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From automated customer support to virtual assistants, conversational agents have transformed everyday
interactions, yet despite phenomenal progress, no agent exists for programming tasks. To understand the
design space of such an agent, we prototyped PairBuddy—an interactive pair programming partner—based
on research from conversational agents, software engineering, education, human-robot interactions, psychol-
ogy, and artificial intelligence. We iterated PairBuddy’s design using a series of Wizard-of-Oz studies. Our
pilot study of six programmers showed promising results and provided insights toward PairBuddy’s inter-
face design. Our second study of 14 programmers was positively praised across all skill levels. PairBuddy’s
active application of soft skills—adaptability, motivation, and social presence—as a navigator increased partici-
pants’ confidence and trust, while its technical skills—code contributions, just-in-time feedback, and creativity
support—as a driver helped participants realize their own solutions. PairBuddy takes the first step towards
an Alexa-like programming partner.
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1 INTRODUCTION

Conversational agents allow humans to use natural language to directly interface with computer
agents such as virtual assistants (e.g., Apple’s Siri [244], Google Assistant [245], and Amazon’s
Alexa [243]), customer support agents, or individual/social chatbots (e.g., Mitsuku [222], Clever-
bot [221], and Xiaolce [224]). Conversational agents mimic human conversations, establish more
personal connections, and can even increase accessibility for people with physical disabilities or
language barriers. For businesses, conversational agents personalize customer experience while
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bringing down operational costs. Today, a full two-thirds of the most popular websites use con-
versational agents to interact with users and address their needs [220]. Despite the phenomenal
penetration of conversational agents into domains ranging from business to personal use and en-
tertainment, no conversational agents exist for computer programming tasks.

Extensive research aims to increase programming efficiency for both novice and professional
programmers via automated tools, including debugging support [7, 8], intelligent interactive de-
velopment environments (IDEs), and test case generation [74, 196]. In a parallel research field,
Intelligent Tutoring Systems (ITS) aim to simulate a human teacher by establishing a tutor-
tutee relationship between novice programmers (tutee) and computer agents (tutor) [56, 75, 239].
Within the domain of ITS systems, peer-learning agents directly collaborate with learners, often by
frequently switching roles between tutor and tutee [47, 99, 195, 216, 237, 264]. Inspired from these
two research domains, we aim to increase programmers’ efficiency and facilitate learning; however,
we further leverage the anthropomorphic interactions of conversational agents to directly collab-
orate on programming tasks, facilitate learning-by-doing, engage and motivate programmers, and
increase self-efficacy.

In this article, we take the first step toward the creation of “PairBuddy”—an anthropomorphic
conversational agent and interactive programming partner. PairBuddy serves to simulate a human
during “pair programming,” a quintessential and well-established collaboration technique used in
education and the industry.

In pair programming, two programmers work collaboratively on the same design, algorithm,
code, or test [185, 259, 260]. Programmers switch between the roles of driver (writing code)
and navigator (making suggestions). Pair programming provides a variety of benefits, includ-
ing increased code quality, productivity, creativity, knowledge management, and self-efficacy
[27, 44, 52, 61, 66, 121, 159, 160, 185, 201, 206, 255, 259-261, 277]. It even has the potential to
reduce gender prejudice by encouraging women to pursue computer science [255]. Pair program-
ming increases programmers’ contemporary skills, understanding of fundamental concepts, and
intellectual pursuits [44, 159, 201, 206, 255]. However, pair programming has certain limitations in-
cluding scheduling difficulties, collocating pairs, student resistance to pairing, and the dependency
on a partner’s programming abilities [84, 101, 181, 258].

1.1 Motivational Scenario

To motivate the design of PairBuddy and inform its abilities, we provide the following scenario:

Tiana is a junior CS student who enjoys pair programming, but due to COVID-19, she has to
return home. Given the physical and time-zone differences, scheduling pair programming sessions
is difficult. Additionally, all of her potential partners either like to work solo, have incompatible
cognitive styles, criticize without providing solutions (e.g., “We definitely cannot finish this”), are
overly competitive, take credit for Tiana’s work, or have other problematic habits. As a result, their
sessions with Tiana are stressful and unproductive, resulting in the loss of pair programming’s
benefits. Fortunately, Tiana can use PairBuddy (Figure 1).

Tiana can collaborate with PairBuddy, switching between the roles of driver and navigator to
create test cases, write code, and refactor code. Additionally, PairBuddy: (1) is unbiased toward
Tiana’s gender, ethnicity, and socio-economic status; (2) motivates and encourages her hard work;
(3) gives non-judgemental feedback, allowing Tiana to disagree with or ignore PairBuddy without
the risk of hurt feelings; (4) provides a sense of security through its active listening and engage-
ment through both voice and text; (5) encourages and instills healthy problem-solving and creative
styles; and (6) avoids dominating power dynamics by balancing pair programming roles. For these
reasons and more, Tiana prefers PairBuddy as her programming partner to complete difficult as-
signments comfortably and effectively.
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1 think | have an idea if you'd
like. °

This is why | hate coding!

‘ Don't give up, you are almost
there! ‘

Sure, go ahead.

Let me see. | think | can add
something on line 76. ‘

Where is the tietestcode?
Does my code make any

sense to you? ‘
Oh ok, | think | see what
‘ you're doing.

It's on line 37 of
TicTacToeGameTest java

(a) PairBuddy as a Navigator. (b) PairBuddy as a Driver.
Fig. 1. Tiana interacting with PairBuddy.

1.2 Feasibility of PairBuddy

We have already established the feasibility of PairBuddy in our previous research, “Trade-offs for
Substituting a Human with an Agent in a Pair Programming Context: The Good, the Bad, and
the Ugly” [208]. Using the final iteration of PairBuddy (discussed in Section 5.1), we investigated
the trade-offs of substituting an agent in a pair programming context, specifically analyzing what
aspects of pair programming were gained, lost, and transformed. We compared and contrasted
transcripts, code quality, productivity, and survey results of participants’ self-efficacy and pair
programming experience between nine human-human pairs and fourteen human-PairBuddy pairs
(using a Wizard of Oz simulation). The results were triangulated with interviews. Upon compar-
ing human-human and human-PairBuddy, we found: (1) no significant differences in code quality,
productivity, and self-efficacy before and after the programming task (Table 1); (2) PairBuddy was
unable to explain the logic behind its code or participate in idea discussion, while human partners
could easily communicate together conceptually; (3) PairBuddy’s instructions were often trusted
without question—in contrast with human partners—in one case, a participant responded, ‘T'm
going to blindly believe you;” (4) human partners interrupted PairBuddy when they were stuck,
were unsure about their problems or wanted clarification, while human-human pairs were more
hesitant and asked follow-up questions to understand, clarify, or verify their partners’ decisions;
(5) human partners showed the same humility towards PairBuddy as they would with other hu-
mans by attributing success to the group through words like “we” and taking personal responsibil-
ity for mistakes using “I” or “me;” and (6) humans freely accepted or dismissed PairBuddy’s ideas
(as in [135]), yet were more hesitant to dismiss ideas from another human.

To supplement our previous research [208], the present article describes our iterative, user-
centered design methodology used to build PairBuddy. We established PairBuddy’s anthropomor-
phic design space through the integration of novel concepts from an extensive literature review of
various domains such as human-computer interaction, software engineering, artificial intelligence,
psychology, and education. PairBuddy’s focused design evolved through a series of empirical Wiz-
ard of Oz studies to realize a robust pair programming conversational agent. Our methodological
approach and design space can be utilized by researchers and practitioners to advance program-
mers’ interactions in other domains such as ITS and interactive educational platforms.

1.3 PairBuddys’ Design Challenges
Since no pair programming conversational agents exist, the challenges of creating one include:

(1) An Unknown Design — Interface and Interactions: PairBuddy’s interface and interac-
tion design must be explored due to the unique properties of pair programming dialogue
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Table 1. Performance Metrics from [208] for Human-Human and Human-PairBuddy Studies

Human-Human Studies || P-Value || Human-PairBuddy Studies

Samples Average (a <0.5) |['Samples Average
Code Quality 9 89.33 0.9144 14 98.36
Productivity 9 50.44 0.2191 14 66.00
Self-Efficacy 18 3.83 0.1093 14 3.36

[200]. To support programmer-computer interaction, PairBuddy must imitate an effective
programmer by integrating a multitude of technical and soft skills, including diverse
problem-solving and creative strategies. Therefore, PairBuddy’s design must be informed
from multi-disciplinary research.

(2) A Specific Domain — Software Development: PairBuddy needs to be created for
the specific domain of software development, which remains relatively unexplored by
conversational agent research. Developing software is unique, as it demands the synthesis
of requirements; the generation and development of solutions; and the implementation,
testing, and refactoring of code. Therefore, pre-existing conversational agents cannot be
directly modified for programming, and instead, a new paradigm must emerge to support
programmer collaboration with an agent. This shift in approach must be informed from
software engineering and education. Specifically, we consider literature on ITS to integrate
the programming and educational aspects of pair programming.

(3) A Specific Userbase — Programmers: Programmers are a unique population that have
yet to be studied in the realm of conversational agents. From students to professionals, pro-
grammers’ experiences are diverse; some may use agents to learn programming concepts,
while others may develop those same agents. To design PairBuddy for both populations, we
must conduct user studies to fully understand the breadth of expectations, preferences, and
needs of programmers.

These challenges necessitate a review of existing research on human-computer interactions,
human-robotic interactions, software engineering, conversational agents, artificial intelligence,
ITS, education, psychology, cognitive science, and management science to inform the design of
PairBuddy.

1.4 Outline

The remainder of this article is organized as follows: Section 2 compares our research to related
work on automated support in programming environments, I'TS, and mixed-initiative interfaces;
gaps in existing research motivate the necessity of designing a pair programming conversational
agent. Section 3 provides background on the Wizard of Oz method. Section 4 details the first itera-
tion of PairBuddy’s design space, evaluates the design in a pilot study, and reports lessons learned.
Section 5 describes the second iteration of PairBuddy’s design, informed from the pilot study, and
evaluated in a larger main study. Section 6 discusses the design space and associated challenges
for future work. Section 7 summarizes the contributions of our work.

2 RELATED RESEARCH

While no research specifically addresses programming conversational agents, a variety of research
exists for automated programming support; notably, automated debugging tools embedded in IDEs
aid software development tasks and ITS facilitate learning with novice programmers. Furthermore,
we contextualize PairBuddy within research on mixed-initiative interfaces.
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2.1 Automated Support in Programming Environments

Automated debugging support is the most commonly integrated form of programming help within
existing IDEs. Additionally, research has explored the integration of intelligent agents directly
within IDEs to provide advanced feedback.

2.1.1 Automated Debugging. Programmers often leverage tools present in many existing IDEs
to detect simple syntax errors in real-time, automate repetitive tasks, and debug code [7, 8]. These
tools are popular across almost any programming language as they help minimize simple mistakes
and let programmers focus on the bigger picture. Past research has even identified techniques that
automatically test a range of function parameters to give automated feedback on code correctness
[257].

2.1.2 Intelligent IDE Assistants. Intelligent IDE assistants provide feedback to programmers via
interfaces embedded within IDEs. For example, PETCHA helps teachers author assignments with
test cases and feedback to provide students helpful hints when their code fails [192]. For paral-
lel programming, PAPA utilizes IBM Watson services to provide a dialogue-based chat window
integrated within an existing IDE [165]. Specifically, PAPA helps answer common parallel pro-
gramming questions identified in research and will suggest relevant research papers for other
queries.

Rather than replace existing automated tools, we can utilize their functionality to support Pair-
Buddy’s interactions with programmers. We aim to advance programming help by leveraging
a new form of interaction—conversational agents—which in turn, can help elevate the under-
utilization of refactoring tools [171]. PairBuddy’s main focus is not the generation of code or feed-
back itself, but rather, its unique ability to interface this information in a way that promotes the
productivity, code quality, and self-efficacy of programmers; particularly by leveraging humans’
unique creative abilities.

