Designing PairBuddy—A Conversational Agent for Pair
Programming

PETER ROBE and SANDEEP KAUR KUTTAL, University of Tulsa

From automated customer support to virtual assistants, conversational agents have transformed everyday
interactions, yet despite phenomenal progress, no agent exists for programming tasks. To understand the
design space of such an agent, we prototyped PairBuddy—an interactive pair programming partner—based
on research from conversational agents, software engineering, education, human-robot interactions, psychol-
ogy, and artificial intelligence. We iterated PairBuddy’s design using a series of Wizard-of-Oz studies. Our
pilot study of six programmers showed promising results and provided insights toward PairBuddy’s inter-
face design. Our second study of 14 programmers was positively praised across all skill levels. PairBuddy’s
active application of soft skills—adaptability, motivation, and social presence—as a navigator increased partici-
pants’ confidence and trust, while its technical skills—code contributions, just-in-time feedback, and creativity
support—as a driver helped participants realize their own solutions. PairBuddy takes the first step towards
an Alexa-like programming partner.

CCS Concepts: « Human-Centered Computing — User studies;

Additional Key Words and Phrases: Conversational agents, pair programming, user centered design, Wizard
of Oz

ACM Reference format:

Peter Robe and Sandeep Kaur Kuttal. 2022. Designing PairBuddy—A Conversational Agent for Pair Program-
ming. ACM Trans. Comput.-Hum. Interact. 29, 4, Article 34 (May 2022), 44 pages.
https://doi.org/10.1145/3498326

1 INTRODUCTION

Conversational agents allow humans to use natural language to directly interface with computer
agents such as virtual assistants (e.g., Apple’s Siri [244], Google Assistant [245], and Amazon’s
Alexa [243]), customer support agents, or individual/social chatbots (e.g., Mitsuku [222], Clever-
bot [221], and Xiaolce [224]). Conversational agents mimic human conversations, establish more
personal connections, and can even increase accessibility for people with physical disabilities or
language barriers. For businesses, conversational agents personalize customer experience while

This material is based upon work supported by the National Science Foundation (CAREER) under award number 2046205.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the view of the NSF. We would like to thank David Magar, Jarow Myers, Sam Gurka, Katherine Kwasny,
and Bali Ong for help with the studies; David Piorkowski and Rachel Bellamy for their feedback; and Courtney Spivey for
editing.

Authors’ address: P. Robe and S. K. Kuttal, University of Tulsa, Tulsa, 74104 Oklahoma; emails: {pjr144, sandeep-
kuttal}@utulsa.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1073-0516/2022/05-ART34 $15.00

https://doi.org/10.1145/3498326

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

https://orcid.org/0000-0003-3748-6174
https://doi.org/10.1145/3498326
mailto:permissions@acm.org
https://doi.org/10.1145/3498326

34:2 P. Robe and S. K. Kuttal

bringing down operational costs. Today, a full two-thirds of the most popular websites use con-
versational agents to interact with users and address their needs [220]. Despite the phenomenal
penetration of conversational agents into domains ranging from business to personal use and en-
tertainment, no conversational agents exist for computer programming tasks.

Extensive research aims to increase programming efficiency for both novice and professional
programmers via automated tools, including debugging support [7, 8], intelligent interactive de-
velopment environments (IDEs), and test case generation [74, 196]. In a parallel research field,
Intelligent Tutoring Systems (ITS) aim to simulate a human teacher by establishing a tutor-
tutee relationship between novice programmers (tutee) and computer agents (tutor) [56, 75, 239].
Within the domain of ITS systems, peer-learning agents directly collaborate with learners, often by
frequently switching roles between tutor and tutee [47, 99, 195, 216, 237, 264]. Inspired from these
two research domains, we aim to increase programmers’ efficiency and facilitate learning; however,
we further leverage the anthropomorphic interactions of conversational agents to directly collab-
orate on programming tasks, facilitate learning-by-doing, engage and motivate programmers, and
increase self-efficacy.

In this article, we take the first step toward the creation of “PairBuddy”—an anthropomorphic
conversational agent and interactive programming partner. PairBuddy serves to simulate a human
during “pair programming,” a quintessential and well-established collaboration technique used in
education and the industry.

In pair programming, two programmers work collaboratively on the same design, algorithm,
code, or test [185, 259, 260]. Programmers switch between the roles of driver (writing code)
and navigator (making suggestions). Pair programming provides a variety of benefits, includ-
ing increased code quality, productivity, creativity, knowledge management, and self-efficacy
[27, 44, 52, 61, 66, 121, 159, 160, 185, 201, 206, 255, 259-261, 277]. It even has the potential to
reduce gender prejudice by encouraging women to pursue computer science [255]. Pair program-
ming increases programmers’ contemporary skills, understanding of fundamental concepts, and
intellectual pursuits [44, 159, 201, 206, 255]. However, pair programming has certain limitations in-
cluding scheduling difficulties, collocating pairs, student resistance to pairing, and the dependency
on a partner’s programming abilities [84, 101, 181, 258].

1.1 Motivational Scenario

To motivate the design of PairBuddy and inform its abilities, we provide the following scenario:

Tiana is a junior CS student who enjoys pair programming, but due to COVID-19, she has to
return home. Given the physical and time-zone differences, scheduling pair programming sessions
is difficult. Additionally, all of her potential partners either like to work solo, have incompatible
cognitive styles, criticize without providing solutions (e.g., “We definitely cannot finish this”), are
overly competitive, take credit for Tiana’s work, or have other problematic habits. As a result, their
sessions with Tiana are stressful and unproductive, resulting in the loss of pair programming’s
benefits. Fortunately, Tiana can use PairBuddy (Figure 1).

Tiana can collaborate with PairBuddy, switching between the roles of driver and navigator to
create test cases, write code, and refactor code. Additionally, PairBuddy: (1) is unbiased toward
Tiana’s gender, ethnicity, and socio-economic status; (2) motivates and encourages her hard work;
(3) gives non-judgemental feedback, allowing Tiana to disagree with or ignore PairBuddy without
the risk of hurt feelings; (4) provides a sense of security through its active listening and engage-
ment through both voice and text; (5) encourages and instills healthy problem-solving and creative
styles; and (6) avoids dominating power dynamics by balancing pair programming roles. For these
reasons and more, Tiana prefers PairBuddy as her programming partner to complete difficult as-
signments comfortably and effectively.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

Designing PairBuddy—A Conversational Agent for Pair Programming 34:3

1 think | have an idea if you'd
like. °

This is why | hate coding!

‘ Don't give up, you are almost
there! ‘

Sure, go ahead.

Let me see. | think | can add
something on line 76. ‘

Where is the tietestcode?
Does my code make any

sense to you? ‘
Oh ok, | think | see what
‘ you're doing.

It's on line 37 of
TicTacToeGameTest java

(a) PairBuddy as a Navigator. (b) PairBuddy as a Driver.
Fig. 1. Tiana interacting with PairBuddy.

1.2 Feasibility of PairBuddy

We have already established the feasibility of PairBuddy in our previous research, “Trade-offs for
Substituting a Human with an Agent in a Pair Programming Context: The Good, the Bad, and
the Ugly” [208]. Using the final iteration of PairBuddy (discussed in Section 5.1), we investigated
the trade-offs of substituting an agent in a pair programming context, specifically analyzing what
aspects of pair programming were gained, lost, and transformed. We compared and contrasted
transcripts, code quality, productivity, and survey results of participants’ self-efficacy and pair
programming experience between nine human-human pairs and fourteen human-PairBuddy pairs
(using a Wizard of Oz simulation). The results were triangulated with interviews. Upon compar-
ing human-human and human-PairBuddy, we found: (1) no significant differences in code quality,
productivity, and self-efficacy before and after the programming task (Table 1); (2) PairBuddy was
unable to explain the logic behind its code or participate in idea discussion, while human partners
could easily communicate together conceptually; (3) PairBuddy’s instructions were often trusted
without question—in contrast with human partners—in one case, a participant responded, ‘T'm
going to blindly believe you;” (4) human partners interrupted PairBuddy when they were stuck,
were unsure about their problems or wanted clarification, while human-human pairs were more
hesitant and asked follow-up questions to understand, clarify, or verify their partners’ decisions;
(5) human partners showed the same humility towards PairBuddy as they would with other hu-
mans by attributing success to the group through words like “we” and taking personal responsibil-
ity for mistakes using “I” or “me;” and (6) humans freely accepted or dismissed PairBuddy’s ideas
(as in [135]), yet were more hesitant to dismiss ideas from another human.

To supplement our previous research [208], the present article describes our iterative, user-
centered design methodology used to build PairBuddy. We established PairBuddy’s anthropomor-
phic design space through the integration of novel concepts from an extensive literature review of
various domains such as human-computer interaction, software engineering, artificial intelligence,
psychology, and education. PairBuddy’s focused design evolved through a series of empirical Wiz-
ard of Oz studies to realize a robust pair programming conversational agent. Our methodological
approach and design space can be utilized by researchers and practitioners to advance program-
mers’ interactions in other domains such as ITS and interactive educational platforms.

1.3 PairBuddys’ Design Challenges
Since no pair programming conversational agents exist, the challenges of creating one include:

(1) An Unknown Design — Interface and Interactions: PairBuddy’s interface and interac-
tion design must be explored due to the unique properties of pair programming dialogue

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

34:4 P. Robe and S. K. Kuttal

Table 1. Performance Metrics from [208] for Human-Human and Human-PairBuddy Studies

Human-Human Studies || P-Value || Human-PairBuddy Studies

Samples Average (a <0.5) |['Samples Average
Code Quality 9 89.33 0.9144 14 98.36
Productivity 9 50.44 0.2191 14 66.00
Self-Efficacy 18 3.83 0.1093 14 3.36

[200]. To support programmer-computer interaction, PairBuddy must imitate an effective
programmer by integrating a multitude of technical and soft skills, including diverse
problem-solving and creative strategies. Therefore, PairBuddy’s design must be informed
from multi-disciplinary research.

(2) A Specific Domain — Software Development: PairBuddy needs to be created for
the specific domain of software development, which remains relatively unexplored by
conversational agent research. Developing software is unique, as it demands the synthesis
of requirements; the generation and development of solutions; and the implementation,
testing, and refactoring of code. Therefore, pre-existing conversational agents cannot be
directly modified for programming, and instead, a new paradigm must emerge to support
programmer collaboration with an agent. This shift in approach must be informed from
software engineering and education. Specifically, we consider literature on ITS to integrate
the programming and educational aspects of pair programming.

(3) A Specific Userbase — Programmers: Programmers are a unique population that have
yet to be studied in the realm of conversational agents. From students to professionals, pro-
grammers’ experiences are diverse; some may use agents to learn programming concepts,
while others may develop those same agents. To design PairBuddy for both populations, we
must conduct user studies to fully understand the breadth of expectations, preferences, and
needs of programmers.

These challenges necessitate a review of existing research on human-computer interactions,
human-robotic interactions, software engineering, conversational agents, artificial intelligence,
ITS, education, psychology, cognitive science, and management science to inform the design of
PairBuddy.

1.4 Outline

The remainder of this article is organized as follows: Section 2 compares our research to related
work on automated support in programming environments, I'TS, and mixed-initiative interfaces;
gaps in existing research motivate the necessity of designing a pair programming conversational
agent. Section 3 provides background on the Wizard of Oz method. Section 4 details the first itera-
tion of PairBuddy’s design space, evaluates the design in a pilot study, and reports lessons learned.
Section 5 describes the second iteration of PairBuddy’s design, informed from the pilot study, and
evaluated in a larger main study. Section 6 discusses the design space and associated challenges
for future work. Section 7 summarizes the contributions of our work.

2 RELATED RESEARCH

While no research specifically addresses programming conversational agents, a variety of research
exists for automated programming support; notably, automated debugging tools embedded in IDEs
aid software development tasks and ITS facilitate learning with novice programmers. Furthermore,
we contextualize PairBuddy within research on mixed-initiative interfaces.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

Designing PairBuddy—A Conversational Agent for Pair Programming 34:5

2.1 Automated Support in Programming Environments

Automated debugging support is the most commonly integrated form of programming help within
existing IDEs. Additionally, research has explored the integration of intelligent agents directly
within IDEs to provide advanced feedback.

2.1.1 Automated Debugging. Programmers often leverage tools present in many existing IDEs
to detect simple syntax errors in real-time, automate repetitive tasks, and debug code [7, 8]. These
tools are popular across almost any programming language as they help minimize simple mistakes
and let programmers focus on the bigger picture. Past research has even identified techniques that
automatically test a range of function parameters to give automated feedback on code correctness
[257].

2.1.2 Intelligent IDE Assistants. Intelligent IDE assistants provide feedback to programmers via
interfaces embedded within IDEs. For example, PETCHA helps teachers author assignments with
test cases and feedback to provide students helpful hints when their code fails [192]. For paral-
lel programming, PAPA utilizes IBM Watson services to provide a dialogue-based chat window
integrated within an existing IDE [165]. Specifically, PAPA helps answer common parallel pro-
gramming questions identified in research and will suggest relevant research papers for other
queries.

Rather than replace existing automated tools, we can utilize their functionality to support Pair-
Buddy’s interactions with programmers. We aim to advance programming help by leveraging
a new form of interaction—conversational agents—which in turn, can help elevate the under-
utilization of refactoring tools [171]. PairBuddy’s main focus is not the generation of code or feed-
back itself, but rather, its unique ability to interface this information in a way that promotes the
productivity, code quality, and self-efficacy of programmers; particularly by leveraging humans’
unique creative abilities.

2.2 Intelligent Tutoring Systems

ITS provide immediate and personalized feedback to individual learners in the absence of a human
teacher [56, 75, 110, 123, 186, 239]. These computer-assisted learning systems model the cognitive
and emotional state of learners to adapt and individualize instruction [42]. ITSs are known to in-
crease student performance well beyond conventional classes [131, 153, 174, 240], and in some
cases, outperform human tutoring [230, 231, 239]. They have been developed to teach program-
ming (e.g., C++, Java, Lisp, Prolog), database systems, data structures, SQL queries, and other in-
troductory computer science topics. ITSs teach via dynamic lesson plans—simple questions includ-
ing multiple choice, true/false or short answer—or worked solutions from instructional resources
[56, 140].

2.2.1 ITS Systems with Dialogue-Based Interactions. Al-powered tutoring approaches that sup-
port dialogue-based interactions function similarly to PairBuddy [141, 274], including examples
such as ProPL and HabiPro. ProPL [138] is an agent that interacts with students via natural lan-
guage to develop pseudocode solutions for a given problem. ProPL follows a hierarchical dialogue
tree to guide participants toward the solution by asking thought-provoking questions and resolv-
ing students’ misconceptions. The agent’s dialogue is curated by a human expert (i.e., questions
and expected answers) and tailored to a specific programming task. HabiPro [248] simulates a
student co-learner in a collaborative learning environment and guides group members to answer
programming questions (e.g., identify code mistakes). HabiPro models student behavior and guides
sessions via natural language to encourage passive students, avoid off-topic conversation, give
ideas, provide examples, and generally promote effective learning.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

34:6 P. Robe and S. K. Kuttal

2.2.2 Peer Learning Agents. Rather than replace human tutors, peer-learning agents act as
equals in collaborative tasks, often by frequently switching between roles of tutor and tutee
[47, 99, 195, 216, 237, 264]. Han et al. [99] correlates the tutor-tutee relationship to that of the
driver and navigator roles in pair programming; however, in their work, roles were limited to
generating flowcharts as the navigator and implementing them as the driver.

Our research is motivated by ITSs regarding promoting student learning, but we are very
different as (1) we use a peer-learning approach rather than strictly defined tutor/tutee roles,
(2) PairBuddy interacts with programmers as an anthropomorphic conversational agent, (3) inter-
actions are more comparable to human-human pair programming (e.g., focus on building rapport),
(4) we aim to increase the code quality, productivity, and self-efficacy of programmers by utilizing
pair programming, and (5) our design targets both novice (student) and professional programmers.

2.3 Mixed Initiative Interfaces

Mixed-initiative interfaces are broadly defined as an interface where a computer agent shares task
load with a user [63, 179]. Mixed-initiative interfaces help foster creativity when producing arti-
facts [268] and have been used in video game level design [219], robotics [13, 102], visual analytics
[154], and GUI-based task learning [145]. As a mixed-initiative interface, PairBuddy aims to supple-
ment, not replace programmers’ creativity by sharing task load and negotiating pair programming
roles.

3 WIZARD OF OZ METHOD

Due to the limited available research on pair programming conversational agents, we used an
iterative approach to understand and design PairBuddy through a series of two Wizard of Oz
studies with programmers.

In a Wizard of Oz study, participants interact with an agent whose actions are secretly controlled
by a human “wizard” Wizard of Oz is a rapid-prototyping method that examines interfaces that
are technically demanding or are yet to be created [93]. It helps develop user-friendly interfaces
that promote natural language dialogue, consider the unique qualities of human-agent interaction
as distinct from normal human discourse [59], and study user interactions with conversational
agents [29, 32, 252]. Wizard of Oz efficiently creates the functionality of a product before it is re-
fined via testing [137, 262]. In the words of human-computer interaction expert Jef Raskin, “Once
the product’s task is known, design the interface first; then implement to the interface design.” Ac-
cordingly, we used the Wizard of Oz paradigm to simulate PairBuddy’s interface and interactions
as we explored the design space of pair programming conversational agents. For the remainder of
this article, we often use the term “PairBuddy” to refer to “the wizard’s simulation of PairBuddy.”

Choosing Wizard of Oz studies helps us to investigate the design space of PairBuddy before
starting the implementation, as creating a fully functional conversational agent requires: (1) un-
derstanding the domain of pair programming conversational agents, (2) collecting pair program-
ming data used to train an agent’s underlying machine learning models, and (3) designing and
implementing a custom conversational agent architecture including the application of multiple
machine-learning algorithms [85]. Additionally, platforms for developing conversational agents
such as IBM Watson Assistant [246], SAP Conversational AI [223], and Oracle Digital Assistant
[247] cannot be used due to their focus on simple/basic enterprise problems such as answering
questions and solving tasks based on web or enterprise data.

Our user-centered approach involved the exploration and evaluation of PairBuddy’s design us-
ing two iterations of Wizard of Oz studies with programmers. For the first iteration, we conducted
an exploratory pilot study with six university students focused on the initial design of PairBuddy’s
interface and interactions. For the second iteration, a larger study of fourteen university students

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

Designing PairBuddy—A Conversational Agent for Pair Programming 34:7

Table 2. Design Decisions Evaluated in the Pilot Study

ID Design Decision Description Example Sources
Interface

F1 Avatar Embodied by a dynamic 3D avatar [25, 28, 43, 151, 229, 270]
F2 Gender Gender can be toggled [33, 50, 236]

F3 Voice Communicate via voice synthesis [28, 41, 242]

F4 Text Chat Communicate via shared text chat

Interaction

11 Indirect Driving Send code via text chat [10, 19, 263]

12 Adapted Skill Balance contributions via frequency [19, 56, 75, 239, 248]
Soft Skills

S1 Greeting Introduce itself [120]

S2 Motivation Encourage, recognize, comfort, commend [18, 45, 64, 78]
Technical Skills

T1 Write/Feedback Tests Generate test cases & feedback [17, 74, 161, 163, 168, 196]
T2 Write Code Examples from online repositories [124, 125,177, 193]
T3 Guidance Provide direction via user stories

and professional programmers evaluated a variety of design decisions informed from the pilot
study and existing research.

4 PILOT STUDY (ITERATION 1)

The pilot study provided valuable feedback from programmers for the initial design of PairBuddy.
The insights gathered from the pilot study served as a first step toward the exploration of the design
space of pair programming conversational agents as well as a starting point for future iterations.

4.1 PairBuddy Design (Iteration 1)

PairBuddy’s initial iteration primarily served to study its interface and interaction design, so we
focused our research review on relevant literature including human-robotic interactions, embod-
iment, software engineering, management science, ITS, education, cognitive science, psychology,
and gender-bias in agent design. Table 2 lists the design decisions made for PairBuddy in the pilot
study, and are as follows:

Design: Creating the Interface and Interactions
PairBuddy design included anthropomorphic characteristics in its interface and interactions.

(A) Interface - Embodiment via Avatar, Gender, Voice, and Text: PairBuddy communicated
with participants by means of avatar, voice, and text to enhance human-computer interaction.
The avatar was incorporated since avatars make interfaces more human [229] and improve
understanding, engagement, and trust in novice programmers [151, 229, 270]. Furthermore,
embodiment through avatars can facilitate non-verbal communication in order [25, 43] to help
maintain effective pair programming relationships. Agents with avatars are given more person-
ality attributes than those without them [229], but at the cost of heightened expectations [151].
They are particularly important to establishing first impressions [28]. Therefore, we formulated
design decision F1: PairBuddy will be embodied by a 3D avatar.

The inevitable gendered attributes spawned from conversational agent embodiment are the tar-
get of similar gender-biases present in the real world. Particularly, female conversational agents are
more often the target of negative stereotypes, sexual attention, and profanities than male agents

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

34:8 P. Robe and S. K. Kuttal

[33]. However, they are also more likely to be forgiven, even if satisfaction ultimately does not
change [236]. Additionally, female programmers have voiced concerns about pair programming
with male partners [50, 133] due to the expectation of being stereotyped for their gender. To an-
alyze potential gender preferences and bias, we formulated design decision F2: Participants can
toggle the agent between the two most common genders. While research has looked at gender
bias within conversational agents and pair programming separately, we combine the analysis by
evaluating participants’ gender preferences for a pair programming conversational agent.

