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Modular evolution, the relatively independent evolution of body parts, may
promote high morphological disparity in a clade. Conversely, integrated
evolution via stronger covariation of parts may limit disparity. However,
integration can also promote high disparity by channelling morphological
evolution along lines of least resistance—a process that may be particularly
important in the accumulation of disparity in the many invertebrate
systems having accretionary growth. We use a time-calibrated phylogenetic
hypothesis and high-density, three-dimensional semilandmarking to analyse
the relationship between modularity, integration and disparity in the most
diverse extant bivalve family: the Veneridae. In general, venerids have a
simple, two-module parcellation of their body that is divided into features
of the calcium carbonate shell and features of the internal soft anatomy.
This division falls more along developmental than functional lines when
placed in the context of bivalve anatomy and biomechanics. The venerid
body is tightly integrated in absolute terms, but disparity appears to increase
with modularity strength among subclades and ecologies. Thus, shifts
towards more mosaic evolution beget higher morphological variance in
this speciose family.
1. Introduction
Integration—the covariation of traits—is often seen as channelling natural
selection by limiting the potential directions of evolutionary change, and
modularity—the partitioning of trait covariation into modules—as allowing
traits to evolve in a more independent manner [1–6]. Thus, clades with high dis-
parity may be composed of taxa with weak, rather than strong, covariation of
traits. However, weak covariation does not necessarily create the modularity
often held as key to evolutionary lability, and strong integration—i.e. more inte-
grated evolution sensu Pigliucci [7]—need not impose low disparity [8]. Most
analyses of modularity, integration and disparity have focused on specific com-
ponents of the vertebrate endoskeleton such as the vertebral column or cranium
(e.g. [9,10]), each with discrete elements arising from populations of skeleto-
genic cells (termed ‘fundamental developmental units’ in [11]). By contrast,
the accretionary exoskeleton of marine bivalves, the shell, is deposited as one
unit by specialized tissues along the growth margin [12] and records most com-
ponents of the animal’s body plan. This accretionary growth may impose a
highly integrated structure on the organism, potentially limiting modular
responses to selection and thus the accumulation of disparity within the
clade. Bivalves are emerging as a model system for macroecology and macroe-
volution [13,14], but the effects of modularity and integration on their
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hypothesis of modularity1 [H1]
all modules separate
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Figure 1. Landmarking scheme for the venerid bivalve shell features and hypotheses of modularity (details in ST§2.1). Colours mark hypothesized modules
with shell features grouped by parentheses. Taxon is Chionopsis amathusia (Philippi 1844). (Online version is in colour.)
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phenotypic evolution remain a major gap in our knowledge
of this highly diverse and disparate class [15,16].

Here, we analyse the evolutionary modularity and inte-
gration [17] in a phylogenetic and ecological context of the
most speciose bivalve family (Veneridae, approximately 750
species [18], analysing 128 of the 134 extant genera).
Given the shell’s accretionary growth [12], we expect weak
modularity and strong integration among its features. How-
ever, many shell features are homoplasic across the class,
suggesting that mosaic evolution and thus modularity could
be an important aspect of bivalve evolution. Notably, the bio-
mechanical demands of shallow- to deep-burrowing, nestling
and boring life habits evidently select for particular mor-
phologies [19–21]; for example, deep burrowers tend to have
smooth, elongate shells with larger pallial sinuses to accom-
modate the soft-tissue siphons that maintain contact with the
overlying seawater. We therefore expect modularity in the
venerid shell to represent ‘functional integration’ [7,17,22]
more than ‘developmental integration’ [17].