2.2 Intelligent Tutoring Systems

ITS provide immediate and personalized feedback to individual learners in the absence of a human
teacher [56, 75, 110, 123, 186, 239]. These computer-assisted learning systems model the cognitive
and emotional state of learners to adapt and individualize instruction [42]. ITSs are known to in-
crease student performance well beyond conventional classes [131, 153, 174, 240], and in some
cases, outperform human tutoring [230, 231, 239]. They have been developed to teach program-
ming (e.g., C++, Java, Lisp, Prolog), database systems, data structures, SQL queries, and other in-
troductory computer science topics. ITSs teach via dynamic lesson plans—simple questions includ-
ing multiple choice, true/false or short answer—or worked solutions from instructional resources
[56, 140].

2.2.1 ITS Systems with Dialogue-Based Interactions. Al-powered tutoring approaches that sup-
port dialogue-based interactions function similarly to PairBuddy [141, 274], including examples
such as ProPL and HabiPro. ProPL [138] is an agent that interacts with students via natural lan-
guage to develop pseudocode solutions for a given problem. ProPL follows a hierarchical dialogue
tree to guide participants toward the solution by asking thought-provoking questions and resolv-
ing students’ misconceptions. The agent’s dialogue is curated by a human expert (i.e., questions
and expected answers) and tailored to a specific programming task. HabiPro [248] simulates a
student co-learner in a collaborative learning environment and guides group members to answer
programming questions (e.g., identify code mistakes). HabiPro models student behavior and guides
sessions via natural language to encourage passive students, avoid off-topic conversation, give
ideas, provide examples, and generally promote effective learning.
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2.2.2  Peer Learning Agents. Rather than replace human tutors, peer-learning agents act as
equals in collaborative tasks, often by frequently switching between roles of tutor and tutee
[47, 99, 195, 216, 237, 264]. Han et al. [99] correlates the tutor-tutee relationship to that of the
driver and navigator roles in pair programming; however, in their work, roles were limited to
generating flowcharts as the navigator and implementing them as the driver.

Our research is motivated by ITSs regarding promoting student learning, but we are very
different as (1) we use a peer-learning approach rather than strictly defined tutor/tutee roles,
(2) PairBuddy interacts with programmers as an anthropomorphic conversational agent, (3) inter-
actions are more comparable to human-human pair programming (e.g., focus on building rapport),
(4) we aim to increase the code quality, productivity, and self-efficacy of programmers by utilizing
pair programming, and (5) our design targets both novice (student) and professional programmers.

2.3 Mixed Initiative Interfaces

Mixed-initiative interfaces are broadly defined as an interface where a computer agent shares task
load with a user [63, 179]. Mixed-initiative interfaces help foster creativity when producing arti-
facts [268] and have been used in video game level design [219], robotics [13, 102], visual analytics
[154], and GUI-based task learning [145]. As a mixed-initiative interface, PairBuddy aims to supple-
ment, not replace programmers’ creativity by sharing task load and negotiating pair programming
roles.

3 WIZARD OF OZ METHOD

Due to the limited available research on pair programming conversational agents, we used an
iterative approach to understand and design PairBuddy through a series of two Wizard of Oz
studies with programmers.

In a Wizard of Oz study, participants interact with an agent whose actions are secretly controlled
by a human “wizard” Wizard of Oz is a rapid-prototyping method that examines interfaces that
are technically demanding or are yet to be created [93]. It helps develop user-friendly interfaces
that promote natural language dialogue, consider the unique qualities of human-agent interaction
as distinct from normal human discourse [59], and study user interactions with conversational
agents [29, 32, 252]. Wizard of Oz efficiently creates the functionality of a product before it is re-
fined via testing [137, 262]. In the words of human-computer interaction expert Jef Raskin, “Once
the product’s task is known, design the interface first; then implement to the interface design.” Ac-
cordingly, we used the Wizard of Oz paradigm to simulate PairBuddy’s interface and interactions
as we explored the design space of pair programming conversational agents. For the remainder of
this article, we often use the term “PairBuddy” to refer to “the wizard’s simulation of PairBuddy.”

Choosing Wizard of Oz studies helps us to investigate the design space of PairBuddy before
starting the implementation, as creating a fully functional conversational agent requires: (1) un-
derstanding the domain of pair programming conversational agents, (2) collecting pair program-
ming data used to train an agent’s underlying machine learning models, and (3) designing and
implementing a custom conversational agent architecture including the application of multiple
machine-learning algorithms [85]. Additionally, platforms for developing conversational agents
such as IBM Watson Assistant [246], SAP Conversational AI [223], and Oracle Digital Assistant
[247] cannot be used due to their focus on simple/basic enterprise problems such as answering
questions and solving tasks based on web or enterprise data.

Our user-centered approach involved the exploration and evaluation of PairBuddy’s design us-
ing two iterations of Wizard of Oz studies with programmers. For the first iteration, we conducted
an exploratory pilot study with six university students focused on the initial design of PairBuddy’s
interface and interactions. For the second iteration, a larger study of fourteen university students
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Table 2. Design Decisions Evaluated in the Pilot Study

ID  Design Decision Description Example Sources
Interface

F1 Avatar Embodied by a dynamic 3D avatar [25, 28, 43, 151, 229, 270]
F2 Gender Gender can be toggled [33, 50, 236]

F3 Voice Communicate via voice synthesis [28, 41, 242]

F4 Text Chat Communicate via shared text chat

Interaction

11 Indirect Driving Send code via text chat [10, 19, 263]

12 Adapted Skill Balance contributions via frequency [19, 56, 75, 239, 248]
Soft Skills

S1 Greeting Introduce itself [120]

S2 Motivation Encourage, recognize, comfort, commend [18, 45, 64, 78]
Technical Skills

T1 Write/Feedback Tests Generate test cases & feedback [17, 74, 161, 163, 168, 196]
T2 Write Code Examples from online repositories [124, 125,177, 193]
T3 Guidance Provide direction via user stories

and professional programmers evaluated a variety of design decisions informed from the pilot
study and existing research.

4 PILOT STUDY (ITERATION 1)

The pilot study provided valuable feedback from programmers for the initial design of PairBuddy.
The insights gathered from the pilot study served as a first step toward the exploration of the design
space of pair programming conversational agents as well as a starting point for future iterations.

4.1 PairBuddy Design (Iteration 1)

PairBuddy’s initial iteration primarily served to study its interface and interaction design, so we
focused our research review on relevant literature including human-robotic interactions, embod-
iment, software engineering, management science, ITS, education, cognitive science, psychology,
and gender-bias in agent design. Table 2 lists the design decisions made for PairBuddy in the pilot
study, and are as follows:

Design: Creating the Interface and Interactions
PairBuddy design included anthropomorphic characteristics in its interface and interactions.

(A) Interface - Embodiment via Avatar, Gender, Voice, and Text: PairBuddy communicated
with participants by means of avatar, voice, and text to enhance human-computer interaction.
The avatar was incorporated since avatars make interfaces more human [229] and improve
understanding, engagement, and trust in novice programmers [151, 229, 270]. Furthermore,
embodiment through avatars can facilitate non-verbal communication in order [25, 43] to help
maintain effective pair programming relationships. Agents with avatars are given more person-
ality attributes than those without them [229], but at the cost of heightened expectations [151].
They are particularly important to establishing first impressions [28]. Therefore, we formulated
design decision F1: PairBuddy will be embodied by a 3D avatar.

The inevitable gendered attributes spawned from conversational agent embodiment are the tar-
get of similar gender-biases present in the real world. Particularly, female conversational agents are
more often the target of negative stereotypes, sexual attention, and profanities than male agents
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[33]. However, they are also more likely to be forgiven, even if satisfaction ultimately does not
change [236]. Additionally, female programmers have voiced concerns about pair programming
with male partners [50, 133] due to the expectation of being stereotyped for their gender. To an-
alyze potential gender preferences and bias, we formulated design decision F2: Participants can
toggle the agent between the two most common genders. While research has looked at gender
bias within conversational agents and pair programming separately, we combine the analysis by
evaluating participants’ gender preferences for a pair programming conversational agent.

The choice between voice and text for an agent’s interface depends on the use case. While text-

only interfaces are less intrusive (e.g., website support), research [28, 41] has shown that voice
interfaces increase users’ trust in conversational agents. Additionally, cognitive science research
has demonstrated that simultaneously sharing the same sensory modality for both short-term
memory and active-use negatively affects response and accuracy rates under high-load conditions
[242]. These findings suggests that using audio responses can help reduce programmers’ cognitive
load since it does not share the same sensory modality as reading code. Additionally, the absence
of a text chat saves additional screen space and reduces context switching between applications.
For our design decisions F3 and F4, we explored input modality by supporting both methods of
communication, allowing messages to arrive to/from the agent via both voice and text.
(B) Interactions — Indirect Driving, Timed Feedback, and Adapted Skill: In effective pair pro-
gramming, both partners directly contribute to the code as drivers. However, if PairBuddy were
to make a mistake and overwrite code, it would be difficult for participants to undo PairBuddy’s
actions. Since a prominent principle of HCI is that users should remain in control of their work
[10, 19, 263], we formulated design decision I1: As a driver, PairBuddy will make indirect contri-
butions through text messages so that participants can reference and modify the code themselves.
In this way, the distinction between pair programming roles is less pronounced; control over the
roles is not negotiated, rather, PairBuddy’s contributions simply encompass both responsibilities:
providing code examples and giving feedback.

ITSs such as HabiPro [248] have shown the ability to guide students’ behavior by utilizing a
learner model [46] to represent and track students’ knowledge and progress. In the same way
that ITSs individualize learning, we formulated a design decision I2: PairBuddy will adapt its skill
level to match each participant such that contributions remain balanced. Pair programming re-
search further informs this decision since programmers prefer when their partner is equally or
more competent [164]. In the pilot study, this design decision manifested itself in the frequency
of PairBuddy’s feedback and code suggestions (refer T2). With this decision, we aim to tailor Pair-
Buddy’s interactions with programmers based on their specific needs and abilities.

Programmer: Integrating Technical and Soft Skills

PairBuddy will imitate the characteristics of a competent programmer. A programmer’s techni-
cal and soft skills are crucial for being effective team members [15, 58, 178, 275] and are considered
by managers when they make hiring decisions [150, 157, 169, 209, 218]. Therefore, we integrated
both types of skills to mirror a programmer’s capabilities.

(A) Soft Skills — Greeting and Motivation: While greetings vary between cultures, humans in-
troduce themselves to make their presence known and start conversations. Similarly for agents,
Kahn et al. [120] identifies “The Initial Introduction” design pattern where agents use scripted,
conventional introductions to recognize and inquire about another. It is an important design choice
in human-robotic interaction, as it allows a deepening of relationships while removing initial awk-
wardness. Based on this researched design pattern, we formulated design decision S1: PairBuddy
will introduce itself and greet the participant [19].

Motivation is seen as a driving force that has a substantial impact on a programmer’s perfor-
mance and productivity [18, 45], and comes from either intrinsic or extrinsic sources [45, 64].
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Designing extrinsic motivators that synergize with intrinsic motivators requires supporting a per-
son’s sense of competence without undermining their self-determination [18]. Fischer et al. [78]
found that a higher perceived probability of receiving extrinsic motivation in the form of relational
rewards (e.g., praise, recognition, performance feedback) [21] often positively affected creative and
innovative outcomes. Therefore, we formulated design decision S2: PairBuddy will motivate using
relational rewards in the form of encouragement (e.g., “We’ve got this!”), recognition (e.g., T see,
good idea!”), and comforting (e.g., “That’s okay, everyone makes mistakes”). Additionally, extrinsic
motivation is most effective during the stages of the creative process that make the most meaning-
ful contributions to the project [18]. Therefore, PairBuddy will commend success through praise
and celebration: ‘T knew we could do it!” or “We make a great team!”.

(B) Technical Skills — Writing Tests/Code and Giving Guidance: Automated approaches to
generating test cases (i.e., a code fragment that specifies inputs and expected results to verify
compliance with a requirement [1]) have explored the use of search-based techniques and require-
ment artifacts. Search-based software testing uses a variety of search algorithms [161, 163, 168] to
determine the most efficient path through source code that maximizes code coverage for automatic
test case generation [17]. Alternatively, research has demonstrated the feasibility of converting
requirement artifacts such as user stories (i.e., a description of a requirement from a user’s
perspective [2]), acceptance criteria (i.e., the boundaries of a user story [1]), and scenarios (i.e.,
step-by-step description of a series of events [1]) into test cases [74, 196]. Based on this research, we
formulated design decision T1: As a driver, PairBuddy can generate test cases automatically. As a
navigator, PairBuddy can give feedback and answer programmers’ queries based on the generated
solutions. For example, PairBuddy could offer help by asking, “Would you like me to generate a test
case?”

