a full characterization of the optimal protocols for
several numerically accessible system sizes and filling frac-
tions, scanning over all initial and target ground states. In
the context of our model, the exhaustive investigation al-
lows us to raise and answer multiple new questions discussed
below.

The determination of the optimal protocols for all initial
and target ground states allows us to determine the total time
it takes to optimally transform the ground states of a class of
Hamiltonians to each other. This time serves as a practical
measure of distance between all ground states, endowing the
equilibrium ground states with valuable dynamical informa-
tion. Furthermore, in addition to the time needed for the
transformation, the associated bang-bang protocols’ charac-
teristics are of considerable interest. A salient property of
bang-bang protocols is the number of square pulses in the

signal. As we change the initial or target ground state, we find
transitions where the number of pulses changes.

We find that the transitions mentioned above are continu-
ous bifurcations. For example, in an interval with the control
field on, an infinitesimally small interval appears, where the
control field is turned off. This interval then grows continu-
ously. We next find phase diagrams as a function of initial and
target states, with different phase-diagram regions having dif-
ferent pulse numbers. These transitions are between distinct
pulse topologies, characterized by integer numbers, so they
are reminiscent of topological transitions. Furthermore, they
are continuous in the sense that the duration of the new pulse
emerging at a transition grows continuously from zero. We
have verified that in the vicinity of the transition, the pulse
durations fit power laws.

In addition to the topological characteristic of the num-
ber of pulses, the geometric correlations between bang-bang
pulses are of interest. How similar are the pulses in various
regions of the space of the initial and target states? In this
paper, we define a shape-shape correlation function that cap-
tures the quantitative similarity of two bang-bang protocols.
Correlations and anticorrelations appear across the transitions.

The outline of this paper is as follows. In Sec. II, we
discuss the model and the general setup of state transfor-
mations, including the measures of distance in the optimal
protocol. In Sec. III, we discuss the brute-force MC algorithm
used for an initial approximate determination of the optimal
protocols. Section IV discusses Pontryagin’s minimum prin-
ciple and the bang-bang nature of the optimal protocols. In
Sec. V, we present our efficient algorithm for the final exact
determination of the optimal bang-bang protocols. We then
discuss our numerical results on the critical time needed for
the optimal protocols in Sec. VI. In Sec. VII, we present
our results on the topological phase structure of the optimal
protocols and the continuous bifurcation transitions between
the phases. In Sec. VIII, we introduce a correlation function to
capture the geometric similarities of bang-bang protocols and
present results on the correlations between the protocols in
one phase. Finally, we present our conclusion in Sec. IX. The
details of the optimized MC implementation are presented in
the Appendix.

II. MODEL AND SETUP
A. The XXZ model

In this paper, we focus our studies on the XXZ model
on the square lattice. Generally, in variational quantum algo-
rithms, we can have two distinct Hamiltonian forms, the target
Hamiltonian whose ground state we want to create, and the
device Hamiltonian, which generates the quantum evolution
of the state. However, in this paper, we focus on the case
where we want to create the ground state of a Hamiltonian
that has the same form as the device Hamiltonian. With this
choice, the problem can be viewed as finding an optimal
shortcut to the adiabatic evolution [41-49], as for initial states
that are also ground states for some choice of Hamiltonian
parameters, adiabatic transformations are always possible in
the presence of a spectral gap. Our Hamiltonian, importantly,
occurs in existing systems based on superconducting qubits.
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We have

H(J,K)= Z [J(aixoj-‘ + a}.vaiy) + Koiza;].
(i)
We note that the Hamiltonian conserves ), 0. The model is
relevant to superconducting qubit devices [50].

Due to the total o° conservation, for a square lattice with
M sites and C occupants, the Hamiltonian dimension becomes
d = (). We need a dimension of around 5000 or smaller
to perform the complex optimization algorithm and find the
optimal protocols. We are therefore able to explore all occu-
pancies with a square lattice for M € {4, 9}, along with some
small occupancies for M € {16, 25, 36} systems. We also skip
the trivial cases of C € {0, 1}. Furthermore, M — C occupants
give rise to the same evolution as C occupants due to the
spin rotation symmetry. We therefore focus on occupancies
C<M/2.

B. Measures of distance for optimal control

To prepare the ground state of the target Hamiltonian for
parameters J and K using Monte Carlo simulations, we need
to minimize a cost function. In variational quantum algo-
rithms, the standard cost function is the expectation value of
the energy. We can also define a cost function in terms of the
wave function [51-53]:

Clv(m)g = <w(f)|Hlarget|w(7:)>,
ClYy ()]s = 1 — [(¥ ()| Viarger) I,

where 1 (7) is the final wave function after a total evolution
time 7. Upon successfully evolving into the target state, Cg
vanishes and Cg attains its minimum possible value for any
wave function, namely, the ground-state energy, Ej, of the
target Hamiltonian.