The choice between voice and text for an agent’s interface depends on the use case. While text-

only interfaces are less intrusive (e.g., website support), research [28, 41] has shown that voice
interfaces increase users’ trust in conversational agents. Additionally, cognitive science research
has demonstrated that simultaneously sharing the same sensory modality for both short-term
memory and active-use negatively affects response and accuracy rates under high-load conditions
[242]. These findings suggests that using audio responses can help reduce programmers’ cognitive
load since it does not share the same sensory modality as reading code. Additionally, the absence
of a text chat saves additional screen space and reduces context switching between applications.
For our design decisions F3 and F4, we explored input modality by supporting both methods of
communication, allowing messages to arrive to/from the agent via both voice and text.
(B) Interactions — Indirect Driving, Timed Feedback, and Adapted Skill: In effective pair pro-
gramming, both partners directly contribute to the code as drivers. However, if PairBuddy were
to make a mistake and overwrite code, it would be difficult for participants to undo PairBuddy’s
actions. Since a prominent principle of HCI is that users should remain in control of their work
[10, 19, 263], we formulated design decision I1: As a driver, PairBuddy will make indirect contri-
butions through text messages so that participants can reference and modify the code themselves.
In this way, the distinction between pair programming roles is less pronounced; control over the
roles is not negotiated, rather, PairBuddy’s contributions simply encompass both responsibilities:
providing code examples and giving feedback.

ITSs such as HabiPro [248] have shown the ability to guide students’ behavior by utilizing a
learner model [46] to represent and track students’ knowledge and progress. In the same way
that ITSs individualize learning, we formulated a design decision I2: PairBuddy will adapt its skill
level to match each participant such that contributions remain balanced. Pair programming re-
search further informs this decision since programmers prefer when their partner is equally or
more competent [164]. In the pilot study, this design decision manifested itself in the frequency
of PairBuddy’s feedback and code suggestions (refer T2). With this decision, we aim to tailor Pair-
Buddy’s interactions with programmers based on their specific needs and abilities.

Programmer: Integrating Technical and Soft Skills

PairBuddy will imitate the characteristics of a competent programmer. A programmer’s techni-
cal and soft skills are crucial for being effective team members [15, 58, 178, 275] and are considered
by managers when they make hiring decisions [150, 157, 169, 209, 218]. Therefore, we integrated
both types of skills to mirror a programmer’s capabilities.

(A) Soft Skills — Greeting and Motivation: While greetings vary between cultures, humans in-
troduce themselves to make their presence known and start conversations. Similarly for agents,
Kahn et al. [120] identifies “The Initial Introduction” design pattern where agents use scripted,
conventional introductions to recognize and inquire about another. It is an important design choice
in human-robotic interaction, as it allows a deepening of relationships while removing initial awk-
wardness. Based on this researched design pattern, we formulated design decision S1: PairBuddy
will introduce itself and greet the participant [19].

Motivation is seen as a driving force that has a substantial impact on a programmer’s perfor-
mance and productivity [18, 45], and comes from either intrinsic or extrinsic sources [45, 64].

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

Designing PairBuddy—A Conversational Agent for Pair Programming 34:9

Designing extrinsic motivators that synergize with intrinsic motivators requires supporting a per-
son’s sense of competence without undermining their self-determination [18]. Fischer et al. [78]
found that a higher perceived probability of receiving extrinsic motivation in the form of relational
rewards (e.g., praise, recognition, performance feedback) [21] often positively affected creative and
innovative outcomes. Therefore, we formulated design decision S2: PairBuddy will motivate using
relational rewards in the form of encouragement (e.g., “We’ve got this!”), recognition (e.g., T see,
good idea!”), and comforting (e.g., “That’s okay, everyone makes mistakes”). Additionally, extrinsic
motivation is most effective during the stages of the creative process that make the most meaning-
ful contributions to the project [18]. Therefore, PairBuddy will commend success through praise
and celebration: ‘T knew we could do it!” or “We make a great team!”.

(B) Technical Skills — Writing Tests/Code and Giving Guidance: Automated approaches to
generating test cases (i.e., a code fragment that specifies inputs and expected results to verify
compliance with a requirement [1]) have explored the use of search-based techniques and require-
ment artifacts. Search-based software testing uses a variety of search algorithms [161, 163, 168] to
determine the most efficient path through source code that maximizes code coverage for automatic
test case generation [17]. Alternatively, research has demonstrated the feasibility of converting
requirement artifacts such as user stories (i.e., a description of a requirement from a user’s
perspective [2]), acceptance criteria (i.e., the boundaries of a user story [1]), and scenarios (i.e.,
step-by-step description of a series of events [1]) into test cases [74, 196]. Based on this research, we
formulated design decision T1: As a driver, PairBuddy can generate test cases automatically. As a
navigator, PairBuddy can give feedback and answer programmers’ queries based on the generated
solutions. For example, PairBuddy could offer help by asking, “Would you like me to generate a test
case?”

To further PairBuddy’s competency as a driver, we formulated a design decision T2: PairBuddy
will provide example code from online repositories (e.g., GitHub [3]), question and answer forums
(e.g., Stack Overflow [6]), and package documentation. For example, PairBuddy might send sample
code from GitHub into the text chat and ask, ‘TIs this code example from online useful?” Past research
identifies code-querying algorithms used to search online repositories for semantically similar
code [124, 125,177, 193]. However, these algorithms are not always perfect, so to simulate a realistic
implementation, PairBuddy’s code recommendations were not an exact match with the task.

To allow PairBuddy to guide participants, we formulated a design decision T3: PairBuddy will
use user stories as a basis to track and direct the current objective, encouraging participants to
reference them when determining how to proceed. Additionally, PairBuddy might need to ask
the participant, “What user story is that?” when the current objective is unclear from PairBuddy’s
perspective. This clarifying dialogue serves a second purpose: participants are forced to refocus
on the user stories, and reorient themselves toward the task’s goal.

4.2 Wizard/PairBuddy Implementation

The wizard’s interface and implementation integrated the aforementioned design decisions into
the wizard’s script and interface for the pilot study, and are detailed as follows:

PairBuddy’s interface was implemented within the Eclipse IDE [70] using a modified version
of the Saros plugin [72], allowing both voice and text communication. Directly integrating these
features allowed participants to seamlessly interact with PairBuddy. The wizard used Saros to mon-
itor the participant’s code, but made code contributions via the text chat. PairBuddy was embodied
by a 3D avatar via FACSvatar [76]. Using custom networking code, FACSvatar mapped the wizard’s
facial animations onto PairBuddy’s avatar from a remote location, and PairBuddy’s voice was gen-
erated using Google Text-to-Speech [98]. While participants were free to change the arrangement

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

34:10 P. Robe and S. K. Kuttal

° \pp! - .03_10_2019/src/
|| File Edit Source Refactor Navigate Search Project Run Saros Winc
Nl RN B0 " Q- F O™~ -pE].;
=) TicTacToeGamejeva (1) “TicTacToeGameTestsjova 53
% sfimport static org.junit.jupiter.api.Assertions.*;
Ju [6 class TicTacToeGameTests {
TicTacToeGame game;
wzara VIS
I Vie should double check the vertical check
geeforetact) 08/03/19 16:38
void setUp() throws Exception { Ckay 1 am double checking it.
game = new TicTacToeGame(); B
08/03/19 16:39
} Fow the user take tum frem his opponent?
. 08/03/19 1639
gress use he we odate multi 3
void checkIfBoardIsFull() { Because 3nts to accomodate multiple player.
assertEquals(game.isBoardFull(), false); Wzwa $8/03/19 1640
} Based on User Story 3, we should do atest for 3
gTest win based on the diagenal row
void placeanxiarkTest() {
assertEquals(game.placetark(0,0), true); [Clear)
assertEquals(game.currentPlayertark, 'x'); -
}
Iforget about that task|
} Session Chat

Fig. 2. The pilot study’s interface including the Eclipse IDE, text chat, and avatar. Note that each participant
only saw one avatar.

of the IDE and avatar windows, none of them did. Figure 2 shows a screenshot of the participant’s
interface, including the Eclipse IDE and either the man or woman avatar. While participants were
informed that they were being recorded, they did not know that the wizard was monitoring their
webcam and microphone. As required by IRB, we disclosed the nature of the deception study after
the study sessions were completed.

The wizard also simulated the back end design of PairBuddy, including the aforementioned de-
sign decisions and common components of conversational agent architecture [85] such as natural
language understanding [12, 69, 148, 158, 194, 267], dialogue state tracking [126, 139, 199, 276],
dialogue policy [109, 235, 265, 272], and natural language generation [100, 198].

If the participant said, “This is why I hate coding!”, a real conversational agent would recognize
their words (text-to-speech), classify their intent as “Negative Feedback” (natural language under-
standing), and log their difficulties (dialogue state tracking). In response, the agent would decide
to “Give Motivation” (dialogue policy) and select an appropriate response “Don’t give up, you are
almost there!” (natural language generation). Without an underlying system to power interactions,
the wizard adhered to a script of limited dialogue options to simulate a robotic conversational
style. Dialogue options were templated according to Shneiderman’s guidelines [217] and Neilsen’s
heuristics [176]. Since communication styles differ by gender [133], we provided gender-inclusive
language [77, 167] in our script including non-authoritative suggestions [214] to both engage and
motivate programmers.

The wizard exhibited a realistic level of intelligence. If participants asked questions beyond the
protocol, the wizard would answer, “I’'m afraid logic isn’t my strong suit,” to simulate the limitations
of a potentially automated system [19]. However, to maintain participants’ trust and engagement,
we designed PairBuddy to give alternative contributions if it could not directly answer queries.
Furthermore, the script was designed to vary the responses for the same intent. For example, mo-
tivational scripts included, “We’ve got this!” along with five or more similar dialogue templates so
participants would not receive repeated phrases from PairBuddy. In general, the script served to
simulate the back end of a fully functional conversational agent, including its limitations, through
the use of dialogue templates. One researcher simulated PairBuddy as the wizard in the pilot study.
To maintain consistency between studies, the wizard was trained in three trial studies prior to any
official studies.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

Designing PairBuddy—A Conversational Agent for Pair Programming 34:11

Table 3. Demographics of the Pilot Study Participants

P# Age Gender Education Programming Experience

PG1 24-29 Man PhD 4+ years
PG2 30-40 Man PhD 4+ years
PG3 24-29 Man Masters 4+ years
PU4 19-23 Man Undergrad <1 year
PU5 19-23 Woman Undergrad <1year
PU6 19 Man Undergrad <1 year

4.3 Participants

Seven students majoring in computer science were recruited from our university. However, we
only report data from 6 participants (3 undergraduate and 3 graduate) since one participant did
not interact with PairBuddy during their study session. Both undergraduate and graduate students
were recruited for the study to account for the varying diversity of programming skill. Partici-
pants with basic Java programming experience were chosen on a first-come-first-serve basis from
a recruitment email. Upon completion, participants were given $20 in Amazon gift cards. Table 3
shows the demographics of our pilot study participants. These participants are referred to as PU#
and PG# for undergraduate and graduate students, respectively. For example, PU4 is the fourth
undergraduate participant of the pilot study.

4.4 Study Design

Participants completed a consent form and background questionnaire prior to the pilot study. Be-
fore starting the task, participants watched video tutorials on the concepts used in the study in-
cluding the driver and navigator pair programming roles, the think-aloud method, and test-driven
development. The think-aloud method encourages participants to vocalize their thoughts and feel-
ings [143, 212]. Test-driven development is a type of extreme programming that prioritizes the
creation of test cases before implementing and refactoring code. Test-driven development evalu-
ates participants’ knowledge and evokes diverse dialogue since each development stage requires
a unique style of thinking.

Participants were asked to use pair programming and test-driven development alongside Pair-
Buddy to complete an implementation of tic-tac-toe: a game where two players take turns mark-
ing spaces in a 3x3 board. Based on a list of user stories, acceptance criteria and scenarios,
participants were instructed to implement test cases and functionality for turn taking, verti-
cal/horizontal/diagonal wins, a full board test, and a tie game test. As a starting point, code for
the board along with three example test cases were provided to participants. Tic-tac-toe was se-
lected for its simplicity since anyone with basic programming experience can understand and
implement its requirements without prior knowledge of the domain. Participants wrote Java code
in the Eclipse IDE [70] and implemented testing via JUnit [71]. The duration of the task was fixed
to 50 minutes to prevent participant fatigue and to ensure that individual study sessions lasted
under 90 minutes.

We applied a between-study design for initializing the avatar’s gender by starting half of all
studies as a man and half as a woman.

A semi-structured interview was conducted using a script, yet individualized questions were
used to further explore study-specific events. To avoid social desirability bias [94, 173], we told
participants that the study was being used to improve PairBuddy’s design and that honest feedback
was crucial to evaluate our system.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

34:12 P. Robe and S. K. Kuttal

Table 4. Code Set for PairBuddy’s Contributions

Contribution Type Description Example

Direction Guiding participants towards goals “Write a method... for a horizontal win.”
Domain - Help IDE, language, or domain knowledge “Looks like... an import error for JUnit.”
Method - Add Provide example code for methods “Is this code... useful?”

Method - Clarify Give knowledge about methods “Get the value... by accessing its coordinate.”
Test case - Add Provide example code for test cases ‘T can generate test cases.”

Test case - Clarify Give knowledge about test cases “To test... we will need to place marks.”
Bug - Identify Identify bugs or mistakes “Double check the vertical check.”

Bug - Fix Fix bugs or mistakes “Error is commonly caused by...”
Contribution Source Description

PairBuddy Alone PairBuddy offered contributions

Human Asked Participants prompted PairBuddy

Human Asked - Unanswered PairBuddy couldn’t help programmer

4.5 Data Analysis

The video, audio, and interviews from our pilot study were transcribed and subsequently analyzed
through both quantitative and qualitative measures to evaluate the usability of PairBuddy. We used
the Corbin and Strauss variant [232] of Grounded Theory [90] to analyze our transcripts. Specif-
ically, we created a codeset of the types of contributions PairBuddy made by creating, gathering,
modifying, and removing contribution types during an iterative, open-coding process [23, 212].
These contribution types allowed us to track participant interaction with PairBuddy over time
(Table 3). Using thematic analysis [35], we grouped interview responses into themes that encom-
pass various dimensions of interaction with PairBuddy. For our quantitative analysis, we collected
responses to self-efficacy questionnaires and discrete answers to our interview questions. Tran-
scripts were coded by two researchers. Initially, both researchers independently coded the same
20% of the transcripts, and average inter-rater reliability was measured at 86% using the Jaccard
index. The remaining transcripts were split and coded separately. Interview transcripts from the
pilot study can be found [5].

4.6 Results

The first iteration of PairBuddy allowed us to examine the feasibility of a pair programming con-
versational agent. The insights and avenues for improvement are as follows:
(1) Helping Programmers: PairBuddy helped participants complete the programming task as
both a driver and a navigator. Figure 3 details the contributions PairBuddy made in three separate
ways: (1) when PairBuddy offered help, (2) when participants asked for help, and (3) when par-
ticipants asked, but PairBuddy could not provide help. The contributions types include direction,
domain-related help, method/test clarification, method/test addition, and bug identification/fixing.

When participants were lost, PairBuddy provided direction through its messages. For example,
when PU6 had difficulty writing a method, PairBuddy gave guidance, “We need to write a method
to check for a horizontal win.” Furthermore, PairBuddy provided help for questions about the IDE,
JUnit, language, and domain (tic-tac-toe). For example, when PG3 was having difficulties using the
testing suite (JUnit), PairBuddy provided help, “Tt looks like we may have an import error for JUnit.”

PairBuddy contributed knowledge by clarifying test cases and methods. For example, when PU4
was unsure about how to write a test case, PairBuddy responded, “To test for horizontal, we will
need to place marks at zero zero, one zero, and two zero.” Similarly, PairBuddy helped PU5 with her
method, “If a space is occupied by a “-” then it is considered empty.”

PairBuddy provided sample code for test cases or methods in the text chat. For instance, Pair-
Buddy offered to contribute a test case for PG6, ‘T can generate test cases based on the user scenarios.
Would you like me to do this?”, and a method for PG1, “Does this code help you out any?”

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

Designing PairBuddy—A Conversational Agent for Pair Programming 34:13

» Direction ® Method - Clarify X Bug - Identify PairBuddy Alone Human Asked Wl Human Asked - Unanswered
<« Domain-Help [l Test Case - Add % Bug-Fix
@® Method - Add @ Test Case - Clarify

PG1
PG2
PG3
PU4
PU5
PU6

o o o ©° 20 2 2% 5 o o o

Fig. 3. A timeline illustrating PairBuddy’s contributions during the pilot study. Contributions were either
offered by PairBuddy (blue) or asked by participants (yellow). In some instances, PairBuddy was unable to
provide help (red). Contributions types include direction, domain-related help, method/test case addition,
method/test case clarification, and bug identification/fixing.

Finally, PairBuddy provided guidance for finding and fixing bugs. When PG1 made a mistake in
the vertical win method, PairBuddy commented, “I think there is a syntax error on line 41.”

PairBuddy failed to answer 23 of the 35 questions (65.7%) asked by participants (red in Figure 3).
However, PairBuddy was designed to follow-up with separate contributions if possible (blue in
Figure 3). For example, when PU5 asked, “What would the arguments be for the method to find
if there is a winner?”, PairBuddy was not designed to answer this difficult type of question, so
instead, it made a suggestion from online, “Is this code example from online useful?” However,
when PairBuddy failed to provide an example, PU6 complained, “You can’t copy and paste it from
somewhere else again please?”

(2) Effect of Programming Experience: Figure 3 shows the trend that graduate students (PG1-
PG3) interacted with PairBuddy during the second half of the study, while undergraduate students
(PU4-PUG6) interacted from the beginning. One graduate student, PG1, interacted from the start,
but PG2 and PG3’s first interactions were at 19:00 minutes and 17:30 minutes, respectively. In his
interview, PG2 said that he wanted help just-in-time and preferred to work solo on his tasks, ‘T was
thinking, and I want to have time for... quiet and focus.” We conjecture that experienced participants
were less trusting initially, but their trust increased overtime. For example, PG3 said, “As it went
on, I was like, ‘Hey,... we have the same idea for this.””

(3) User Experience: Participants enjoyed working with PairBuddy and appreciated its company.
PG2 found PairBuddy’s voice supportive saying, “Just hearing him talk helped me stay on track
and stay focused on the task at hand and what needs to be done.” Similarly, PU5 indicated that she
often thinks out-loud with a partner in her classes, explaining, “T’ll like talk, T don’t know what I'm
doing,’ and [my friend] will be like, T don’t either” ” Additionally, PG3 felt synergy with PairBuddy,
commenting, ‘I think we work together well.”

Participants also enjoyed the motivational aspect of PairBuddy. In fact, all participants re-
sponded positively to motivation. For example, when PG1 fixed a bug that he was struggling with,
PairBuddy celebrated saying, “Yay! You did it!”, and PG1 smiled responding, “Thanks!” Similarly,
PU6 said, “Thank you so much dude. Your motivation is so good. Thank you, thank you, your moti-
vation is getting me through.” However, participants’ reactions to positive feedback varied, as PG2
only said, “Okay thanks.”

4.7 Lessons Learned

Feedback from the pilot study revealed many shortcomings of PairBuddy’s design and informed
modifications to the original design decisions for use in the main study. We found the following
limitations of both PairBuddy’s design and the study’s implementation:

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

34:14 P. Robe and S. K. Kuttal

Avatar Did Not Support Lip-Sync: Participants rarely looked at the avatar window throughout
the study. PU6 put it bluntly, ‘T forgot he [the avatar] was even there.” While the avatar often went
unused, PU4 noted that avatars play a specific role in communication for him, “T’'m actually hard of
hearing just a little bit, but I take cues, at least for certain words, I take cues from reading lips, so [lip-
sync] would actually help me a lot.” Additionally, research finds that lip-synchronization heightens
the level of an avatar’s embodiment [91]. However, in the pilot study, PairBuddy did not include a
lip-sync feature, making communication less accessible and embodiment weaker.

Gender Toggle was Not Utilized by Participants: Allsix participants never changed the gender
of the avatar, which limited our ability to make any explicit determinations on participants’ gender
preferences. Additionally, the style of interaction between genders was indiscernible due to the low
participant count, causing individual differences to out-shine gender-based differences. To gather
relevant gender data, we must use an approach that can discern individual gender preferences.

Participants’ Bias Toward Text: While participants were explicitly instructed that they could
communicate using either voice or text, participants initially felt more comfortable using text and
often forgot that voice was even an option. In fact, 5/6 participants used text rather than voice.
However, when PU6 was accustomed to typing messages, he was taken off-guard when PairBuddy
responded to his voice, “Wait, can you hear me? That would be kinda cool if you can hear me.”
Participants who used text forgot PairBuddy could hear them, often verbalizing their messages
before typing them into the chat. For example, PG1 spoke out loud, “How to write the method?”
before sending it word-for-word in the text chat. The inclination to vocalize questions suggests
that the decision to use text over voice was partially based on preconceptions and habits, rather
than utility. While participants were biased toward text, they spent an unnecessary amount of time
typing messages. This notion of slow text communication is supported by research on interaction
speed [205], which finds that typing is 3x slower than voice recognition (on mobile devices). To
avoid confusion between text and voice, PairBuddy’s design should emphasize one medium of
communication rather than using both simultaneously.

Participants Needed More Guidance: Althoughwe envisioned that PairBuddy would act as
both a driver and navigator, design decisions I1 (indirect driving) and T2 (code examples from
online) transformed PairBuddy’s role as a driver into a code recommendation system. Since
PairBuddy could not directly contribute to the code, its ability to meaningfully guide progress
was limited.

Interjections Become Interruptions: While participants generally appreciated when
PairBuddy interjected with helpful dialogue, they did not like it when interjections became inter-
ruptions, especially when they were deep in thought. PG2 explained, “When I'm trying to think
about a problem... Most of the time I need a quiet place to think.” Similarly, PG1 complained, “Some
of the things were distracting to me and unexpected... That I didn’t like.” While research finds that
interruptions greatly reduce progress on writing assignments [80], our participants still wanted
an agent that is engaging and socially present. PG3 expressed his preferences, “T would prefer
someone who is more engaged,” and PU5 did too, ‘T don’t feel as crazy or lonely because it’s like
‘Oh, I'm talking to a computer. It’s fine, but like when you’re doing it alone it’s like, ‘Ah, there’s no
one here.”