To further PairBuddy’s competency as a driver, we formulated a design decision T2: PairBuddy
will provide example code from online repositories (e.g., GitHub [3]), question and answer forums
(e.g., Stack Overflow [6]), and package documentation. For example, PairBuddy might send sample
code from GitHub into the text chat and ask, ‘TIs this code example from online useful?” Past research
identifies code-querying algorithms used to search online repositories for semantically similar
code [124, 125,177, 193]. However, these algorithms are not always perfect, so to simulate a realistic
implementation, PairBuddy’s code recommendations were not an exact match with the task.

To allow PairBuddy to guide participants, we formulated a design decision T3: PairBuddy will
use user stories as a basis to track and direct the current objective, encouraging participants to
reference them when determining how to proceed. Additionally, PairBuddy might need to ask
the participant, “What user story is that?” when the current objective is unclear from PairBuddy’s
perspective. This clarifying dialogue serves a second purpose: participants are forced to refocus
on the user stories, and reorient themselves toward the task’s goal.

4.2 Wizard/PairBuddy Implementation

The wizard’s interface and implementation integrated the aforementioned design decisions into
the wizard’s script and interface for the pilot study, and are detailed as follows:

PairBuddy’s interface was implemented within the Eclipse IDE [70] using a modified version
of the Saros plugin [72], allowing both voice and text communication. Directly integrating these
features allowed participants to seamlessly interact with PairBuddy. The wizard used Saros to mon-
itor the participant’s code, but made code contributions via the text chat. PairBuddy was embodied
by a 3D avatar via FACSvatar [76]. Using custom networking code, FACSvatar mapped the wizard’s
facial animations onto PairBuddy’s avatar from a remote location, and PairBuddy’s voice was gen-
erated using Google Text-to-Speech [98]. While participants were free to change the arrangement
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Fig. 2. The pilot study’s interface including the Eclipse IDE, text chat, and avatar. Note that each participant
only saw one avatar.

of the IDE and avatar windows, none of them did. Figure 2 shows a screenshot of the participant’s
interface, including the Eclipse IDE and either the man or woman avatar. While participants were
informed that they were being recorded, they did not know that the wizard was monitoring their
webcam and microphone. As required by IRB, we disclosed the nature of the deception study after
the study sessions were completed.

The wizard also simulated the back end design of PairBuddy, including the aforementioned de-
sign decisions and common components of conversational agent architecture [85] such as natural
language understanding [12, 69, 148, 158, 194, 267], dialogue state tracking [126, 139, 199, 276],
dialogue policy [109, 235, 265, 272], and natural language generation [100, 198].

If the participant said, “This is why I hate coding!”, a real conversational agent would recognize
their words (text-to-speech), classify their intent as “Negative Feedback” (natural language under-
standing), and log their difficulties (dialogue state tracking). In response, the agent would decide
to “Give Motivation” (dialogue policy) and select an appropriate response “Don’t give up, you are
almost there!” (natural language generation). Without an underlying system to power interactions,
the wizard adhered to a script of limited dialogue options to simulate a robotic conversational
style. Dialogue options were templated according to Shneiderman’s guidelines [217] and Neilsen’s
heuristics [176]. Since communication styles differ by gender [133], we provided gender-inclusive
language [77, 167] in our script including non-authoritative suggestions [214] to both engage and
motivate programmers.

The wizard exhibited a realistic level of intelligence. If participants asked questions beyond the
protocol, the wizard would answer, “I’'m afraid logic isn’t my strong suit,” to simulate the limitations
of a potentially automated system [19]. However, to maintain participants’ trust and engagement,
we designed PairBuddy to give alternative contributions if it could not directly answer queries.
Furthermore, the script was designed to vary the responses for the same intent. For example, mo-
tivational scripts included, “We’ve got this!” along with five or more similar dialogue templates so
participants would not receive repeated phrases from PairBuddy. In general, the script served to
simulate the back end of a fully functional conversational agent, including its limitations, through
the use of dialogue templates. One researcher simulated PairBuddy as the wizard in the pilot study.
To maintain consistency between studies, the wizard was trained in three trial studies prior to any
official studies.
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Table 3. Demographics of the Pilot Study Participants

P# Age Gender Education Programming Experience

PG1 24-29 Man PhD 4+ years
PG2 30-40 Man PhD 4+ years
PG3 24-29 Man Masters 4+ years
PU4 19-23 Man  Undergrad <1 year
PU5 19-23 Woman Undergrad <1year
PU6 19 Man  Undergrad <1 year

4.3 Participants

Seven students majoring in computer science were recruited from our university. However, we
only report data from 6 participants (3 undergraduate and 3 graduate) since one participant did
not interact with PairBuddy during their study session. Both undergraduate and graduate students
were recruited for the study to account for the varying diversity of programming skill. Partici-
pants with basic Java programming experience were chosen on a first-come-first-serve basis from
a recruitment email. Upon completion, participants were given $20 in Amazon gift cards. Table 3
shows the demographics of our pilot study participants. These participants are referred to as PU#
and PG# for undergraduate and graduate students, respectively. For example, PU4 is the fourth
undergraduate participant of the pilot study.

4.4 Study Design

Participants completed a consent form and background questionnaire prior to the pilot study. Be-
fore starting the task, participants watched video tutorials on the concepts used in the study in-
cluding the driver and navigator pair programming roles, the think-aloud method, and test-driven
development. The think-aloud method encourages participants to vocalize their thoughts and feel-
ings [143, 212]. Test-driven development is a type of extreme programming that prioritizes the
creation of test cases before implementing and refactoring code. Test-driven development evalu-
ates participants’ knowledge and evokes diverse dialogue since each development stage requires
a unique style of thinking.

Participants were asked to use pair programming and test-driven development alongside Pair-
Buddy to complete an implementation of tic-tac-toe: a game where two players take turns mark-
ing spaces in a 3x3 board. Based on a list of user stories, acceptance criteria and scenarios,
participants were instructed to implement test cases and functionality for turn taking, verti-
cal/horizontal/diagonal wins, a full board test, and a tie game test. As a starting point, code for
the board along with three example test cases were provided to participants. Tic-tac-toe was se-
lected for its simplicity since anyone with basic programming experience can understand and
implement its requirements without prior knowledge of the domain. Participants wrote Java code
in the Eclipse IDE [70] and implemented testing via JUnit [71]. The duration of the task was fixed
to 50 minutes to prevent participant fatigue and to ensure that individual study sessions lasted
under 90 minutes.

We applied a between-study design for initializing the avatar’s gender by starting half of all
studies as a man and half as a woman.

A semi-structured interview was conducted using a script, yet individualized questions were
used to further explore study-specific events. To avoid social desirability bias [94, 173], we told
participants that the study was being used to improve PairBuddy’s design and that honest feedback
was crucial to evaluate our system.
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Table 4. Code Set for PairBuddy’s Contributions

Contribution Type Description Example

Direction Guiding participants towards goals “Write a method... for a horizontal win.”
Domain - Help IDE, language, or domain knowledge  “Looks like... an import error for JUnit.”
Method - Add Provide example code for methods “Is this code... useful?”

Method - Clarify Give knowledge about methods “Get the value... by accessing its coordinate.”
Test case - Add Provide example code for test cases ‘T can generate test cases.”

Test case - Clarify Give knowledge about test cases “To test... we will need to place marks.”
Bug - Identify Identify bugs or mistakes “Double check the vertical check.”

Bug - Fix Fix bugs or mistakes “Error is commonly caused by...”
Contribution Source Description

PairBuddy Alone PairBuddy offered contributions

Human Asked Participants prompted PairBuddy

Human Asked - Unanswered PairBuddy couldn’t help programmer

4.5 Data Analysis

The video, audio, and interviews from our pilot study were transcribed and subsequently analyzed
through both quantitative and qualitative measures to evaluate the usability of PairBuddy. We used
the Corbin and Strauss variant [232] of Grounded Theory [90] to analyze our transcripts. Specif-
ically, we created a codeset of the types of contributions PairBuddy made by creating, gathering,
modifying, and removing contribution types during an iterative, open-coding process [23, 212].
These contribution types allowed us to track participant interaction with PairBuddy over time
(Table 3). Using thematic analysis [35], we grouped interview responses into themes that encom-
pass various dimensions of interaction with PairBuddy. For our quantitative analysis, we collected
responses to self-efficacy questionnaires and discrete answers to our interview questions. Tran-
scripts were coded by two researchers. Initially, both researchers independently coded the same
20% of the transcripts, and average inter-rater reliability was measured at 86% using the Jaccard
index. The remaining transcripts were split and coded separately. Interview transcripts from the
pilot study can be found [5].

4.6 Results

The first iteration of PairBuddy allowed us to examine the feasibility of a pair programming con-
versational agent. The insights and avenues for improvement are as follows:
(1) Helping Programmers: PairBuddy helped participants complete the programming task as
both a driver and a navigator. Figure 3 details the contributions PairBuddy made in three separate
ways: (1) when PairBuddy offered help, (2) when participants asked for help, and (3) when par-
ticipants asked, but PairBuddy could not provide help. The contributions types include direction,
domain-related help, method/test clarification, method/test addition, and bug identification/fixing.

When participants were lost, PairBuddy provided direction through its messages. For example,
when PU6 had difficulty writing a method, PairBuddy gave guidance, “We need to write a method
to check for a horizontal win.” Furthermore, PairBuddy provided help for questions about the IDE,
JUnit, language, and domain (tic-tac-toe). For example, when PG3 was having difficulties using the
testing suite (JUnit), PairBuddy provided help, “Tt looks like we may have an import error for JUnit.”

PairBuddy contributed knowledge by clarifying test cases and methods. For example, when PU4
was unsure about how to write a test case, PairBuddy responded, “To test for horizontal, we will
need to place marks at zero zero, one zero, and two zero.” Similarly, PairBuddy helped PU5 with her
method, “If a space is occupied by a “-” then it is considered empty.”

PairBuddy provided sample code for test cases or methods in the text chat. For instance, Pair-
Buddy offered to contribute a test case for PG6, ‘T can generate test cases based on the user scenarios.
Would you like me to do this?”, and a method for PG1, “Does this code help you out any?”
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Fig. 3. A timeline illustrating PairBuddy’s contributions during the pilot study. Contributions were either
offered by PairBuddy (blue) or asked by participants (yellow). In some instances, PairBuddy was unable to
provide help (red). Contributions types include direction, domain-related help, method/test case addition,
method/test case clarification, and bug identification/fixing.

Finally, PairBuddy provided guidance for finding and fixing bugs. When PG1 made a mistake in
the vertical win method, PairBuddy commented, “I think there is a syntax error on line 41.”

PairBuddy failed to answer 23 of the 35 questions (65.7%) asked by participants (red in Figure 3).
However, PairBuddy was designed to follow-up with separate contributions if possible (blue in
Figure 3). For example, when PU5 asked, “What would the arguments be for the method to find
if there is a winner?”, PairBuddy was not designed to answer this difficult type of question, so
instead, it made a suggestion from online, “Is this code example from online useful?” However,
when PairBuddy failed to provide an example, PU6 complained, “You can’t copy and paste it from
somewhere else again please?”

(2) Effect of Programming Experience: Figure 3 shows the trend that graduate students (PG1-
PG3) interacted with PairBuddy during the second half of the study, while undergraduate students
(PU4-PUG6) interacted from the beginning. One graduate student, PG1, interacted from the start,
but PG2 and PG3’s first interactions were at 19:00 minutes and 17:30 minutes, respectively. In his
interview, PG2 said that he wanted help just-in-time and preferred to work solo on his tasks, ‘T was
thinking, and I want to have time for... quiet and focus.” We conjecture that experienced participants
were less trusting initially, but their trust increased overtime. For example, PG3 said, “As it went
on, I was like, ‘Hey,... we have the same idea for this.””