Experimentally, the energy-based cost function is preferred
because it is measurable even if the target ground-state wave
function is a priori unknown. We note that the ground-state
wave function is independent of the overall energy scale of
the Hamiltonian and only depends on the ratio of the coupling
constants:

x|~

r

Thus a unique initial and target combination is specified by
two variables, r; and r;.

While C[y/(r)]s only depends on r by construction,
Cl¥(r)]g also depends on the energy scale of the target
Hamiltonian. It is convenient to use normalized measures of
distance, which are equal to 1 (0) in the initial (target) state.
These can be defined in energy and state spaces as

<w(f)|Hlarget h”(f)) - EO

Dy (D]e = ,
g <winitial|Hlargethhinilial) - EO
1= (¢ (D) Yarger) |
DY ()]s = e
1 - | (Vfinitial |wtarget> |
respectively. Clearly, D[y (t)]g is linearly related to

Cl¥(r)]lg, and minimizing the experimentally accessible
Cl¥(t)]g minimizes D[y (t)]g. We have found that min-
imizing D[¥(7)]g and D[y (1)]s gives rise to practically

Minimizing Dg[)(7)] Minimizing Dg (7))

1.0+

0.0:

K 0.51

0.0+
0.0 0.2 04 0.6 00 02 04 06 038
t t

FIG. 1. A representative example of two different minimization
schemes, achieving nearly identical protocols. M =9, C = 2.

identical protocols, with a representative example shown in
Fig. 1. Hereinafter, we focus on D[ (7)]s in our numerical
investigations as it is customary to quantify the errors in terms
of the fidelity of states, bearing in mind that a measurable
energy-based cost function amenable to the variational quan-
tum algorithms on actual quantum devices leads to similar
protocols.

We also note that for longer timescales than the time
needed to reach the target state exactly, many different paths
evolve into the desired target state. The optimization does not
converge to unique protocols. To get the exact minimum total
time, we choose to find the optimal protocols that evolve the
state just short of the target state. We thus avoid convergence
issues arising right at the critical time needed to reach the
target state.

With the measure of distance above, we stop our Monte
Carlo simulations when D[y (7)]s < 0.02 and call the total
time required to achieve the small error above, Tcritical. We
can approximate the exact critical time by doing a low-order
polynomial fit to the distance as a function of total time and
extrapolate the time where D[y (t)]s = 0. The extrapolation
of these protocols yields very similar protocols, characterized
by minor, unimportant modifications.

III. BRUTE-FORCE MONTE CARLO METHOD

To find the optimal protocol and shortcut the adiabatic
method, we first use a brute-force Monte Carlo (BFMC),
previously used in several publications [40,45,52,54]. In this
approach, we discretize time into identical fixed intervals and
allow the protocols to take on any value within the bounds of
our parameters, in this case [0,1]. With N intervals, the final
state is

N
W) =[] e Yinigar)- (1
J

The specific algorithm used is simulated annealing, where
implementation requires a random initial protocol {J;}o, {K;}o
and a pseudotemperature 7 that decreases with the progres-
sion of the algorithm. This pseudotemperature 7" controls the
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Random Initial Protocol Optimal Protocol

1.0

J 0.5
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FIG. 2. A random initial protocol vs the optimal post-BFMC
protocol for parameter J

probability that nonoptimal changes are accepted, which pre-
vents the algorithm from being stuck in local minima. We pick
an initial pseudotemperature 7; to have an initial acceptance
rate of around 85% for changes in the protocol that increase
the cost C, which can be calculated by numerically sampling
random changes in the protocol. We also initially run the
simulations for a smaller total time than the evolution time
and slowly increase 7 to the desired value as the simulations
progress. We then follow this simulated-annealing procedure:

(1) Change the value of the protocol at a random time step
by sTome small amount randomly selected from the interval
[0, =].

(T2) Repeat the evolution, and measure the new cost Ciey -

(3) If this value is smaller than the previous cost, keep
the change. Otherwise, keep the change with probability
CXP[— % (Cnew - Cold )] .

(4) Repeat steps (1)—(3) for Neyeeps sweeps, then reduce T
(we decreased T by 5%, i.e., T — 0.95T).

(5) Repeat steps (1)—(4) Ngecay times, calculating Nyecay t0
allow T to get close to 0. Set T = 0 and run Ny, more times,
then increase 7.

(6) Repeat steps (1)—(5) until D[y ()] < € for some al-
lowable error €. In our case, € = 0.02.

This algorithm is inefficient as it does not utilize the
bang-bang nature of the optimal protocols. However, due to
the possibility of singular intervals, Pontryagin’s minimum
principle does not guarantee bang-bang protocols. This brute-
force search is necessary for verifying that the protocols are
indeed bang-bang. The piecewise-constant parametrization
is more suitable for finding bang-bang protocols than other
parametrizations such as a truncated Fourier series.