To evaluate modularity structure in venerids, we frame
hypotheses for seven a priori shell features (figure 1). The
most complex hypothesis specifies each feature as a distinct
module (H1). Alternatively, features functioning together to
achieve a task may covary, i.e. the partitioning of shell features
among the components of the bivalve’s biomechanical lever
arm (adductor muscles, ligament, toothbank and exterior
shell surface, see H3–7). Features may also covary according
to shared developmental pathways, such as the early separ-
ation of cell lineages that give rise to the shell and internal
soft anatomy [23] (H2). Modularity structure may also differ
among lineages and ecologies, and so we evaluate these
hypotheses across the entire family and for phylogenetic
and ecological subgroups: the two major subclades (clades
‘A’ and ‘B’ after [24], their figure 11), substratum uses across
the family and certain substratum uses within subclades.
Finally, given the apparent developmental restrictions
imposed by the indeterminate, accretionary growth of the
bivalve shell, we expect that broad morphological variance
(disparity) will be associated with stronger covariation of
modules (stronger integration) across the body and also
within modules.
2. Methods
(a) Specimen sampling
As in studies of evolutionary integration and modularity in
vertebrates [10,25,26], broad phylogenetic and ecological diversity
was captured here by sampling representative taxa from lineages
(usually a specimen of the type species of its genus). One left
valve from an adult individual was sampled per genus in the
bivalve family Veneridae (128 of 134 extant genera, and thus 128
of approximately 750 known species; all specimens sampled with
permission from museum collections). Venerids are equivalve; left
and right valves are largely mirror images except for the offset of
their interlocking hinge dentition. Morphological variation among
individuals and congeneric species is small relative to among-
genus variation in the Veneridae and is unlikely to bias the infer-
ences made here (e.g. [27,28], see also electronic supplementary
material, text §1, abbreviated hereafter ST§1). Targeting a single
bivalve family also increased the ability to sample homologous
structures. Bivalve genera were assigned to a single substratum
use (nestling, boring, shallow- or deep-infaunal; [18]). Specimens
were scanned using micro-CT at the University of Chicago’s
Paleo-CT facility. Three-dimensional, isosurface, triangular-mesh
models were created in VG Studio Max and cleaned in Rvcg [29]
and Meshmixer.
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(b) Time-calibrated phylogenetic hypothesis of
Veneridae genera

To place analyses in a phylogenetic context, we hypothesized a
time-calibrated topology of genera within the Veneridae using
genetic data in GenBank, published morphological phylogenies,
cladistics and the family’s fossil record. The molecular topology
was reconstructed by aligning all available sequence data from
all venerid species in GenBank (June 2020) using phylotaR [30]
(ST§2.1), updating the taxonomy of those species and removing
dubious tip placements because of erroneous names (two of
174 sequenced species; electronic supplementary material,
figure S1, ST§2.2). Of those 174 sequenced species, 59 were
sampled for their morphology (= 59 unique genera of the tar-
geted 128). An additional 15 genera forming monophyletic
clades were sampled for their morphology using congeneric
species, arriving at 74 of 128 genera sampled on the molecular
phylogeny (ST§2.3). The remaining 54 genera lacking molecular
data were grafted onto the molecular topology using topologies
from published morphological phylogenies or cladistic relation-
ships (electronic supplementary material, figure S2, ST§2.4; as
in the approach of [31]). We time scaled the phylogeny using
treePL [32] with the first known stratigraphic occurrence for all
genera following a budding model of evolution, where the
younger of the two daughter lineages dates the split [33]
(ST§2.5; fossil ages determined from an exhaustive literature
search of 550 references in ST§6).

(c) Shell features and landmarking
Seven a priori shell features were landmarked on the bivalve shell
(figure 1; full details on landmarking in ST§3.1). The features that
operate together to open and close the animal’s two valves are as
follows: the toothbank (the area at which two valves
articulate), the ligament groove (the site hosting the protein-
aceous ligament that joins the two valves) and the adductor
muscles as characterized by the muscle scars (the imprints on
the inner surface of the shell where the muscles attach). The ven-
tral extent of the animal’s viscera—primarily the digestive,
respiratory, circulatory and reproductive systems—is marked
by the pallial line. The area that houses the siphons when
retracted is marked by the pallial sinus; its depth and shape
give an indication of siphon size that reflects the depth at
which the animal lives below the sediment-water interface [34].
The exterior surface captures the general shape of the animal’s
shell, which is hypothesized to reflect burrowing behaviour
and substratum use [19,20,35]. Features were landmarked using
‘Pick Points’ in Meshlab [36] (figure 1). Gridded surface semi-
landmarks for the toothbank and exterior surface were placed
following the procedure of [27], which is analogous to the eigen-
surface method of [37] and attempts to capture shape variation
relative to the axis of maximum growth. Landmark density can
affect inference of modularity structure [38], so the number of
landmarks used to describe each feature was selected using
both qualitative assessment of shape complexity and testing the
statistical power of landmark coverage following [39] (electronic
supplementary material, figure S4).