(3) User Experience: Participants enjoyed working with PairBuddy and appreciated its company.
PG2 found PairBuddy’s voice supportive saying, “Just hearing him talk helped me stay on track
and stay focused on the task at hand and what needs to be done.” Similarly, PU5 indicated that she
often thinks out-loud with a partner in her classes, explaining, “T’ll like talk, T don’t know what I'm
doing,’ and [my friend] will be like, T don’t either” ” Additionally, PG3 felt synergy with PairBuddy,
commenting, ‘I think we work together well.”

Participants also enjoyed the motivational aspect of PairBuddy. In fact, all participants re-
sponded positively to motivation. For example, when PG1 fixed a bug that he was struggling with,
PairBuddy celebrated saying, “Yay! You did it!”, and PG1 smiled responding, “Thanks!” Similarly,
PU6 said, “Thank you so much dude. Your motivation is so good. Thank you, thank you, your moti-
vation is getting me through.” However, participants’ reactions to positive feedback varied, as PG2
only said, “Okay thanks.”

4.7 Lessons Learned

Feedback from the pilot study revealed many shortcomings of PairBuddy’s design and informed
modifications to the original design decisions for use in the main study. We found the following
limitations of both PairBuddy’s design and the study’s implementation:
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Avatar Did Not Support Lip-Sync: Participants rarely looked at the avatar window throughout
the study. PU6 put it bluntly, ‘T forgot he [the avatar] was even there.” While the avatar often went
unused, PU4 noted that avatars play a specific role in communication for him, “T’'m actually hard of
hearing just a little bit, but I take cues, at least for certain words, I take cues from reading lips, so [lip-
sync] would actually help me a lot.” Additionally, research finds that lip-synchronization heightens
the level of an avatar’s embodiment [91]. However, in the pilot study, PairBuddy did not include a
lip-sync feature, making communication less accessible and embodiment weaker.

Gender Toggle was Not Utilized by Participants: Allsix participants never changed the gender
of the avatar, which limited our ability to make any explicit determinations on participants’ gender
preferences. Additionally, the style of interaction between genders was indiscernible due to the low
participant count, causing individual differences to out-shine gender-based differences. To gather
relevant gender data, we must use an approach that can discern individual gender preferences.

Participants’ Bias Toward Text: While participants were explicitly instructed that they could
communicate using either voice or text, participants initially felt more comfortable using text and
often forgot that voice was even an option. In fact, 5/6 participants used text rather than voice.
However, when PU6 was accustomed to typing messages, he was taken off-guard when PairBuddy
responded to his voice, “Wait, can you hear me? That would be kinda cool if you can hear me.”
Participants who used text forgot PairBuddy could hear them, often verbalizing their messages
before typing them into the chat. For example, PG1 spoke out loud, “How to write the method?”
before sending it word-for-word in the text chat. The inclination to vocalize questions suggests
that the decision to use text over voice was partially based on preconceptions and habits, rather
than utility. While participants were biased toward text, they spent an unnecessary amount of time
typing messages. This notion of slow text communication is supported by research on interaction
speed [205], which finds that typing is 3x slower than voice recognition (on mobile devices). To
avoid confusion between text and voice, PairBuddy’s design should emphasize one medium of
communication rather than using both simultaneously.

Participants Needed More Guidance: Althoughwe envisioned that PairBuddy would act as
both a driver and navigator, design decisions I1 (indirect driving) and T2 (code examples from
online) transformed PairBuddy’s role as a driver into a code recommendation system. Since
PairBuddy could not directly contribute to the code, its ability to meaningfully guide progress
was limited.

Interjections Become Interruptions: While participants generally appreciated when
PairBuddy interjected with helpful dialogue, they did not like it when interjections became inter-
ruptions, especially when they were deep in thought. PG2 explained, “When I'm trying to think
about a problem... Most of the time I need a quiet place to think.” Similarly, PG1 complained, “Some
of the things were distracting to me and unexpected... That I didn’t like.” While research finds that
interruptions greatly reduce progress on writing assignments [80], our participants still wanted
an agent that is engaging and socially present. PG3 expressed his preferences, “T would prefer
someone who is more engaged,” and PU5 did too, ‘T don’t feel as crazy or lonely because it’s like
‘Oh, I'm talking to a computer. It’s fine, but like when you’re doing it alone it’s like, ‘Ah, there’s no
one here.”

Lack of Support for Creativity: As identified in previous research [134], programmers follow
the Osborn-Parnes Creative Problem Solving Process when working together. However, with
PairBuddy, participants were able to skip major steps along the way. Osborn-Parnes Creativity
is frequently used to understand the creative process of an individual [112, 122, 182, 184] and
is vital to programmer success [73, 251, 273], especially when solving open-ended problems
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Fig. 4. Creativity stages (blue) progress from Clarify to Implement, but humans skipped the Idea and
Develop stages (dashed arrows) when PairBuddy provided answers (code/test cases). Typically, human-
human pairs progress through each stage in succession (solid arrows).

[24, 36, 142, 149, 187, 256]. Particularly, it describes how programmers step through a series of
creativity stages; Figure 4 illustrates how programmers start at the Clarify stage of creativity,
where information, goals, and challenges are identified. In the subsequent Idea stage, a wide
variety of potential solutions are generated. Then, in the Develop stage, solutions are evaluated,
strengthened, and selected for “best fit” Finally, in the Implement stage, the resulting solutions
are written into code. In human-human pair programming, humans follow the creativity stages in
sequence [134] (solid arrows in Figure 4). However, when working with PairBuddy, we observed
that participants skipped the Idea and Develop stages by directly copying implementation from
PairBuddy’s code examples (dashed arrows in Figure 4). Pair programming has been noted for
its ability to teach effective creative strategies [213]; based on feedback from their partners, pair
programmers can gain experience by practicing each stage of creativity. Therefore, if participants
are to experience the creative benefits of pair programming, PairBuddy must support its partner
during every creativity stage: specifically the skipped stages of Idea and Develop.

5 MAIN STUDY (ITERATION 2)

Through the insights gained from the pilot study and a more comprehensive research review, we
improved the design of PairBuddy and conducted a second “main” Wizard of Oz study.

5.1 PairBuddy Design (Iteration 2)

The design of PairBuddy for the main study intends to imitate human pair programming to the
highest degree that can be realistically achieved through the capabilities of current research.
Table 5 lists the design decisions used in the main study. Those adapted from the pilot study
remain white, while new design decisions are highlighted in blue. Design decision modified or
added for the main study are as follows:

Design: Creating the Interface and Interactions

(A) Interface — Embodiment via Avatar, Gender, Voice, and Text: For design decision F1, Pair-
Buddy’s dynamic 3D avatar was modified to include lip-synchronization via the Facerig avatar
embodiment software. Furthermore, to explore the trade-offs of using text vs. voice for a pair pro-
gramming agent, we modified design decisions F3 and F4: communication with PairBuddy will be
primarily verbal, while reserving the text chat for resources such as images or links. This decision
attempted to model typical human-human remote communication.

(B) Interactions — Direct Driving, Timed Feedback, Adapted Skill, Typing Speed, and Redi-
rect Suggestions: To allow PairBuddy to more effectively guide code progress as an active dri-
ver, we modified design decision I1: PairBuddy will make direct code contributions through the
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Table 5. Design Decisions of PairBuddy’s Main Study Implementation

1D Design Decision Description Example Sources
Interface

F1 Avatar Embodied by a 3D lip-synced avatar [25, 28, 43, 151, 229, 270]
F2 Gender Gender can be toggled [33, 50, 236]

F3 Voice Communicate via voice synthesis [28, 41, 242]

F4 Text Chat Paste images or links

Interactions

I1 Direct Driving Edit code via IDE

12 Adapted Skill Balance contributions via frequency and size [19, 56, 75, 239, 248]
13 Timed Feedback Feedback at appropriate time [31, 128, 132, 144, 211]
14 Typing Speed Paste small sections of code

I5  Redirect Suggestions Participants implement their suggestions

Soft Skills

S1 Greeting Introduce itself [120]

S2 Motivation Encourage, recognize, comfort, commend [18, 45, 64, 78]

S3 Ivs. We Share success and personalize mistakes [119, 197]

S4  Uncertain/Verification ~ Show uncertainty via verification of work [22, 133]

S5 Social Presence Actively listen rather than interrupt [53, 80, 104, 175]
Technical Skills

T1  Write/Feedback Tests Generate test cases and feedback [17,74, 161, 163, 168, 196]
T2  Write/Feedback Code Generate code and feedback [60, 124, 125, 177, 193, 274]
T3 Guidance Provide direction via user stories

T4 Creativity Support Prompt divergent and convergent thinking [115, 116]

T5 Feature Location Locate code from a description [147, 156, 210]

T6 Unnecessary Code Suggest deleting unused code [228]

T7 Missing Code Determine where more code is needed [89]

Decisions modified from the pilot study remain white, while new additions are highlighted in blue.

IDE rather than sending code snippets through the text chat. Furthermore, as an active navigator,
PairBuddy will provide more specific feedback. With this new ability, PairBuddy negotiated the
exchange of pair programming roles through suggestions such as, T can try if you'd like,” and,
“Actually, I'm a bit stuck. Mind if you take over?”

To more effectively adapt PairBuddy’s skill-level to that of its programming partners, we
modified design decision I2: PairBuddy will tailor the size (rather than only the frequency) of its
contributions. For example, when participants struggle with code, PairBuddy will only provide
small contributions (e.g., structure of the code or single lines of code) to help them become
“unstuck” Alternatively, PairBuddy will match participants who effortlessly complete the task
with larger contributions (e.g., a full test case). For an automated agent, the size of participants’
contributions could be measured using, for example, the number of lines of code, variables, or
user stories completed. Additionally, PairBuddy’s intent to balance contributions will regulate its
suggestions to switch pair programming roles.

Feedback has substantial impact on learning and achievement [105, 106, 128, 144]. Among its
influential properties is the timing of the feedback. Psychological research suggests that feedback
on difficult concepts should be delayed, while feedback on simple concepts is more beneficial when
immediate [31, 132, 211, 233, 234]. For example, IDEs already provide instant feedback via error
highlighting, but when a programmer uses a misguided approach, delayed feedback is preferred
to allow them time to evaluate the feasibility of their ideas. Therefore, we formulated design deci-
sion I3: PairBuddy will provide appropriately timed feedback [19]. With this decision, we hope to
maximize the impact of feedback and eliminate unnecessary interruptions.

Since PairBuddy now directly contributes code through the IDE, it is necessary to consider
the speed at which PairBuddy will type. Intentionally limiting an agent’s typing speed could
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potentially be unappealing and cause programmers to become impatient, yet pasting large chunks
of code could be overwhelming and difficult to comprehend. Therefore, we formulated a design de-
cision I4: PairBuddy will incrementally paste small snippets of code to prevent programmers from
becoming impatient or overwhelmed. This design decision was informed from our best reasoning
rather than previous research.

In pair programming, the role of the navigator includes providing feedback and suggestions to
the driver. Sometimes, the navigator performs “backseat driving” where they instruct the driver
directly [117]. However, current technology does not fully support the implementation of arbitrary
ideas in this way, so in the pilot study, PairBuddy was designed to immediately admit its limitations
saying, “I’'m sorry, I don’t know how to help with this.” Unfortunately, this response often marked
an abrupt end to the conversation. Therefore, to encourage higher engagement, we formulated a
design decision I5: PairBuddy will redirect suggestions back to the programmer through dialogue
such as “How would that look like?”, “Do you want to try?”, or “Can you do that for me?” However,
if its partner insists, only then will PairBuddy admit its limitations.