The iteration limits Ngweeps, Ndecay> Nirozen Should be chosen
to get sufficiently close to the optimal protocol for each 7. To
have confidence that we are reaching the optimal protocol for
each 7, we repeat the process for multiple seeds that create
different initial protocols and changes throughout the process
but converge on the same protocol. This BFMC process is
also repeated for a different number of intervals N until an
increase in N creates a negligible difference in convergence.
For our case, N = 20 was sufficient. We find that the protocols
indeed collapse into bang-bang protocols, approaching either
the maximum or the minimum value (1 or 0) shown in Fig. 2.

1.0
mmm BFMC
Adiabatic
0.8
0.6 1.0 BFMC
Dsl(7)]
0.5
0.4 —,
0.0 — K
0.0 t 0.4
Adiabatic
0.2
0.0
0.1 0.3

FIG. 3. Anexample of the distance vs 7 for the two methods with
M=2, C=2, r,=0.11, r, =9. The BEMC achieves the ground
state in a much shorter time. The optimal protocol for D[y (7)] = 0
is shown in the insets.

It is illuminating to compare the performance of these
optimal protocols with the adiabatic method. Evolving from
an initial to a target state can be carried out adiabatically
by smoothly changing the controls into the controls corre-
sponding to the target state. If done sufficiently slowly in the
absence of a vanishing spectral gap, this approach prepares the
desired ground state. We choose a linear time dependence for
the Hamiltonian parameters. The results are shown in Fig. 3
and show a substantial difference in the absolute error in the
vicinity of the critical time for optimal evolution.

IV. PONTRYAGIN’S MINIMUM PRINCIPLE

Pontryagin’s minimum principle is a theorem in applied
mathematics that predicts generically bang-bang protocols
for linear control functions. Here, we briefly review the
formalism. Consider a set of dynamical variables x, which
evolve with a first-order differential equation x = f(x, g) that
contains certain time-dependent parameters g(7). Given the
initial values of the dynamical variables x(0), the differential
equation determines their final values for each set of time-
dependent control parameters. Suppose we want the optimal
controls g*(¢) that minimize a function ¥ [x(7)] of the dy-
namical variables at the final time t. Pontryagin’s minimum
principle states that

(}{(x*’p*vg*) =mgin‘H(x*,p*,g) (2)

for any time 0 <t < 7, where we have defined conjugate
momenta p that evolve as p = —d,H with boundary condi-
tions p(t) = 0,5 [x(7)] and the optimal-control Hamiltonian
Hx,p,g) = f(x,2) - p. In Eq. (2), x* and p* represent the
solutions for the dynamical variable and their conjugate mo-
menta, respectively, corresponding to the optimal controls
g"(t). If the equations of motion are linear in g(z), then
the optimal-control Hamiltonian will be a linear function of
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g(t), and Eq. (2) indicates that g*(¢) takes its minimum or
maximum allowed value at every point in time, leading to
bang-bang protocols.

Now consider a general quantum state evolving with the
Schrodinger equation 0, |y (¢)) = —iH (¢)|¥ (¢)). The Hamil-
tonian contains some tunable coupling constants g, (¢), which
we can change as a function of time:

H(t) =) ga(t)Ou, 3)

where O, are some Hermitian operators. We can tune each of
the coupling constants in some range

g < gy (1) < g, )

Apart from the constrained range above, we assume that
we can impart an arbitrary time dependence to the coupling
constant, to transform the initial state |y(0)) into the tar-
get state |Yiager). This can be achieved by fixing the total
time of the evolution, 7, and minimizing the cost function
CUY (D)) = 1 = (Y (T) [ Wtarger) I*-

To apply Pontryagin’s minimum principle, we consider all
the amplitudes needed to specify the wave function |y (¢))
in an orthonormal basis as our dynamical variables x. For
the conjugate momenta p, we define a conjugate state |I1(z))
that evolves with the same Schrodinger equation o, |I1(z)) =
—iH (¢)|T1(¢)). Unlike the quantum state whose boundary con-
dition is known at the initial time, the conjugate states have
known boundary conditions at the final time

7 (7)) = 3y CUY))],_,» &)

where C(|y(7))) plays the role of # [x(7)] of the general for-
malism. The above derivative should be interpreted in terms
of the real and imaginary parts of the components of . For
our particular fidelity-based cost function, we have

ITI(7)) = =2 Varget) (Viarget | ¥ (7)) (6)

The state and its conjugate determine whether the controls
take their minimum or the maximum allowed values accord-
ing to [54]

g%, Im[(T1()| O [Y(1))] < 0
gmin Im[(IT()| O [¥ ())] > 0.