Lack of Support for Creativity: As identified in previous research [134], programmers follow
the Osborn-Parnes Creative Problem Solving Process when working together. However, with
PairBuddy, participants were able to skip major steps along the way. Osborn-Parnes Creativity
is frequently used to understand the creative process of an individual [112, 122, 182, 184] and
is vital to programmer success [73, 251, 273], especially when solving open-ended problems

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

Designing PairBuddy—A Conversational Agent for Pair Programming 34:15

-=z=1 Clarify |[—
+ [Answer]

-
227
-
7

rd -~

Gy =] s
* ~ Answer Answer
[Answer] 7~~=

~

~=

Y
_~=-..| Develop
. . [Tnsm * Answer]
~~___:=-.| Implement |‘/

Fig. 4. Creativity stages (blue) progress from Clarify to Implement, but humans skipped the Idea and
Develop stages (dashed arrows) when PairBuddy provided answers (code/test cases). Typically, human-
human pairs progress through each stage in succession (solid arrows).

[24, 36, 142, 149, 187, 256]. Particularly, it describes how programmers step through a series of
creativity stages; Figure 4 illustrates how programmers start at the Clarify stage of creativity,
where information, goals, and challenges are identified. In the subsequent Idea stage, a wide
variety of potential solutions are generated. Then, in the Develop stage, solutions are evaluated,
strengthened, and selected for “best fit” Finally, in the Implement stage, the resulting solutions
are written into code. In human-human pair programming, humans follow the creativity stages in
sequence [134] (solid arrows in Figure 4). However, when working with PairBuddy, we observed
that participants skipped the Idea and Develop stages by directly copying implementation from
PairBuddy’s code examples (dashed arrows in Figure 4). Pair programming has been noted for
its ability to teach effective creative strategies [213]; based on feedback from their partners, pair
programmers can gain experience by practicing each stage of creativity. Therefore, if participants
are to experience the creative benefits of pair programming, PairBuddy must support its partner
during every creativity stage: specifically the skipped stages of Idea and Develop.

5 MAIN STUDY (ITERATION 2)

Through the insights gained from the pilot study and a more comprehensive research review, we
improved the design of PairBuddy and conducted a second “main” Wizard of Oz study.

5.1 PairBuddy Design (Iteration 2)

The design of PairBuddy for the main study intends to imitate human pair programming to the
highest degree that can be realistically achieved through the capabilities of current research.
Table 5 lists the design decisions used in the main study. Those adapted from the pilot study
remain white, while new design decisions are highlighted in blue. Design decision modified or
added for the main study are as follows:

Design: Creating the Interface and Interactions

(A) Interface — Embodiment via Avatar, Gender, Voice, and Text: For design decision F1, Pair-
Buddy’s dynamic 3D avatar was modified to include lip-synchronization via the Facerig avatar
embodiment software. Furthermore, to explore the trade-offs of using text vs. voice for a pair pro-
gramming agent, we modified design decisions F3 and F4: communication with PairBuddy will be
primarily verbal, while reserving the text chat for resources such as images or links. This decision
attempted to model typical human-human remote communication.

(B) Interactions — Direct Driving, Timed Feedback, Adapted Skill, Typing Speed, and Redi-
rect Suggestions: To allow PairBuddy to more effectively guide code progress as an active dri-
ver, we modified design decision I1: PairBuddy will make direct code contributions through the

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

34:16 P. Robe and S. K. Kuttal

Table 5. Design Decisions of PairBuddy’s Main Study Implementation

1D Design Decision Description Example Sources
Interface

F1 Avatar Embodied by a 3D lip-synced avatar [25, 28, 43, 151, 229, 270]
F2 Gender Gender can be toggled [33, 50, 236]

F3 Voice Communicate via voice synthesis [28, 41, 242]

F4 Text Chat Paste images or links

Interactions

I1 Direct Driving Edit code via IDE

12 Adapted Skill Balance contributions via frequency and size [19, 56, 75, 239, 248]
13 Timed Feedback Feedback at appropriate time [31, 128, 132, 144, 211]
14 Typing Speed Paste small sections of code

I5 Redirect Suggestions Participants implement their suggestions

Soft Skills

S1 Greeting Introduce itself [120]

S2 Motivation Encourage, recognize, comfort, commend [18, 45, 64, 78]

S3 Ivs. We Share success and personalize mistakes [119, 197]

S4 Uncertain/Verification ~ Show uncertainty via verification of work [22, 133]

S5 Social Presence Actively listen rather than interrupt [53, 80, 104, 175]
Technical Skills

T1 Write/Feedback Tests Generate test cases and feedback [17,74, 161, 163, 168, 196]
T2 Write/Feedback Code Generate code and feedback [60, 124, 125, 177, 193, 274]
T3 Guidance Provide direction via user stories

T4 Creativity Support Prompt divergent and convergent thinking [115, 116]

T5 Feature Location Locate code from a description [147, 156, 210]

T6 Unnecessary Code Suggest deleting unused code [228]

T7 Missing Code Determine where more code is needed [89]

Decisions modified from the pilot study remain white, while new additions are highlighted in blue.

IDE rather than sending code snippets through the text chat. Furthermore, as an active navigator,
PairBuddy will provide more specific feedback. With this new ability, PairBuddy negotiated the
exchange of pair programming roles through suggestions such as, T can try if you'd like,” and,
“Actually, I'm a bit stuck. Mind if you take over?”

To more effectively adapt PairBuddy’s skill-level to that of its programming partners, we
modified design decision I2: PairBuddy will tailor the size (rather than only the frequency) of its
contributions. For example, when participants struggle with code, PairBuddy will only provide
small contributions (e.g., structure of the code or single lines of code) to help them become
“unstuck” Alternatively, PairBuddy will match participants who effortlessly complete the task
with larger contributions (e.g., a full test case). For an automated agent, the size of participants’
contributions could be measured using, for example, the number of lines of code, variables, or
user stories completed. Additionally, PairBuddy’s intent to balance contributions will regulate its
suggestions to switch pair programming roles.

Feedback has substantial impact on learning and achievement [105, 106, 128, 144]. Among its
influential properties is the timing of the feedback. Psychological research suggests that feedback
on difficult concepts should be delayed, while feedback on simple concepts is more beneficial when
immediate [31, 132, 211, 233, 234]. For example, IDEs already provide instant feedback via error
highlighting, but when a programmer uses a misguided approach, delayed feedback is preferred
to allow them time to evaluate the feasibility of their ideas. Therefore, we formulated design deci-
sion I3: PairBuddy will provide appropriately timed feedback [19]. With this decision, we hope to
maximize the impact of feedback and eliminate unnecessary interruptions.

Since PairBuddy now directly contributes code through the IDE, it is necessary to consider
the speed at which PairBuddy will type. Intentionally limiting an agent’s typing speed could

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

Designing PairBuddy—A Conversational Agent for Pair Programming 34:17

potentially be unappealing and cause programmers to become impatient, yet pasting large chunks
of code could be overwhelming and difficult to comprehend. Therefore, we formulated a design de-
cision I4: PairBuddy will incrementally paste small snippets of code to prevent programmers from
becoming impatient or overwhelmed. This design decision was informed from our best reasoning
rather than previous research.

In pair programming, the role of the navigator includes providing feedback and suggestions to
the driver. Sometimes, the navigator performs “backseat driving” where they instruct the driver
directly [117]. However, current technology does not fully support the implementation of arbitrary
ideas in this way, so in the pilot study, PairBuddy was designed to immediately admit its limitations
saying, “I’'m sorry, I don’t know how to help with this.” Unfortunately, this response often marked
an abrupt end to the conversation. Therefore, to encourage higher engagement, we formulated a
design decision I5: PairBuddy will redirect suggestions back to the programmer through dialogue
such as “How would that look like?”, “Do you want to try?”, or “Can you do that for me?” However,
if its partner insists, only then will PairBuddy admit its limitations.

Programmer: Integrating Technical and Soft Skills
(A) Soft Skills - Leadership, Uncertainty, Social Presence: Research finds that a democratic
leadership style is most effective for pair programming [133]. A way for PairBuddy to integrate
democratic leadership is to practice effective pronoun use. Research has shown that leaders use
collective pronouns (e.g., “we” and “us”) to gain influence in a group [119], but use personal pro-
nouns (e.g., “I” and “me”) to “own up” to mistakes [197]. Therefore, we formulated design decision
S3: PairBuddy will display leadership by attributing successes to the group while taking owner-
ship for its mistakes. For example, when a test case fails, PairBuddy will take ownership saying, T
think I made a mistake,” but if all the test cases pass, PairBuddy might say, “Great, we did it!”
Research suggests that conversational agents should pre-emptively use uncertainty to avoid sit-
uations where they make large miscommunications [19, 22]. The resulting conversational break-
downs decrease users’ satisfaction, trust, and willingness to continue talking to conversational
agents [113, 114, 152]. Additionally, research on pair programming shows that people often ask
for verification after each creative stage of development [133]. Therefore, we formulated design
guideline S4: PairBuddy will convey uncertainty by asking for verification to prevent conversa-
tional breakdown. To potentially support this, the uncertainty of PairBuddy’s dialogue could be
based on the confidence of the machine learning algorithms used to generate code and feedback.
In the pilot study, participants voiced complaints about the timing of PairBuddy’s feedback.
When they were deep in thought, participants wished that PairBuddy listened rather than inter-
rupted. However, maintaining an active presence as a navigator is key to preserving the balance
between roles. To this end, we utilize active listening—a technique to allow a speaker an outlet
for self expression [202]—to maintain social presence in a conversation. For conversational agents,
social presence is the feeling and perception of interacting with a human being [180], and has been
shown to increase the use of conversational agents [175], and can even increase perceived useful-
ness, trust, and enjoyment [104]. Therefore, we formulated design decision S5: PairBuddy will in-
crease its social presence using active listening through acknowledgements and confirmation ques-
tions. In this way, PairBuddy can avoid interruptions by encouraging participants to think their
ideas out-loud through dialogue such as, “What are you thinking?” and “What does this code do?”.

(B) Technical Skills: Guidance, Creativity Support, Feature Location, Unnecessary Code,
and Missing Code: To encourage higher engagement with PairBuddy relative to the pilot study,
we conducted a thorough research review to identify the potential capabilities of automated code
and feedback algorithms, as well as techniques to support creative problem solving.

PairBuddy’s power to provide context-specific code and feedback is dependent on the capabili-
ties demonstrated by existing research. Automated code and feedback techniques [60, 274] show

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

34:18 P. Robe and S. K. Kuttal

the ability to provide feedback on code using a dataset of past programming solutions. However,
this research is either limited by the specificity of the feedback [60] or has only been demon-
strated in a simple programming language (iSnap) [274]. To increase the specificity of PairBuddy’s
contributions, we modified design decisions T1 and T2: PairBuddy will have the limited ability to
contribute context-specific code (as the driver) and provide meaningful feedback (as the navigator)
based on a dataset of past solutions. For example, if PairBuddy detects that a participant’s code
is semantically similar yet deviates from a known solution, it might suggest, “There might be a
mistake on line 66.” However, if the participant writes code that deviates from all past solutions
within the database, PairBuddy will be unable to provide guidance.

Since PairBuddy attempts to replace a human partner, it will be designed to integrate the creative
problem solving stages used by humans. However, in the pilot study, PairBuddy only supported
the Clarify stage (via direction from user stories) and the Implement stage (via example imple-
mentation from online). Therefore, we formulated design decision B4: PairBuddy will add support
for the remaining Idea and Develop stages by using concepts from Idea Garden [115, 116]. Idea
Garden suggests the use of probing questions to promote a programmers’ use of diverse problem-
solving strategies. We integrated two strategies into PairBuddy’s script: working backwards from
the goal and encouraging divergent thinking before convergent thinking. For example, PairBuddy
might ask, “What are all the possible ways we could do this?”, “Why do you think so?”, or “What data
structure could we use?” As a navigator, PairBuddy can prompt the participant to move from the
Idea to the Develop stage by asking, “What would that [idea] look like?” As a driver, PairBuddy
will provide the empty structure of the code to help programmers conceptualize the solution. Ad-
ditionally, PairBuddy can discuss the general structure of the code saying, “I think we should use a
for loop/if statement here,” or “Should we use a while loop or a for loop?”

Both static [156] and dynamic [147] techniques exist to automatically search source code for
specific features or descriptions. For the Java programming language, the Eclipse plugin Flat3 [210]
searches source code using arbitrary descriptions (e.g., “file saving”). Based on feature location
algorithms, we formulated a design decision T5: PairBuddy can identify locations within the code
that match a description. For example, if the participant asks, “Do we return false in the tie game
detection function?”, PairBuddy can identify the isTied() function as the context to the question.

Many programming IDEs include refactoring tools that automatically detect uncalled functions
or unused variables via data-flow analysis [57]. For the Java programming language, UCDetector
[228] is an Eclipse plugin that can identify unused variables, functions, and classes. Based on this
functionality, we formulated design decision T6: As a navigator, PairBuddy can detect unnecessary
blocks of code and suggest that the programmer consider deleting or modifying them. For example,
PairBuddy might suggest, ‘T believe we have unnecessary code in the tie test function.”

Research on automated feedback has shown the ability to automatically determine the locations
where code is missing based on pre-defined functions in Haskell [89]. Since Haskell is a functional
programming language, this research does not necessarily apply to an imperative language like
Java. Regardless, the supporting research of previous design decisions [17, 60, 163, 168, 274] would
be potentially capable of identifying missing code, so we formulated design decision T7: As a
navigator, PairBuddy will direct the driver’s attention to locations where more code is needed.

5.2 Wizard/PairBuddy Implementation

For the main study, the wizard’s interface, implementation, and script integrated the new design
decisions for PairBuddy’s second iteration, including the following changes from the pilot study:

Before conducting the main Wizard of Oz study, four trial studies provided initial feedback on
the task, study design, wizard implementation, and design decisions. During these studies, our

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

Designing PairBuddy—A Conversational Agent for Pair Programming 34:19

Wizard 1 Wizard 2

&lllll-

Participant

Fig. 5. The main study’s wizard implementation. Both wizards (Wizard 1 and Wizard 2) monitored the partic-
ipant’s webcam, microphone, and screen via a communication tool (e.g., Skype, Discord, MS Teams). Wizard
1 used a custom interface to select dialogue templates and send PairBuddy’s avatar and voice over the same
communication tool. Wizard 2 used a dataset of past solutions to contribute into participants’ IDE directly.

single wizard had difficulty balancing all of their new responsibilities as PairBuddy; therefore, our
main study leveraged two wizards.

The first wizard (Wizard 1) controlled PairBuddy’s avatar and voice interface with participants.
To simulate PairBuddy’s design decisions, Wizard 1 utilized a basic automated infrastructure
where (1) a custom user interface (refer Figure 5) allowed Wizard 1 to quickly select dialogue
templates from the script and fill in blanks with contextual information when necessary; (2) using
the selected dialogue, PairBuddy’s voice was generated via Google Text-to-Speech [98]; (3) the
resulting audio facilitated lip-synchronization of PairBuddy’s avatar generated using the Facerig
embodiment software [227]; and (4) both PairBuddy’s avatar and voice were sent to participants
via a communication tool (i.e., Skype, Discord, and MS Teams); likewise, both wizards monitored
participants’ video, audio, and screen directly.

As described in I3: Timed Feedback, the wizards waited an increasing amount of time before
providing feedback on incorrect code. As the navigator, Wizard 1 followed a set protocol when
providing feedback to participants: (1) If participants explicitly asked, Wizard 1 provided instant
feedback; (2) For out-of-turn feedback: (i) If participants made small syntax errors (e.g., wrong
number or missing curly braces), Wizard 1 waited 10 seconds after participants finished typing be-
fore providing feedback as the navigator to allow participants time to double check their spelling;
(if) For small logical errors (e.g., incorrect conditional statements or variables), Wizard 1 waited 30
seconds before giving feedback since logical errors are more difficult to catch; (iii) When partici-
pants made medium to large mistakes (e.g., multiple lines of code that do not match past solutions),
it is possible that participants found an alternative solution. However, if they became stuck and
stopped discussing ideas, Wizard 1 asked open-ended questions (T4: Creativity Support) before
asking participants for the driver role.

The second wizard (Wizard 2) acted as an automated code and test cases generator (design
decisions T1 and T2). As the driver, Wizard 2 pasted code snippets into participants’ IDE via the
Saros remote collaboration tool to correct or continue participants’ existing work. To determine
code correctness, Wizard 2 simulated a semantic diff (e.g., [136, 204]) between participants’ code

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

34:20 P. Robe and S. K. Kuttal

3 Run Window Help

Gv~ viviveay
TiclacloeGamejava = /1 *TiclacloeGamelests java

2 public class TicTacToeGame {
3= *pul n(strin

print(g.board.length);

private char[][] board;
public char currentPlayerMark;

public TicTacToeGame() { [y
board = new char(3][3];
currentPlayerMark = 'x';
initializeBoard();

}
Set/Reset the board back to all empty values
public void initializeBoard() {

Loop through row
for (int i = @; i < 3; i+4) {

oop through columns
for (int 4 = @ 4 ¢ 3 de) 7

Fig. 6. The main study’s interface including the Eclipse IDE and the man/woman avatar. Note, each partici-
pant only saw one avatar at a time.

and a database of past solutions collected from both pilot and trial studies. With this knowledge,
Wizard 2 followed their own protocol to determine the appropriate time to contribute code as
the driver: (1) If participants had difficulty getting started, Wizard 1 offered to drive and Wizard
2 provided some of the structure of a past solution (e.g., function declarations and conditional
statements). Using only incremental contributions, Wizard 2 avoided overwhelming participants
since PairBuddy could not explain the logic behind its contributions; (2) If progress was slow or
participants became stuck, Wizard 2 instead provided small contributions from the most similar
past solution to get participants back on track. If participants wrote a large amount of unrecognized
code, Wizard 1 offered to comment their code prior to Wizard 2 providing a separate contribution;
(3) If participants progressed quickly (i.e., their code matched a past solution or the test cases
passed), Wizard 1 offered to drive and Wizard 2 provided a similarly sized contribution. The two
wizards maintained close communication throughout the studies, particularly to coordinate code
contributions when PairBuddy was the driver.

We assumed PairBuddy’s algorithms were competent, so our wizards only made mistakes (in-
tentional or unintentional) either once or twice per session.

Additionally, we chose two avatars (man and woman) based on their professional appearance
from the limited selection of Facerig avatars (refer Figure 6).

5.3 Participants

Due to the COVID-19 pandemic, study sessions were conducted remotely, and recruitment of par-
ticipants was done via snowball sampling, social media (Facebook [225], Twitter [226]), and hiring
sites (Upwork [83]). Our recruitment approach helped collect participants from universities and
industries across the country, in addition to local participants. We gathered 14 participants on a
first-come first-serve basis, including 8 students (4 men / 4 women) and 6 professionals (3 men /
3 women). In their background questionnaires (refer Table 6), all participants self-identified in the
binary (men and women). We purposefully achieved a gender balance since research has shown a
difference in preference and behavior across various genders [39, 48, 87, 160, 166, 215]. All partici-
pants were regular programmers with prior experience writing code in Java, although not all had
used Java recently. We refer to participants of the main study as either MS# or MP# for students and
professionals, respectively. For example, MS4 is the fourth student participant of the main study. To
incentivize participation, student participants were given $20 and professionals were given $40 in
Amazon gift cards. This discrepancy was approved by IRB since recruiting professional developers
is more challenging due to their limited availability and high hourly wage [172].

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

Designing PairBuddy—A Conversational Agent for Pair Programming 34:21

Table 6. Demographics of the Main Study Participants

P# Age Gender Education Programming Experience
MS1 19-23 Woman Undergrad 3 years
MS2 19-23 Man Undergrad 2 years
MS3 19-23 Man Undergrad 2 years
MS4 19-23 Woman Undergrad 2 years
MS5 19-23 Woman Undergrad 3 years
MS6 19-23 Man Undergrad 3 years
MS7 19-23 Woman Undergrad 2 years
MS8 19-23 Man Undergrad 4+ years
MP9 30-40 Woman Masters 4+ years

MP10 41+ Man Masters 4+ years
MP11 19-23 Man Undergrad 3 years
MP12 30-40 Woman Masters 3+ years
MP13 30-40 Man Masters 2 years
MP14 19-23 Woman Undergrad 1 year

5.4 Study Design

The study design remained the same as the pilot study except for the following changes:

As previously mentioned, the main study was conducted during the COVID-19 pandemic, so
all study sessions were conducted virtually. Prior to this 40 minute study, participants completed
a consent form and background-questionnaire. To combat the low level of interaction with Pair-
Buddy in the pilot study, the main study included a tutorial [4] that explained PairBuddy’s in-
terface (i.e., voice communication and direct code editing) and encouraged interaction. Since its
learnability should ideally be quick, we did not disclose PairBuddy’s design decisions to evaluate
how participants adapt to PairBuddy’s abilities and limitations. Additionally, a pre-study ques-
tionnaire was used to establish a baseline for participants’ self-efficacies using a 7 point Likert
scale [118] for a maximum score of 63 points. The tutorial and self-efficacy questionnaires can be
found [4].

The study was designed to ensure that each participant interacted with both of PairBuddy’s
gender embodiments. Rather than evaluating gender preferences directly, we used a within-study
design where the avatar’s gender was changed halfway through the study to compare prefer-
ences on an individual basis. While we recognize the potential confusion that PairBuddy’s gender
change may have caused, it was a necessary trade-off to adequately assess gender-bias. Addition-
ally, no participants reported confusion in their interviews. To counterbalance gender, we evenly
distributed PairBuddy’s gender between the men and women participants.