Programmer: Integrating Technical and Soft Skills
(A) Soft Skills - Leadership, Uncertainty, Social Presence: Research finds that a democratic
leadership style is most effective for pair programming [133]. A way for PairBuddy to integrate
democratic leadership is to practice effective pronoun use. Research has shown that leaders use
collective pronouns (e.g., “we” and “us”) to gain influence in a group [119], but use personal pro-
nouns (e.g., “I” and “me”) to “own up” to mistakes [197]. Therefore, we formulated design decision
S3: PairBuddy will display leadership by attributing successes to the group while taking owner-
ship for its mistakes. For example, when a test case fails, PairBuddy will take ownership saying, T
think I made a mistake,” but if all the test cases pass, PairBuddy might say, “Great, we did it!”
Research suggests that conversational agents should pre-emptively use uncertainty to avoid sit-
uations where they make large miscommunications [19, 22]. The resulting conversational break-
downs decrease users’ satisfaction, trust, and willingness to continue talking to conversational
agents [113, 114, 152]. Additionally, research on pair programming shows that people often ask
for verification after each creative stage of development [133]. Therefore, we formulated design
guideline S4: PairBuddy will convey uncertainty by asking for verification to prevent conversa-
tional breakdown. To potentially support this, the uncertainty of PairBuddy’s dialogue could be
based on the confidence of the machine learning algorithms used to generate code and feedback.
In the pilot study, participants voiced complaints about the timing of PairBuddy’s feedback.
When they were deep in thought, participants wished that PairBuddy listened rather than inter-
rupted. However, maintaining an active presence as a navigator is key to preserving the balance
between roles. To this end, we utilize active listening—a technique to allow a speaker an outlet
for self expression [202]—to maintain social presence in a conversation. For conversational agents,
social presence is the feeling and perception of interacting with a human being [180], and has been
shown to increase the use of conversational agents [175], and can even increase perceived useful-
ness, trust, and enjoyment [104]. Therefore, we formulated design decision S5: PairBuddy will in-
crease its social presence using active listening through acknowledgements and confirmation ques-
tions. In this way, PairBuddy can avoid interruptions by encouraging participants to think their
ideas out-loud through dialogue such as, “What are you thinking?” and “What does this code do?”.

(B) Technical Skills: Guidance, Creativity Support, Feature Location, Unnecessary Code,
and Missing Code: To encourage higher engagement with PairBuddy relative to the pilot study,
we conducted a thorough research review to identify the potential capabilities of automated code
and feedback algorithms, as well as techniques to support creative problem solving.

PairBuddy’s power to provide context-specific code and feedback is dependent on the capabili-
ties demonstrated by existing research. Automated code and feedback techniques [60, 274] show
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the ability to provide feedback on code using a dataset of past programming solutions. However,
this research is either limited by the specificity of the feedback [60] or has only been demon-
strated in a simple programming language (iSnap) [274]. To increase the specificity of PairBuddy’s
contributions, we modified design decisions T1 and T2: PairBuddy will have the limited ability to
contribute context-specific code (as the driver) and provide meaningful feedback (as the navigator)
based on a dataset of past solutions. For example, if PairBuddy detects that a participant’s code
is semantically similar yet deviates from a known solution, it might suggest, “There might be a
mistake on line 66.” However, if the participant writes code that deviates from all past solutions
within the database, PairBuddy will be unable to provide guidance.

Since PairBuddy attempts to replace a human partner, it will be designed to integrate the creative
problem solving stages used by humans. However, in the pilot study, PairBuddy only supported
the Clarify stage (via direction from user stories) and the Implement stage (via example imple-
mentation from online). Therefore, we formulated design decision B4: PairBuddy will add support
for the remaining Idea and Develop stages by using concepts from Idea Garden [115, 116]. Idea
Garden suggests the use of probing questions to promote a programmers’ use of diverse problem-
solving strategies. We integrated two strategies into PairBuddy’s script: working backwards from
the goal and encouraging divergent thinking before convergent thinking. For example, PairBuddy
might ask, “What are all the possible ways we could do this?”, “Why do you think so?”, or “What data
structure could we use?” As a navigator, PairBuddy can prompt the participant to move from the
Idea to the Develop stage by asking, “What would that [idea] look like?” As a driver, PairBuddy
will provide the empty structure of the code to help programmers conceptualize the solution. Ad-
ditionally, PairBuddy can discuss the general structure of the code saying, “I think we should use a
for loop/if statement here,” or “Should we use a while loop or a for loop?”

Both static [156] and dynamic [147] techniques exist to automatically search source code for
specific features or descriptions. For the Java programming language, the Eclipse plugin Flat3 [210]
searches source code using arbitrary descriptions (e.g., “file saving”). Based on feature location
algorithms, we formulated a design decision T5: PairBuddy can identify locations within the code
that match a description. For example, if the participant asks, “Do we return false in the tie game
detection function?”, PairBuddy can identify the isTied() function as the context to the question.

Many programming IDEs include refactoring tools that automatically detect uncalled functions
or unused variables via data-flow analysis [57]. For the Java programming language, UCDetector
[228] is an Eclipse plugin that can identify unused variables, functions, and classes. Based on this
functionality, we formulated design decision T6: As a navigator, PairBuddy can detect unnecessary
blocks of code and suggest that the programmer consider deleting or modifying them. For example,
PairBuddy might suggest, ‘T believe we have unnecessary code in the tie test function.”

Research on automated feedback has shown the ability to automatically determine the locations
where code is missing based on pre-defined functions in Haskell [89]. Since Haskell is a functional
programming language, this research does not necessarily apply to an imperative language like
Java. Regardless, the supporting research of previous design decisions [17, 60, 163, 168, 274] would
be potentially capable of identifying missing code, so we formulated design decision T7: As a
navigator, PairBuddy will direct the driver’s attention to locations where more code is needed.

5.2 Wizard/PairBuddy Implementation

For the main study, the wizard’s interface, implementation, and script integrated the new design
decisions for PairBuddy’s second iteration, including the following changes from the pilot study:

Before conducting the main Wizard of Oz study, four trial studies provided initial feedback on
the task, study design, wizard implementation, and design decisions. During these studies, our
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Wizard 1 Wizard 2

&lllll-

Participant

Fig. 5. The main study’s wizard implementation. Both wizards (Wizard 1 and Wizard 2) monitored the partic-
ipant’s webcam, microphone, and screen via a communication tool (e.g., Skype, Discord, MS Teams). Wizard
1 used a custom interface to select dialogue templates and send PairBuddy’s avatar and voice over the same
communication tool. Wizard 2 used a dataset of past solutions to contribute into participants’ IDE directly.

single wizard had difficulty balancing all of their new responsibilities as PairBuddy; therefore, our
main study leveraged two wizards.

The first wizard (Wizard 1) controlled PairBuddy’s avatar and voice interface with participants.
To simulate PairBuddy’s design decisions, Wizard 1 utilized a basic automated infrastructure
where (1) a custom user interface (refer Figure 5) allowed Wizard 1 to quickly select dialogue
templates from the script and fill in blanks with contextual information when necessary; (2) using
the selected dialogue, PairBuddy’s voice was generated via Google Text-to-Speech [98]; (3) the
resulting audio facilitated lip-synchronization of PairBuddy’s avatar generated using the Facerig
embodiment software [227]; and (4) both PairBuddy’s avatar and voice were sent to participants
via a communication tool (i.e., Skype, Discord, and MS Teams); likewise, both wizards monitored
participants’ video, audio, and screen directly.

As described in I3: Timed Feedback, the wizards waited an increasing amount of time before
providing feedback on incorrect code. As the navigator, Wizard 1 followed a set protocol when
providing feedback to participants: (1) If participants explicitly asked, Wizard 1 provided instant
feedback; (2) For out-of-turn feedback: (i) If participants made small syntax errors (e.g., wrong
number or missing curly braces), Wizard 1 waited 10 seconds after participants finished typing be-
fore providing feedback as the navigator to allow participants time to double check their spelling;
(if) For small logical errors (e.g., incorrect conditional statements or variables), Wizard 1 waited 30
seconds before giving feedback since logical errors are more difficult to catch; (iii) When partici-
pants made medium to large mistakes (e.g., multiple lines of code that do not match past solutions),
it is possible that participants found an alternative solution. However, if they became stuck and
stopped discussing ideas, Wizard 1 asked open-ended questions (T4: Creativity Support) before
asking participants for the driver role.

The second wizard (Wizard 2) acted as an automated code and test cases generator (design
decisions T1 and T2). As the driver, Wizard 2 pasted code snippets into participants’ IDE via the
Saros remote collaboration tool to correct or continue participants’ existing work. To determine
code correctness, Wizard 2 simulated a semantic diff (e.g., [136, 204]) between participants’ code
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Fig. 6. The main study’s interface including the Eclipse IDE and the man/woman avatar. Note, each partici-
pant only saw one avatar at a time.

and a database of past solutions collected from both pilot and trial studies. With this knowledge,
Wizard 2 followed their own protocol to determine the appropriate time to contribute code as
the driver: (1) If participants had difficulty getting started, Wizard 1 offered to drive and Wizard
2 provided some of the structure of a past solution (e.g., function declarations and conditional
statements). Using only incremental contributions, Wizard 2 avoided overwhelming participants
since PairBuddy could not explain the logic behind its contributions; (2) If progress was slow or
participants became stuck, Wizard 2 instead provided small contributions from the most similar
past solution to get participants back on track. If participants wrote a large amount of unrecognized
code, Wizard 1 offered to comment their code prior to Wizard 2 providing a separate contribution;
(3) If participants progressed quickly (i.e., their code matched a past solution or the test cases
passed), Wizard 1 offered to drive and Wizard 2 provided a similarly sized contribution. The two
wizards maintained close communication throughout the studies, particularly to coordinate code
contributions when PairBuddy was the driver.

We assumed PairBuddy’s algorithms were competent, so our wizards only made mistakes (in-
tentional or unintentional) either once or twice per session.

Additionally, we chose two avatars (man and woman) based on their professional appearance
from the limited selection of Facerig avatars (refer Figure 6).

5.3 Participants

Due to the COVID-19 pandemic, study sessions were conducted remotely, and recruitment of par-
ticipants was done via snowball sampling, social media (Facebook [225], Twitter [226]), and hiring
sites (Upwork [83]). Our recruitment approach helped collect participants from universities and
industries across the country, in addition to local participants. We gathered 14 participants on a
first-come first-serve basis, including 8 students (4 men / 4 women) and 6 professionals (3 men /
3 women). In their background questionnaires (refer Table 6), all participants self-identified in the
binary (men and women). We purposefully achieved a gender balance since research has shown a
difference in preference and behavior across various genders [39, 48, 87, 160, 166, 215]. All partici-
pants were regular programmers with prior experience writing code in Java, although not all had
used Java recently. We refer to participants of the main study as either MS# or MP# for students and
professionals, respectively. For example, MS4 is the fourth student participant of the main study. To
incentivize participation, student participants were given $20 and professionals were given $40 in
Amazon gift cards. This discrepancy was approved by IRB since recruiting professional developers
is more challenging due to their limited availability and high hourly wage [172].
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Table 6. Demographics of the Main Study Participants

P# Age Gender Education Programming Experience
MS1  19-23 Woman Undergrad 3 years
MS2 19-23 Man  Undergrad 2 years
MS3 19-23 Man  Undergrad 2 years
MS4 19-23 Woman Undergrad 2 years
MS5 19-23 Woman Undergrad 3 years
MS6 19-23 Man  Undergrad 3 years
MS7 19-23 Woman Undergrad 2 years
MS8 19-23 Man  Undergrad 4+ years
MP9 30-40 Woman  Masters 4+ years

MP10 41+ Man Masters 4+ years
MP11 19-23 Man  Undergrad 3 years
MP12 30-40 Woman  Masters 3+ years
MP13 30-40 Man Masters 2 years
MP14 19-23 Woman Undergrad 1 year

5.4 Study Design

The study design remained the same as the pilot study except for the following changes:

As previously mentioned, the main study was conducted during the COVID-19 pandemic, so
all study sessions were conducted virtually. Prior to this 40 minute study, participants completed
a consent form and background-questionnaire. To combat the low level of interaction with Pair-
Buddy in the pilot study, the main study included a tutorial [4] that explained PairBuddy’s in-
terface (i.e., voice communication and direct code editing) and encouraged interaction. Since its
learnability should ideally be quick, we did not disclose PairBuddy’s design decisions to evaluate
how participants adapt to PairBuddy’s abilities and limitations. Additionally, a pre-study ques-
tionnaire was used to establish a baseline for participants’ self-efficacies using a 7 point Likert
scale [118] for a maximum score of 63 points. The tutorial and self-efficacy questionnaires can be
found [4].