In our case, the Hamiltonian has two tunable coupling
constants J and K, and we can write Oy = H(J =1, K = 0)
and Ox = H(J = 0, K = 1). An example is shown in Fig. 4.
The flat pieces in the figure are a consequence of the evolution
generated by a Hamiltonian H = O, in these intervals, which
gives ef' 0, e ! = O,.

8a(t) = { N

V. BANG-BANG MONTE CARLO TECHNIQUES

With the bang-bang nature of the protocols confirmed,
we take advantage of this form and create more efficient
Monte Carlo processes, allowing exploration of larger system
sizes that were previously limited due to infeasible comput-
ing times. Computationally, the unitary operator generation
is by far the most demanding part of the simulation, taking
0(d?) where d = (Ag) is the dimension of the Hamiltonian.

0.01
S 0.00
I \ 5
» \ — (t)
1 \\ -=H(J=1,K =0)
—
\
I \ ,’—‘\\
~ N ,/’ N
~ N ,, \\
x \\~____¢’ A S—
—-0.04
= 0.02 II
I J/
% 0.00 L |/
”~ =~ /”
o V4 \\\ /
|| /, \N\__,//
/
D/ / e K t)
Ry / (
I, —-—H(J=0,K=1)
-0.04C : : i
0.00 0.10 0.20 0.30
t

FIG. 4. An example of H forM =9, C =2, r; =4.752, r, =
0.582.

Of course, this step is precisely what the quantum device will
perform by physical evolution and measurement instead of
calculating the solution to the Schrodinger equation on a clas-
sical computer. In our investigation on a classical computer,
however, we need to reduce the number of times we generate
the unitary operator to make the simulations more efficient.
We run a two-step bang-bang Monte Carlo (BBMC) algo-
rithm. First, we apply the discrete-bang Monte Carlo (DBMC)
algorithm, which is similar to the BEMC, but the protocols are
restricted to the maximum and minimum within our parameter
range, 1 and 0. After that, we apply the continuous-bang
Monte Carlo (CBMC) algorithm, which changes the simula-
tion parameter to when transitions occur, avoiding restricting
the jumps to discrete intervals.

A. Part 1: Discrete-bang Monte Carlo

The DBMC avoids the expensive unitary operator genera-
tion at each step in the evolution by precompiling the unitary
operators once for each time step 5 for N total intervals.
The protocol is parametrized as a piecewise constant proto-
col, where the control parameter for each interval is set at
either the minimum or the maximum allowed value instead
of searching over all intermediate values, utilizing the result
of Pontryagin’s principle. The computations then resemble
Monte Carlo simulations of an Ising-type system. For a sin-
gle time step, we are only required to generate three Uk,
operators Uy, Ujg, and Uy, where the subscript indicates the
constant values of J and K over a time t/N. For example,
Ui corresponds to an interval where J takes its maximum
value and K is turned off. We note that Uy, = I and should not
appear in any optimal protocols since its only effect is wasting
time without changing the state. Then, each step in the evolu-
tion is reduced to O(d?) matrix-vector multiplication. We also
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take advantage of adaptive step sizes for a given t, allowing
us to start with a coarse protocol, i.e., small N, and iteratively
double the number of intervals for a fixed r. For small N,
optimization is computationally inexpensive but typically far
from the true optimal protocol. For large N, convergence re-
quires many sweeps if starting from a random initial protocol.
This adaptive method, where the initial protocol for larger step
sizes is generated by the optimized protocol for the previous
step size, significantly reduces the total number of sweeps
required for convergence.

B. Part 2: Continuous-bang Monte Carlo

In this approach, a certain number of jumps are assumed,
and the corresponding times for these jumps are treated as the
variational parameters of the protocol. This number is typi-
cally very small (less than 5) so we are left with a simulation
with very few variational parameters. Of course, the results of
the DBMC provide a good estimate for the number of jumps
and their approximate time. With a continuous parameter,
namely, the time of each pulse, treated as a variational param-
eter, we cannot precompile the operators and must generate
the unitary operators at each step in the evolution. However,
the CBMC shortcuts this generation by prediagonalizing H;g
for the three possible combinations of J and K, saving the
eigenvectors and eigenvalues Vjx and D,g, and expressing
the unitary operator as U (At) = Vjge "2™Px V| for time step
At. Then, the only time-dependent component which must be
generated at each step in the evolution is e~*4'P7« | which takes
O(d) operations. We then evolve the state according to | (f +
At)) = V][(e_iAtDJKVJTKh/f(I)), where we avoid matrix-matrix
multiplication by doing three matrix-vector multiplications.
This approach reduces the evolution down to O(d?) opera-
tions. This approach allows for true optimal convergence due
to avoiding the interval restriction. It is also quite efficient,
particularly when combined with the first discrete step that
effectively determines the number and approximate jumps’
location.