(d) General shape variation, phylogenetic signal and
ecomorphology

General patterns in shape variation among genera were deter-
mined by principal components analysis of landmarks aligned
using generalized Procrustes analysis (GPA; ST§3.2). Phyloge-
netic signal in GPA-aligned landmarks was assessed by a
generalized K statistic [40] (ST§3.3). All morphological analyses
from this point on were conducted on phylogenetically corrected
shape data (i.e. the residuals from a phylogenetic least-squares
regression of landmarks, ST§3.3). Distinctiveness of morphology
by substratum use and clade membership was determined
first by a permutation-based analysis of variance (‘permANOVA’
[41]), then as differences in mean shapes following [41] and lastly
as the proportion of genera closer to the mean shape of
their assigned group than to the mean shape of other groups
(ST§3.4).

(e) Testing hypotheses of modularity structure
The modularity structure was determined using the effect size of
the ‘covariance ratio’ (ZCR in [42]; ST§3.5) for four groupings of
the data: (i) the entire family Veneridae, (ii) the two major
subclades A and B (figure 2c; electronic supplementary material,
figure S2), (iii) the four substratum uses and (iv) deep- and shal-
low-infaunal genera within clades A and B. The best-supported
hypothesis of modularity structure was determined by compar-
ing the effect sizes of modularity strength (i.e. the most
negative ZCR, noting any overlap in confidence intervals) and
by effect size tests (Ẑ12 tests [42]; ST§3.5). Effect size tests
suggested limited statistical power for differentiating hypotheses
for some groupings of data; in these instances, the hypothesis
with the most negative ZCR was used as the ‘optimal hypothesis’
following [42]. Other approaches to analysing modularity exist
(e.g. [43,44]), and some provide results consistent with ZCR on
empirical data [10], but we use the covariance ratio approach
to facilitate comparison with many studies in the discussion.

( f ) Modularity strength, within-module integration and
morphological disparity

For the optimal hypothesis of modularity in subclades and eco-
logical groups, modularity strength across the entire body was
characterized by its ZCR value (see [42]); more negative values
indicate stronger modularity and thus relatively weaker covaria-
tion of traits (landmarks) between modules. Disparity of the
entire body was measured as the Procrustes variance of the
shape data centred on the mean shape of each analytical group
(sensu [45], ST§3.6). Within-module integration was calculated
using ‘relative eigenvalue variance’ ([46]; see also [47,48];
ST§3.6). Disparity of individual modules for each ecology was
also measured using Procrustes variance, but on shape data
with landmarks aligned per module-group combination and
normalized by the number of landmarks in the module.
3. Results
(a) Ecological and phylogenetic signal in the

morphology of venerid genera
The mean venerid shape is a moderately inflated, subtrigonal
shell with equal-sized adductor muscle scars, a trigonal
toothbank anterior of the shell midline, and a pallial sinus
extending approximately 25% of the length of the shell.
Thirty-eight per cent of the total shape variation in this data-
set is explained by the first three principal components (’PCs’;
95% of the total variation explained by the first 39 PCs).
Along the first PC, shapes vary from anterior–posterior
elongate shells with deeper pallial sinuses and small tooth-
banks further offset anteriorly from the dorsal–ventral axis,
to more equilateral shells with shallower pallial sinuses and
more centrally positioned, broader toothbanks (figure 2a).
The second PC captures variation in the inflation, or convex-
ity, of the shell, and in the size of the pallial sinus and
adductor muscles. The third PC shows an anti-correlation
of features from PC1; more equilateral shell shapes are
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associated with offset, reduced area toothbanks and deep pal-
lial sinuses, and elongate shells with more central, broader
area toothbanks and shallower pallial sinuses.