Each study session was followed by an additional self-efficacy questionnaire and interview ques-
tions to triangulate our study findings. The same interview questions used in the pilot study were
integrated with additional questions related to the usability of the features that were more difficult
to evaluate using our think-aloud study.

5.5 Data Analysis

The resulting transcripts were analyzed using the same methodology as described in the pilot study
(refer Section 4.5), including the contribution type codeset (Table 4). Three researchers indepen-
dently coded 20% of the transcripts and reached agreement on 93% of the coded data by calculating
inter-rater reliability using the Jaccard index. The wizard’s script, study transcripts, and interview
transcripts can be found [4].

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

34:22 P. Robe and S. K. Kuttal

5.6 Limitations

One limitation of the main study is its small sample size of 14 programmers. Although our sample
was gender-balanced and included a wide range of skill levels (8 students and 6 professionals),
the study’s small size did not allow any room for further stratification. On the other hand, our
study helped evaluate PairBuddy’s usability with a diverse population of programmers. While we
only studied one programming language (Java) and one IDE (Eclipse), our focused approach was
an appropriate choice to show baseline feasibility. Future studies are needed to evaluate a larger
variety of programmers and languages.

Programmers’ varied experience with Java, test-driven development, and pair programming
may have affected their experience with PairBuddy. For example, PairBuddy provided very few
contributions for our most experienced professional, MP10, while providing more contributions
to other less-experienced professionals. In the future, more variables should be considered in our
analysis.

We acknowledge the variety of other dimensions (e.g., non-binary, race, and ethnicity) to Pair-
Buddy’s persona that can influence participants’ potential biases as research has identified effects
that an avatar’s persona has on user behavior [26, 155]. In fact, our brains subconsciously cate-
gorize characteristics of identify (e.g., perceived sex and race) in just 200 milliseconds and place
people into social categories informed from stereotypes and biases [54]. However, in this study,
we focus on PairBuddy’s gender due to the well-documented prevalence of gender-bias within
computer science [111, 162, 241]. To alleviate these biases in the future, we can include multiple
personas and allow participants/users to select their preferred avatar.

Since the wizards manually controlled PairBuddy’s actions, there was a noticeable delay be-
tween participants’ requests and PairBuddy’s responses. While our custom wizard interface re-
duced latency, nonetheless, searching for the appropriate response and filling-in any contextual
information produced lag. However, shorter replies like “Okay” were quickly typed to avoid navi-
gating the application’s interface.

Our results are based on the simple task of tic-tac-toe, but the game’s simplicity may have af-
fected our usability results since one participant mentioned that he might not trust PairBuddy
for more complex tasks. While the variation of task complexity needs to be further explored with
additional studies, nonetheless, we believe that our task was a good representation of student as-
signments and that our results confirm the feasibility of PairBuddy in educational settings.

We studied the usability of PairBuddy in a virtual lab setting for only 40 minute ses-
sions. Although this was a good starting point, our study could not provide a long-term per-
spective regarding the usability and user experience of programmers at this moment. For
instance, will interactions with PairBuddy for longer periods of time increase or decrease
trust?

Finally, we were forced to conduct a virtual lab study due to COVID-19, which may not mimic
traditional lab studies where participants sit in a controlled lab environment. However, we view
this as an opportunity to evaluate the usability of PairBuddy in a hybrid lab study consisting of
both real-world and controlled lab settings.

5.7 Results

The second iteration of PairBuddy served as a realistic portrayal of a pair programming conversa-
tional agent. Insights collected are as follows:

(1) Helping Programmers: The results from Figure 7 show that participants were most likely
to request help from PairBuddy (yellow) during the second half of sessions. We conjecture that

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

Designing PairBuddy—A Conversational Agent for Pair Programming 34:23

P Direction @ Method - Clarify X Bug - Identify PairBuddy Alone Human Asked BBl Human Asked - Unanswered
<« Domain-Help [l TestCase-Add % Bug-Fix
@® Method - Add @ Test Case - Clarify

MS1
MS2
MS3
MS4
MS5
MSs6
MSs7
Ms8
MP9
MP10
MP11
MP12
MP13
MP14

o o o o o o o ° o
o ©° 0 o 28 2 5 9 508

Fig. 7. A timeline illustrating the contributions PairBuddy made in the main study. Contributions were ei-
ther offered by PairBuddy (blue) or asked by participants (yellow). In some instances, PairBuddy was un-
able to provide help (red). Contributions include direction, domain-related help, method/test case addition,
method/test case clarification, and bug identification/fixing (refer Table 4).

the change in requests overtime is the result of participants’ initial distrust in PairBuddy, as noted
by MS5’s comment, ‘T think I was a little distrustful at first half of the application, but then after
working with it, especially after I saw that it was helping me solve the problem... I trusted it a little
more.”

Participants’ confidence in their coding abilities increased with the usage of PairBuddy. On
average, participants’ self-efficacy scores increased +3.64 out of a total 63 points (49.71 to 53.07)
after their interactions with PairBuddy (Table 7). Only 3/14 participants reported a decrease in
self-efficacy. MS6 was by far the largest outlier, with a difference in self efficacy of —18 points: 13
points fewer than any other participant. Otherwise, 10/14 participants saw an increase in their
self-efficacy.

Getting Directions and Domain-Related Help: Participants received direction from Pair-
Buddy as seen in Figure 7. PairBuddy’s guidance helped start participants in the right direction, as
PS5 explained, ‘Tt definitely helped me get started.” Participants received guidance for an unfamiliar
language, including MP11 who said, “Getting started was the hardest part for me, like trying to wrap
my head around Java again.” Some learned new techniques, like PS2 who commented, “How to do
test-driven development... the robot helped me make sure that I was writing it correctly, and I liked
that.”

Clarify a Method or Test Case: Participants mentioned that PairBuddy helped clarify task
objectives, including MP9 who commented, ‘T felt like PairBuddy was pretty good at understanding
the overall objective of the project.” This positive feedback was largely caused by PairBuddy’s ability
to Clarify the task based on user stories or generated solutions. For example, PairBuddy provided
insight when MS6 was trying to finish a method, ‘T think we are missing code in this function.”
However, PairBuddy often could not answer Idea-related questions, so when MP14 asked, “Do we

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

34:24 P. Robe and S. K. Kuttal

Table 7. Self-efficacy Scores for Main Study
Participants from Pre- and Post-study Questionnaires

P# Pre-Study Post-Study Difference

MS1 50 56 +6
MS2 57 61 +4
MS3 50 45 =5
MS4 52 58 +6
MS5 41 56 +15
MS6 46 28 -18
MS7 43 55 +12
MS8 55 51 —4
MP9 48 58 +10
MP10 51 54 +3
MP11 60 61 +1
MP12 44 53 +9
MP13 50 50 0
MP14 49 57 +12
Average 49.71 53.07 +3.64
o 5.105 8.102 8.329

Responses to nine questions were scored on a seven point
Likert scale for a maximum score of 63 points.

need to account for the opposing player mark?”, PairBuddy reflected the question by responding,
“What do you think?” While such responses continued the conversation, they did not provide the
direct, human-like answers that participants desired.

Adding Methods or Test Cases: As the driver, PairBuddy wrote both test cases and method
functionality. PairBuddy’s contributions helped participants make progress, and almost all
participants ended up reusing the code given by PairBuddy. This includes MP11, who successfully
adapted PairBuddy’s test case for a vertical win into both horizontal- and diagonal-win test
cases. For some participants, PairBuddy’s code offered a new approach. For instance, when MS1
struggled, PairBuddy’s alternative suggestion provided the insight necessary for MS1 to complete
her vertical win functionality.

Identifying or Fixing Bugs: As both the driver and navigator, PairBuddy helped participants
find and fix bugs, leading to increased code quality. As the navigator, PairBuddy would often point
to locations of errors and provide hints. For MS1, PairBuddy pointed, ‘I think there is a typo on line
107, leading her to immediately fix the mistake. On some occasions, PairBuddy had to fix bugs
itself when participants struggled to understand the error that PairBuddy was referring to. When
MP13 had trouble fixing an identified mistake, PairBuddy took action by asking for permission to
drive and fixing the error while completing the remainder of the method.

When PairBuddy Failed to Answer: Figure 7 shows the instances where PairBuddy was unable
to help participants (red). Either PairBuddy would redirect queries (e.g., “What do you think?”) or
admit its limitations (e.g., “Sorry, I'm not good at logic”). In the main study, PairBuddy was unable
to directly answer user queries 26 out of 114 times (22.8%): a significant decrease from 23 out of 35
times (65.7%) in the pilot study. The increased utility from PairBuddy’s answers (combined with its
increased out-of-turn dialogue) may have contributed to participants’ overall higher interaction.
PairBuddy’s inability to provide help like a human negatively affected some participants’ trust and
confidence in PairBuddy’s abilities. After his queries went unanswered three times, MS2 mentioned

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

Designing PairBuddy—A Conversational Agent for Pair Programming 34:25

Table 8. Responses to Interview Questions in the Main Study

Interview Question Yes Neutral No
Did you enjoy working with PairBuddy? 12 1 1
Did PairBuddy help you solve the problem? 13 0 1
Did you learn anything from PairBuddy? 6 3 5
Did you trust PairBuddy? 12 2 0
Did you trust PairBuddy’s navigation? 12 1 1
Did you trust PairBuddy’s navigation over a human? 5 6 3
Did you trust PairBuddy’s driving? 8 5 1
Did you trust PairBuddy’s driving over a human? 4 6
Was PairBuddy’s avatar helpful? 6 6 2
Was PairBuddy’s voice helpful? 13 1 0
Would more text have been helpful? 2 5 7
Do you prefer a casual over a polite agent? 8 4 2
Was PairBuddy too casual (yes) or too polite (no)? 0 14 0
Do you prefer human-like dialogue over robotic? 5 6 3
Do you prefer positive over neutral feedback? 12 2 0
Do you like negative feedback? 6 7 1

PairBuddy’s inaction as a negative aspect in his interviews, “He couldn’t respond to that. At least not
in a way that made sense.” Participants expressed concerns about PairBuddy’s inability to answer
“why” questions or give reasoning behind the code it wrote. After PairBuddy failed to help, MP9
later commented in her interviews, T felt like they [PairBuddy] knew what to do. But they weren’t
always able to communicate to me the why.”

(2) Usability of PairBuddy: In their interviews, participants expressed mostly positive experi-
ences with PairBuddy (Table 8):

Enjoyed/Helped/Learned:

Enjoyed: A vast majority (12/14) of participants enjoyed working with PairBuddy. MP10 was the
most enthusiastic commenting, “Tt is really, really awesome.” PairBuddy’s design surprised many
participants, including MS5 who said, ‘T thought it’s really cool technology. I didn’t know stuff like
that was out there, really. So it’s pretty novel.” The only participant who disliked PairBuddy was
MS6, who mentioned, “Not particularly..There wasn’t as much human interaction.”

Helped: Most participants (13/14) expressed that PairBuddy helped them solve the task. MS8
thought PairBuddy saved him time saying, ‘Tt did, yea. It saved me some time because a lot of that
time would have been spent doing trial and error.” Even MS6, who disliked PairBuddy, indicated
that it helped him solve the problem, “[PairBuddy] helped me understand... how to start approaching
things so that I could start going myself.”

Learned: However, only 6/14 participants said that they learned from PairBuddy, and 3/14 re-
mained neutral. Some participants mentioned that they learned task-related concepts, including
MS6 who commented, ‘T think learning the general structure of what pair programming is.” Others
learned new creative strategies, including MS3 who said, I got it like a new perspective... I guess I
still need to start thinking more outside the box.” On the other hand, 5/14 responded they did not
learn from PairBuddy. Unlike a human, PairBuddy did not explain the code it wrote; MS3 described
that PairBuddy “left it up to [their] interpretation.” PairBuddy’s inability to express its reasoning
may have contributed to lower satisfaction with PairBuddy.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

34:26 P. Robe and S. K. Kuttal

Future Design: To improve PairBuddy’s design going forward, we will explore more ways to
impart knowledge through code and test case generation to the extent that current research allows
(details in Section 6 (1)).

Trusted: Most (12/14) participants trusted PairBuddy overall (Table 8). Participant’s trust may
have been based on the assumption that, “[PairBuddy] was familiar with what the program should
look like,” as described by MS7.

Navigator and Driver Roles: PairBuddy was trusted as a navigator (12/14) more than as a driver
(8/14).

PairBuddy acted as an active navigator, using soft skills (leadership, motivation, uncertainty,
and social presence) to help increase participants’ confidence and trust. 12/14 participants indi-
cated trust and confidence, as confirmed by MS2’s comment, ‘T thought it [navigation] was it’s
[PairBuddy’s] most useful function.” Similarly, MS6 mentioned, “One thing that was helpful is that
when they made their navigator suggestions, like all of them seemed reasonable.” The motivation
PairBuddy provided was praised by participants like MS7 who explained that, “It was cute that
it said, ‘Good job, and gave positive affirmations.” PairBuddy’s social presence provided a sense
of security toward participants’ work, as evidenced by MS2’s comment, ‘I think that I can keep on
coding and not like, worry about checking it three more times because PairBuddy’s got my back.” MP9
treated PairBuddy as someone to talk to, commenting, ‘T could say things in the same way that I
would to a human.”

PairBuddy acted as an active driver, using technical skills to make contributions, give just-in-
time feedback, and support divergent thinking. Participants appreciated PairBuddy’s divergent
thinking including MS5 who commented, “I’m gonna approach coding in the future... [by] stepping
back and looking for alternate approaches.” Although participants trusted PairBuddy’s code and
just-in-time feedback, they wanted even more assistance. This desire was evidenced by MS3’s sug-
gestion, “Maybe have it give more frequent and more pointed advice on the code itself.” MS7 wished
PairBuddy’s feedback was more in-line with their own ideas, “T think my trust would decrease if
noticed that the suggestions it was giving me weren’t like really aligned with what I was trying to do.”

Preference for PairBuddy vs. Human: Participants had mixed opinions when asked to compare

PairBuddy with a human. Some participants preferred PairBuddy’s collaboration style includ-
ing MS5 who commented, ‘T think I was getting feedback from it akin to what I would from hu-
mans, and in fact, [it] is a little less intrusive than some humans are when it comes to how I'm
writing my code.” However, many participants wished to work with humans to discuss ideas,
since PairBuddy couldn’t explain its own. In fact, participants ignored PairBuddy’s suggestions
a total of 16 times and often chose to pursue their own ideas. MS3 wished PairBuddy pro-
vided explanations as a driver, and described that, “The code that it [PairBuddy] wrote was func-
tional for what it did, but it [PairBuddy] never actually explained what it drove.” Participants
also expected PairBuddy to offer more contextual feedback, as MS6 mentioned, “If I were to
ask a human, they wouldn’t just say T may have made a mistake,’ they would explain what they
did and explain why they were thinking they made a mistake or why they thought it wasn’t a
mistake.”

Future Design: Going forward, we will improve PairBuddy’s ability to generate explanations
and contribute to discussions as much as current technology will allow (details in Section 6 (1)).

Embodiment: The embodiment of PairBuddy’s voice was much appreciated, while the presence
of PairBuddy’s avatar received mixed feelings. Feedback on the presence of the text chat leaned
negative (see Table 8).

Avatar: Most participants preferred (6/14) or were neutral (6/14) towards the presence of an
avatar. Some participants found it natural to interface with an avatar, as described by MS7, “Tt

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

Designing PairBuddy—A Conversational Agent for Pair Programming 34:27

feels more natural to talk to it than if there’s no avatar” Similarly, MS4 felt a closer connection to
PairBuddy when personified, saying, “[I felt connected] more so than if it was just a voice... or just
text.” On the other hand, 2/14 participants did not like the avatar. These differing opinions coincide
with mixed empirical evidence for the necessity of avatars for agent embodiment [65, 103, 107, 170,
238, 269].

Voice: Voice was PairBuddy’s most desired feature (13/14 preferred, 0/14 not preferred). The abil-
ity to communicate with PairBuddy verbally was very intuitive for participants. MP14 particularly
enjoyed being able to think out loud, commenting, ‘T liked being able to speak... [so that PairBuddy
can] understand what I'm saying while I'm talking out loud rather than having to type out every-
thing.” MS2 found PairBuddy’s voice to be less distracting when he was deep in thought saying, T
feel like the voice is better when you’re focused on programming.”

Text: The desire for text messages was mixed (2/14 preferred, 7/14 not preferred). Participants
who advocated for text suggested it as an addition, rather than a replacement, of voice communica-
tion. MS5 suggested to display PairBuddy’s messages as text bubbles, explaining, ‘T also could also
see like a little pop up in the corner maybe being helpful” However, most participants thought text
would be distracting, as MP9 described, ‘T wouldn’t want to be context switching between the pro-
gramming and the messages.” These results contradict preferences for text chat in the pilot study,
and may be influenced by the lack of text messages in the main study.

Gender: Participants’ gender preferences were identified by asking whether they preferred the
first or second avatar/voice. Many participants’ reasoning for their choice was not gender-related;
MP13’s reason was ‘just because I started with it,” while MS4’s was because “she sounded a little
less robotic.” While previous research has identified gender preferences and bias toward conversa-
tional agents [33, 50, 236], no useful patterns emerged from our data that evidenced any effect of
PairBuddy’s gender.

Future Design: We will keep the same embodiment design with additional choices for Pair-
Buddy’s gender, ethnicity, and accompanying voice tones.

Tone/Style/Feedback: Participants preferred a casual tone, had mixed opinions of PairBuddy’s
dialogue style, and desired non-neutral feedback (Table 8).

Polite and casual tone: Most participants preferred if PairBuddy used a casual (8/14) over a po-
lite tone (2/14). Since PairBuddy’s tone leaned more casual, all participants were satisfied with
PairBuddy’s tone (14/14). Even participants who preferred polite dialogue liked PairBuddy’s tone
the way it was. In his interview, MP10 commented, T felt it was excellent. It didn’t feel to be like try-
ing to be polite. It didn’t feel to be rude as well.” Similarly, MP14 thought PairBuddy’s tone achieved
a good balance, saying, “And the tone was like, not very formal, which I liked, but I wouldn’t want it
more casual than it is now.”

Human vs. robotic style: Participants had mixed opinions on whether PairBuddy should

be human-like or robotic. 5/14 participants favored human-like dialogue, while 3/14 wished
PairBuddy’s dialogue was more robotic. MS3 idealized a more human PairBuddy explaining,
“Ultimately, I think having it speak as human-like as possible is the goal” MP10 described that
he enjoyed the social aspect of PairBuddy’s human-like dialogue, ‘T enjoy.. my buddies and
working with them... Closer to that, I think more people would like [PairBuddy] because that is how
they work in real world.” Participants who preferred robotic dialogue mentioned that it would
be strange or disturbing if PairBuddy was more human-like, including MS1, who commented,
‘It would be weirder if it [PairBuddy] was more like a human; You kind of expect some level of
not human dialogue.” Similarly, MS5 explained her feelings toward PairBuddy’s style, ‘T think
there’s something a little creepy about something that’s like really close to being human, but
not quite.”

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

34:28 P. Robe and S. K. Kuttal

Positive/Neutral/Negative Feedback: All participants preferred (12/14) or were neutral (2/14) to-

ward PairBuddy’s positive feedback. MS4 voiced her opinion, saying, ‘It [PairBuddy] wasn’t rude
about it. He was very like, Tdon’t know if that’s gonna work,” rather than like, ‘Wow, why’d you do
that?’ I think it made it... a little more trustworthy.” MP10 emphasized the need for exclusively posi-
tive feedback, “The way [humans] think and the way they solve problems requires a lot of motivation
and requires a lot of positive praise, even if they are doing things wrong.”

Participants interpreted negative feedback as identifying mistakes in the code, so most of them
liked (6/14) or were neutral (7/14) towards such responses. This misunderstanding was evidenced
by MS8’s comment, “If there are negative parts to what I'm doing, I'd like to know.”

Future Design: We will provide personalization for PairBuddy’s script across tone, style, and
feedback (details in Section 6 (6)). To avoid the “uncanny valley” effect where realism becomes un-
settling [86], PairBuddy’s movement and stylization will be further considered. Finally, PairBuddy
will continue to give encouragement while still providing informative feedback.

(3) Pair Jelling with PairBuddy as a Programming Partner: Participants’ interactions with
PairBuddy were fewer in the first half of sessions, but increased by the second half. Infrequent
interactions may have been caused by participants’ unfamiliarity with PairBuddy as evidenced
by MS7’s interview, “It was a little bit awkward initially to figure out what things I could say that
it would actually respond to... But I figured that out pretty quickly once we started working more.”
Adjusting to PairBuddy in this way is similar to the pair “jelling” period of human-human pair
programming, where programmers take time to get accustomed to each other’s personality, style,
and abilities [117]. However, the jelling period with PairBuddy often ended when participants
understood its utility as MS5 explained, “Seeing consistent results in regards to... positively affecting
my performance would increase my trust in it [PairBuddy].” Research corroborates this claim, as
potential productivity has shown to be a significant motivator for the utilization of conversation
agents [34].

(4) Unrealistic Assumptions Regarding PairBuddy’s Capabilities: Our participants assumed
that PairBuddy would know all the answers as described by PS1, ‘T assumed it [PairBuddy] knew the
answer.” Similarly, PS11 commented, T went in assuming that... you guys had already tested it quite
a bit, and so the robot was really familiar with what the program should look like.” This assumption
of PairBuddy’s knowledge is untrue since design decisions T1 and T2 provide PairBuddy with only
limited abilities since automatic code and test case generation are topics of ongoing research. In
the future, the inaccurate expectations of PairBuddy’s abilities can be addressed through further
clarifications of PairBuddy’s limitations in its script, “Sorry, I have limited capabilities. Researchers
are working to make me smart enough to answer all your questions. Follow the link I sent in the text
chat to read the current research on automated code and test case generation.” However, PS3 under-
stood PairBuddy’s limitations, especially for more complicated tasks that require more discussions,
“T guess it depends on the complexity and the nuance of the situation and the [user] stories that I need
to take care of, so for simpler problems or more straightforward tasks, I'd say that prefer PairBuddy.
But for more complex scenarios, I would rather have a human that can provide more... pointed and

specific feedback and advice.”