This technique outperforms the BFMC in optimal-protocol
accuracy and computational efficiency. The performance
gains are substantial. For small systems accessible to BFMC,
the running times are improved by around three to four orders
of magnitude, reducing the total computation time for all
initial and target states from weeks to minutes. For larger
systems, the computations become infeasible with the BFMC
algorithm. Thus our BBMC method gives access to system
sizes with Hilbert spaces of dimension up to around 5000
with our computing power. We compare the protocols found
from this simulation with the BFMC in Fig. 5; they are nearly
identical. We discuss several more algorithm optimizations in
the Appendix.

As our ultimate goal is to search for patterns in the opti-
mal protocols across system sizes, different protocols must
achieve the same measurement of distance 9. Scaling t
makes it unlikely that two different initial-target combinations
will have the same D. So, after achieving D < 0.02, we
implement a binary search in t which hones in on the total
time required to achieve the optimal protocol D = 0.02.

BFMC BBMC
1
—J —J
— K — K
0
0 0.2 0.4 0 0.2 0.4
t t

FIG. 5. Examples of the final optimal protocols for the two MC
methods. Assuming bang-bang protocols achieves the same shape
but performs slightly better in D[y (T)].

VI. PROPERTIES OF THE CRITICAL TOTAL TIME

We first present our numerical results for the critical total
time Teica fOr reaching the target. The data are presented in
a color plot with the horizontal (vertical) axis representing the
initial (target) state in terms of the parameters In(r;) and In(7;).
We explore a wide range of parameters with either J or K
dominating.

For a fixed initial and target state, a perfect optimal evo-
lution with © = 0 has an evolution determined by |v,,) =
U|y,,), which means the optimal evolution from |, ) into
|,,) can be done with the same protocol running backwards
in time. Therefore the total evolution time and other quantities
calculated in this paper (including the number of pulses and
characteristic pulse time) are symmetric about the diagonal in
the (r;, r;) space. Although we use D = 0.02, and despite pos-
sible numerical artifacts and inaccuracies, we indeed observe
this symmetry, confirming that we are finding very similar
optimal protocols to those that prepare the target state exactly.

Patterns emerge in T iica across all system sizes, as shown
in Fig. 6. As (r;, r;) gets further away from the diagonal, T yigical
increases, as expected. This increase correlates with a de-
crease in |(Viarget | Vinitial) |2, and this overlap is shown in Fig. 7.
Intuitively, increasing the distance between the initial and
target states should increase the total time. Figure 8 directly
shows the relationship between 7.iticar and |(1ﬂtarget|wimﬁa])|2
for two different system sizes. For a fixed r;, there is a clear
correlation between the two.

An important finding of these numerical studies concerning
the promise of applying them to actual hybrid classical-
quantum devices for VQA involves the dependence of the
critical time on the Hilbert space dimension. Although sys-
tems with a larger Hilbert space lead to an increase in classical
computing time, we sometimes find a shorter 7.isca in a larger
Hilbert space. As shown in Fig. 9, for In(r;) < 0, In(r;) < 0
we see that 13 > 14, where 7¢ is for M = 9 with C occupants.
73 = 1.11 £0.92 and 74 = 0.99 & 0.78. The correlation of
the wave-function overlap with the total time plays an im-
portant role here. Although, when 73 > 74, the C = 4 system
does not always have a larger overlap between the initial and
the target states than the C = 3 system, in most of the darker
red region where 13 >> 74, there is indeed a larger overlap
between the initial and target states for the C = 4 system.
This result implies that the complexity of the VQA does not
necessarily increase as the fully classical counterpart becomes
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3-3

| In(r;)

FIG. 6. T.iica for all nine system sizes explored. As the dimension d = (Acl) increases, we decrease the resolution due to computational
complexity. White space indicates no data due to the initial and target states being nearly identical.

exponentially more expensive, suggesting a path to quantum
supremacy for the determination of many-body ground states
using optimal control.

VII. TOPOLOGICAL PHASE DIAGRAM OF THE
OPTIMAL PROTOCOLS

Bang-bang protocols are characterized by one integer,
namely, the number of pulses in the protocol. This topological
property is associated with every protocol in the (7;, ;) space.
Thus the above space breaks into equivalence classes, each
with a fixed number of on pulses. These regions of the (r;, ;)
space are reminiscent of different topological phases. We thus
refer to them as a topological phase diagram. The analogy
might appear superficial at this stage. However, the emergence
of critical exponents at the transitions between these regions
and geometric correlations between protocols within one re-
gion suggest a possibly deeper relationship.

Close to the diagonal, we seem to have only one on pulse in
both J and K (Fig. 10). As we move away from the diagonal to
regions with a smaller overlap and a longer critical total time,
we see an increase in the number of pulses. The number of
pulses is correlated with the critical time.