The study was designed to ensure that each participant interacted with both of PairBuddy’s
gender embodiments. Rather than evaluating gender preferences directly, we used a within-study
design where the avatar’s gender was changed halfway through the study to compare prefer-
ences on an individual basis. While we recognize the potential confusion that PairBuddy’s gender
change may have caused, it was a necessary trade-off to adequately assess gender-bias. Addition-
ally, no participants reported confusion in their interviews. To counterbalance gender, we evenly
distributed PairBuddy’s gender between the men and women participants.

Each study session was followed by an additional self-efficacy questionnaire and interview ques-
tions to triangulate our study findings. The same interview questions used in the pilot study were
integrated with additional questions related to the usability of the features that were more difficult
to evaluate using our think-aloud study.

5.5 Data Analysis

The resulting transcripts were analyzed using the same methodology as described in the pilot study
(refer Section 4.5), including the contribution type codeset (Table 4). Three researchers indepen-
dently coded 20% of the transcripts and reached agreement on 93% of the coded data by calculating
inter-rater reliability using the Jaccard index. The wizard’s script, study transcripts, and interview
transcripts can be found [4].
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5.6 Limitations

One limitation of the main study is its small sample size of 14 programmers. Although our sample
was gender-balanced and included a wide range of skill levels (8 students and 6 professionals),
the study’s small size did not allow any room for further stratification. On the other hand, our
study helped evaluate PairBuddy’s usability with a diverse population of programmers. While we
only studied one programming language (Java) and one IDE (Eclipse), our focused approach was
an appropriate choice to show baseline feasibility. Future studies are needed to evaluate a larger
variety of programmers and languages.

Programmers’ varied experience with Java, test-driven development, and pair programming
may have affected their experience with PairBuddy. For example, PairBuddy provided very few
contributions for our most experienced professional, MP10, while providing more contributions
to other less-experienced professionals. In the future, more variables should be considered in our
analysis.

We acknowledge the variety of other dimensions (e.g., non-binary, race, and ethnicity) to Pair-
Buddy’s persona that can influence participants’ potential biases as research has identified effects
that an avatar’s persona has on user behavior [26, 155]. In fact, our brains subconsciously cate-
gorize characteristics of identify (e.g., perceived sex and race) in just 200 milliseconds and place
people into social categories informed from stereotypes and biases [54]. However, in this study,
we focus on PairBuddy’s gender due to the well-documented prevalence of gender-bias within
computer science [111, 162, 241]. To alleviate these biases in the future, we can include multiple
personas and allow participants/users to select their preferred avatar.

Since the wizards manually controlled PairBuddy’s actions, there was a noticeable delay be-
tween participants’ requests and PairBuddy’s responses. While our custom wizard interface re-
duced latency, nonetheless, searching for the appropriate response and filling-in any contextual
information produced lag. However, shorter replies like “Okay” were quickly typed to avoid navi-
gating the application’s interface.

Our results are based on the simple task of tic-tac-toe, but the game’s simplicity may have af-
fected our usability results since one participant mentioned that he might not trust PairBuddy
for more complex tasks. While the variation of task complexity needs to be further explored with
additional studies, nonetheless, we believe that our task was a good representation of student as-
signments and that our results confirm the feasibility of PairBuddy in educational settings.

We studied the usability of PairBuddy in a virtual lab setting for only 40 minute ses-
sions. Although this was a good starting point, our study could not provide a long-term per-
spective regarding the usability and user experience of programmers at this moment. For
instance, will interactions with PairBuddy for longer periods of time increase or decrease
trust?

Finally, we were forced to conduct a virtual lab study due to COVID-19, which may not mimic
traditional lab studies where participants sit in a controlled lab environment. However, we view
this as an opportunity to evaluate the usability of PairBuddy in a hybrid lab study consisting of
both real-world and controlled lab settings.

5.7 Results

The second iteration of PairBuddy served as a realistic portrayal of a pair programming conversa-
tional agent. Insights collected are as follows:

(1) Helping Programmers: The results from Figure 7 show that participants were most likely
to request help from PairBuddy (yellow) during the second half of sessions. We conjecture that

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.



Designing PairBuddy—A Conversational Agent for Pair Programming 34:23

P Direction @ Method - Clarify X Bug - Identify PairBuddy Alone Human Asked BBl Human Asked - Unanswered
<« Domain-Help [l TestCase-Add % Bug-Fix
@® Method - Add @ Test Case - Clarify

MS1
MS2
MS3
MS4
MS5
MSs6
MSs7
Ms8
MP9
MP10
MP11
MP12
MP13
MP14

o o o o o o o ° o
o ©° 0 o 28 2 5 9 508

Fig. 7. A timeline illustrating the contributions PairBuddy made in the main study. Contributions were ei-
ther offered by PairBuddy (blue) or asked by participants (yellow). In some instances, PairBuddy was un-
able to provide help (red). Contributions include direction, domain-related help, method/test case addition,
method/test case clarification, and bug identification/fixing (refer Table 4).

the change in requests overtime is the result of participants’ initial distrust in PairBuddy, as noted
by MS5’s comment, ‘T think I was a little distrustful at first half of the application, but then after
working with it, especially after I saw that it was helping me solve the problem... I trusted it a little
more.”

Participants’ confidence in their coding abilities increased with the usage of PairBuddy. On
average, participants’ self-efficacy scores increased +3.64 out of a total 63 points (49.71 to 53.07)
after their interactions with PairBuddy (Table 7). Only 3/14 participants reported a decrease in
self-efficacy. MS6 was by far the largest outlier, with a difference in self efficacy of —18 points: 13
points fewer than any other participant. Otherwise, 10/14 participants saw an increase in their
self-efficacy.

Getting Directions and Domain-Related Help: Participants received direction from Pair-
Buddy as seen in Figure 7. PairBuddy’s guidance helped start participants in the right direction, as
PS5 explained, ‘Tt definitely helped me get started.” Participants received guidance for an unfamiliar
language, including MP11 who said, “Getting started was the hardest part for me, like trying to wrap
my head around Java again.” Some learned new techniques, like PS2 who commented, “How to do
test-driven development... the robot helped me make sure that I was writing it correctly, and I liked
that.”

Clarify a Method or Test Case: Participants mentioned that PairBuddy helped clarify task
objectives, including MP9 who commented, ‘T felt like PairBuddy was pretty good at understanding
the overall objective of the project.” This positive feedback was largely caused by PairBuddy’s ability
to Clarify the task based on user stories or generated solutions. For example, PairBuddy provided
insight when MS6 was trying to finish a method, ‘T think we are missing code in this function.”
However, PairBuddy often could not answer Idea-related questions, so when MP14 asked, “Do we
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Table 7. Self-efficacy Scores for Main Study
Participants from Pre- and Post-study Questionnaires

P# Pre-Study Post-Study Difference

MS1 50 56 +6
MS2 57 61 +4
MS3 50 45 =5
MS4 52 58 +6
MS5 41 56 +15
MS6 46 28 -18
MS7 43 55 +12
MS8 55 51 —4
MP9 48 58 +10
MP10 51 54 +3
MP11 60 61 +1
MP12 44 53 +9
MP13 50 50 0
MP14 49 57 +12
Average 49.71 53.07 +3.64
o 5.105 8.102 8.329

Responses to nine questions were scored on a seven point
Likert scale for a maximum score of 63 points.

need to account for the opposing player mark?”, PairBuddy reflected the question by responding,
“What do you think?” While such responses continued the conversation, they did not provide the
direct, human-like answers that participants desired.

Adding Methods or Test Cases: As the driver, PairBuddy wrote both test cases and method
functionality. PairBuddy’s contributions helped participants make progress, and almost all
participants ended up reusing the code given by PairBuddy. This includes MP11, who successfully
adapted PairBuddy’s test case for a vertical win into both horizontal- and diagonal-win test
cases. For some participants, PairBuddy’s code offered a new approach. For instance, when MS1
struggled, PairBuddy’s alternative suggestion provided the insight necessary for MS1 to complete
her vertical win functionality.

Identifying or Fixing Bugs: As both the driver and navigator, PairBuddy helped participants
find and fix bugs, leading to increased code quality. As the navigator, PairBuddy would often point
to locations of errors and provide hints. For MS1, PairBuddy pointed, ‘I think there is a typo on line
107, leading her to immediately fix the mistake. On some occasions, PairBuddy had to fix bugs
itself when participants struggled to understand the error that PairBuddy was referring to. When
MP13 had trouble fixing an identified mistake, PairBuddy took action by asking for permission to
drive and fixing the error while completing the remainder of the method.

When PairBuddy Failed to Answer: Figure 7 shows the instances where PairBuddy was unable
to help participants (red). Either PairBuddy would redirect queries (e.g., “What do you think?”) or
admit its limitations (e.g., “Sorry, I'm not good at logic”). In the main study, PairBuddy was unable
to directly answer user queries 26 out of 114 times (22.8%): a significant decrease from 23 out of 35
times (65.7%) in the pilot study. The increased utility from PairBuddy’s answers (combined with its
increased out-of-turn dialogue) may have contributed to participants’ overall higher interaction.
PairBuddy’s inability to provide help like a human negatively affected some participants’ trust and
confidence in PairBuddy’s abilities. After his queries went unanswered three times, MS2 mentioned
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Table 8. Responses to Interview Questions in the Main Study

Interview Question Yes Neutral No
Did you enjoy working with PairBuddy? 12 1 1
Did PairBuddy help you solve the problem? 13 0 1
Did you learn anything from PairBuddy? 6 3 5
Did you trust PairBuddy? 12 2 0
Did you trust PairBuddy’s navigation? 12 1 1
Did you trust PairBuddy’s navigation over a human? 5 6 3
Did you trust PairBuddy’s driving? 8 5 1
Did you trust PairBuddy’s driving over a human? 4 6
Was PairBuddy’s avatar helpful? 6 6 2
Was PairBuddy’s voice helpful? 13 1 0
Would more text have been helpful? 2 5 7
Do you prefer a casual over a polite agent? 8 4 2
Was PairBuddy too casual (yes) or too polite (no)? 0 14 0
Do you prefer human-like dialogue over robotic? 5 6 3
Do you prefer positive over neutral feedback? 12 2 0
Do you like negative feedback? 6 7 1

PairBuddy’s inaction as a negative aspect in his interviews, “He couldn’t respond to that. At least not
in a way that made sense.” Participants expressed concerns about PairBuddy’s inability to answer
“why” questions or give reasoning behind the code it wrote. After PairBuddy failed to help, MP9
later commented in her interviews, T felt like they [PairBuddy] knew what to do. But they weren’t
always able to communicate to me the why.”

(2) Usability of PairBuddy: In their interviews, participants expressed mostly positive experi-
ences with PairBuddy (Table 8):

Enjoyed/Helped/Learned:

Enjoyed: A vast majority (12/14) of participants enjoyed working with PairBuddy. MP10 was the
most enthusiastic commenting, “Tt is really, really awesome.” PairBuddy’s design surprised many
participants, including MS5 who said, ‘T thought it’s really cool technology. I didn’t know stuff like
that was out there, really. So it’s pretty novel.” The only participant who disliked PairBuddy was
MS6, who mentioned, “Not particularly..There wasn’t as much human interaction.”

Helped: Most participants (13/14) expressed that PairBuddy helped them solve the task. MS8
thought PairBuddy saved him time saying, ‘Tt did, yea. It saved me some time because a lot of that
time would have been spent doing trial and error.” Even MS6, who disliked PairBuddy, indicated
that it helped him solve the problem, “[PairBuddy] helped me understand... how to start approaching
things so that I could start going myself.”

Learned: However, only 6/14 participants said that they learned from PairBuddy, and 3/14 re-
mained neutral. Some participants mentioned that they learned task-related concepts, including
MS6 who commented, ‘T think learning the general structure of what pair programming is.” Others
learned new creative strategies, including MS3 who said, I got it like a new perspective... I guess I
still need to start thinking more outside the box.” On the other hand, 5/14 responded they did not
learn from PairBuddy. Unlike a human, PairBuddy did not explain the code it wrote; MS3 described
that PairBuddy “left it up to [their] interpretation.” PairBuddy’s inability to express its reasoning
may have contributed to lower satisfaction with PairBuddy.
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Future Design: To improve PairBuddy’s design going forward, we will explore more ways to
impart knowledge through code and test case generation to the extent that current research allows
(details in Section 6 (1)).