(5) Helpful as a Non-Judgemental Partner and When Working Solo: PairBuddy helped par-
ticipants by acting as a non-judgemental partner. PS5 explained, ‘T think the big thing is sometimes
as a programmer, it’s embarrassing when you make mistakes, so you’re stuck on something around
your colleagues, but PairBuddy I don’t think judges me.” PS2 described the lack of pressure to per-
form, ‘I feel like whenever I program alone, there’s less pressure to like write something that’s correct
the first time... So I feel like in the end, it [PairBuddy] helped me write better code.”

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

Designing PairBuddy—A Conversational Agent for Pair Programming 34:29

Table 9. Implementation Details of the Wizard in the Main Study and PairBuddy in the Future

ID: Design Decision Wizard PairBuddy Implementation using

Interface

F1: Avatar Facerig software Same or alternative software

F2: Gender Facerig’s genders and Google Same, consider race/accent and use GenderMag
Text-to-Speech voices [40, 87, 108, 250]

F3: Voice Google Text-to-Speech Same

F4: Text Chat Skype, MS Teams, Discord, etc. Same or consider IDE integration

Interactions

11: Direct Driving Saros collaboration plugin for Plugins for other IDEs and languages
Eclipse IDE

12: Adapted Skill Intuitive contribution detection Discrete progress detection (e.g., # lines of code)

13: Timed Feedback Rule based (refer Section 5.2) Same or reinforcement learning

14: Typing Speed Copy/paste small sections Same

I5: Redirect Suggestions ~ Follow-up question templates Same or reinforcement learning

Soft Skills

S1: Greeting Dialogue templates Same

S2: Motivation Dialogue templates Same and emotion detection algorithm

S3: I vs. We Dialogue template wording Same

S4: Uncertain/Verification Certainty based on correctness of Certainty based on confidence of algorithms
contribution powering code, test cases, and feedback

S5: Social Presence Active listening via wizard Active listening via ML monitoring microphone

Technical Skills

T1: Write/Feedback Tests Diff from past solution dataset Same and generate tests from comments or code

coverage. Further research needed.
T2: Write/Feedback Code Diff from past solution dataset Same and language models such as GPT-3. Further
research needed.

T3: Guidance Based on passing test cases or Same, but further research for matching test
requirement completion cases/code to requirements

T4: Creativity Support Idea Garden prompts or provide Same, limited support for Idea and Develop
code structure creativity stages [134, 200]

T5: Feature Location Intuition Static and dynamic techniques. Further research

needed.
Té6: Unnecessary Code Diff from past solution dataset Dead code via data flow diagrams
T7: Missing Code Diff from past solution dataset As supported by T1-T6 design decisions

The difficulty of implementing each design decision includes: Difficult (peach), Medium (gray), and Easy (white).

(6) High Rate of Role Exchange: Both iterations of PairBuddy shared a similar rate of role
exchange. When normalized over 40 minute sessions, role exchange occurred on average 6.9 and
9.0 times over pilot and main studies, respectively. This difference is not unexpected; PairBuddy
interacted with participants far more in the main study than the pilot study (refer Figure 3 vs.
Figure 7). However, in a comparable human-human pair programming study [208], role exchange
averaged 6.0 over 40 minute studies (3.0 fewer than the main study). Likely, this is due to humans’
superior communication skills; human programmers can discuss ideas directly, while PairBuddy
relied on code contributions as the driver to communicate ideas.

6 DISCUSSIONS AND FUTURE WORK

Our results indicate that PairBuddy was an effective pair programming partner and was enjoyed
by our study participants. Table 9 compares the wizard’s implementation of PairBuddy to the
potential future implementation of PairBuddy. A majority of our design decisions for the wizard
are supported by state-of-the-art research; however, the following describes PairBuddy’s future
design space and the associated challenges:

(1) Supporting Method-level Code and Test Case Generation: Designing a conversational
agent for the programming domain is challenging. Unlike other conversational agents, PairBuddy

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

34:30 P. Robe and S. K. Kuttal

must uniquely support all stages of software development (i.e., clarifying requirements, discussing
ideas, designing solutions, and implementing code). Support for each phase requires different
knowledge and a different approach.

Moving forward, we need to research automated test case, code, and explainable feedback gen-
eration for PairBuddy. Currently, language models such as GPT-3 [37] can be trained from GitHub
[37,95-97] to generate code, while automated test cases can be generated by tools such as Randoop
[183] and EvoSuite [81, 82, 203]. However, these tools must be adapted in order for PairBuddy to
explain the decisions made and give appropriate feedback. To directly answer the “why” questions
that programmers ask, Ko et al. [129, 130] created the automated tool Whyline for both Alice [55]
and Java, but similar research must be conducted in other programming languages and domains
to allow agents to more directly support all stages of software development.

(2) Supporting Diverse Problem Solving Strategies: An observed advantage of PairBuddy be-
tween the pilot and main studies was the increased consideration of humans’ unique problem
solving strategies, as evidenced by MS5’s comment, “I’'m gonna approach coding in the future... [by]
stepping back and looking for alternate approaches.” This suggests that integrating problem-solving
strategies in intelligent programming environments can help instill effective programming prac-
tices, especially for students. In the future, programming environments should integrate problem-
solving strategies such as working backwards, divergent thinking, divide and conquer, analogy,
generalization, and “sleep on it” [142, 187, 256] enable programmers to make progress on their
tasks. Previous research from Idea Garden [115, 116] shows that these problem-solving strategies
can be implemented by presenting suggestions via language-independent templates, which are
informed by language-dependent information about user tasks and progress.

(3) Supporting Learning Preferences: Solo or Collaboration: Research has shown that collab-
orative learning is more effective than traditional methods (such as lectures) since collaboration
allows students to build their own mental models based on the discussion and knowledge transfer
that occurs during the problem-solving process [16]. But still, many of our participants preferred
to work solo. In the pilot study, some participants only used PairBuddy as a resource for code ex-
amples, while in the main study, a few preferred that PairBuddy only observe and identify errors.
Still, others may prefer full collaboration to enjoy the benefits of pair programming. To support
the diversity of learning preferences among programmers (solo vs. collaborative), we will provide
different options for PairBuddy’s behavior including “Navigator Only,” “Driver Only,” or “Full Pair
Programmer” modes.

PairBuddy could even support a “Human-Human Mode” for those who prefer human partners.
Utilizing many of our current decisions, PairBuddy can act as a group facilitator agent by listening
to human conversation and providing feedback [14, 38, 67, 92, 146, 188, 189, 200, 207, 249, 253].
For pair programming, group facilitator agents could help equalize member participation, clarify
processes, resolve conflict, encourage idea development [189], or teach various social skill (e.g.,
active listening [9]).

(4) Implementing PairBuddy as a Task-Oriented vs. Non-Task-Oriented Agent: Pair-
Buddy’s design needs to fall between the two common types of conversational agents: task-
oriented and non-task-oriented. Task-oriented agents perform a variety of tasks and services for
users (e.g., Amazon’s Alexa [243]) and provide concise, direct answers to user queries based on
knowledge sources (e.g., Bing QA [254]). Non-task-oriented agents facilitate natural interaction
between humans and electronic devices (e.g., Meena [11]). For pair programming, a task-oriented
agent can assist user queries, while a non-task-oriented agent can engage in rapport making
and off-topic dialogue. Research [51] has even identified methods to integrate both task- and

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

Designing PairBuddy—A Conversational Agent for Pair Programming 34:31

non-task-oriented agents together. In our human-agent study, we found that 89.28% (3967/4443) of
programmers’ utterances were task-oriented. The abundance of task-oriented dialogue suggests
that as a first step, it may be advantageous to implement PairBuddy as a task-oriented conver-
sational agent that utilizes a pipeline architecture for natural language understanding, dialogue
state tracking, dialogue policy, and natural language generation [85]. Regardless, we must collect
alarge enough dataset of pair programming dialogue to train machine learning models to generate
automated responses to programmers’ queries.

Machine learning algorithms depend upon the quality of the data collected. Specifically, it is dif-
ficult to gather unbiased (e.g., gender, culture) and diverse (e.g., different programming languages
and tasks) data. For pair programming tasks, the stylistic differences between human-human and
human-agent dialogue have implications toward the choice of training dataset [200]. Furthermore,
if the quantity or quality of training data is insufficient, PairBuddy may make inaccurate decisions
that would likely frustrate programmers and negatively impact user experience.

As a first step, Robe and Kuttal [200] investigated the feasibility of natural language under-
standing algorithms on human-human pair programming conversations. They achieved a 57.9%
classification accuracy when using shallow machine learning algorithms, motivating the explo-
ration of state-of-the-art deep-learning language models (e.g., BERT [69], GPT-3 [37], and XLNet
[267]).

(5) Designing for Varied Expertise of Programmers: Our main study explored the similarities
and differences between expert (professional) and novice (student) programmers. However, self-
efficacy scores and interview questions revealed only marginal differences. For instance, students
considered PairBuddy’s feelings (5/8) much more than professionals (1/6), suggesting that profes-
sionals used PairBuddy more as a tool rather than a partner. However, participants’ familiarity
in the applicable domain (Java) may have mattered more, as two professionals (MP13 and MP14)
had less experience than many students. Particularly, our most experienced professional (MP10)
uniquely ignored PairBuddy’s requests, opposed negative feedback, and excelled at the task. In re-
gard to trusting PairBuddy, there was a slight discrepancy: 3/6 professionals vs. 5/8 students. While
our interviews were not conclusive, individuals with particularly low or high experience with a
domain tend to trust computer answers more [49, 266]. Hence, future work must investigate the
range of programming experience within both educational and professional settings. Initially, re-
search should focus on educational applications since classroom assignments can be designed for
a specific task or programming language.

(6) Manifesting Anthropomorphic Features of a Programmer: Although we strive to inte-
grate anthropomorphic features into PairBuddy, we received mixed reactions from our partici-
pants. While PairBuddy’s voice felt natural, its avatar was less impactful, and many participants
even minimized the avatar window. Preferences toward a more robotic or a more human-like Pair-
Buddy were very mixed as well. For the past 20 years, researchers have argued in favor or against
including anthropomorphic features in intelligent agents [88, 127]. Therefore, it is still an open-
ended question whether PairBuddy should use features such as embodiment or emotional intel-
ligence. In future studies, we will investigate whether anthropomorphic features are appropriate
for PairBuddy.

Preferences toward PairBuddy’s conversational style varied across many dimensions in our in-
terviews (e.g., human-like vs. robotic, polite vs. casual). Many of these characteristics mirror the
high-consideration/high-involvement paradigm [190, 191]. High-consideration is characterized by
slower turn-taking, non-imposing speech, longer pauses between turns, and avoiding interrup-
tions (i.e., polite, robotic). Conversely, high-involvement entails a faster rate of speech, more turn-
taking, few inter-turn pauses, and frequent initiations of simultaneous speech (i.e., casual, human).

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

34:32 P. Robe and S. K. Kuttal

Table 10. How PairBuddy’s Design Decisions Influenced its
Conversational Style

High-Consideration High-Involvement
Driver S4: Uncertain/Verification I5: Redirect Suggestions
Both F4: Text Chat F3: Voice
I3: Timed Feedback S1: Greeting
. S2: Motivation
Navigator

S5: Social Presence

In the pilot study, many of PairBuddy’s design decisions were high-consideration. However, based
on the lessons learned, PairBuddy’s conversational style largely became high-involvement in the
main study to more accurately emulate human pair programming behavior. Table 10 lists how
PairBuddy’s design decisions influenced its conversational style in different roles. Participants’
opinions toward PairBuddy’s conversational style often contradicted one another, hindering the
design of a universally accessible PairBuddy. To accommodate individual differences, PairBuddy’s
future design should be malleable, allowing users to tune PairBuddy’s parameters to their liking
[20]. One possible solution is to make PairBuddy’s script interchangeable. For example, a high-
consideration version of PairBuddy’s script might say, “I'm 80% certain that there is an error on line
45, while a high-involvement version would say, ‘T think we might have made a mistake on line
45.” However, interchangeable scripts only go so far, so in the future, we will explore additional
avenues to provide a personalized PairBuddy experience.

Furthermore, dialogues are often multi-modal and involve both verbal and non-verbal inputs
[30, 62, 68, 271]. Detecting these communication cues from users may help agents build rapport
and increase accuracy, engagement, and empathy with their human partners. The lack of non-
verbal cues may limit an agent’s human-like feel and affect its usability. Therefore, in the future,
each dialogue template of PairBuddy’s script will be accompanied by non-verbal meta-data (e.g.,
avatar facial expressions, Ul events) to facilitate multi-modal communication and build rapport
with its partners. Additionally, non-verbal cues can help determine a programmer’s interruptibil-
ity. While supported in social settings [79], further work must adapt interruptabilty research for
programmers and further synchronize its interruptions with the timing of PairBuddy’s feedback
(design decision I3).

7 CONCLUSION

In this research, we explore the uncharted territory of interactive pair programming conversational
agents through the user-centered prototyping of our agent—PairBuddy. This work makes several
contributions, including ones that generalize beyond pair programming:

— Anthropomorphic design space of PairBuddy arose from integrating diverse interface and
interaction mechanisms (embodiment, dialogue styles, and agent actions) and programmer
characteristics (technical skills and soft skills). These design decisions stem from an inte-
gration of novel concepts from our extensive literature review of various domains such as
human-computer interaction, software engineering, artificial intelligence, psychology, and
education. These design decisions can be utilized for advancing programmers’ interactions
in ITS and interactive educational platforms.

— Our focused design, evaluation, and refinement cycles through the use of two Wizard of Oz
studies incrementally evolved PairBuddy’s functionality to realize a robust conversational
agent for pair programming. This methodological approach can drive the design for

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

Designing PairBuddy—A Conversational Agent for Pair Programming 34:33

programming conversational agents in other domains of programming including educating
children, end-user programmers, and people with disabilities.

— The wizard’s script and study materials for both pilot [5] and main studies [4] are available
online for reproducibility by researchers and practitioners.

Our study results showed programmers’ positive attitudes towards using PairBuddy. The results
confirm the feasibility of PairBuddy as a programming partner that can significantly advance
programmer-computer interactions. PairBuddy has significant potential to change how program-
ming is learned and how programming is done. In the words of one of our participants with 20+
years of experience, I think what I learned out of this [study] is that [PairBuddy has] a lot of potential
and... it excites me a lot where technology is going.”

AUTHOR STATEMENT

This work is not related to any prior or concurrent publications, and its contributions stand on its
own.

REFERENCES

[1] 2017. ISO/IEC/IEEE international standard - systems and software engineering—vocabulary. ISO/IEC/IEEE
24765:2017(E) (2017), 1-541. Retrieved on 17 March, 2022 from https://doi.org/10.1109/IEEESTD.2017.8016712

[2] 2018. ISO/IEC/IEEE international standard - systems and software engineering — developing information for users
in an agile environment. ISO/IEC/IEEE 26515:2018(E) (2018), 1-32. Retrieved on 17 March, 2022 from https://doi.org/
10.1109/TEEESTD.2018.8584455

[3] 2020. GitHub. Retrieved from http://github.com.

[4] 2020. Main Study Supporting Material. Retrieved on 17 March, 2022 from https://drive.google.com/drive/folders/
1790nUEV@PHQjW_K38ynUopyL4MDKIG-u?usp=sharing.

[5] 2020. Pilot Study Supporting Material. Retrieved on 17 March, 2022 from https://drive.google.com/drive/

folders/TWgINmA _iz3iONfpbAfNB700CN25m]76k?usp=sharing.

2020. StackOverflow. Retrieved on 17 March, 2022 from http://stackoverflow.com.

2021. JetBrains. Retrieved on 17 March, 2022 from https://www.jetbrains.com/.

2021. Visual Studio. Retrieved on 17 March, 2022 from https://visualstudio.microsoft.com/.

face to train crowd workers for delivering on-demand therapy. Proceedings of the AAAI Conference on Human Compu-
tation and Crowdsourcing 8, 1 (Oct. 2020), 3-12. Retrieved from https://ojs.aaai.org/index.php/HCOMP/article/view/
7458.

[10] Gregory D. Abowd and Alan J. Dix. 1992. Giving undo attention. Interacting with Computers 4, 3 (12 1992),
317-342. DOI:https://doi.org/10.1016/0953-5438(92)90021-7 arXiv:https://academic.oup.com/iwc/article-pdf/4/
3/317/2175174/iwc4-0317.pdf.

[11] Daniel Adiwardana, Minh-Thang Luong, David R. So, Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang, Apoorv
Kulshreshtha, Gaurav Nemade, Yifeng Lu, and Quoc V. Le. 2020. Towards a human-like open-domain chatbot.
arXiv:2001.09977. Retrieved from https://arxiv.org/abs/2001.09977.

[12] Ali Ahmadvand, Jason Ingyu Choi, and Eugene Agichtein. 2019. Contextual dialogue act classification for open-
domain conversational agents. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval. 1273-1276.

[13] M. Ai-Chang, J. Bresina, L. Charest, A. Chase, J. C.-J. Hsu, A. Jonsson, B. Kanefsky, P. Morris, Kanna Rajan, J. Yglesias,
B. G. Chafin, W. C. Dias, and P. F. Maldague. 2004. MAPGEN: Mixed-initiative planning and scheduling for the Mars
Exploration Rover mission. IEEE Intelligent Systems 19, 1 (2004), 8—12. DOI : https://doi.org/10.1109/MIS.2004.1265878

[14] Milam Aiken, Mahesh Vanjami, and James Krosp. 1995. Group decision support systems. Review of Business 16, 3
(2020/3/2/ 1995), 38+.

[15] B. Al-Ani and D. Redmiles. 2009. In strangers we trust? Findings of an empirical study of distributed teams. In
Proceedings of the 2009 4th IEEE International Conference on Global Software Engineering. 121-130.

[16] Maryam Alavi. 1994. Computer-mediated collaborative learning: An empirical evaluation. MIS Quarterly 18, 2 (1994),
159-174.

[17] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege. 2010. A systematic review of the application and
empirical investigation of search-based test case generation. IEEE Transactions on Software Engineering 36, 6 (2010),
742-762.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1109/IEEESTD.2018.8584455
http://github.com
https://drive.google.com/drive/folders/179OnUEVqPHQjW_K38ynUopyL4MDKlG-u?usp=sharing
https://drive.google.com/drive/folders/1WgINmA_iz3iONfpbAfNB70oCN25mJ76k?usp=sharing
http://stackoverflow.com
https://www.jetbrains.com/
https://visualstudio.microsoft.com/
https://ojs.aaai.org/index.php/HCOMP/article/view/7458
https://doi.org/10.1016/0953-5438(92)90021-7
https://academic.oup.com/iwc/article-pdf/4/3/317/2175174/iwc4-0317.pdf
https://arxiv.org/abs/2001.09977
https://doi.org/10.1109/MIS.2004.1265878

34:34 P. Robe and S. K. Kuttal

[18] Teresa M. Amabile and Michael G. Pratt. 2016. The dynamic componential model of creativity and innovation in
organizations: Making progress, making meaning. Research in Organizational Behavior 36 (2016), 157-183. DOI : https:
//doi.org/10.1016/j.riob.2016.10.001

[19] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira Nushi, Penny Collisson, Jina Suh, Shamsi

Igbal, Paul N. Bennett, Kori Inkpen, Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. 2019. Guidelines for human-AI

interaction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM, New York, NY,

Article 3, 13 pages. DOI : https://doi.org/10.1145/3290605.3300233

Ofer Arazy, Oded Nov, and Nanda Kumar. 2015. Personalityzation: UI personalization, theoretical grounding in HCI

and design research. AIS Transactions on Human-Computer Interaction 7, 2 (2015), 43-69.

[21] Michael Armstrong. 2012. Armstrong’s Handbook of Reward Management Practice: Improving Performance Through

Reward (12 ed.). Kogan Page Publishers.

Zahra Ashktorab, Mohit Jain, Q. Vera Liao, and Justin D. Weisz. 2019. Resilient chatbots: Repair strategy preferences

for conversational breakdowns. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.

ACM, New York, NY, Article 254, 12 pages. DOI : https://doi.org/10.1145/3290605.3300484

[23] D.C.Hoaglin, B. A. Kitchenham, S. L. Pfleeger, and J. Rosenberg. 2002. “Preliminary guidelines for empirical research

in software engineering”. In Proceedings of the IEEE Transactions on Software Engineering, Vol. 28. 721-734.

Claudio Barra and Broderick Crawford. 2007. Fostering creativity thinking in agile software development. In Pro-

ceedings of the Symposium of the Austrian HCI and Usability Engineering Group, Vol. 4799. 415-426. DOI : https:

//doi.org/10.1007/978-3-540-76805-0_37

Amy L. Baylor and Soyoung Kim. 2009. Designing nonverbal communication for pedagogical agents: When less is

more. Computers in Human Behavior 25, 2 (2009), 450-457. DOI : https://doi.org/10.1016/j.chb.2008.10.008

Tara Behrend, Steven Toaddy, Lori Foster Thompson, and David J. Sharek. 2012. The effects of avatar appearance

on interviewer ratings in virtual employment interviews. Computers in Human Behavior 28, 6 (2012), 2128-2133.