The number of pulses changes by 1, going from P to
P + 1, as we cross a phase boundary. Thus the diagram has
a layered structure, where phases with P + 1 pulses appear
as islands enclosed by phases with P pulses. This feature
can be explained by noticing that the transition mechanism
is through a bifurcation. As an example, consider an interval
where a control is turned off. At the transition, an infinites-
imally narrow square on pulse occurs at some point in this
interval. The width of the pulse emerging at the transition
grows continuously from zero. Interestingly, there are many
similarities in the structure of the phase boundaries in the
number of pulses and the overlap |{Varget | Winitial) 2.

Another pattern emerges in the characteristic time for on
pulses, /. /(Py7) and tX /(Px ). The upper right quadrant with
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| <¢target |¢initial> |2

-0
111(7”@)

FIG. 7. A decrease in |(1//mgel|1//inmal)|2 increases Teiical, Which in turn increases the number of pulses in the optimal protocol shown in
Fig. 10. As the dimension d = (IZ) increases, we decrease the resolution due to computational complexity. White space indicates no data due

to the initial and target states being nearly identical.

In(r;), In(r;) > O has a single constant on pulse in J across
all system sizes explored, with a similar pattern in K where
In(7;), In(r;) < O shown in Fig. 11. From these times, where
t! /(Pyt) = 1, we transition into ¢, /(P;jt) = 0.5, which sig-
nals a bifurcation opening up, with smooth transitions to
t({n /(Pyt) < 0.5. The data also suggest that r;7; > 1 results in
J-dominant protocols, with r;7; < 1 resulting in K-dominant
protocols. We note that the number of pulses (Fig. 10) and the
typical timescale of the each pulse (Fig. 11) reflect different
and complementary aspects of the protocols. For example, the
red region in the P; plot for M = 9 and C = 3 in Fig. 10 indi-
cates many pulses in J. However, the complementary panels in
Fig. 11 indicate that these are short J pulses and the dynamics
are actually dominated by fewer but longer K pulses.

The continuous nature of the bifurcations raises the ques-
tion of any connection to critical phenomena. Interestingly,
the duration of the pulses that appear at the bifurcation tran-
sition grows as a power law for all transitions in the phase

diagram, as shown, e.g., in Fig. 12. A representative three-
dimensional plot of the optimal protocols in K for M =9,
C =2 is shown in Fig. 12. Different surfaces indicate the
times of jumps in the bang-bang protocols. We see continuous
changes in the optimal protocol as a function of 7;, r;.

Searching for universality, we investigated these power
laws for many different bifurcations. While generally there is
a good critical fit for all bifurcations, we have not been able to
find a universal exponent governing the transitions throughout
the phase diagram. The exponents may be analogous to other
continuously changing critical exponents, e.g., in a Luttinger
liquid.

VIII. CHARACTERIZING GEOMETRIC CORRELATIONS

BETWEEN BANG-BANG PROTOCOLS

To further scrutinize the analogy between the region of the
(r;, ;) space with phases, we note that in a ground-state phase
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FIG. 9. The log of the ratios of t for M = 9 between C = 3 and
C = 4 occupants across all combinations of r;, r,. For r; < 1,r, <
1, most optimal protocols for three occupants had total times which
were greater than those for four occupants. 73 = 1.11 £0.92, 7, =
0.99 £0.78.

diagram, states within a phase have unifying properties. In
addition to the topological pulse number above, each protocol
has a geometric structure associated with the precise times the
control is turned on and off. Is the geometry correlated within
each phase?

To capture the geometric similarity, we need to quantify it
in terms of a correlation function. We define

1
Cla(t), b(t)] = / %{[Za(t) — 11[2b(¢) — 1] + 1}dt
0

for normalized protocols a(t), b(t). This function measures
the fractional overlap of bang-bang protocols where the val-
ues of a(t), b(t) are restricted to 1 or O at any given time 7.
Cla(t), b(t)] = 1 implies identical normalized protocols, and
Cla(t), b(t)] = 0 implies perfectly anticorrelated protocols.
We note that perfect anticorrelation is only possible for two
protocols with the same number of jumps occurring at the
same normalized time.

Accounting for the fact that the expected output of C varies
based on the number of jumps in a(¢) and b(¢), we introduce
the modified correlation function

Cula(t), b(t)] = Cla(t), b(t)] — C[S]

to effectively subtract the background. The above correlation
function calculates the difference between the protocol over-
lap and the average protocol overlap given the total number of
jumps, S, in both protocols. To calculate C[S], we randomly
draw S total jumps from the interval [0,1], sort the times of
jumps in the protocols, and let s; correspond to these sorted
times. Then the two protocols have the same value on the
intervals [$2,, $2,+1]. For even §, setting sg4; = 1, and con-
sidering S'! possible orderings for these sorted times, C[Seyen]
can be calculated as

S+1

SS+1 52 .
C[Seven] :S'/ / Z—l”rlsi dsy---dsg
0 0 o

= i S+2

— 1yl —
_S!Z( D S+D! 25+1)

i=1

In the case of odd S,

- 1< ‘ 1

Bl = - ;(—1)’“1' =3
where the sum only goes up to S rather than S + 1 because
[ss, 1] is now an anticorrelated region. As a check, we nu-
merically generated 10° random protocols for all $ < 10 and
calculated the average C, which was in agreement with the
expression above.