Trusted: Most (12/14) participants trusted PairBuddy overall (Table 8). Participant’s trust may
have been based on the assumption that, “[PairBuddy] was familiar with what the program should
look like,” as described by MS7.

Navigator and Driver Roles: PairBuddy was trusted as a navigator (12/14) more than as a driver
(8/14).

PairBuddy acted as an active navigator, using soft skills (leadership, motivation, uncertainty,
and social presence) to help increase participants’ confidence and trust. 12/14 participants indi-
cated trust and confidence, as confirmed by MS2’s comment, ‘T thought it [navigation] was it’s
[PairBuddy’s] most useful function.” Similarly, MS6 mentioned, “One thing that was helpful is that
when they made their navigator suggestions, like all of them seemed reasonable.” The motivation
PairBuddy provided was praised by participants like MS7 who explained that, “It was cute that
it said, ‘Good job, and gave positive affirmations.” PairBuddy’s social presence provided a sense
of security toward participants’ work, as evidenced by MS2’s comment, ‘I think that I can keep on
coding and not like, worry about checking it three more times because PairBuddy’s got my back.” MP9
treated PairBuddy as someone to talk to, commenting, ‘T could say things in the same way that I
would to a human.”

PairBuddy acted as an active driver, using technical skills to make contributions, give just-in-
time feedback, and support divergent thinking. Participants appreciated PairBuddy’s divergent
thinking including MS5 who commented, “I’m gonna approach coding in the future... [by] stepping
back and looking for alternate approaches.” Although participants trusted PairBuddy’s code and
just-in-time feedback, they wanted even more assistance. This desire was evidenced by MS3’s sug-
gestion, “Maybe have it give more frequent and more pointed advice on the code itself.” MS7 wished
PairBuddy’s feedback was more in-line with their own ideas, “T think my trust would decrease if
noticed that the suggestions it was giving me weren’t like really aligned with what I was trying to do.”

Preference for PairBuddy vs. Human: Participants had mixed opinions when asked to compare

PairBuddy with a human. Some participants preferred PairBuddy’s collaboration style includ-
ing MS5 who commented, ‘T think I was getting feedback from it akin to what I would from hu-
mans, and in fact, [it] is a little less intrusive than some humans are when it comes to how I'm
writing my code.” However, many participants wished to work with humans to discuss ideas,
since PairBuddy couldn’t explain its own. In fact, participants ignored PairBuddy’s suggestions
a total of 16 times and often chose to pursue their own ideas. MS3 wished PairBuddy pro-
vided explanations as a driver, and described that, “The code that it [PairBuddy] wrote was func-
tional for what it did, but it [PairBuddy] never actually explained what it drove.” Participants
also expected PairBuddy to offer more contextual feedback, as MS6 mentioned, “If I were to
ask a human, they wouldn’t just say T may have made a mistake,’ they would explain what they
did and explain why they were thinking they made a mistake or why they thought it wasn’t a
mistake.”

Future Design: Going forward, we will improve PairBuddy’s ability to generate explanations
and contribute to discussions as much as current technology will allow (details in Section 6 (1)).

Embodiment: The embodiment of PairBuddy’s voice was much appreciated, while the presence
of PairBuddy’s avatar received mixed feelings. Feedback on the presence of the text chat leaned
negative (see Table 8).

Avatar: Most participants preferred (6/14) or were neutral (6/14) towards the presence of an
avatar. Some participants found it natural to interface with an avatar, as described by MS7, “Tt
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feels more natural to talk to it than if there’s no avatar” Similarly, MS4 felt a closer connection to
PairBuddy when personified, saying, “[I felt connected] more so than if it was just a voice... or just
text.” On the other hand, 2/14 participants did not like the avatar. These differing opinions coincide
with mixed empirical evidence for the necessity of avatars for agent embodiment [65, 103, 107, 170,
238, 269].

Voice: Voice was PairBuddy’s most desired feature (13/14 preferred, 0/14 not preferred). The abil-
ity to communicate with PairBuddy verbally was very intuitive for participants. MP14 particularly
enjoyed being able to think out loud, commenting, ‘T liked being able to speak... [so that PairBuddy
can] understand what I'm saying while I'm talking out loud rather than having to type out every-
thing.” MS2 found PairBuddy’s voice to be less distracting when he was deep in thought saying, T
feel like the voice is better when you’re focused on programming.”

Text: The desire for text messages was mixed (2/14 preferred, 7/14 not preferred). Participants
who advocated for text suggested it as an addition, rather than a replacement, of voice communica-
tion. MS5 suggested to display PairBuddy’s messages as text bubbles, explaining, ‘T also could also
see like a little pop up in the corner maybe being helpful” However, most participants thought text
would be distracting, as MP9 described, ‘T wouldn’t want to be context switching between the pro-
gramming and the messages.” These results contradict preferences for text chat in the pilot study,
and may be influenced by the lack of text messages in the main study.

Gender: Participants’ gender preferences were identified by asking whether they preferred the
first or second avatar/voice. Many participants’ reasoning for their choice was not gender-related;
MP13’s reason was ‘just because I started with it,” while MS4’s was because “she sounded a little
less robotic.” While previous research has identified gender preferences and bias toward conversa-
tional agents [33, 50, 236], no useful patterns emerged from our data that evidenced any effect of
PairBuddy’s gender.

Future Design: We will keep the same embodiment design with additional choices for Pair-
Buddy’s gender, ethnicity, and accompanying voice tones.

Tone/Style/Feedback: Participants preferred a casual tone, had mixed opinions of PairBuddy’s
dialogue style, and desired non-neutral feedback (Table 8).

Polite and casual tone: Most participants preferred if PairBuddy used a casual (8/14) over a po-
lite tone (2/14). Since PairBuddy’s tone leaned more casual, all participants were satisfied with
PairBuddy’s tone (14/14). Even participants who preferred polite dialogue liked PairBuddy’s tone
the way it was. In his interview, MP10 commented, T felt it was excellent. It didn’t feel to be like try-
ing to be polite. It didn’t feel to be rude as well.” Similarly, MP14 thought PairBuddy’s tone achieved
a good balance, saying, “And the tone was like, not very formal, which I liked, but I wouldn’t want it
more casual than it is now.”

Human vs. robotic style: Participants had mixed opinions on whether PairBuddy should

be human-like or robotic. 5/14 participants favored human-like dialogue, while 3/14 wished
PairBuddy’s dialogue was more robotic. MS3 idealized a more human PairBuddy explaining,
“Ultimately, I think having it speak as human-like as possible is the goal” MP10 described that
he enjoyed the social aspect of PairBuddy’s human-like dialogue, ‘T enjoy.. my buddies and
working with them... Closer to that, I think more people would like [PairBuddy] because that is how
they work in real world.” Participants who preferred robotic dialogue mentioned that it would
be strange or disturbing if PairBuddy was more human-like, including MS1, who commented,
‘It would be weirder if it [PairBuddy] was more like a human; You kind of expect some level of
not human dialogue.” Similarly, MS5 explained her feelings toward PairBuddy’s style, ‘T think
there’s something a little creepy about something that’s like really close to being human, but
not quite.”
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Positive/Neutral/Negative Feedback: All participants preferred (12/14) or were neutral (2/14) to-

ward PairBuddy’s positive feedback. MS4 voiced her opinion, saying, ‘It [PairBuddy] wasn’t rude
about it. He was very like, Tdon’t know if that’s gonna work,” rather than like, ‘Wow, why’d you do
that?’ I think it made it... a little more trustworthy.” MP10 emphasized the need for exclusively posi-
tive feedback, “The way [humans] think and the way they solve problems requires a lot of motivation
and requires a lot of positive praise, even if they are doing things wrong.”

Participants interpreted negative feedback as identifying mistakes in the code, so most of them
liked (6/14) or were neutral (7/14) towards such responses. This misunderstanding was evidenced
by MS8’s comment, “If there are negative parts to what I'm doing, I'd like to know.”

Future Design: We will provide personalization for PairBuddy’s script across tone, style, and
feedback (details in Section 6 (6)). To avoid the “uncanny valley” effect where realism becomes un-
settling [86], PairBuddy’s movement and stylization will be further considered. Finally, PairBuddy
will continue to give encouragement while still providing informative feedback.

(3) Pair Jelling with PairBuddy as a Programming Partner: Participants’ interactions with
PairBuddy were fewer in the first half of sessions, but increased by the second half. Infrequent
interactions may have been caused by participants’ unfamiliarity with PairBuddy as evidenced
by MS7’s interview, “It was a little bit awkward initially to figure out what things I could say that
it would actually respond to... But I figured that out pretty quickly once we started working more.”
Adjusting to PairBuddy in this way is similar to the pair “jelling” period of human-human pair
programming, where programmers take time to get accustomed to each other’s personality, style,
and abilities [117]. However, the jelling period with PairBuddy often ended when participants
understood its utility as MS5 explained, “Seeing consistent results in regards to... positively affecting
my performance would increase my trust in it [PairBuddy].” Research corroborates this claim, as
potential productivity has shown to be a significant motivator for the utilization of conversation
agents [34].

(4) Unrealistic Assumptions Regarding PairBuddy’s Capabilities: Our participants assumed
that PairBuddy would know all the answers as described by PS1, ‘T assumed it [PairBuddy] knew the
answer.” Similarly, PS11 commented, T went in assuming that... you guys had already tested it quite
a bit, and so the robot was really familiar with what the program should look like.” This assumption
of PairBuddy’s knowledge is untrue since design decisions T1 and T2 provide PairBuddy with only
limited abilities since automatic code and test case generation are topics of ongoing research. In
the future, the inaccurate expectations of PairBuddy’s abilities can be addressed through further
clarifications of PairBuddy’s limitations in its script, “Sorry, I have limited capabilities. Researchers
are working to make me smart enough to answer all your questions. Follow the link I sent in the text
chat to read the current research on automated code and test case generation.” However, PS3 under-
stood PairBuddy’s limitations, especially for more complicated tasks that require more discussions,
“T guess it depends on the complexity and the nuance of the situation and the [user] stories that I need
to take care of, so for simpler problems or more straightforward tasks, I'd say that prefer PairBuddy.
But for more complex scenarios, I would rather have a human that can provide more... pointed and

specific feedback and advice.”

(5) Helpful as a Non-Judgemental Partner and When Working Solo: PairBuddy helped par-
ticipants by acting as a non-judgemental partner. PS5 explained, ‘T think the big thing is sometimes
as a programmer, it’s embarrassing when you make mistakes, so you’re stuck on something around
your colleagues, but PairBuddy I don’t think judges me.” PS2 described the lack of pressure to per-
form, ‘I feel like whenever I program alone, there’s less pressure to like write something that’s correct
the first time... So I feel like in the end, it [PairBuddy] helped me write better code.”

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.



Designing PairBuddy—A Conversational Agent for Pair Programming 34:29

Table 9. Implementation Details of the Wizard in the Main Study and PairBuddy in the Future

ID: Design Decision Wizard PairBuddy Implementation using

Interface

F1: Avatar Facerig software Same or alternative software

F2: Gender Facerig’s genders and Google Same, consider race/accent and use GenderMag
Text-to-Speech voices [40, 87, 108, 250]

F3: Voice Google Text-to-Speech Same

F4: Text Chat Skype, MS Teams, Discord, etc. Same or consider IDE integration

Interactions

11: Direct Driving Saros collaboration plugin for Plugins for other IDEs and languages
Eclipse IDE

12: Adapted Skill Intuitive contribution detection  Discrete progress detection (e.g., # lines of code)

13: Timed Feedback Rule based (refer Section 5.2) Same or reinforcement learning

14: Typing Speed Copy/paste small sections Same

I5: Redirect Suggestions ~ Follow-up question templates Same or reinforcement learning

Soft Skills

S1: Greeting Dialogue templates Same

S2: Motivation Dialogue templates Same and emotion detection algorithm

S3: I vs. We Dialogue template wording Same

S4: Uncertain/Verification Certainty based on correctness of Certainty based on confidence of algorithms
contribution powering code, test cases, and feedback

S5: Social Presence Active listening via wizard Active listening via ML monitoring microphone

Technical Skills

T1: Write/Feedback Tests  Diff from past solution dataset Same and generate tests from comments or code

coverage. Further research needed.
T2: Write/Feedback Code Diff from past solution dataset Same and language models such as GPT-3. Further
research needed.