Substratum use is broadly distributed across the first three
PCs, with little evidence for distinct ecomorphologies at this
low dimensionality (figure 2a). However, morphologies are
significantly partitioned in morphospace by substratum
use across the full-dimensional shape data while accounting
for phylogeny (permANOVA Z = 3.78, p = 0.001), although
not all mean shapes of substratum uses differ significantly
from one another (i.e. borers compared to deep- and shallow-
infauna, figure 2b). Up to 30% of genera within a substratum
group are nearer to the mean shape of a substratum use
other than their own, suggesting interfingering of morpho-
space occupation among subclades and life habits (figure 2b).
While there is some ecological structure to the morphospace,
phylogenetic signal is limited, indicating that sister-taxa are
less similar in shape than expected under Brownian motion
(Kmulti = 0.11, p = 0.002). This is partially reflected in the phylo-
morphospace for PCs 1–3 (figure 2c), where sets of closely
related taxa overlap in morphospace with more distantly
related taxa (e.g. the Callocardiinae and Venerinae). Members
of clades A and B are not significantly different in their mor-
phology (permANOVA Z =−6.78, p = 1; see also electronic
supplementary material, figure S5), further weakening phylo-
genetic signal in body shape.
(b) Modularity structure of the venerid shell
The optimal hypothesis of modularity structure across
venerid genera is H2: shell versus internal anatomy (i.e.
lowest ZCR, figure 3a; values of ZCR, CR and details of
effect size tests, Ẑ12, in electronic supplementary material,
figure S6, ST§3.5). Each subclade and ecology is also
optimally supported by H2 (figure 3b,c). For the two substra-
tum uses that are shared across the subclades, shallow-
infaunal genera from clades A and B are optimally supported
by H2, as are the deep-infaunal genera from clade B. Deep-
infaunal genera from clade A may have a more complex mod-
ularity structure H5, but the uncertainty in ZCR overlaps with
that of H2 (figure 3c). The ZCR for H2 has non-overlapping
confidence intervals with alternative hypotheses in 10 of 11
analytical groups (figure 3), but significant differences of
pairwise effect size tests are mixed (i.e. Ẑ12 tests). All alterna-
tive hypotheses are significantly different from the null
hypothesis of no modularity at p < 0.05, but H2 is not signi-
ficantly different from some other hypotheses in each
analytical group (electronic supplementary material, figure
S6). This uncertainty is mostly derived from the differences
in the standard errors of CR estimated under the hypothesis
of no modularity, such that ZCR is most tightly estimated
for H2 and more loosely estimated for the alternative hypoth-
eses (electronic supplementary material, figure S6, ST§3.5).
Because of H2’s relatively tight estimate of ZCR, and because
its two-module parcellation of features is the most parsimo-
nious hypothesis, H2 was treated as the optimal hypothesis
of modularity structure for each analytical group.
(c) Modularity strength versus disparity
Disparity appears to increase with modularity strength
between subclades and among substratum uses, but wide
confidence intervals indicate uncertainty in this effect
(figure 4a). Clade B has greater observed modularity
strength and disparity than clade A, with no overlap in
uncertainty of modularity strength and very small overlap
in uncertainty of disparity (figure 4a). Among substratum
uses, borers and shallow-infauna overlap in their uncertain-
ties for modularity strength and disparity, but both appear
to have greater observed modularity strength and disparity
than nestlers and shallow-infauna, which overlap in their
respective uncertainties. The wide uncertainty in the dis-
parity of borers may derive from an interaction between
their low sample size and high disparity. Differences in
modularity strength should be interpreted using effect
sizes (ZCR), but CR values are useful for understanding
degrees of modularity strength relative to no modularity
(CR = 1). The CR for H2 across the family is 0.75 (electronic
supplementary material, figure S6), which is a more tightly
integrated structure than observed for other animals (e.g.
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mammal jaws [42]). CR values for subclades and substratum
uses range between 0.6 and 0.9 (electronic supplementary
material, figure S6). Qualitatively, the within-module dis-
parity of analytical groups is not correlated with their
within-module integration (i.e. covariation of their constitu-
ent landmarks; figure 4b).
4. Discussion
The morphology of a taxonomically diverse invertebrate clade,
the bivalve family Veneridae—whose body plan is tied to
an accretionary exoskeleton—has a stronger relationship to
ecology than it does to phylogeny. This ecological differen-
tiation, however, is not strictly linked to evolutionary shifts in
the covariation of body features, and the operationally
supported number of discrete modules falls well short of
the hypothesized seven. Thus, for this clade, ecological and
morphological diversification apparently occurred in only a
coupleofmodules andrarely required changes in thecovariation
structure, reminiscent of patterns in the mammalian skull [49].
Even though the venerid body appears to be tightly integrated
overall relative to elements of the vertebrate skeleton, its mor-
phological disparity tends to increase with modularity strength
among subclades and substratum uses. As discussed below,
some of these results are consistent with findings in other ani-
mals and plants, but some may be unique to groups of
animals having accretionary growth or to bivalves in particular.