The behavior of the correlation function is shown in
Fig. 13. We compare all protocols to two different protocols
for each system size, which are outlined in black. We find
that protocols within one phase exhibit correlations, while
anticorrelations emerge across the phase boundaries.

IX. CONCLUSIONS

In this paper, we studied patterns in the optimal protocols
scanning over a wide range of initial and target ground states
of the two-dimensional XX Z model for various system sizes.
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FIG. 10. The number of pulses for all nine system sizes explored. As the dimension d = (Ig) increases, we decrease the resolution due to
computational complexity. White space indicates no data due to the initial and target states being nearly identical.

FIG. 11. The characteristic “on” times for all nine system sizes explored. As the dimension d = (Acl) increases, we decrease the resolution
due to computational complexity. White space indicates no data due to the initial and target states being nearly identical.
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FIG. 12. Top: The optimal protocols in K for M =9, C =2,
restricting the image to r; < r,. Colors indicate the orders of jumps,
with blue first, green, red, and cyan last. The optimal protocol seems
to be a continuous function of 7;, r,. A bifurcation opens (red and
green surfaces) where In(r,) = 1. Bottom: A cross section of the
above plot where In(r;) = —1.4, along with a power-law fit #,, =
(r; — r9)* + ¢ with three fitting parameters, «, ry, and c.

Identifying patterns and properties of the optimal protocols
and characterizing the needed timescales are crucial for ef-
ficiently implementing VQA on near-term hybrid quantum
devices.

To achieve the above goal in the first stage, where the
quantum evolution is simulated on classical computers, we
pushed the state of the art substantially by several algorithmic
inventions and optimizations. These improvements enabled us
to tackle an exceedingly challenging problem of finding glob-
ally optimal protocols for nonequilibrium state transformation
in a truly many-body setup with large Hilbert spaces for a
two-dimensional interacting system.

The complexity of VQA ultimately relies on the critical
time needed for transforming a quantum state to the target
with an optimal protocol. The longer this time, the more
challenging it gets to find the optimal protocol even with a
quantum device that can generate the time evolution (instead
of calculating it as in this paper). We found that for the XX Z
model on the square lattice, the total time does not necessar-
ily increase with the Hilbert space dimension. Although this

counterintuitive finding is specific to the case studied here, it
is highly encouraging for future applications of VQA.

We also find that the wave-function overlap seems to be
the key determinant of the critical time. The overlap is a mea-
sure of distance in the Hilbert space, imposing a fundamental
speed limit even if we could generate a direct rotation in the
Hilbert space. Such direct rotation typically requires nonlo-
cal generators. The fact that the optimal time for dynamics
generated by a physically relevant local device Hamiltonian
also correlated with the overlap is a promising indicator of the
potential of VQA. Similarly, we found this result for the spe-
cific XXZ model. Thus it remains an open question whether
the correlation between wave-function overlap and the critical
preparation time is a generic property of many-body inter-
acting systems, which calls for future investigations on other
models. Fermionic and magnetically frustrated systems are of
particular interest in this regard. Nevertheless, the X X Z model
is nonintegrable and does not map to any noninteracting mod-
els. It therefore appears that our model-specific findings might
apply to a broad class of interacting systems.

We introduced the notion of a phase diagram for the op-
timal protocols in the space of initial and target states. Since
each optimal bang-bang protocol is characterized by an in-
teger number of pulses, the space breaks into regions of the
same pulse number. These topological phases are separated by
continuous bifurcation transitions and exhibit a layered struc-
ture. The number of pulses goes up upon increasing critical
preparation time.

We also introduced a correlation function to capture the
geometric similarities of bang-bang protocols and found that
the protocols within a phase are geometrically correlated for
the XXZ model. These findings can inform efficient VQA
implementation along two directions. First, finding optimal
protocols for a particular initial and target state can yield
excellent initial guesses for other initial and target states for
the same system size. It seems natural that small changes to
the initial and target states should correspond to small changes
in the optimal protocols connecting them regardless of the
model.