DOI : https://doi.org/10.1016/j.chb.2012.06.017

[27] A.Belshee. 2005. Promiscuous pairing and beginner’s mind: Embrace inexperience. In Proceedings of the Agile Devel-

opment Conference. 125-131. DOI : https://doi.org/10.1109/ADC.2005.37

Gary Bente, Sabine Riiggenberg, Nicole C. Kramer, and Felix Eschenburg. 2008. Avatar-mediated networking: Increas-

ing social presence and interpersonal trust in net-based collaborations. Human Communication Research 34, 2 (April

2008), 287-318. DOI:https://doi.org/10.1111/1.1468-2958.2008.00322.x arXiv:https://academic.oup.com/hcr/article-

pdf/34/2/287/22325251/jhumcom0287.pdf

[29] Timothy Bickmore and Justine Cassell. 2001. Relational agents: A model and implementation of building user trust.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 396—-403.

[30] Dan Bohus, Chit W. Saw, and Eric Horvitz. 2014. Directions robot: In-the-wild experiences and lessons learned. In
Proceedings of the 2014 International Conference on Autonomous Agents and Multi-Agent Systems. 637-644.

[31] Yvonne Brackbill, William E. Boblitt, Douglas Davlin, and John E. Wagner. 1963. Amplitude of response and the
delay-retention effect. Journal of Experimental Psychology 66, 1 (1963), 57.

[32] Jay Bradley, David Benyon, Oli Mival, and Nick Webb. 2010. Wizard of Oz experiments and companion dialogues. In
Proceedings of the 24th BCS Interaction Specialist Group Conference. British Computer Society, 117-123.

[33] Sheryl Brahnam and Antonella De Angeli. 2012. Gender affordances of conversational agents. Interacting
with Computers 24, 3 (April 2012), 139-153. DOI : https://doi.org/10.1016/j.intcom.2012.05.001 arXiv:https://academic.
oup.com/iwc/article-pdf/24/3/139/2027399/iwc24-0139.pdf

[34] Petter Bae Brandtzaeg and Asbjern Felstad. 2017. Why people use chatbots. In Proceedings of the International Con-
ference on Internet Science. Springer, 377-392.

[35] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Qualitative Research in Psychology
3, 2 (Jan. 2006), 77-101. DOI : https://doi.org/10.1191/1478088706qp0630a

[36] Tim Brown. 2009. Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation. Harper-
Business.

[37] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in Neural
Information Processing Systems 33 (2020), 1877-1901.

[38] Tung X. Bui. 1987. Co-oP: A Group Decision Support System for Cooperative Multiple Criteria Group Decision Making.
Springer, Berlin.

[39] Margaret Burnett, Anicia Peters, Charles Hill, and Noha Elarief. 2016. Finding gender-inclusiveness software issues
with GenderMag: A field investigation. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems. ACM, 2586-2598.

[40] Margaret Burnett, Simone Stumpf, Jamie Macbeth, Stephann Makri, Laura Beckwith, Irwin Kwan, Anicia Peters,
and William Jernigan. 2016. GenderMag: A method for evaluating software’s gender inclusiveness. Interacting with
Computers 28, 6 (Oct. 2016), 760-787.

[20

=

[22

—

[24

[l

[25

—

[26

=

[28

=

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

https://doi.org/10.1016/j.riob.2016.10.001
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1145/3290605.3300484
https://doi.org/10.1007/978-3-540-76805-0_37
https://doi.org/10.1016/j.chb.2008.10.008
https://doi.org/10.1016/j.chb.2012.06.017
https://doi.org/10.1109/ADC.2005.37
https://doi.org/10.1111/j.1468-2958.2008.00322.x
http://arxiv.org/abs/https://academic.oup.com/hcr/article-pdf/34/2/287/22325251/jhumcom0287.pdf
https://doi.org/10.1016/j.intcom.2012.05.001
https://academic.oup.com/iwc/article-pdf/24/3/139/2027399/iwc24-0139.pdf
https://doi.org/10.1191/1478088706qp063oa

Designing PairBuddy—A Conversational Agent for Pair Programming 34:35

[41]
[42]

[43]

[44]

[45]

[46]

[47]
(48]
[49]
[50]

[51]

[52]

[53]

[54]
[55]

[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]

Ramoén Burri. 2018. Improving User Trust Towards Conversational Chatbot Interfaces with Voice Output. Master’s Thesis.
KTH, School of Electrical Engineering and Computer Science (EECS).

ROSE Carolyn. 2007. Tools for authoring a dialogue agent that participates in learning studies. Artificial Intelligence
in Education: Building Technology Rich Learning Contexts That Work 158 (2007), 43.

Justine Cassell, Yukiko I. Nakano, Timothy W. Bickmore, Candace L. Sidner, and Charles Rich. 2001. Non-verbal cues
for discourse structure. In Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics.
114-123.

Mehmet Celepkolu and Kristy Elizabeth Boyer. 2018. Thematic analysis of students’ reflections on pair programming
in CS1. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education. ACM, New York, NY,
771-776. DOI : https://doi.org/10.1145/3159450.3159516

Christopher P. Cerasoli, Jessica M. Nicklin, and Michael T. Ford. 2014. Intrinsic motivation and extrinsic incentives
jointly predict performance: A 40-year meta-analysis. Psychological Bulletin 140, 4 (2014), 980.

Hyun Jin Cha, Yong Se Kim, Seon Hee Park, Tae Bok Yoon, Young Mo Jung, and Jee-Hyong Lee. 2006. Learning styles
diagnosis based on user interface behaviors for the customization of learning interfaces in an intelligent tutoring
system. In Proceedings of the International Conference on Intelligent Tutoring Systems. Springer, 513-524.

Tak-Wai Chan. 1996. Learning companion systems, social learning systems, and the global social learning club. Jour-
nal of Artificial Intelligence in Education 7, 2 (1996), 125. Retrieved from https://www.learntechlib.org/p/82394.

Gary Charness and Uri Gneezy. 2012. Strong evidence for gender differences in risk taking. Journal of Economic
Behavior & Organization 83, 1 (2012), 50-58.

J. Y. C. Chen and M. J. Barnes. 2014. Human-agent teaming for multirobot control: A review of human factors issues.
IEEE Transactions on Human-Machine Systems 44, 1 (2014), 13-29.

K. S. Choi. 2013. Evaluating gender significance within a pair programming context. In Proceedings of the 2013 46th
Hawaii International Conference on System Sciences. 4817-4825.

Tai-Liang Chou and Yu-Ling Hsueh. 2019. A task-oriented chatbot based on LSTM and reinforcement learning. In
Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval. ACM,
New York, NY, 87-91. DOI: https://doi.org/10.1145/3342827.3342844

Alistair Cockburn and Laurie Williams. 2001. Extreme Programming Examined. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, Chapter The Costs and Benefits of Pair Programming, 223-243. Retrieved from http://dl.acm.
org/citation.cfm?id=377517.377531.

Michelle Cohn, Chun-Yen Chen, and Zhou Yu. 2019. A large-scale user study of an alexa prize chatbot: Effect of TTS
dynamism on perceived quality of social dialog. In Proceedings of the 20th Annual SIGdial Meeting on Discourse and
Dialogue. 293-306.

Juan Manuel Contreras, Mahzarin R. Banaji, and Jason P. Mitchell. 2013. Multivoxel patterns in fusiform face area
differentiate faces by sex and race. PloS One 8, 7 (2013), e69684.

Stephen Cooper, Wanda Dann, and Randy Pausch. 2000. Alice: A 3-D tool for introductory programming concepts.
Journal of Computing Sciences in Colleges 15, 5 (April 2000), 107-116.

Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wiinsche. 2018. Intelligent tutoring systems for programming
education: A systematic review. In Proceedings of the 20th Australasian Computing Education Conference. 53-62.
DOI:https://doi.org/10.1145/3160489.3160492

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1991. Efficiently computing
static single assignment form and the control dependence graph. ACM Transactions on Programming Languages and
Systems 13, 4 (Oct. 1991), 451-490. DOI : https://doi.org/10.1145/115372.115320

Fabio Q. B. da Silva, Catarina Costa, A. Cesar C. Franca, and Rafael Prikladinicki. 2010. Challenges and solutions in
distributed software development project management: A systematic literature review. In Proceedings of the 2010 5th
IEEE International Conference on Global Software Engineering. IEEE, 87-96.

Nils Dahlbéck, Arne Jonsson, and Lars Ahrenberg. 1993. Wizard of Oz studies: Why and how. In Proceedings of the
1st International Conference on Intelligent User Interfaces. 193-200.

M. Day, M. R. Penumala, and J. Gonzalez-Sanchez. 2019. Annete: An intelligent tutoring companion embedded into
the eclipse IDE. In Proceedings of the 2019 IEEE 1st International Conference on Cognitive Machine Intelligence. 71-80.
Claudio Ledn de la Barra and Broderick Crawford. 2007. Fostering creativity thinking in agile software develop-
ment. In Proceedings of the HCI and Usability for Medicine and Health Care. Andreas Holzinger (Ed.). Springer Berlin,
415-426.

Harm De Vries, Florian Strub, Sarath Chandar, Olivier Pietquin, Hugo Larochelle, and Aaron Courville. 2017. Guess-
what?! visual object discovery through multi-modal dialogue. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 5503-5512.

Hans Dechert and Manfred Raupach. 1987. Conversational style. Psycholinguistic Models of Production (1987), 251—
267.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

https://doi.org/10.1145/3159450.3159516
https://www.learntechlib.org/p/82394
https://doi.org/10.1145/3342827.3342844
http://dl.acm.org/citation.cfm?id=377517.377531
https://doi.org/10.1145/3160489.3160492
https://doi.org/10.1145/115372.115320

34:36 P. Robe and S. K. Kuttal

[64] Edward L. Deci, Anja H. Olafsen, and Richard M. Ryan. 2017. Self-determination theory in work organizations: The
state of a science. Annual Review of Organizational Psychology and Organizational Behavior 4, 1 (2017), 19-43.

[65] Doris M. Dehn and Susanne van Mulken. 2000. The impact of animated interface agents: A review of empirical
research. International Journal of Human-Computer Studies 52, 1 (Jan. 2000), 1-22. DOI: https://doi.org/10.1006/ijhc.
1999.0325

[66] Tom DeMarco and Timothy Lister. 1987. Peopleware: Productive Projects and Teams. Dorset House Publishing Co.,
Inc., New York, NY.

[67] Gerardine DeSanctis and R. Brent Gallupe. 1987. A foundation for the study of group decision support systems.
Management Science 33, 5 (May 1987), 589-609.

[68] David DeVault, Ron Artstein, Grace Benn, Teresa Dey, Ed Fast, Alesia Gainer, Kallirroi Georgila, Jon Gratch, Arno
Hartholt, Margaux Lhommet, Gale Lucas, Stacy Marsella, Fabrizio Morbini, Angela Nazarian, Stefan Scherer, Giota
Stratou, Apar Suri, David Traum, Rachel Wood, Yuyu Xu, Albert Rizzo, and Louis-Philippe Morency. 2014. SimSensei
kiosk: A virtual human interviewer for healthcare decision support. In Proceedings of the 2014 International Conference
on Autonomous Agents and Multi-agent Systems. 1061-1068.

[69] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional

transformers for language understanding. Retrieved from https://arxiv.org/abs/1810.04805.

Eclipse 2019. Eclipse IDE. Retrieved on 17 March, 2022 from https://www.eclipse.org/.

Eclipse 2020. Junit. Retrieved on 17 March, 2022 from https://junit.org/junit5/.

Stephan Salinger, Christopher Oezbek, Karl Beecher, and Julia Schenk. 2010. Saros: An Eclipse Plug-in for Distributed

Party Programming (CHASE’10). Association for Computing Machinery, New York, NY, USA, 48-55. https://doi.org/

10.1145/1833310.1833319

Berland Edelman and Inc. 2010. Creativity and Education: Why it Matters. Retrieved September 18th, 2019 from http:

//www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_Creativity_and_Education_Why_It_Matters_study.pdf.

[74] R.Elghondakly, S. Moussa, and N. Badr. 2015. Waterfall and agile requirements-based model for automated test cases
generation. In Proceedings of the 2015 IEEE 7th International Conference on Intelligent Computing and Information
Systems. 607-612.

[75] Martha Evens and Joel Michael. 2006. One-on-one Tutoring By Humans and Computers. Psychology Press.

[76] Stef van der Struijk, Hung-Hsuan Huang, Maryam Sadat Mirzaei, and Toyoaki Nishida. 2018. FACSvatar: An Open
Source Modular Framework for Real-Time FACS Based Facial Animation. In Proceedings of the 18th International
Conference on Intelligent Virtual Agents (Sydney, NSW, Australia) (IVA’18). Association for Computing Machinery,
New York, NY, USA, 159-164. https://doi.org/10.1145/3267851.3267918

[77] Raoul Festante. 2007. An Introduction to the Theory of Gender-neutral Language. BoD-Books on Demand.

[78] Carmen Fischer, Charlotte P. Malycha, and Ernestine Schafmann. 2019. The influence of intrinsic motivation and
synergistic extrinsic motivators on creativity and innovation. Frontiers in Psychology 10 (2019), 137. DOI : https://doi.
org/10.3389/fpsyg.2019.00137

[79] James Fogarty, Scott E. Hudson, Christopher G. Atkeson, Daniel Avrahami, Jodi Forlizzi, Sara Kiesler, Johnny C. Lee,
and Jie Yang. 2005. Predicting human interruptibility with sensors. ACM Transactions on Computer-Human Interaction
12, 1 (March 2005), 119-146. DOI : https://doi.org/10.1145/1057237.1057243

[80] Cyrus K. Foroughi, Nicole E. Werner, Erik T. Nelson, and Deborah A. Boehm-Davis. 2014. Do interruptions
affect quality of work? Human Factors 56, 7 (2014), 1262-1271. DOI:https://doi.org/10.1177/0018720814531786
arXiv:https://doi.org/10.1177/0018720814531786 PMID: 25490806.

[81] Gordon Fraser and Andrea Arcuri. 2012. Whole test suite generation. IEEE Transactions on Software Engineering 39,
2(2012), 276-291.

[82] Gordon Fraser and Andrea Arcuri. 2013. Evosuite: On the challenges of test case generation in the real world.
In Proceedings of the 2013 IEEE 6th International Conference on Software Testing, Verification and Validation. IEEE,
362-369.

[83] Freelancing Platform [n. d.]. Upwork Inc.

[84] Hans Gallis and Erik Arisholm. 2002. A transition from partner programming to pair programming-an industrial
case study. In Proceedings of the Workshop: “Pair Programming Installed” at Object-Oriented Programming, Systems,
Languages and Applications.

[85] Jianfeng Gao, Michel Galley, and Lihong Li. 2018. Neural approaches to conversational ai. In Proceedings of the 41st

International ACM SIGIR Conference on Research & Development in Information Retrieval. 1371-1374.

Tom Geller. 2008. Overcoming the uncanny valley. IEEE Computer Graphics and Applications 28, 4 (2008), 11-17.

GenderMag 2019. GenderMag. Retrieved on 17 March, 2022 from http://gendermag.org/.

Stella George. 2019. From sex and therapy bots to virtual assistants and tutors: How emotional should artificially

intelligent agents be? In Proceedings of the 1st International Conference on Conversational User Interfaces. ACM, New

York, NY, Article 19, 3 pages. DOI: https://doi.org/10.1145/3342775.3342807

— ——
e |
N = O
[R]

.—‘
~
<D

&

=

—r——
x 0
o 3
[t/ R

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

https://doi.org/10.1006/ijhc.1999.0325
https://arxiv.org/abs/1810.04805
https://www.eclipse.org/
https://junit.org/junit5/
https://doi.org/10.1145/1833310.1833319
http://www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_Creativity_and_Education_Why_It_Matters_study.pdf
https://doi.org/10.1145/3267851.3267918
https://doi.org/10.3389/fpsyg.2019.00137
https://doi.org/10.1145/1057237.1057243
https://doi.org/10.1177/0018720814531786
http://arxiv.org/abs/https://doi.org/10.1177/0018720814531786
http://gendermag.org/
https://doi.org/10.1145/3342775.3342807

Designing PairBuddy—A Conversational Agent for Pair Programming 34:37

[89]

[90]
[91]
[92]
[93]
[94]
[95]
[96]
[97]
[98]

[99]

[100]

[101]

[102]

(103

[t

Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and L. Thomas van Binsbergen. 2016. Ask-Elle: An adaptable program-
ming tutor for haskell giving automated feedback. International Journal of Artificial Intelligence in Education 27, 1
(Feb. 2016), 65-100. DOI : https://doi.org/10.1007/s40593-015-0080-x

Barney G. Glaser and Anselm L. Strauss. 1967. The Discovery of Grounded Theory: Strategies for Qualitative Research.
Aldine de Gruyter, New York, NY.

M. Gonzalez-Franco, A. Steed, S. Hoogendyk, and E. Ofek. 2020. Using facial animation to increase the enface-
ment illusion and avatar self-identification. IEEE Transactions on Visualization and Computer Graphics 26, 5 (2020),
2023-2029.

Paul Gray. 1987. Group decision support systems. Decision Support Systems 3, 3 (Sept. 1987), 233-242.

Paul Green and Lisa Wei-Haas. 1985. The Wizard of Oz: A Tool for Rapid Development of User Interfaces. Technical
Report UU-CS-2015-019. Utrecht University, Utrecht, The Netherlands.

Pamela Grimm. 2010. Social Desirability Bias. John Wiley Sons, Ltd. https://doi.org/10.1002/9781444316568.
wiem02057 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781444316568.wiem02057

GTP-3 2020. Tweet of Code Generated from GPT-3. Retrieved on 17 March, 2022 from https://twitter.com/
sharifshameem/status/1282676454690451457.

GTP-3 2020. YouTube Video Showing Generation of Code by GPT3. Retrieved on 17 March, 2022 from https://www.
youtube.com/watch?v=utuz7wBGjKM.

GTP-3 2020. YouTube Video Showing Generation of Code by GPT3. Retrieved 24 June, 2020 from GPT3:https://www.
youtube.com/watch?v=y5-wzglySb4.

GTTS 2019. Google Text-to-speech Python Library. Retrieved on 17 March, 2022 from https://github.com/pndurette/
gTTS.

Keun-Woo Han, EunKyoung Lee, and Youngjun Lee. 2010. The impact of a peer-learning agent based on pair
programming in a programming course. IEEE Transactions on Education 53, 2 (June 2010), 318-327. DOI:https:
//doi.org/10.1109/TE.2009.2019121

Qinghong Han, Yuxian Meng, Fei Wu, and Jiwei Li. 2020. Non-autoregressive neural dialogue generation. Retrieved
from https://arxiv.org/abs/2002.04250.

Brian F. Hanks. 2004. Distributed pair programming: An empirical study. In Proceedings of the Extreme Programming
and Agile Methods - XP/Agile Universe 2004. Carmen Zannier, Hakan Erdogmus, and Lowell Lindstrom (Eds.). Springer
Berlin, 81-91.

Benjamin Hardin and Michael A. Goodrich. 2009. On using mixed-initiative control: A perspective for managing
large-scale robotic teams. In Proceedings of the 2009 4th ACM/IEEE International Conference on Human-Robot Interac-
tion. ACM, New York, NY, 165-172. DOI : https://doi.org/10.1145/1514095.1514126

Dai Hasegawa, Justine Cassell, and Kenji Araki. 2010. The role of embodiment and perspective in direction-giving
systems. In Proceedings of the 2010 AAAI Fall Symposium Series.

Khaled Hassanein and Milena Head. 2007. Manipulating perceived social presence through the web interface and its
impact on attitude towards online shopping. International Journal of Human-Computer Studies 65, 8 (2007), 689-708.
DOI : https://doi.org/10.1016/].ijhcs.2006.11.018

John Hattie. 1999. Influences on student learning. Inaugural Lecture Given on August 2, 1999 (1999), 21.

John Hattie and Helen Timperley. 2007. The power of feedback. Review of Educational Research 77, 1 (2007), 81-112.
Renate Hauslschmid, Max von Biilow, Bastian Pfleging, and Andreas Butz. 2017. SupportingTrust in autonomous
driving. In Proceedings of the 22nd International Conference on Intelligent User Interfaces. ACM, New York, NY,
319-329. DOI : https://doi.org/10.1145/3025171.3025198

Charles Hill. 2017. The sum of its parts: Investigating the component pieces of GenderMag. Retrieved on 17 March,
2022 from http://hdl.handle.net/1957/61887.

Xinting Huang, Jianzhong Qi, Yu Sun, and Rui Zhang. 2020. Semi-Supervised Dialogue Policy Learning via Stochastic
Reward Estimation. In ACL. 660-670. https://doi.org/10.18653/v1/2020.acl-main.62

Niklas Humble and Peter Mozelius. 2019. Teacher-supported Al or Al-supported teachers? In European Conference
on the Impact of Artificial Intelligence and Robotics 2019 (ECIAIR’19), Oxford, UK, Vol. 1. Academic Conferences and
Publishing International Limited, 157-164.

Lilly Irani. 2004. Understanding gender and confidence in CS course culture. ACM SIGCSE Bulletin 36, 1 (2004),
195-199. ACM, New York, NY. DOI: https://doi.org/10.1145/971300.971371

Scott G. Isaksen and Donald J. Treffinger. 2004. Celebrating 50 years of reflective practice: Versions of creative prob-
lem solving. The Journal of Creative Behavior 38, 2 (June 2004), 75-101.