(a) Distinct ecomorphologies with limited phylogenetic
signal

With the exception of rock-boring genera, the morphology of
venerids is partitioned to a first order by substratum use. The
mean shape of rock-borers tends to resemble that of the
deep- and shallow-infauna (figure 2b). Thus, the limited corre-
lation between phylogeny and morphology may result from
the multiple apparent origins of similarly shaped, deep-infau-
nal genera (figure 2a,c) and from the high disparity of shallow-
infaunal genera, the ancestral state for the family ([50];
figures 2a and 4). Borers and nestlers tend to be phylo-
genetically clustered, which would increase the correlation
between phylogeny and morphology (and morphology with
ecology), but these phylogenetically localized effects are insuf-
ficient to create a strong signal across the entire family. Limited
phylogenetic signal in morphology could be more a rule than
an exception for bivalves, as evolutionary convergence of
shell forms with similar functions has long been recognized
[19,20]. Life near the sediment–water interface increases the
risk of exposure to predators by wave or current action, so
the shallow-infaunal body plan may be under selection for fea-
tures related to stability in the substratum, anti-predatory
defense and/or re-burrowing speed following displacement
from their various substrata [20]. Similarly, life bored into
rocks, deeply buried in sediment or nestled into crevices has
been associatedwith distinctive morphologies, again reflecting
selection for particular adaptations for those lifemodes. Boring
animals carve into rocks harder than their calcium carbonate
shells, with or without chemical aids [51]; deep-infaunal ani-
mals must penetrate more compacted sediment and maintain
a longer conduit to the sediment–water interface than their
shallow-infaunal relatives [19]; nestlers have some ability
to adjust the growth of their shells to the shape of their enclos-
ing cavities [52]. The diversity of adaptive demands on the
venerid shell makes it evenmore striking that all four ecologies
have the same modularity structure.

(b) Modularity structure: shell versus internal soft
anatomy

The modularity structure is relatively simple across the
family: features of the carbonate shell covary, and features
reflecting the animal’s internal soft anatomy covary. In retro-
spect, it may not be surprising that the bivalve shell, as
opposed to the many elements in the vertebrate skeleton,
imparts a simple covariation structure. The shell primarily
grows by synchronous deposition of material along a con-
tinuous growth front [12], which could impose geometric
restrictions for how the shell, and its toothbank and ligament,
can change while maintaining the infaunal lifestyle of the
family. We might expect even more extensive covariation of
features, such that accretionary growth would regulate how
the soft anatomy attaches to the shell. However, venerid
body features are divided into two modules, one tied to the
development of the shell (‘shell’: the toothbank, ligament
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and general shape of the shell’s exterior surface) and the
other reflecting the positions of the internal soft anatomy
(‘internal anatomy’: the adductor muscle scars and the pallial
line and sinus). Thus, the shapes of the shell and of
the internal anatomy are less linked to one another as
might have been expected from how the shell grows.