T3: Guidance Based on passing test cases or Same, but further research for matching test
requirement completion cases/code to requirements

T4: Creativity Support Idea Garden prompts or provide  Same, limited support for Idea and Develop
code structure creativity stages [134, 200]

T5: Feature Location Intuition Static and dynamic techniques. Further research

needed.
Té6: Unnecessary Code Diff from past solution dataset Dead code via data flow diagrams
T7: Missing Code Diff from past solution dataset As supported by T1-T6 design decisions

The difficulty of implementing each design decision includes: Difficult (peach), Medium (gray), and Easy (white).

(6) High Rate of Role Exchange: Both iterations of PairBuddy shared a similar rate of role
exchange. When normalized over 40 minute sessions, role exchange occurred on average 6.9 and
9.0 times over pilot and main studies, respectively. This difference is not unexpected; PairBuddy
interacted with participants far more in the main study than the pilot study (refer Figure 3 vs.
Figure 7). However, in a comparable human-human pair programming study [208], role exchange
averaged 6.0 over 40 minute studies (3.0 fewer than the main study). Likely, this is due to humans’
superior communication skills; human programmers can discuss ideas directly, while PairBuddy
relied on code contributions as the driver to communicate ideas.

6 DISCUSSIONS AND FUTURE WORK

Our results indicate that PairBuddy was an effective pair programming partner and was enjoyed
by our study participants. Table 9 compares the wizard’s implementation of PairBuddy to the
potential future implementation of PairBuddy. A majority of our design decisions for the wizard
are supported by state-of-the-art research; however, the following describes PairBuddy’s future
design space and the associated challenges:

(1) Supporting Method-level Code and Test Case Generation: Designing a conversational
agent for the programming domain is challenging. Unlike other conversational agents, PairBuddy
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must uniquely support all stages of software development (i.e., clarifying requirements, discussing
ideas, designing solutions, and implementing code). Support for each phase requires different
knowledge and a different approach.

Moving forward, we need to research automated test case, code, and explainable feedback gen-
eration for PairBuddy. Currently, language models such as GPT-3 [37] can be trained from GitHub
[37,95-97] to generate code, while automated test cases can be generated by tools such as Randoop
[183] and EvoSuite [81, 82, 203]. However, these tools must be adapted in order for PairBuddy to
explain the decisions made and give appropriate feedback. To directly answer the “why” questions
that programmers ask, Ko et al. [129, 130] created the automated tool Whyline for both Alice [55]
and Java, but similar research must be conducted in other programming languages and domains
to allow agents to more directly support all stages of software development.

(2) Supporting Diverse Problem Solving Strategies: An observed advantage of PairBuddy be-
tween the pilot and main studies was the increased consideration of humans’ unique problem
solving strategies, as evidenced by MS5’s comment, “I’'m gonna approach coding in the future... [by]
stepping back and looking for alternate approaches.” This suggests that integrating problem-solving
strategies in intelligent programming environments can help instill effective programming prac-
tices, especially for students. In the future, programming environments should integrate problem-
solving strategies such as working backwards, divergent thinking, divide and conquer, analogy,
generalization, and “sleep on it” [142, 187, 256] enable programmers to make progress on their
tasks. Previous research from Idea Garden [115, 116] shows that these problem-solving strategies
can be implemented by presenting suggestions via language-independent templates, which are
informed by language-dependent information about user tasks and progress.

(3) Supporting Learning Preferences: Solo or Collaboration: Research has shown that collab-
orative learning is more effective than traditional methods (such as lectures) since collaboration
allows students to build their own mental models based on the discussion and knowledge transfer
that occurs during the problem-solving process [16]. But still, many of our participants preferred
to work solo. In the pilot study, some participants only used PairBuddy as a resource for code ex-
amples, while in the main study, a few preferred that PairBuddy only observe and identify errors.
Still, others may prefer full collaboration to enjoy the benefits of pair programming. To support
the diversity of learning preferences among programmers (solo vs. collaborative), we will provide
different options for PairBuddy’s behavior including “Navigator Only,” “Driver Only,” or “Full Pair
Programmer” modes.

PairBuddy could even support a “Human-Human Mode” for those who prefer human partners.
Utilizing many of our current decisions, PairBuddy can act as a group facilitator agent by listening
to human conversation and providing feedback [14, 38, 67, 92, 146, 188, 189, 200, 207, 249, 253].
For pair programming, group facilitator agents could help equalize member participation, clarify
processes, resolve conflict, encourage idea development [189], or teach various social skill (e.g.,
active listening [9]).

(4) Implementing PairBuddy as a Task-Oriented vs. Non-Task-Oriented Agent: Pair-
Buddy’s design needs to fall between the two common types of conversational agents: task-
oriented and non-task-oriented. Task-oriented agents perform a variety of tasks and services for
users (e.g., Amazon’s Alexa [243]) and provide concise, direct answers to user queries based on
knowledge sources (e.g., Bing QA [254]). Non-task-oriented agents facilitate natural interaction
between humans and electronic devices (e.g., Meena [11]). For pair programming, a task-oriented
agent can assist user queries, while a non-task-oriented agent can engage in rapport making
and off-topic dialogue. Research [51] has even identified methods to integrate both task- and
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non-task-oriented agents together. In our human-agent study, we found that 89.28% (3967/4443) of
programmers’ utterances were task-oriented. The abundance of task-oriented dialogue suggests
that as a first step, it may be advantageous to implement PairBuddy as a task-oriented conver-
sational agent that utilizes a pipeline architecture for natural language understanding, dialogue
state tracking, dialogue policy, and natural language generation [85]. Regardless, we must collect
alarge enough dataset of pair programming dialogue to train machine learning models to generate
automated responses to programmers’ queries.

Machine learning algorithms depend upon the quality of the data collected. Specifically, it is dif-
ficult to gather unbiased (e.g., gender, culture) and diverse (e.g., different programming languages
and tasks) data. For pair programming tasks, the stylistic differences between human-human and
human-agent dialogue have implications toward the choice of training dataset [200]. Furthermore,
if the quantity or quality of training data is insufficient, PairBuddy may make inaccurate decisions
that would likely frustrate programmers and negatively impact user experience.

As a first step, Robe and Kuttal [200] investigated the feasibility of natural language under-
standing algorithms on human-human pair programming conversations. They achieved a 57.9%
classification accuracy when using shallow machine learning algorithms, motivating the explo-
ration of state-of-the-art deep-learning language models (e.g., BERT [69], GPT-3 [37], and XLNet
[267]).

(5) Designing for Varied Expertise of Programmers: Our main study explored the similarities
and differences between expert (professional) and novice (student) programmers. However, self-
efficacy scores and interview questions revealed only marginal differences. For instance, students
considered PairBuddy’s feelings (5/8) much more than professionals (1/6), suggesting that profes-
sionals used PairBuddy more as a tool rather than a partner. However, participants’ familiarity
in the applicable domain (Java) may have mattered more, as two professionals (MP13 and MP14)
had less experience than many students. Particularly, our most experienced professional (MP10)
uniquely ignored PairBuddy’s requests, opposed negative feedback, and excelled at the task. In re-
gard to trusting PairBuddy, there was a slight discrepancy: 3/6 professionals vs. 5/8 students. While
our interviews were not conclusive, individuals with particularly low or high experience with a
domain tend to trust computer answers more [49, 266]. Hence, future work must investigate the
range of programming experience within both educational and professional settings. Initially, re-
search should focus on educational applications since classroom assignments can be designed for
a specific task or programming language.

(6) Manifesting Anthropomorphic Features of a Programmer: Although we strive to inte-
grate anthropomorphic features into PairBuddy, we received mixed reactions from our partici-
pants. While PairBuddy’s voice felt natural, its avatar was less impactful, and many participants
even minimized the avatar window. Preferences toward a more robotic or a more human-like Pair-
Buddy were very mixed as well. For the past 20 years, researchers have argued in favor or against
including anthropomorphic features in intelligent agents [88, 127]. Therefore, it is still an open-
ended question whether PairBuddy should use features such as embodiment or emotional intel-
ligence. In future studies, we will investigate whether anthropomorphic features are appropriate
for PairBuddy.

Preferences toward PairBuddy’s conversational style varied across many dimensions in our in-
terviews (e.g., human-like vs. robotic, polite vs. casual). Many of these characteristics mirror the
high-consideration/high-involvement paradigm [190, 191]. High-consideration is characterized by
slower turn-taking, non-imposing speech, longer pauses between turns, and avoiding interrup-
tions (i.e., polite, robotic). Conversely, high-involvement entails a faster rate of speech, more turn-
taking, few inter-turn pauses, and frequent initiations of simultaneous speech (i.e., casual, human).
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Table 10. How PairBuddy’s Design Decisions Influenced its
Conversational Style

High-Consideration High-Involvement
Driver  S4: Uncertain/Verification I5: Redirect Suggestions
Both F4: Text Chat F3: Voice
I3: Timed Feedback S1: Greeting
. S2: Motivation
Navigator

S5: Social Presence

In the pilot study, many of PairBuddy’s design decisions were high-consideration. However, based
on the lessons learned, PairBuddy’s conversational style largely became high-involvement in the
main study to more accurately emulate human pair programming behavior. Table 10 lists how
PairBuddy’s design decisions influenced its conversational style in different roles. Participants’
opinions toward PairBuddy’s conversational style often contradicted one another, hindering the
design of a universally accessible PairBuddy. To accommodate individual differences, PairBuddy’s
future design should be malleable, allowing users to tune PairBuddy’s parameters to their liking
[20]. One possible solution is to make PairBuddy’s script interchangeable. For example, a high-
consideration version of PairBuddy’s script might say, “I'm 80% certain that there is an error on line
45, while a high-involvement version would say, ‘T think we might have made a mistake on line
45.” However, interchangeable scripts only go so far, so in the future, we will explore additional
avenues to provide a personalized PairBuddy experience.

Furthermore, dialogues are often multi-modal and involve both verbal and non-verbal inputs
[30, 62, 68, 271]. Detecting these communication cues from users may help agents build rapport
and increase accuracy, engagement, and empathy with their human partners. The lack of non-
verbal cues may limit an agent’s human-like feel and affect its usability. Therefore, in the future,
each dialogue template of PairBuddy’s script will be accompanied by non-verbal meta-data (e.g.,
avatar facial expressions, Ul events) to facilitate multi-modal communication and build rapport
with its partners. Additionally, non-verbal cues can help determine a programmer’s interruptibil-
ity. While supported in social settings [79], further work must adapt interruptabilty research for
programmers and further synchronize its interruptions with the timing of PairBuddy’s feedback
(design decision I3).

7 CONCLUSION

In this research, we explore the uncharted territory of interactive pair programming conversational
agents through the user-centered prototyping of our agent—PairBuddy. This work makes several
contributions, including ones that generalize beyond pair programming:

— Anthropomorphic design space of PairBuddy arose from integrating diverse interface and
interaction mechanisms (embodiment, dialogue styles, and agent actions) and programmer
characteristics (technical skills and soft skills). These design decisions stem from an inte-
gration of novel concepts from our extensive literature review of various domains such as
human-computer interaction, software engineering, artificial intelligence, psychology, and
education. These design decisions can be utilized for advancing programmers’ interactions
in ITS and interactive educational platforms.

— Our focused design, evaluation, and refinement cycles through the use of two Wizard of Oz
studies incrementally evolved PairBuddy’s functionality to realize a robust conversational
agent for pair programming. This methodological approach can drive the design for
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programming conversational agents in other domains of programming including educating
children, end-user programmers, and people with disabilities.

— The wizard’s script and study materials for both pilot [5] and main studies [4] are available
online for reproducibility by researchers and practitioners.

Our study results showed programmers’ positive attitudes towards using PairBuddy. The results
confirm the feasibility of PairBuddy as a programming partner that can significantly advance
programmer-computer interactions. PairBuddy has significant potential to change how program-
ming is learned and how programming is done. In the words of one of our participants with 20+
years of experience, I think what I learned out of this [study] is that [PairBuddy has] a lot of potential
and... it excites me a lot where technology is going.”
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