Mohit Jain, Pratyush Kumar, Ishita Bhansali, Q. Vera Liao, Khai Truong, and Shwetak Patel. 2018. FarmChat: A
conversational agent to answer farmer queries. Proceedings of the ACM on Interactive Mobile Wearable Ubiquitous
Technologies 2, 4 (Dec. 2018), Article 170, 22 pages. DOI : https://doi.org/10.1145/3287048

Mohit Jain, Pratyush Kumar, Ramachandra Kota, and Shwetak N. Patel. 2018. Evaluating and informing the design
of chatbots. In Proceedings of the 2018 Designing Interactive Systems Conference. 895-906.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

https://doi.org/10.1007/s40593-015-0080-x
https://doi.org/10.1002/9781444316568.wiem02057
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781444316568.wiem02057
https://twitter.com/sharifshameem/status/1282676454690451457
https://www.youtube.com/watch?v=utuz7wBGjKM
GPT3:%20https://www.youtube.com/watch?v=y5-%20wzgIySb4
https://github.com/pndurette/gTTS
https://doi.org/10.1109/TE.2009.2019121
https://arxiv.org/abs/2002.04250
https://doi.org/10.1145/1514095.1514126
https://doi.org/10.1016/j.ijhcs.2006.11.018
https://doi.org/10.1145/3025171.3025198
http://hdl.handle.net/1957/61887
https://doi.org/10.18653/v1/2020.acl-main.62
https://doi.org/10.1145/971300.971371
https://doi.org/10.1145/3287048

34:38 P. Robe and S. K. Kuttal

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]
[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

William Jernigan, Amber Horvath, Michael Lee, Margaret Burnett, Taylor Cuilty, Sandeep Kuttal, Anicia Peters, Irwin
Kwan, Faezeh Bahmani, Andrew Ko, and Christopher Mendez. 2017. General principles for a generalized idea garden.
Journal of Visual Languages & Computing 39, C (May 2017), 51-65. DOI : https://doi.org/10.1016/].jvlc.2017.04.005
Will Jernigan, Amber Horvath, Michael Lee, Margaret Burnett, Cuilty Taylor, Sandeep Kuttal, Anicia Peters, Irwin
Kwan, Faezeh Bahmani, and Andrew Ko. 2015. A principled evaluation for a principled idea garden. Retrieved on 17
March, 2022 from https://doi.org/10.1109/VLHCC.2015.7357222

Danielle Jones and Scott Fleming. 2013. What use is a backseat driver? A qualitative investigation of pair program-
ming. In Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, 103-110. DOI : https:
//doi.org/10.1109/VLHCC.2013.6645252

Ankur Joshi, Saket Kale, Satish Chandel, and D. Kumar Pal. 2015. Likert scale: Explored and explained. Current
Journal of Applied Science and Technology 7, 4 (2015), 396—403.

Ewa Kacewicz, James W. Pennebaker, Matthew Davis, Moongee Jeon, and Arthur C. Graesser. 2014. Pronoun use
reflects standings in social hierarchies. Journal of Language and Social Psychology 33, 2 (2014), 125-143. DOI: https:
//doi.org/10.1177/0261927X13502654 arXiv:https://doi.org/10.1177/0261927X13502654

Peter H. Kahn, Nathan G. Freier, Takayuki Kanda, Hiroshi Ishiguro, Jolina H. Ruckert, Rachel L. Severson, and
Shaun K. Kane. 2008. Design patterns for sociality in human-robot interaction. In Proceedings of the 3rd ACM/IEEE In-
ternational Conference on Human Robot Interaction ACM, New York, NY, 97-104. DOI : https://doi.org/10.1145/1349822.
1349836

Neha Katira, Laurie Williams, Laurie Williams, Eric Wiebe, Carol Miller, Suzanne Balik, and Ed Gehringer. 2004.
On understanding compatibility of student pair programmers. SIGCSE Bull. 36, 1 (March 2004), 7-11. DOI: https:
//doi.org/10.1145/1028174.971307

R. K. Kavitha and M. S. Irfan Ahmed. 2013. Knowledge sharing through pair programming in learning environments:
An empirical study. Education and Information Technologies 20, 2 (Oct. 2013), 319-333.

Greg P. Kearsley. 1987. Artificial Intelligence and Instruction: Applications and Methods. Addison-Wesley Longman
Publishing Co., Inc.

Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014. Spotting working code examples. In Proceedings of the 36th
International Conference on Software Engineering. ACM, New York, NY, 664-675. DOI : https://doi.org/10.1145/2568225.
2568292

Kisub Kim, Dongsun Kim, Tegawendé F. Bissyandé, Eunjong Choi, Li Li, Jacques Klein, and Yves Le Traon. 2018.
FaCoY: A code-to-code search engine. In Proceedings of the 40th International Conference on Software Engineering.
ACM, New York, NY, 946-957. DOI : https://doi.org/10.1145/3180155.3180187

Sungdong Kim, Sohee Yang, Gyuwan Kim, and Sang-Woo Lee. 2020. Efficient Dialogue State Tracking by Selectively
Overwriting Memory. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, Online, 567-582. https://doi.org/10.18653/v1/2020.acl-main.53

Lorenz Cuno Klopfenstein, Saverio Delpriori, Silvia Malatini, and Alessandro Bogliolo. 2017. The rise of bots: A
survey of conversational interfaces, patterns, and paradigms. In Proceedings of the 2017 Conference on Designing
Interactive Systems. ACM, New York, NY, 555-565. DOI : https://doi.org/10.1145/3064663.3064672

Avraham N. Kluger and Angelo DeNisi. 1996. The effects of feedback interventions on performance: A historical
review, a meta-analysis, and a preliminary feedback intervention theory. Psychological Bulletin 119, 2 (1996), 254.
Andrew J. Ko and Brad A. Myers. 2004. Designing the whyline: A debugging interface for asking questions about
program behavior. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, New York,
NY, 151-158. DOI : https://doi.org/10.1145/985692.985712

Andrew J. Ko and Brad A. Myers. 2009. Finding causes of program output with the Java whyline. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. ACM, New York, NY, 1569-1578. DOI: https://doi.
org/10.1145/1518701.1518942

[131] James A. Kulik and J. D. Fletcher. 2016. Effectiveness of intelligent tutoring systems: A meta-analytic review. Review

of Educational Research 86, 1 (2016), 42—78. DOI : https://doi.org/10.3102/0034654315581420

[132] James A. Kulik and Chen-Lin C. Kulik. 1988. Timing of feedback and verbal learning. Review of

[133]

[134]

[135]

Educational Research 58, 1 (1988), 79-97. DOI:https://doi.org/10.3102/00346543058001079 arXiv:https://doi.org/
10.3102/00346543058001079

Sandeep Kuttal, Kevin Gerstner, and Alexandra Bejarano. 2019. Remote pair-programming in online CS education:
Investigating through a gender lens. In Proceedings of the IEEE Symposium on Visual Languages & Human-Centric
Computing.

S. K. Kuttal, J. Myers, S. Gurka, D. Magar, D. Piorkowski, and R. Bellamy. 2020. Towards designing conversational
agents for pair programming: Accounting for creativity strategies and conversational styles. In Proceedings of the
2020 IEEE Symposium on Visual Languages and Human-Centric Computing. 1-11.

Danielle L. Jones and Scott D. Fleming. 2013. What use is a backseat driver? A qualitative investigation of pair
programming. In Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing. 103-110.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

https://doi.org/10.1016/j.jvlc.2017.04.005
https://doi.org/10.1109/VLHCC.2015.7357222
https://doi.org/10.1109/VLHCC.2013.6645252
https://doi.org/10.1177/0261927X13502654
http://arxiv.org/abs/https://doi.org/10.1177/0261927X13502654
https://doi.org/10.1145/1349822.1349836
https://doi.org/10.1145/1028174.971307
https://doi.org/10.1145/2568225.2568292
https://doi.org/10.1145/3180155.3180187
https://doi.org/10.18653/v1/2020.acl-main.53
https://doi.org/10.1145/3064663.3064672
https://doi.org/10.1145/985692.985712
https://doi.org/10.1145/1518701.1518942
https://doi.org/10.3102/0034654315581420
https://doi.org/10.3102/00346543058001079
https://doi.org/10.3102/00346543058001079

Designing PairBuddy—A Conversational Agent for Pair Programming 34:39

[136] Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebélo. 2012. Symdiff: A language-agnostic
semantic diff tool for imperative programs. In Proceedings of the International Conference on Computer Aided Verifi-
cation. Springer, 712-717.

[137] Thomas K. Landauer. 1987. Psychology as a mother of invention. ACM SIGCHI Bulletin 18, 4 (1987), 333-335.

[138] H. Lane and Kurt Vanlehn. 2005. Teaching the tacit knowledge of programming to novices with natural language
tutoring. Computer Science Education 15, 3 (Sep. 2005), 183-201. DOI : https://doi.org/10.1080/08993400500224286

[139] Hung Le, Richard Socher, and Steven C. H. Hoi. 2020. Non-autoregressive dialog state tracking. In Proceedings of the
International Conference on Learning Representations. Retrieved from https://openreview.net/forum?id=H1le_cC4twsS.

[140] Nguyen-Thinh Le. 2016. A classification of adaptive feedback in educational systems for programming. Systems 4, 2
(May 2016), 22. DOI : https://doi.org/10.3390/systems4020022

[141] Nguyen-Thinh Le, Sven Strickroth, Sebastian Gross, and Niels Pinkwart. 2013. A review of Al-supported tutoring
approaches for learning programming. Advanced Computational Methods for Knowledge Engineering 479 (Jan. 2013),
267-279. DOI : https://doi.org/10.1007/978-3-319-00293-4_20

[142] Marvin Levine. 1988. Effective Problem Solving. Prentice Hall.

[143] Clayton Lewis. 1982. Using the “thinking-aloud” Method in Cognitive Interface Design. IBM T.J. Watson Research
Center, Yorktown Heights, N.Y.

[144] Shaofeng Li. 2010. The effectiveness of corrective feedback in SLA: A meta-analysis. Language Learning 60, 2 (2010),
309-365.

[145] Toby Jia-Jun Li, Jingya Chen, Tom Mitchell, and Brad Myers. 2020. Towards Effective Human-AI Collaboration in
GUI-Based Interactive Task Learning Agents. CHI 2020 Workshop on Artificial Intelligence for HCI: A Modern Approach
(AI4HCI). https://doi.org/arXiv:2003.02622

[146] Moez Limayem, Probir Banerjee, and Louis Ma. 2006. Impact of GDSS: Opening the black box. Decision Support
Systems 42, 2 (Nov. 2006), 945-957.

[147] Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, and Vaclav Rajlich. 2007. Feature location via information re-
trieval based filtering of a single scenario execution trace. In Proceedings of the ACM/IEEE International Conference
on Automated Software Engineering. 234-243. DOI : https://doi.org/10.1145/1321631.1321667

[148] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-task deep neural networks for natural
language understanding. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.
4487-4496.

[149] Zhiqiang Liu and Dieter J. Schonwetter. 2004. Teaching creativity in engineering. International Journal of Engineering
Education 20, 5 (2004), 801-808.

[150] Ju Long. 2009. Open source software development experiences on the students’ resumes: Do they count?-insights
from the employers’ perspectives. Journal of Information Technology Education: Research 8, 1 (2009), 229-242.

[151] Irene Lopatovska and Harriet Williams. 2018. Personification of the amazon alexa: BFF or a mindless companion.
In Proceedings of the 2018 Conference on Human Information Interaction & Retrieval. ACM, New York, NY, 265-268.
DOI :https://doi.org/10.1145/3176349.3176868

[152] EwaLuger and Abigail Sellen. 2016. “Like having a really bad PA” the gulf between user expectation and experience of
conversational agents. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. 5286-5297.

[153] Wenting Ma, Olusola O. Adesope, John C. Nesbit, and Qing Liu. 2014. Intelligent tutoring systems and learning
outcomes: A meta-analysis. Journal of Educational Psychology 106, 4 (2014), 901.

[154] Stephen Makonin, Daniel McVeigh, Wolfgang Stuerzlinger, Khoa Tran, and Fred Popowich. 2016. Mixed-initiative for
big data: The intersection of human + visual analytics + prediction. In Proceedings of the 2016 49th Hawaii International
Conference on System Sciences. 1427-1436. DOI : https://doi.org/10.1109/HICSS.2016.181

[155] Divine Maloney. 2018. Mitigating negative effects of immersive virtual avatars on racial bias. In Proceedings of the
2018 Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts. 39-43.

[156] A.Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev. 2005. Static techniques for concept location in object-
oriented code. In Proceedings of the 13th International Workshop on Program Comprehension. 33-42.

[157] Jennifer Marlow and Laura Dabbish. 2013. Activity traces and signals in software developer recruitment and hiring.
In Proceedings of the 2013 Conference on Computer Supported Cooperative Work. ACM, 145-156.

[158] Akane Matsushima, Natsuki Oka, Chie Fukada, and Kazuaki Tanaka. 2019. Understanding dialogue acts by bayesian
inference and reinforcement learning. In Proceedings of the 7th International Conference on Human-Agent Interaction.
ACM, New York, NY, 262-264. DOI : https://doi.org/10.1145/3349537.3352786

[159] Charlie McDowell, Linda Werner, Heather Bullock, and Julian Fernald. 2002. The effects of pair-programming on
performance in an introductory programming course. In Proceedings of the 33rd SIGCSE Technical Symposium on
Computer Science Education. ACM, New York, NY, 38-42. DOI : https://doi.org/10.1145/563340.563353

[160] Charlie McDowell, Linda Werner, Heather E. Bullock, and Julian Fernald. 2003. The impact of pair programming
on student performance, perception and persistence. In Proceedings of the 25th International Conference on Software

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

https://doi.org/10.1080/08993400500224286
https://openreview.net/forum?id=H1e_cC4twS
https://doi.org/10.3390/systems4020022
https://doi.org/10.1007/978-3-319-00293-4_20
https://doi.org/arXiv:2003.02622
https://doi.org/10.1145/1321631.1321667
https://doi.org/10.1145/3176349.3176868
https://doi.org/10.1109/HICSS.2016.181
https://doi.org/10.1145/3349537.3352786
https://doi.org/10.1145/563340.563353

34:40 P. Robe and S. K. Kuttal

[161]

[162]

[163]

[164]
[165]

[166]

[167
[168]

—

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]
[177]
[178]
[179]
[180]
[181]

[182]

Engineering. IEEE Computer Society, Washington, DC, 602-607. Retrieved from http://dl.acm.org/citation.cfm?id=
776816.776899.

Phil McMinn. 2004. Search-based software test data generation: A survey: Research Articles. Software Testing, Veri-
fication and Reliability 14, 2 (June 2004), 105-156. DOI : https://doi.org/10.1002/stvr.294

Paola Medel and Vahab Pournaghshband. 2017. Eliminating gender bias in computer science education materials.
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education. ACM, New York, NY,
411-416. DOI : https://doi.org/10.1145/3017680.3017794

Meiliana, Irwandhi Septian, Ricky Setiawan Alianto, Daniel, and Ford Lumban Gaol. 2017. Automated test case gen-
eration from UML activity diagram and sequence diagram using depth first search algorithm. Procedia Computer
Science 116 (2017), 629-637. DOI : https://doi.org/10.1016/j.procs.2017.10.029

Grigori Melnik and Frank Maurer. 2002. Perceptions of agile practices: A student survey. In Proceedings of the Con-
ference on Extreme Programming and Agile Methods. Springer, 241-250.

Suejb Memeti and Sabri Pllana. 2018. PAPA: A parallel programming assistant powered by IBM Watson cognitive
computing technology. Journal of Computational Science 26 (2018), 275-284. https://doi.org/10.1016/j.jocs.2018.01.001
Christopher Mendez, Hema Susmita Padala, Zoe Steine-Hanson, Claudia Hilderbrand, Amber Horvath, Charles Hill,
Logan Simpson, Nupoor Patil, Anita Sarma, and Margaret Burnett. 2018. Open source barriers to entry, revisited: A
sociotechnical perspective. In Proceedings of the 40th International Conference on Software Engineering. ACM, 1004
1015.

Casey Miller and Kate Swift. 2001. The Handbook of Nonsexist Writing. iUniverse.

Matheus Monteiro Mariano, Erica F. Souza, André T. Endo, and Nandamudi L. Vijaykumar. 2019. Analyzing graph-
based algorithms employed to generate test cases from finite state machines. In 2019 IEEE Latin American Test Sym-
posium (LATS). 1-6. https://doi.org/10.1109/LATW.2019.8704603

Dana Movshovitz-Attias, Yair Movshovitz-Attias, Peter Steenkiste, and Christos Faloutsos. 2013. Analysis of the
reputation system and user contributions on a question answering website: Stackoverflow. In Proceedings of the 2013
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. ACM, 886-893.

Susanne van Mulken, Elisabeth André, and Jochen Miiller. 1999. An empirical study on the trustworthiness of life-
like interface agents. In Proceedings of the HCI International’99 8th International Conference on Human-Computer
Interaction on Human-Computer Interaction: Communication, Cooperation, and Application Design-Volume 2 - Volume
2. L. Erlbaum Associates Inc., Hillsdale, NJ, 152-156. Retrieved from http://dl.acm.org/citation.cfm?id=647944.741893.
Emerson Murphy-Hill and Andrew P. Black. 2007. Why don’t people use refactoring tools? In Proceedings of the 1st
Workshop on Refactoring Tools. 61-62.

Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, and Matthew Smith. 2020. On conducting security developer
studies with CS students: Examining a password-storage study with CS students, freelancers, and company devel-
opers. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM, New York, NY,
1-13.

Anton J. Nederhof. 1985. Methods of coping with social desirability bias: A review. European Journal of Social Psy-
chology 15, 3 (1985), 263-280.

J. C. Nesbit, O. O. Adesope, Q. Liu, and W. Ma. 2014. How effective are intelligent tutoring systems in computer
science education? In Proceedings of the 2014 IEEE 14th International Conference on Advanced Learning Technologies.
99-103.

Magdalene Ng, Kovila PL Coopamootoo, Ehsan Toreini, Mhairi Aitken, Karen Elliot, and Aad van Moorsel. 2020.
Simulating the effects of social presence on trust, privacy concerns & usage intentions in automated bots for finance.
In 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, 190-199.

Jakob Nielsen and Rolf Molich. 1990. Heuristic evaluation of user interfaces. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 249-256.

Haoran Niu, Iman Keivanloo, and Ying Zou. 2017. Learning to rank code examples for code search engines. Empirical
Software Engineering 22, 1 (2017), 259-291.

John Noll, Sarah Beecham, and Ita Richardson. 2010. Global software development and collaboration: Barriers and
solutions. ACM Inroads 1, 3 (2010), 66—78.

David Novick and Stephen Sutton. 1997. What is mixed-initiative interaction? In Proceedings of the AAAI Spring
Symposium on Computational Models for Mixed Initiative Interaction.

Catherine S. Oh, Jeremy N. Bailenson, and Gregory F. Welch. 2018. A systematic review of social presence: Definition,
antecedents, and implications. Frontiers in Robotics and AI 5 (2018), 114. DOI : https://doi.org/10.3389/frobt.2018.00114
Andy Oram and Greg Wilson. 2010. Making Software: What Really Works, and Why We Believe It (1st ed.). O'Reilly
Media, Inc.

A.F. Osborn. 1957. Applied Imagination: Principles and Procedures of Creative Thinking. Charles Scribner’s Sons.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

http://dl.acm.org/citation.cfm?id=776816.776899
https://doi.org/10.1002/stvr.294
https://doi.org/10.1145/3017680.3017794
https://doi.org/10.1016/j.procs.2017.10.029
https://doi.org/10.1016/j.jocs.2018.01.001
https://doi.org/10.1109/LATW.2019.8704603
http://dl.acm.org/citation.cfm?id=647944.741893
https://doi.org/10.3389/frobt.2018.00114

Designing PairBuddy—A Conversational Agent for Pair Programming 34:41

[183]

[184]
[185]

(186

—

[190]

[191]

[192]

[193]

[194]

[195]
[196]

[197]

[201]

[202]

[203]

[204]

[205]

Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-directed random testing for Java. In Proceedings
of the Companion to the 22nd ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications
Companion. 815-816.

M. Page-Jones. 1988. The Practical Guide to Structured Systems Design. Prentice Hall.

David Walsh Palmieri. 2002. Knowledge management through pair programming. Retrieved on 17 March, 2022 from
http://www.lib.ncsu.edu/resolver/1840.16/1429.

Nelishia Pillay. 2003. Developing intelligent programming tutors for novice programmers. SIGCSE Bull. 35, 2 (June
2003), 78-82. DOI : https://doi.org/10.1145/782941.782986

George Polya. 2004. How to Solve It: A New Aspect of Mathematical Method. Vol. 85. Princeton university press.
Marshall Scott Poole, Michael Holmes, Richard Watson, and Gerardine DeSanctis. 1993. Group decision support
systems and group communication: A comparison of decision making in computer-supported and nonsupported
groups. Communication Research 20, 2 (1993), 176-213.

Marshall Scott Poole, Michael Homes, and Gerardine DeSanctis. 1988. Conflict management and group decision
support systems. In Proceedings of the 1988 ACM Conference on Computer-supported Cooperative Work - CSCW'88.
ACM Press.

Sihang Qiu, Ujwal Gadiraju, and Alessandro Bozzon. 2020. Estimating conversational styles in conversational micro-
task crowdsourcing. Proceedings of the ACM Human-Computer Interaction 4, CSCW 1 (May 2020), Article 032, 23 pages.
DOI: https://doi.org/10.1145/3392837

Sihang Qiu, Ujwal Gadiraju, and Alessandro Bozzon. 2020. Improving worker engagement through conversational
microtask crowdsourcing. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems ACM,
New York, NY, 1-12. DOI: https://doi.org/10.1145/3313831.3376403

Ricardo Alexandre Peixoto Queirds and José Paulo Leal. 2012. PETCHA: A programming exercises teaching assis-
tant. In Proceedings of the 17th ACM Annual Conference on Innovation and Technology in Computer Science Education.
192-197.

M. Raghothaman, Y. Wei, and Y. Hamadi. 2016. SWIM: Synthesizing what I mean - code search and idiomatic snippet
synthesis. In Proceedings of the 2016 IEEE/ACM 38th International Conference on Software Engineering. 357-367.
Vipul Raheja and Joel Tetreault. 2019. Dialogue act classification with context-aware self-attention. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). 3727-3733.