More importantly, the changes across system sizes also
exhibit a progression that can provide good initial guesses for
the optimal protocols for a slightly larger system or slightly
lower or higher filling fraction. Our results for the X X Z model
suggest that the challenges of applying VQA to large systems
may be mitigated by exploring all smaller systems for a range
of initial and target states. The topological and geometric
patterns in the optimal protocols may be utilized to con-
struct smart initial Ansdtze for the larger systems. This finding
calls for further investigations on larger systems beyond the
capabilities of classical computers by using hybrid quantum-
classical machines while utilizing many of the improvements
to the classical optimization algorithm presented in this pa-
per. Such investigations may be transformative for quantum
technology. For example, suppose the slow transformation of
the optimal protocols with system size persists to the ther-
modynamic limit. In that case, a system-size adaptive VQA,
where the optimal protocols for each system size construct the
initial Ansatz for the subsequent system size, would yield a
true quantum advantage in simulating many-body interacting
systems.
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In(r)
FIG. 13. The protocol correlations for all nine system sizes. Black squares indicate the reference protocol with which the protocols labeled

by (r;, r;) are compared. As the dimension d = (Acl) increases, we decrease the resolution due to computational complexity. White space
indicates no data due to the initial and target states being nearly identical.
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APPENDIX: ALGORITHM IMPLEMENTATION AND
OPTIMIZATION DETAILS

For a fixed T and lower and upper limits on the number
of intervals Npin = 2/, Npax = 2/*/, implementation of the
BBMC algorithm is as follows:

(1) Diagonalize the Hamiltonian for the three meaningful
combinations of J and K, and store them in V;g, Djk.

(2) For each possible total interval number N, such that
Nmin < N, = 2% < Npyx for some a, generate and save the
unitary matrices for each combination of time step At = /N,
and Hjg. This results in 3j total unitary matrices where
Jj= logz(%). Restricting the total number of intervals to a
power of some fixed integer b allows the optimal protocols for
N, = b” to be used as an initial protocol for N = p*+!,

(3) Start with N, = Npin, and some random initial protocol.
Use the standard annealing process outlined by the BFMC,
where a random interval selection now switches the protocol’s
value at that time.

(4) Double the number of steps and repeat step (3). Use
the optimal protocol for the previous step size as an initial
protocol in the next step size. Do this until N, = Npax.

(5) Convert the optimal protocol for N, = Np,x into one
that specifies the time that jumps occur. With this conversion,
run a second simulation that performs a similar annealing
process, except that it now randomly selects the time that
the jumps occur and makes some change in that time that is
proportional to 7.

(6) Repeat steps (2)—(5), scaling time, until D[ (7)] < €.

Too few steps make the evolution coarse and restrict the
time that these jumps can occur. Too many steps make the
DBMC computationally expensive and make it difficult to find
the optimal protocol with so many indices to choose from. We
find that Npin = 4, Nmax = 64 is enough to get us close to the
optimal protocol without getting stuck in local minima. Each
time the number of steps is increased, the initial protocol for

the next DBMC run is the optimal protocol for the previous
step size, which reduces the total number of sweeps required.

This adaptive step size also allows for another efficiency
boost. For n > 2N, if a given protocol is unchanged for
many steps, use the larger time-step exponentiated matrix. We
find that most optimal protocols are fixed for many time steps.
When n = Np,x we end up doing significantly fewer than
Nmax matrix-vector multiplications during evolution. Several
optimization techniques are used to increase the speed of the
computation as discussed below.

Scaling total time. We choose a fixed initial time. After the
first iteration of the BBMC process, it linearly extrapolates the
total time we need to get D[ (t)] ~ 0.2. After this, it scales
total time after each iteration, with the scalar being roughly
proportional to the distance to our target.

Adaptive step size. Early on in the CBMC processes, espe-
cially when near our random initial protocol, it is necessary
to make significant changes in the protocol. When near the
optimal protocol, small changes are required, as it is unlikely
that large changes will lead to improvement. To achieve this,
we set a temperature-dependent upper bound B(T) for the
allowed change, which starts off as a significant fraction of
total time, usually B(7y) = 0.87, and decays at the same rate
as the pseudotemperature to less than 2% of the total time.
For a fixed upper bound B, we randomly draw a change from
[0, B(T)].

Varying total sweeps. For total times much shorter than
Teitical, convergence is relatively easy and requires few
sweeps. As we approach the critical time, with D[y (7)]
approaching 0, convergence becomes more difficult. Fur-
thermore, iterations with fewer variational parameters need
significantly fewer sweeps. To account for these issues, we
allow the total number of sweeps to be proportional to the
total number of intervals or jumps.

Saving each state during evolution. During all MC simu-
lations, changing a given interval does not change the state
leading up to that interval. Therefore we can save the state at
every step in the evolution and only “continue” the evolution
from the change onward. Since the interval that receives the
change is uniformly distributed across all possible steps, this
cuts the computation time by a factor of 2.

Penalizing fictitious jumps. To save steps during the BFMC
and DBMC, we bias our index selection towards points near a
jump. It is unlikely that a single interval getting changed in the
middle of a plateau is going to get us closer to the target state:
Progress is more likely to be made by slightly shifting the time
a jump occurs. To implement this bias, we add a “reroll” if an
index is selected, which has identical neighbors. To further
prevent wasted iterations, we do not allow changes that result
in both J and K being turned off.
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