Division of features into modules representing the shell
versus internal anatomy aligns more with the expectations of
developmental integration than functional integration. Cell
lineages that give rise to the shell separate very early in devel-
opment from those that produce the adductor muscles and
other parts of the animal’s soft anatomy (possibly after two
rounds of cell division [23,53]). Early separation of cell lineages
does not preclude a later functional organization for these two
modules. However, our analysis sorts features into those
associated with the shell and those with the internal anatomy,
suggesting that early development strongly imprints on the
covariation of these features in adults. The ligament’s grouping
with the shell and toothbank also implies stronger develop-
mental control because it is deposited by the mantle, like the
shell (e.g. [54]). The ‘shell’ module could be functionally inte-
grated, too; the animal’s burrowing, boring and nestling
mechanics require coordinated movement of the shell, tooth-
bank and ligament in a lever system [55–57]. But, critically,
the adductor muscles that close the shell during the burrowing
sequence are part of the internal anatomy module; had they
grouped with the features of the shell module, we might
infer a relatively stronger control of function over development
for the division of these two modules. We expected the boring
habit to have strict morphological requirements that might
drive the parcellation (sensu [1]) or restructuring of venerid
modularity because the substratum, e.g. limestone, sandstone
or even andesite [51], can be harder than the animal’s carbonate
shell. Even here, however, the modularity structure of the
ancestral life habits is retained. Substratum use is the primary
axis of ecological differentiation in venerids (all are mobile,
unattached, suspension feeders [19,58]), but the covariation
structure of venerid morphology appears to fall along mostly
developmental lines, possibly reflecting successive steps in
the evolution of the bivalve body plan. The internal anatomy
and musculature attaching to the shell originated prior to the
evolutionary origin of a functional hinge and ligament
[59,60], although the homologs of the bivalve adductor
muscles remain uncertain [61]. In this sense, venerids are per-
haps more similar to the vertebrate skull, whose modules
demonstrably have mixed origins in development, function
and evolutionary sequence [25,62], than they are to organisms
with individual modules strongly linked to discrete functions,
such as flowering plants ([63] and references therein),
dragonflies [64] and damselfishes [65].

The morphology of the venerid bivalve shell reflects more
of the total anatomy of the animal than the skeletal elements
considered in many of the vertebrate examples discussed
above, which are mostly focused on cranial or vertebral
elements in isolation. Still, the venerid bivalves have notably
fewer modules than those vertebrates; for example, the two
modules for venerids versus the six for the sigmodontine
rodent mandible [42], six for the feeding system of aquatic
foraging snakes [48], 10 for caecilian skull [10] and 16 for
the frog cranium [25]). For that matter, venerids have fewer
modules than most segmented animals (e.g. arthropods
[66], with three modules in the cranidum of trilobites alone
[67]). Further, the temporal conservation of this simple
modularity structure considerably exceeds most vertebrate
examples such as the mammalian skull [3,68,69], with the
split between clade A and clade B dating back approximately
130 Myr. Thus, venerids show that evolution via many mod-
ules, or by restructuring modules, may not be as key to
ecological diversification as it is for some plants or ver-
tebrates [48,63,70]. This may reflect a macroevolutionary
trade-off. The waiting time to evolutionary events that pro-
duce new ecologies could increase with decreasing module
richness, even where taxonomic diversification rates are
high as in this clade of approximately 750 extant species
(although its diversification rate falls short of those in many
vertebrate systems, e.g. [71]).
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Recent analyses emphasize the rate of evolution for a
module relative to the degree of integration of its components
[8,63,72]. However, evolutionary transitions involving the
separation of phenotypic elements into new modules can
themselves promote an increase in a clade’s rate and scope of
morphospace occupation (e.g. [73] as cited above). Our venerid
example provides a baseline, minimal number of modules for
whole-organism comparative analyses. We suspect that other
bivalve and invertebrate clades with more modules have
evolved in morphospace at higher rates and to broader dis-
parity than the venerids. See, for example, the extinct rudist
bivalves, with their loss of bilateral symmetry and extensive
alteration of musculature, hinge and ligament [6]; and see
the irregular echinoids, with their many distinct phenotypic
modules across their calcareous test [74].