Jorge Ramirez Uresti and Benedict Du Boulay. 2004. Expertise, motivation and teaching in learning companion sys-
tems. International Journal of Artificial Intelligence in Education 14, 2 (Jan. 2004), 193-231.

Prerana Pradeepkumar Rane. 2017. Automatic Generation of Test Cases for Agile Using Natural Language Processing.
Ph.D. Dissertation. Virginia Tech.

James L. Reinertsen. 2000. Let’s talk about error. BMJ 320, 7237 (2000), 730. DOI : https://doi.org/10.1136/bm;j.320.7237.
730 arXiv:https://www.bmj.com/content/320/7237/730.full.pdf.

Ehud Reiter and Robert Dale. 2000. Building Natural Language Generation Systems. Cambridge university press.
Liliang Ren, Jianmo Ni, and Julian McAuley. 2019. Scalable and Accurate Dialogue State Tracking via Hierarchical Se-
quence Generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMINLP-IJCNLP). Association for Computational
Linguistics, Hong Kong, China, 1876-1885. https://doi.org/10.18653/v1/D19-1196

P. Robe, S. Kaur Kuttal, Y. Zhang, and R. Bellamy. 2020. Can machine learning facilitate remote pair programming?
Challenges, insights implications. In Proceedings of the 2020 IEEE Symposium on Visual Languages and Human-Centric
Computing. 1-11.

Fernando J. Rodriguez, Kimberly Michelle Price, and Kristy Elizabeth Boyer. 2017. Exploring the pair programming
process: Characteristics of effective collaboration. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education. ACM, New York, NY, 507-512. DOI : https://doi.org/10.1145/3017680.3017748

Carl Ransom Rogers and Richard Evans Farson. 1957. Active Listening. Industrial Relations Center of the University
of Chicago Chicago, IL.

José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea Arcuri. 2015. Combining multiple cov-
erage criteria in search-based unit test generation. In Proceedings of the International Symposium on Search Based
Software Engineering. Springer, 93-108.

Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit Gulwani, Rohit Gheyi, Ryo Suzuki,
and Bjorn Hartmann. 2017. Learning syntactic program transformations from examples. In Proceedings of the 2017
IEEE/ACM 39th International Conference on Software Engineering. 404-415. DOI : https://doi.org/10.1109/ICSE.2017.44
Sherry Ruan, Jacob O. Wobbrock, Kenny Liou, Andrew Ng, and James A. Landay. 2018. Comparing speech and key-
board text entry for short messages in two languages on touchscreen phones. Proceedings of the ACM on Interactive
Mobile Wearable Ubiquitous Technologies 1, 4 (Jan. 2018), Article 159, 23 pages. DOI : https://doi.org/10.1145/3161187

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

http://www.lib.ncsu.edu/resolver/1840.16/1429
https://doi.org/10.1145/782941.782986
https://doi.org/10.1145/3392837
https://doi.org/10.1145/3313831.3376403
https://doi.org/10.1136/bmj.320.7237.730
http://arxiv.org/abs/https://www.bmj.com/content/320/7237/730.full.pdf
https://doi.org/10.18653/v1/D19-1196
https://doi.org/10.1145/3017680.3017748
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1145/3161187

34:42 P. Robe and S. K. Kuttal

[206]

[207]

[208]

[209]

[210]
[211]
[212]

[213]

[214]
[215]
[216]
[217]

[218]

[219

[

[220]

[221
[222]
[223]

—

[224]

Omar Ruvalcaba, Linda Werner, and Jill Denner. 2016. Observations of pair programming: Variations in collaboration
across demographic groups. In Proceedings of the 47th ACM Technical Symposium on Computing Science Education.
ACM, New York, NY, 90-95. DOI : https://doi.org/10.1145/2839509.2844558

V. Sambamurthy and Wynne W. Chin. 1994. The effects of group attitudes toward alternative GDSS designs on the
decision-making performance of computer-supported groups*. Decision Sciences 25, 2 (1994), 215-241.

Kate Kwasny, Peter Robe, Sandeep Kaur Kuttal, and Bali Ong. 2021. Trade-offs for substituting a human with an
agent in a pair programming context: The good, the bad, and the ugly. (2021). Retrieved from https://drive.google.
com/drive/folders/1klkt_d-q5F_DMsshhctv_Mbrm2YhtDdW?usp=sharing.

Anita Sarma, Xiaofan Chen, Sandeep Kuttal, Laura Dabbish, and Zhendong Wang. 2016. Hiring in the global stage:
Profiles of online contributions. In Proceedings of the 2016 IEEE 11th International Conference on Global Software
Engineering. IEEE, 1-10.

T. Savage, M. Revelle, and D. Poshyvanyk. 2010. FLAT3: Feature location and textual tracing tool. In Proceedings of
the 2010 ACM/IEEE 32nd International Conference on Software Engineering, Vol. 2. 255-258.

Marvin L. Schroth and Elissa Lund. 1993. Role of delay of feedback on subsequent pattern recognition transfer tasks.
Contemporary Educational Psychology 18, 1 (1993), 15-22.

Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software engineering. IEEE Transactions on
Software Engineering 25, 4 (1999), 557-572.

Young-Ho Seo and Jong-Hoon Kim. 2016. Analyzing the effects of coding education through pair programming for
the computational thinking and creativity of elementary school students. Indian Journal of Science and Technology
9, 46 (Dec. 2016). DOI : https://doi.org/10.17485/ijst/2016/v9i46/107837

Michael Seymour, Kai Riemer, and Judy Kay. 2017. Interactive realistic digital avatars-revisiting the uncanny valley.
(2017). In Proceedings of the Hawaii International Conference on System Sciences.

Arun Shekhar and Nicola Marsden. 2018. Cognitive walkthrough of a learning management system with gendered
personas. In Proceedings of the 4th Conference on Gender & IT. ACM, 191-198.

Leonid Sheremetov and Adolfo Guzman Arenas. 2002. EVA: An interactive web-based collaborative learning envi-
ronment. Computers & Education 39, 2 (2002), 161-182. DOI : https://doi.org/10.1016/S0360-1315(02)00030- 1

Ben Shneiderman. 1982. Designing computer system messages. Communication of the ACM 25, 9 (1982), 610-611.
Leif Singer, Fernando Figueira Filho, Brendan Cleary, Christoph Treude, Margaret-Anne Storey, and Kurt Schnei-
der. 2013. Mutual assessment in the social programmer ecosystem: An empirical investigation of developer profile
aggregators. In Proceedings of the 2013 Conference on Computer Supported Cooperative Work. ACM, 103-116.

Gillian Smith, Jim Whitehead, and Michael Mateas. 2010. Tanagra: A mixed-initiative level design tool. In Proceedings
of the 5th International Conference on the Foundations of Digital Games. ACM, New York, NY, USA, 209-216. DOI : https:
//doi.org/10.1145/1822348.1822376

Social Bot 2020. Chatbot Statistics. Retrieved 17 March, 2022 from https://www.smallbizgenius.net/by-the-numbers/
chatbot-statistics/#gref.

Social Bot [n. d.]. Cleverbot. Retrieved 17 March, 2022 from https://www.cleverbot.com/.

Social Bot [n. d.]. Mitsuku. Retrieved 15 June, 2021 from https://www.pandorabots.com/mitsuku/.

Social Bot [n.d.]. SAP Conversational Al Retrieved 17 March, 2022 from https://www.sap.com/products/
conversational-ai.html.

Li Zhou, Jianfeng Gao, Di Li, and Heung-Yeung Shum. 2020. The Design and Implementation of Xiaolce, an
Empathetic Social Chatbot. Computational Linguistics 46, 1 (03 2020), 53-93. https://doi.org/10.1162/coli_a_00368
arXiv:https://direct.mit.edu/coli/article-pdf/46/1/53/1847834/coli_a_00368.pdf

Social Media Website [n. d.]. Facebook. Retrieved 17 March, 2022 from www.facebook.com.

Social Media Website [n. d.]. Twitter. Retrieved 17 March, 2022 from www.twitter.com.

Software Application [n. d.]. Facerig. Retrieved 15 June, 2021 from https://facerig.com/.

Lee Sproull, Mani Subramani, Sara Kiesler, Janet H. Walker, and Keith Waters. 1996. When the interface is a face.
Human-Computer Interaction 11, 2 (June 1996), 97-124. DOI : https://doi.org/10.1207/s15327051hci1102_1

Saiying Steenbergen-Hu and Harris Cooper. 2013. A meta-analysis of the effectiveness of intelligent tutoring systems
on K-12 students’ mathematical learning. Journal of Educational Psychology 105, 4 (2013), 970.

Saiying Steenbergen-Hu and Harris Cooper. 2014. A meta-analysis of the effectiveness of intelligent tutoring systems
on college students’ academic learning. Journal of Educational Psychology 106, 2 (2014), 331.

Anselm L. Strauss and Juliet M. Corbin. 1998. Basics of Qualitative Research: Techniques and Procedures for Developing
Grounded Theory. Sage Publications, Thousand Oaks, Calif. XIII, 312 s pages.

Persis T. Sturges. 1972. Information delay and retention: Effect of information in feedback and tests. Journal of
Educational Psychology 63, 1 (1972), 32.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

https://doi.org/10.1145/2839509.2844558
https://drive.google.com/drive/folders/1kIkt_d-q5F_DMsshhctv_Mbrm2YhtDdW?usp=sharing
https://doi.org/10.17485/ijst/2016/v9i46/107837
https://doi.org/10.1016/S0360-1315(02)00030-1
https://doi.org/10.1145/1822348.1822376
https://www.smallbizgenius.net/by-the-numbers/chatbot-statistics/#gref
https://www.cleverbot.com/
https://www.pandorabots.com/mitsuku/
https://www.sap.com/products/conversational-ai.html
https://doi.org/10.1162/coli_a_00368
https://direct.mit.edu/coli/article-pdf/46/1/53/1847834/coli_a_00368.pdf
www.facebook.com
www.twitter.com
https://facerig.com/
http://www.ucdetector.org/
https://doi.org/10.1207/s15327051hci1102_1

Designing PairBuddy—A Conversational Agent for Pair Programming 34:43

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[251]

[252]

[253]
[254]

[255]

[256]

[257]

Linda K. Swindell and Walter F. Walls. 1993. Response confidence and the delay retention effect. Contemporary
Educational Psychology 18, 3 (1993), 363-375.

Ryuichi Takanobu, Runze Liang, and Minlie Huang. 2020. Multi-Agent Task-Oriented Dialog Policy Learning with
Role-Aware Reward Decomposition. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, Online, 625-638. https://doi.org/10.18653/v1/2020.acl-main.
59

Diana-Cezara Toader, Gratiela Boca, Rita Toader, Mara Macelaru, Cezar Toader, Diana Ighian, and Adrian T.
Radulescu. 2019. The effect of social presence and chatbot errors on trust. Sustainability 12, 1 (Dec 2019), 256.
DOI : https://doi.org/10.3390/su12010256

Jorge A. Ramirez Uresti. 2000. Should I teach my computer peer? Some issues in teaching a learning companion. In
Proceedings of the Intelligent Tutoring Systems. Gilles Gauthier, Claude Frasson, and Kurt VanLehn (Eds.). Springer
Berlin, 103-112.

Susanne van Mulken, Elisabeth André, and Jochen Miiller. 1998. The persona effect: How substantial is it? In Pro-
ceedings of the People and Computers XIII. Hilary Johnson, Lawrence Nigay, and Christopher Roast (Eds.). Springer,
53-66.

Kurt VanLehn. 2011. The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring
systems. Educational Psychologist 46, 4 (2011), 197-221. DOI : https://doi.org/10.1080/00461520.2011.611369

Kurt VanLehn, Arthur C. Graesser, G. Tanner Jackson, Pamela Jordan, Andrew Olney, and Carolyn P. Rosé. 2007.
When are tutorial dialogues more effective than reading? Cognitive Science 31, 1 (2007), 3—62. DOI : https://doi.org/10.
1080/03640210709336984

Roli Varma. 2010. Why so few women enroll in computing? Gender and ethnic differences in students’ perception.
Computer Science Education 20, 4 (Dec. 2010), 301-316. DOI : https://doi.org/10.1080/08993408.2010.527697

Nicolas Vermeulen, Olivier Corneille, and Paula M. Niedenthal. 2008. Sensory load incurs conceptual processing
costs. Cognition 109, 2 (2008), 287-294. DOI : https://doi.org/10.1016/j.cognition.2008.09.004

Virtual Assistant [n.d.]. Amazon Alexa. Retrieved 17 March, 2022 from https://developer.amazon.com/en-US/alexa.
Virtual Assistant [n.d.]. Apple Siri. Retrieved 17 March, 2022 from https://www.apple.com/siri/.

Virtual Assistant [n. d.]. Google Assistant. Retrieved 17 March, 2022 from https://assistant.google.com/.

Virtual Assistant [n.d.]. IBM Watson Assistant. Retrieved 17 March, 2022 from https://cloud.ibm.com/apidocs/
assistant/assistant-v2.

Virtual Assistant 2022. Oracle Digital Assistant. Retrieved 17 March, 2022 from https://www.oracle.com/solutions/
chatbots/.

Aurora Vizcaino. 2005. A Simulated Student Can Improve Collaborative Learning. International Journal of Artificial
Intelligence in Education 15, 1 (Jan. 2005), 3-40.

Doug Vogel and Jay Nunamaker. 1990. Group decision support system impact: Multi-methodological exploration.
Information & Management 18, 1 (1990), 15-28.

Mihaela Vorvoreanu, Lingyi Zhang, Yun-Han Huang, Claudia Hilderbrand, Zoe Steine-Hanson, and Margaret Bur-
nett. 2019. From gender biases to gender-inclusive design: An empirical investigation. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. ACM, New York, NY, Article 53, 14 pages. DOI:https:
//doi.org/10.1145/3290605.3300283

Tony Wagner and Robert A. Compton. 2012. Creating Innovators: The Making of Young People Who Will Change the
World. Simon and Schuster.

Pierre Wargnier, Giovanni Carletti, Yann Laurent-Corniquet, Samuel Benveniste, Pierre Jouvelot, and Anne-Sophie
Rigaud. 2016. Field evaluation with cognitively-impaired older adults of attention management in the embodied
conversational agent louise. In Proceedings of the 2016 IEEE International Conference on Serious Games and Applications
for Health. IEEE, 1-8.

Richard T. Watson, Gerardine DeSanctis, and Marshall Scott Poole. 1988. Using a GDSS to facilitate group consensus:
Some intended and unintended consequences. MIS Quarterly 12, 3 (1988), 463-478.

Website [n.d.]. Bing QA. Retrieved 17 March, 2022 from https://www.microsoft.com/en-us/research/project/open-
domain-question-answering/.

Linda L. Werner, Brian Hanks, and Charlie McDowell. 2004. Pair-programming helps female computer science stu-
dents. Journal on Educational Resources in Computing 4, 1 (March 2004), Article 4, 4. DOI : https://doi.org/10.1145/
1060071.1060075

Wayne A. Wickelgren. 1974. How to Solve Problems: Elements of a Theory of Problems and Problem Solving. WH
Freeman San Francisco.

Alex C. Williams, Harmanpreet Kaur, Shamsi Igbal, Ryen W. White, Jaime Teevan, and Adam Fourney. 2019. Mer-
cury: Empowering programmers’ mobile work practices with microproductivity. In Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and Technology. ACM, New York, NY, 81-94. DOI : https://doi.org/10.1145/
3332165.3347932

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

https://doi.org/10.18653/v1/2020.acl-main.59
https://doi.org/10.3390/su12010256
https://doi.org/10.1080/00461520.2011.611369
https://doi.org/10.1080/03640210709336984
https://doi.org/10.1080/08993408.2010.527697
https://doi.org/10.1016/j.cognition.2008.09.004
https://developer.amazon.com/en-US/alexa
https://www.apple.com/siri/
https://assistant.google.com/
https://cloud.ibm.com/apidocs/assistant/assistant-v2
https://www.oracle.com/solutions/chatbots/
https://doi.org/10.1145/3290605.3300283
https://www.microsoft.com/en-us/research/project/open-domain-question-answering/
https://doi.org/10.1145/1060071.1060075
https://doi.org/10.1145/3332165.3347932

34:44 P. Robe and S. K. Kuttal

[258]

[259

[

[260]

[261

—

[262]

[263]

[264

flans?

[265

=

[266]

[267

—

[268

=

[269

-

[270

=

[271

—

[272

—

[273
[274

[lan it

[275]

[276

—

[277]

Laurie Williams and Bob Kessler. 2000. The effects of “pair-pressure” and “pair-learning” on software engineering
education. In Proceedings of the 13th Conference on Software Engineering Education & Training. IEEE Computer Society,
Washington, DC, 59-. Retrieved from http://dl.acm.org/citation.cfm?id=794188.794326.

Laurie Williams and Robert Kessler. 2002. Pair Programming Illuminated. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA.

L. Williams, C. McDowell, N. Nagappan, J. Fernald, and L. Werner. 2003. Building pair programming knowledge
through a family of experiments. In Proceedings of the 2003 International Symposium on Empirical Software Engineer-
ing, 2003. 143-152. DOI : https://doi.org/10.1109/ISESE.2003.1237973

Laurie A. Williams, Eric N. Wiebe, Kai Yang, Miriam Ferzli, and Carol Miller. 2002. In support of pair programming
in the introductory computer science course. Computer Science Education 12, 3 (2002), 197-212.

James Wilson and Daniel Rosenberg. 1988. Rapid prototyping for user interface design. In Proceedings of the Handbook
of Human-computer Interaction. Elsevier, 859-875.

Ian H. Witten, Craig G. Nevill-Manning, and D. L. Maulsby. 1996. Interacting with learning agents: Implications for
ml from hci. In Proceedings of the Workshop on Machine Learning meets Human-Computer Interaction, ML, Vol. 96.
51-58.

Beverly Park Woolf. 2008. Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolutionizing e-
Learning. Morgan Kaufmann Publishers Inc., San Francisco, CA.

Qingyang Wu, Yichi Zhang, Yu Li, and Zhou Yu. 2021. Alternating Recurrent Dialog Model with Large-scale
Pre-trained Language Models. In Proceedings of the 16th Conference of the European Chapter of the Association
for Computational Linguistics: Main Volume. Association for Computational Linguistics, Online, 1292-1301. https:
//doi.org/10.18653/v1/2021.eacl-main.110

Yvonne Weern and Robert Ramberg. 1996. People’s perception of human and computer advice. Computers in Human
Behavior 12, 1 (1996), 17-27. DOI : https://doi.org/10.1016/0747-5632(95)00016-X

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R. Salakhutdinov, and Quoc V. Le. 2019. XLNet: Gener-
alized autoregressive pretraining for language understanding. In Proceedings of the Advances in Neural Information
Processing Systems 32. H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 5753-5763. Retrieved from http://papers.nips.cc/paper/8812-xInet-generalized-autoregressive-
pretraining-for-language-understanding.pdf.

Georgios N. Yannakakis, Antonios Liapis, and Constantine Alexopoulos. 2014. Mixed-Initiative Co-Creativity. Foun-
dations of Digital Games.

Nick Yee, Jeremy N. Bailenson, and Kathryn Rickertsen. 2007. A meta-analysis of the impact of the inclusion and
realism of human-like faces on user experiences in interfaces. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, New York, NY, 1-10. DOI : https://doi.org/10.1145/1240624.1240626

Mohan Zalake, Julia Woodward, Amanpreet Kapoor, and Benjamin Lok. 2018. Assessing the Impact of virtual hu-
man’s appearance on users’ trust levels. In Proceedings of the 18th International Conference on Intelligent Virtual
Agents. ACM, New York, NY, 329-330. DOI : https://doi.org/10.1145/3267851.3267863

Jiaping Zhang, Tiancheng Zhao, and Zhou Yu. 2018. Multimodal Hierarchical Reinforcement Learning Policy for
Task-Oriented Visual Dialog. In Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue. Association
for Computational Linguistics, Melbourne, Australia, 140-150. https://doi.org/10.18653/v1/W18-5015

Yichi Zhang, Zhijian Ou, and Zhou Yu. 2020. Task-oriented dialog systems that consider multiple appropriate re-
sponses under the same context. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 9604-9611.

Yong Zhao. 2012. World Class Learners: Educating Creative and Entrepreneurial Students. Corwin Press.

R. Zhi, S. Marwan, Y. Dong, N. Lytle, T. W. Price, and T. Barnes. 2019. Toward data-driven example feedback for
novice programming. In Proceedings of the 12th International Conference on Educational Data Mining.

C. Zhou, S. K. Kuttal, and I. Ahmed. 2018. What makes a good developer? An empirical study of developers’ tech-
nical and social competencies. In Proceedings of the 2018 IEEE Symposium on Visual Languages and Human-Centric
Computing. 319-321.

Su Zhu, Jieyu Li, Lu Chen, and Kai Yu. 2020. Efficient context and schema fusion networks for multi-domain dialogue
state tracking. In Findings of the Association for Computational Linguistics: EMNLP 2020. Association for Computa-
tional Linguistics, Online, 766-781. https://doi.org/10.18653/v1/2020.findings-emnlp.68

Franz Zieris and Lutz Prechelt. 2014. On knowledge transfer skill in pair programming. In Proceedings of the 8th
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. ACM, New York, NY, Article
11, 10 pages. DOI : https://doi.org/10.1145/2652524.2652529

Received November 2020; revised July 2021; accepted November 2021

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 4, Article 34. Publication date: May 2022.

http://dl.acm.org/citation.cfm?id=794188.794326
https://doi.org/10.1109/ISESE.2003.1237973
https://doi.org/10.18653/v1/2021.eacl-main.110
https://doi.org/10.1016/0747-5632(95)00016-X
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
https://doi.org/10.1145/1240624.1240626
https://doi.org/10.1145/3267851.3267863
https://doi.org/10.18653/v1/W18-5015
https://doi.org/10.18653/v1/2020.findings-emnlp.68
https://doi.org/10.1145/2652524.2652529