(c) Stronger modularity, broader disparity?
In theory, broad morphological disparity can arise not only
by modular evolution of body parts, but also by integrated
evolution, or stronger covariance, of those parts. Some ver-
tebrates show evidence of high disparity and strong
integration [8,9], but the generality of this phenomenon is
unclear (see lower disparity with higher integration in [8,75]
and no relationship in [10,26,48,70]). In venerids, we find evi-
dence for increasing disparity with decreasing integration
(i.e. increasing modularity strength, figure 4a) and no evidence
for a correlation between within-module integration and
module disparity (figure 4b). A finer scale of modularity
within the tissues, e.g. modules of gene expression within the
mantle, may be sufficient to generate the remarkable range of
shell form across Bivalvia and the Mollusca overall (e.g.
[76]). At the same time, modularity and disparity may neither
drive nor reflect taxon richness among venerid ecologies and
subclades. For the most taxon-rich habit, living near the sedi-
ment–water interface, broad disparity is accompanied by
relatively strong modularity (figure 4a), which we interpret
as weaker covariation of the two modules (i.e. weaker inte-
gration). These patterns suggest that taxa have accumulated
in a more isotropic manner than in the similarly rich deep-
infaunal habit, which appears to have accumulated taxa
more along evolutionary lines of least resistance—a more ani-
sotropic array of morphologies (figure 4a). The taxon-poor
boring or nestling habits are not restricted to particular corners
of the modularity–disparity space, further weakening any link
between disparity, modularity and diversity (figure 4a). These
comparisons of modularity strength are relative, and overall,
the venerid body is a tightly integrated structure (i.e. CR =
0.75 for the family, and ranging from 0.6–0.9 among subclades
and substratum uses; electronic supplementary material,
figure S6). Thus, origination along allometric trajectories,
specifically heterochrony—a known developmental pathway
for bivalve diversification [77–79]—may be a primary mode
of taxonomic, ecological and morphological differentiation in
venerids that maintains an evolutionary pattern of tight trait
covariation. However, small shifts towards more mosaic evol-
ution appear to increase morphological variance in certain
subclades and ecologies. A true test of these dynamics will
require comparisons with other major bivalve clades in an
ontogenetic context. Nevertheless, the results here suggest
that modularity strength is linked to disparity in this group
of bivalves, but it is not clearly tied to evolutionary success in
bivalves as measured by net diversification.
5. Conclusion
Overall, the disparity of the venerid bivalve clade is mostly
underlain by two phenotypic modules, a split that appears
to reflect developmental factors rather than functional ones.
Even so, the net outcome of development, the adult body
plan, is more strongly associated with ecology than with phy-
logeny, suggesting an unexplained ontogenetic role of the
two major cell lineages that underlie the two modules [23].
The strength of modularity appears to be positively corre-
lated with disparity among subclades and ecologies within
this family. These morphological patterns suggest targets
for developmental studies to determine the relative role of
intrinsic and extrinsic factors in shaping the observed covar-
iation (e.g. are the least disparate or most strongly integrated
features developmentally more canalized under experimental
manipulation? see [5]). They also provide a comparative basis
for examining the developmental patterning and evolution-
ary impact of some of the more extreme deviations from
the bivalve body plan, such as the loss of bilateral symmetry
as in many scallops [16] and the extinct rudists [6], shifts of
the visceropallium relative to the shell as in the giant
clam Tridacna [80], repatterning of the musculature along
the anterior–posterior axis as in oysters and mussels [81,82],
and even the extreme elongation of extinct members of the
venerids [28]. Given the phylogenetic and temporal breadth
of this marine clade, extending this approach to other
bivalve families and their extinct members will strengthen
our understanding of how modularity and integration corre-
spond to the differential accumulation of disparity and taxa
in a morphology-rich clade founded on a simple accretionary
exoskeleton.
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